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Abstract

Buildings have emerged as one of the dominant sectors when it comes to worldwide

energy consumption. While a large portion of this consumption is due to the Heat-

ing, Ventilation, and Air Conditioning (HVAC) loads, a significant portion is con-

tributed through the use of standard equipment, also known as Miscellaneous Elec-

tric Loads (MEL). It is necessary to understand the consumption patterns to opti-

mize the MELs of the occupants using the building and conduct accurate forecasts

for building energy management. One of the methods to achieve that purpose is

the employment of Deep Learning (DL) methods. This study provides an analysis

using Long Short-Term Memory (LSTM) model as a baseline for predicting MELs.

The predictions were conducted for a day-ahead and a week-ahead period. Further-

more, the results from the baseline model were then used in a comparative analysis

with two other state-of-the-art DL models; Bidirectional Long Short-Term Memory
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(Bi-LSTM) and Gated Recurrent Units (GRU). The results from this study showed

that both the Bi-LSTM and GRU models were significantly better than the LSTM

model, especially when the prediction horizon was longer. The conclusions ob-

tained can help implement these models in building energy management systems

to draft strategic responses and schedules for more efficient energy usage.

Keywords: Buildings, Consumption Patterns, Occupant Behavior,

Miscellaneous Energy Loads (MEL), Prediction Models, Plug Loads, Deep

Learning

1. Introduction

The building sector is a significant contributor to the massive and expanding

energy demands which are responsible for greenhouse gases and carbon emissions

[1]. Worldwide, this sector accounts for 35% to 40% of total energy consumption

[2]. This ratio is even higher in countries with extreme climatic weather such as the

United Arab Emirates (UAE), where buildings devour more than 70% of the power

produced [3] [4]. While a significant portion of that consumption is due to the

cooling loads, around 17% constitutes the load consumption from standard equip-

ment in buildings. It is crucial to have an understanding of consumption patterns

to achieve energy savings in office buildings or shared spaces [4]. To mitigate the

growing energy demands of the building sector, the impact of occupant behavior

has become a focus of recent studies. Various studies have investigated the impact

of occupants on the energy consumption in buildings to qualitatively and quanti-

tatively comprehend occupant behavior, foster energy efficiency, and minimize the

gap between the actual and predicted energy consumption [5] [6].

Miscellaneous Electric Loads (MELs) are a critical hindrance for creating low-

energy buildings, and are a significant contributor to the building’s energy load. This

has been documented by Roth et al. [7] in the case of residential buildings located in

the United States of America (US), and in studies regarding US office buildings [8].

These loads can contribute up to 20% of the total building energy consumption, and

are set to increase by 40% in the next two decades [9]. MELs in buildings get referred
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to as the diverse electric loads emanating from electronic devices not responsible

for Heating, Ventilation, Air Conditioning (HVAC), or lighting [10] [11]. Syed and

Hachem [3] considered MELs as a factor in a simulation study of a greenhouse-retail

complex and found that MELs accounted for 23% of the building energy load. Bur-

gett and Chini [12] conducted an analysis regarding the improvement of MEL pre-

diction using occupant-centric methods. MELs are gaining attention as electronic

devices get accumulated inside offices or buildings, and have become more sophis-

ticated, thus generating upsurge in the miscellaneous electric usage [12][13]. MELs

are one of the fastest expanding loads and are evolving to become one of the domi-

nant load categories [3]. This growth reveals the fact that personal computers (PCs)

and other office devices are penetrating office buildings, creating a sizeable base

of installed computing equipment [1]. MELs comprise the vast majority of office

equipment, while a fundamental part of them is plug loads related to Information

and Communication Technologies (ICTs), such as desktops, monitors, and printers

[14]. Plug load disaggregation is imperative for evaluating and investigating the un-

derlying causes of energy wastage and developing strategies for energy reduction

inside buildings [1] [3].

1.1. Challenges of Occupant-Centric Miscellaneous Electric Loads

The challenges in occupant-centric MELs energy research in buildings can get

summarized as (1) unexplored and understudied as compared to design-focused

research studies; (2) combined effects of uncertainty in numerous parameters re-

sponsible for the upsurge in MELs are neglected; and (3) particular types of build-

ings (e.g., educational facilities), or buildings exposed to extreme climatic settings

are not considered, or inspected thoroughly.

Another challenge is that MELs are difficult to predict because individual occu-

pants are in control of the electronic devices in a shared office or building. Burgett et

al. [12] used an occupant based operational model to predict MELs and found that

the results improved significantly when compared to the standardized occupant be-

havior models.
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1.2. Benefits of predicting MELs

Considering the significance of MELs in the contribution to building energy, it

is not only necessary to have an understanding of the consumption patterns, but

also reliable estimates of those MELs. These estimates are important for decision-

making processes [15], and establishing predictive control [16]. Also, accurate esti-

mations are beneficial for predicting internal heat gains [16], and more importantly,

for building performance simulations [17]. Building facility managers can bene-

fit from an understanding of these patterns, and then look ahead into the future,

for recommending energy-saving strategies, and determine the period of the peak

loads.

However, these predictions often rely on typical load profiles and schedules,

which are obtained from published benchmarks. A review of these benchmarks for

offices in United Kingdom (UK) highlighted their inaccuracy, stemming from these

benchmarks being outdated and unrepresentative of the equipment currently used

in buildings (that contribute to the MELs)[18]. Only a handful of studies employ

more sophisticated models for such predictions [19] [20]. For example, Menezes et

al. [19] introduced two methodologies for predicting MELs, one of which made use

of detailed monitored data, and the other was independent of it.

The use of deep learning models is rare, but some studies have made use of the

Long Short-Term Memory (LSTM) algorithms to forecast electricity consumption

in commercial and residential buildings. Wang et al. [16] applied an LSTM model

to predict internal load in buildings, in order to facilitate predictive HVAC control.

Marino et al. [21] employed the same technique in building energy load forecast-

ing, while Rahman et al. [22] used it to predict electricity consumption. The mo-

tivation for using LSTM models is based on the transient nature of electricity con-

sumption patterns. Arahal et al. [23], and Fan et al [24] explored this temporal de-

pendency. Another problem with such predictions is the long term dependencies,

which is not accounted for in vanilla Recurrent Neural Networks (vRNNs). Hochre-

iter and Schmidhuber [25] recommended LSTM algorithms to address both these

issues. Based on these studies, the baseline model in this paper was taken as LSTM.

Besides, newer models like Gated Recurrent Units (GRUs), or variants of LSTM (such
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as Bi-directional LSTM) have not yet been tested for these purposes, which moti-

vated the comparative analysis in this research work.

1.3. Research contributions

This research work enables us to delve into the limitations in the previous studies

by proposing a comparison between state-of-the-art prediction models to quantify

the impact of occupants on MEL energy consumption. The prediction models ap-

ply time-series data analysis methods to capture potential synergetic repercussions

of occupant actions and consumption patterns on building performance. In this

paper, a case study is presented on a typical educational building located in the ex-

treme hot climate of Abu Dhabi, United Arab Emirates (UAE). Such climates have

not yet been the target of studies focusing on MEL predictions, signifying a notable

gap in the literature.

In this research work, we try to find a solution to the following questions:

1) LSTM, Bi-LSTM, or GRU? Which model yields better results and achieve greater

prediction accuracy on extrapolating consumption patterns for plug load devices

using heterogeneous sensors?

2) How can we make accurate predictions on the number of occupants and en-

ergy consumption patterns in a non-intrusive and reliable manner? Does occu-

pancy duration have more influence on prediction accuracy compared to the oc-

cupancy ratio? Does the duration of prediction (look ahead into the time horizon)

have an impact on the prediction accuracy of the different models?

The significant contributions of this research work:

1) Present predictive models to forecast energy consumption more transparently

and consistently and try to find out where the energy consumption is coming from,

measuring in detail its energy footprint for the different plug load devices. Thus, it

is interesting to identify and present state-of-the-art techniques regarding efforts to

characterize, analyze, measure, and reduce the consumption of MELs.

2) Propose a comparison between state-of-the-art prediction models. Experi-

mental results highlight that the Bi-LSTM model is slightly more accurate than the

5



GRU and the LSTM (baseline model). However, the GRU and Bi-LSTM converges

around the same number of epochs than the baseline LSTM model.

3) Device-utilization patterns for multiple occupants get extrapolated inside the

multi-utility test-space. A comparison between groundtruth and predicted patterns

was carried out to demonstrate which model yields higher accuracy. Also, proposed

reasonable strategies for the reduction of MELs inside buildings.

Besides the upsurge in energy consumption, MELs also influence the power qual-

ity of the network, generally by implanting harmonics and transients in the voltage

signal. However, this is not the prime focus of this research work; the practitioners

and model developers should consider it as another essential aspect that affects the

power quality inside a building that requires further investigation [3].

The rest of the work in this paper is structured as follows: Section 2 highlights the

related work in this field. Section 3 describes the problem formulation. Section 4 ex-

plicitly describes the case scenario and the experimental set-up. Section 5 illustrates

the data acquisition to analysis methods in detail. Section 6 explicitly describes the

deep neural network models as well as the implementation steps of the prediction

models. Section 7 describes the hyper-parameter tuning and optimization strate-

gies. Section 8 describes the experimental results for the case study, and Section 9

discusses the model evaluation results. The summary of the lessons learned is pre-

sented as a discussion in Section 10. Section 11 elucidates the applications of the

prediction framework and also includes open research questions for future research

directions. Finally, the conclusion is presented in Section 12.

2. Related Work

This section explores the related works found in literature, which includes the

use of MEL for whole-building energy simulations, behavioral impacts on energy

savings, and control systems for building energy management.

A significant amount of these studies obtained the loads from regional or global

design standards [26] [4], regional surveys [12] [27] [26] or electricity meters [15] [13]

[28] [29] installed in buildings. A broad range of building types are covered as well,
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Table 1: Related Work
Author and Year Data Used Building Type KG-CC Methods Results

Afshari et. al.

2014

Typical building profiles

and data from Urban

Planning Council

Mixed-use office BWh

Life cycle

cost analysis (LCA)

Marginal abatement

cost curves (MACC)

EnergyPlus models

Proposed retrofits

for a bussiness-as

-usual (BAU)

building

Burgett et. al.

2014

MEL data

extracted from

RECS surveys

12000 households

(US EIA 2011)

Residential Cfa/Aw
Regression model

to predict MELs

Occupant characteristics

predictors of MELs

than building characteristics

Achieved accuracy of 79%

Wang et. al.

2019

MELs, lighting,

occupant counts,

Wi-Fi connection

counts

Office Csb/Csa LSTM

Reduced prediction

errors compared to

ASHRAE schedules

Mahdavi et. al.

2016

Occupancy (PIR)

Plug loads (energy

meters)

Office Cfb
Aggregate estimation

and stochastic model

Achieved NRMSE

range of 12.6 - 20.3 %

with stochastic models

and 12 - 14% with

simplified models.

Mahdavi et. al.

2017

Occupancy (PIR)

Plug loads (energy

meters)

Office Cfb

Simplified and

probabilistic models

(using Weibull distributions)

Reduced previous RMSE

values by including

occupant diversity

Wang et. al.

2018

Electricity data

(energy meters)
Office Dfa

LMS

nLMS

RLS

GMMR

RMSE (kw) for

different models:

LMS - 124.8

nLMS - 129.6

RLS - 122.0

GMMR - 45.2

Yalcintas

2008

Occupancy

Hourly electricity

measurements

Hotel BSh ANN
RMSE ranged from

6.81 to 16.4%

Lee et. al.

2001

Design criteria

from ASHRAE

Energy end-use

survey by SRCI

Commercial Cwa

Comparative analysis

of design criteria and

surveyed values

Recommended realistic

design criteria, saving

estimates of 6-22% of

electricity consumption

Sarfraz et. al.

2018

Power consumption

profiles

Load factor profiles

Office NA
Combined diversity factors

and load fators

Recommended using office

level load factors for

overall load calculation

Ren et. al.

2013

Time use survey

Metering data
Residential Cfa/Cfb AccuRate Prediction error 6.5%

Christiansen et. al.

2015
Plug load measurements Hospital Cfb Multiple regression Error of less than 6%

most common ones being offices or commercial ones, but there is a notable dearth

of academic buildings in these studies. The key findings of these related works, and

the associated Köppen–Geiger climate classifications (KG-CC) of the cities they were

conducted in, are presented in Table 1. The Köppen climate classification (KG-CC)

system is one of the most commonly used systems, wherein the regions are repre-

sented by letters that indicate the amount of precipitation and the normal temper-
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atures that region experiences. The regions are first divided into five main climate

types; A (tropical), B (dry), C (temperate), D (continental), and E (polar). The sec-

ond letter indicates the seasonal precipitation, while the third letter indicates the

heat levels [30]. It can be identified from the table that there are various prediction

methods used for the consumption patterns, including LSTM [16]. However, it can

be noted that no works are making the use of Bi-LSTM or GRU.

3. Problem Formulation

The prediction of an occupant’s energy consumption into the future at any time

instant t gets represented by the occupant’s presence status S and consumption pat-

terns C . Occupancy varies throughout the week within the monitored space, and

each occupant is perceived as a decision-making agent who considers multitudes of

different environmental and contextual parameters before deciding which plug load

devices to use. At any time instant t , the nth occupant represented as (On) has a fixed

desk position D , assigned to the occupant and plug load devices deployed at each

desk P , where P = p0, . . . , pn−1. This task gets perceived as a regression problem.

The time-series data we observe of the occupant for different plug load devices are

from time-stamp T0 to Tobs−values . And, the predictions made from Tobs−values+h

to Tpr edi ct with h as the desirable horizon ahead of the current time instant. h is

called the windowing method, where the size of the window is a parameter that gets

used to predict the miscellaneous load in the next time-stamp t + 1, based on the

current time-stamp t and past time-stamp t −1 and t −2. An occupant spawns an

input consumption sequence that corresponds to the values observed, and the task

of the prediction models is to generate an output sequence for the different MEL

plug load devices predicting the occupant’s future consumption patterns. The hori-

zon of the prediction required (look ahead into the future) is flexible for an exten-

sion. It also depends on the demands which can range from an hour to day-ahead

or week-ahead prediction. In this paper, we have a 24 hour-ahead (day-ahead) and

week-ahead prediction from the different deep learning models.
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4. Experimental Set-up and Design Scenario

The data collection was performed at a research facility located in the city of

Abu Dhabi, UAE. The area used for data collection served as a shared work-space

consisting of eight individual desks, which would be occupied by up to 6 graduate

students at a time. The remaining two desks were designated as shared desks for

the occupants. Also, another common table was present for shared use, as shown

in Figure 1. Since students used the test-space, the specific occupancy of each desk

was subject to change every semester, with incoming and outgoing students.

In total, eight different occupants were included in the study over the entire

course of the data collection, which spanned over a period of eight months during

April - November in the year 2017. Each desk contained a personal lamp for illumi-

nation, controlled by the occupant, while the area itself was illuminated by six dif-

ferent lighting fixtures, each controlled by localized motion sensors. Besides, each

desk was equipped with six power outlets, including the power source for the lamp.

While the university was operational from 8 am to 5 pm on weekdays, the area was

open for access throughout the week. Moreover, it should be noted that the area of

study was not a fully controlled environment, which meant that the occupants had

flexible hours for work, and while there were six primary occupants in the area, there

were no restrictions for visitors to access the area. Such visitors occasionally occu-

pied the shared table. However, all these visitors were students or staff members of

the institute.

5. Approach

In this section, we explicitly describe the methodology implemented in this re-

search work. The overview is also highlighted in Figure 2.

5.1. Sensor Placement Strategy and Calibration

The occupants were monitored with regards to their presence, device consump-

tion patterns (via plug loads), and the associated environmental parameters such

as illuminance, temperature, and relative humidity. This was achieved with the use
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Figure 1: Experimental Set-up a) Bird’s view angle of the space layout b) Environmental sensor placement

in the space layout c) Six Plug-load Sensors on each desk (Miscellaneous, Dock, Monitor 1, Monitor 2,

Laptop, Lamp) d) PIR sensors on each occupant desk

of three different kinds of sensing modalities: plug load sensors, PIR (Passive In-

fra Red) sensors for the occupant presence, and environmental sensors to record

the illuminance (lighting status), temperature, and humidity. For more information

about the specific sensors, the individual datasheet can be referred to [31] [32]. In

total, nine PIR sensors from OccupEye [31] were deployed in the area, eight on the

work desks, and one on the common table. The sensors were placed under the work

desks, as shown in Figure 1 (d), and no other objects were placed in the area beneath

the desk, so as to avoid occlusion and have a better range of detection. To find the

optimal position of the PIR sensor at each desk, three factors were taken into consid-

eration; first, the sensors needed to be able to detect the occupant’s presence at all

positions at the desk, and second, the optimal position should enable the sensor to

avoid any triggers from passers-by near the desk. Thirdly, the sensors are mounted

to ensure there is no occlusion in its Field of View (FoV). Different positions and

scenarios were performed, recording the triggers from the sensor to determine the

optimal position with respect to the three conditions.

For the plug loads, each desk was equipped with six sensors, and each power

outlet was designated to be used by a specific device, as seen in Figure 1 (c). This
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Figure 2: Overview of the methodology

was done in order to label and segment the plug load consumption according to the

devices plugged in. The devices used for each socket and sensor were kept constant

throughout the data collection process. To ensure the due procedure was followed,

weekly checks were conducted.

As for the environmental sensors, one of the objectives of the study was to be in-

dependent of any Building Management System (BMS), which is why the data was

not extracted from any BMS. Instead, the environmental sensors were used locally

to monitor the environmental conditions around the occupant. The sensors were

placed at different heights and positions near the lighting fixtures in order to ac-

curately capture the luminance levels for each, without any significant interference
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from the others. Hence, six such sensors were used, one for each lighting fixture.

While the data collection included input from all the sensors, it should be noted

that the environmental data was not used in the deep learning models in this re-

search work. The environmental data was collected to understand the relationships

and dependencies of occupants’ visual and thermal comfort with the energy con-

sumption patterns, which was not included in the scope of this study. However,

there is a possibility to extend this work in that direction in the future. With regards

to the data from the two remaining sensing modalities, the application of the PIR

data was for the authors to understand the occupant presence status within the do-

main and context of the space. The deep learning models were modeled for the

weeks wherein the authors had determined that the occupants were present in the

area of study, and tested the models in the week with maximum occupancy. The

plug load data represented the MEL consumption data for each device, and was the

dataset used to develop the deep learning models.

5.2. Data Acquisition

The occupants were monitored for a period of 8 months (April – November 2017)

in total. However, due to the malfunction of devices and the associated missing

data, the time period taken into consideration was for around 6 months, or 167 days

precisely. The data were individually collected from each sensor’s respective data

storage platform in the form of comma-separated values (CSV) files. Along with the

routine checks to ensure the functionality of sensors, this procedure was conducted

at weekly intervals. Among the sensors deployed, both PIR and environmental sen-

sors were battery-operated and could collect data for up to 6 months at a stretch.

The plug load sensors used the power source they were attached to for functioning.

The data collection process for the environmental and plug load sensors was

continuous, reporting the associated device consumption and environmental pa-

rameters at 15-minute intervals. The PIR sensors, however, were event-based, record-

ing triggers as soon as the occupant enters the detection range of the sensor. The

sensor also registered the absence as soon as the occupant was out of the range.

However, to account for cases where the occupant may have momentarily left the
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area, on occupancy duration of five minutes was selected. The five minutes was a

wait-period before reporting for an ‘Absent’ reading; i.e., the sensor would have to

detect the absence of the occupant for a continuous five minutes.

5.3. Data Pre-processing and Data Transformation

In this section, we explicitly describe the pre-processing steps for the collected

data. Since the PIR sensor was event-based, it was not aligned to a consistent tem-

poral resolution. Also, those sensors recorded ‘blank’ triggers when there was no

change in the previously reported presence status. To counter these issues, all the

‘blank’ triggers had to be first substituted with the occupancy triggers they were in-

dicative of. The data was then processed to sort and replicate the last recorded trig-

ger for every fifteen minutes. After up-sampling, each sensor now had four readings

every hour (one reading every fifteen minutes), totaling 96 readings per day.

For anomaly detection, the routine checks involved determining if data was be-

ing continuously reported by each sensor. In some cases, there was some missing

data, frequently attributed to sensor malfunction. The malfunctions included sen-

sors running out of battery and removal of sensors from designated positions by

maintenance personnel.

Considering the nature of the study, it was necessary to have consistent data

for each device and its user, and in order to maintain that consistency, weeks with

missing data were discarded. That was the reason for the difference between the

original monitored time of 8 months and the final duration of 6 months after data

pre-processing. The final data set consisted of 16,032 rows (96 readings x 167 days) of

data for each occupant. After the pre-processing step, the data was transformed into

a structured and consistent format to work with and build the prediction models.

The sufficient amount of data needed for modeling depends both on the com-

plexity of the problem at hand and on the complexity of the chosen algorithm. How-

ever, one heuristic about the relation between the number of features and training

samples is that the number of training data should be 10 times more than the num-

ber of features. Our MEL dataset comprises of consumption data (via plug loads) for

6 devices (Miscellaneous, Monitor1, Monitor2, Docking Station, Laptop and Lamp).
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The dataset was split into training, testing and validation sets in the ratio 60 %: 20 %:

20 % respectively, which consists of 57,715 training samples, 19,238 testing samples

and 19,239 validation samples. There are 6 features in the dataset. Thus, it is ensured

that the training data, with approximately around 60,000 samples and 6 features in

the dataset is sufficient to build the predictive models.

5.4. Privacy Handling and Data Suppression

This section details the steps that were taken to ensure the privacy of the occu-

pants that were monitored. Each occupant was monitored on a voluntary basis, and

was provided with a consent form detailing the data that was being collected, and

the duration and aims of the study. This consent form was approved by the Human

Research Ethics Committee of the host university. In order to avoid revealing the

identification of the occupant, the data was labeled as Occupant 1, 2, etc. No names

or other personal details of the occupants were recorded.

The most sensitive part of this dataset is the data collected outside of the open-

ing hours since those readings are most likely collected from employees working in

the monitored area. This part of the data can be used by the employer to estimate

the work performance of the employees in the area. Data suppression is generally

referred to as the process of withholding or ad-hoc removal of a selected piece of

information from the data to protect the identity, privacy, and revealing confiden-

tial information of any individual occupant. This is a crucial step when sharing data

publicly or with third parties to protect the privacy of each occupant. Due to this,

for the future release of the datasets, we will not release any of the readings col-

lected outside of the opening hours. Furthermore, the occupants in the monitored

area also have the right to privacy. We have decided to protect the identity of the

days, by not including the dates as part of the dataset. Furthermore, re-ordering the

days by mapping the date component, thus creating a random permutation of the

days.

Similarly, for the weeks, we have a Week ID indicator. These precautions make it

significantly more difficult for adversaries to perform data linkage attacks upon the

released data, and hence identifying/revealing the identity of the occupants or the

14



location of the monitored area. In the dataset, we have introduced a workday indi-

cator that accounts for weekends and national holidays. Furthermore, we included

a national holiday indicator. The time-stamp remains in the up-sampled form (15

minutes). Table 2, presents an overview of all the attributes in the dataset.

Later, we want to release the full dataset, which can serve for benchmarking and

foster data-driven research in occupant centric MEL prediction. This dataset used

in this paper would help to extract the inter-relationships of different devices influ-

encing occupant behavior and utilization patterns.

Table 2: The attributes included in the dataset (which is collected for a period 8 months)

Attributes Description

Time Time-stamp when the entries were collected.

Time-Interval every 15 minutes (up-sampled).

Day ID
Randomly assigned number which holds the ID for the

specific day in the dataset.

Week ID
Randomly assigned number which holds the ID for the

specific week in the dataset.

Workday Boolean, telling if the entries were collected on a workday.

Weekend Boolean, telling if the entries were collected on a weekend.

Holiday
Boolean, telling if the entries were collected on a national

holiday.

Occupant ID
Each head-count is assigned a unique Occupant-ID, in

number.

Presence Status The occupancy status in a boolean format (0/1) from PIR sensors.

No. of occupants 8 occupants observed (in-situ)

Consumption Data MEL Devices: Miscellaneous, Dock, Monitor 1, Monitor2, Laptop, Lamp

6. Models Used

Initially, the time-series dataset gets split into training, test, and validation set.

The prediction models have been developed using the training sets, and the predic-

tions are made on the test set, which is unseen by the model. The prediction model

used for comparison are - Long Short-Term Memory (LSTM) [baseline model], Bidi-

rectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU).
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The next step is transforming the time-series data into a supervised learning

problem, i.e., the data gets organized into input and output patterns where the ob-

servation at the previous time step is fed to the network as an input to predict the

observation at the current time step. Another step would be that the observations

get transformed to have a specific scale, i.e., re-scale the data values to lie between

-1 and 1. The re-scaling gets done to meet the default hyperbolic tangent activation

function of the model. These transforms are inverted on predictions to revert them

into their original scale before calculating an error score.

LSTM was proposed by Hochreiter et al. in 1997 [25], and the major motiva-

tion behind building the model using LSTM for MEL predictions on plug load de-

vices for multiple occupants is that the model can account for energy savings and

efficient device utilization within the test zone. Also, to comprehend the signifi-

cant factors influencing decision-making for different device choices and individ-

ual consumption patterns in the multi-utility test zone. This could further help to

perform intelligent building operations and curtail energy wastage. Bidirectional

LSTMs (Bi-LSTMs) proposed by Graves et al. in 2005 [33] are an augmented version

of conventional LSTMs that can boost up the performance of the model on predic-

tion problems. Cho et al. in 2014 proposed GRU and it got successfully implemented

for sequence prediction tasks [34].

For implementing the prediction models, we have used Python language to eval-

uate and process the time-series data. For the data analysis, we developed proto-

types using Scikit-Learn, Scipy, Pandas, Numpy, Seaborn, Matplotlib libraries. We

also used sequential models in Keras (compatible with python 3.6 version) under

Tensor-flow as back-end. We used a workstation with an Intel i7-8850H with a base

frequency of 2.6 GHz and a turbo boost to a decent 4.3 GHz. Our algorithm utilizes

Tensor-flow as the back-end to evaluate the overall model performance and com-

putational efficiency. The explicit description of how each model gets implemented

follows in the next subsections:
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6.1. Long Short-Term Memory (LSTM) [Baseline Model]

The advantage of using LSTM as a baseline model over others is that LSTM’s can

randomize the order dependencies, possess memory blocks across observations in

the input, which Multi-Layer Perceptron (MLP’s) lack. The gates involved in imple-

menting the LSTM and the information-flow is described below:

1) Forget Gate(Ft) decides which information to delete that is not important from

the previous time-stamp. The unnecessary parts of the previous cell state are for-

gotten. To decide which information to be omitted to form the cell in that particu-

lar time step, it is decided by the sigmoid function σ. It looks at the previous state

h(t − 1) and the memory of the previous unit represented as mt-1 and the current

input Xt then compares the function. The weights get represented by w. The weights

in the LSTM module is updated using Back-Propagation through Time (BPTT). This

enables stability in the model. This can be given by the equation 1:

F t =σ(w X t +wht-1 +wmt-1 +bi as(F t )) (1)

2) The second layer comprises 2 parts i.e., input gate (It) and cell state (St). There

are two activation functions, one is the sigmoid function, and the other is tanh. The

sigmoid function then decides which values to let through (0 or 1). The tanh func-

tion gives the weightage to the values which are passed, deciding their level of im-

portance (-1 to 1). Cell state (St) can selectively update cell state values and decide

what part of the current cell state makes it to the output and gets defined by the

equation 2 and 3:

I t =σ(w X t +wht-1 +wmt-1 +bi as(I t )) (2)

St =σ(w X t +wht-1 +wmt-1 +bi as(St )) (3)

3) The third step is to decide what will be the output. It gets governed by the

output gate (Ot), and Ht captures the entire process, defined in equation 4 and 5:

Ot =σ(w X t +wht-1 +wmt +bi as(Ot )) (4)

H t = (Ot )∗ t anh(St ) (5)
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6.2. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTMs train on two rather than one LSTM on the input time-series data. Bi-

LSTMs runs the inputs in two approaches, one from past to future and one from fu-

ture to past, i.e., the first on the input sequence as it is, and the second is a reversed

copy of the input sequence. However, what varies this approach from others is that

in the LSTM that runs backward, the information from the future gets retained. Us-

ing the hidden states in combination enables the preservation of information at any

point in time from both past and future. The implementation steps are defined by

equation 6, 7 and 8.

h f
t = fh(w X t,h f

t−1)...For w ar d (6)

hb
t = fh(w X t,hb

t+1)...B ackw ar d (7)

ht = fo(h f
t ,hb

t )...Out putLayer (8)

Bi-LSTMs can provide additional context to the neural network and result in

faster convergence and even fuller learning on the prediction problem, although it

depends on the task. The structure of Bi-LSTM allows having both backward and

forward information about the sequence of consumption patterns at every time

step. By using the information from the future, it becomes easier for the network

to predict the consumption patterns efficiently.

6.3. Gated Recurrent Unit (GRU)

In this section, we describe the execution of the prediction model, using Gated

Recurrent Units (GRU). GRU performs better since it has a less complicated struc-

ture and is computationally less expensive. Also, the GRU training phase is faster

than RNN or LSTMs on limited training data.

Another advantage of GRU is that it solves the problem of vanishing gradient,

which generally occurs with vanilla RNN. Vanishing Gradient problem occurs when

the gradient shrinks as it back-propagates through time. If the gradient value be-

comes too small, it doesn’t contribute much in the learning phase.
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To solve the vanishing gradient problem and short-term memory, the gates in

GRU help to regulate the flow of information and handle which data in the sequence

is essential to retain and others to throw away. By continuing this process, the rel-

evant information is passed along the sequence-chain and makes accurate predic-

tions.

The GRU discloses the memory content at each time-stamp between the previ-

ous and the upcoming next memory content with the help of an update gate. The

update gate governs how much of the previous memory state should get forgotten

and how much new content should pass into the future. The update gate is anal-

ogous to the forget and input gates of an LSTM model. GRU has fewer parameters

and train a bit faster and also need fewer data to generalize. GRU’s got rid of the cell

state value and directly use the hidden layers to transfer the information ahead. The

update gate zt at time-stamp t gets defined in the equation 9:

zt =σ(w
z

X t +U
z

ht-1) (9)

Xt is the input that gets multiplied with its weight wz. Similarly, ht-1, which

holds the information regarding the previous time-stamp t-1, is multiplied by its

own weight Uz. The results added together, and a sigmoid activation function gets

implemented to squish the results between 0 and 1. The reset gate decides how

much of the past information to forget. It can be defined as given in equation 10:

r t =σ(w
r
X t +U

r
ht-1) (10)

The current memory content ht, which uses the reset gate to store the necessary

information from the previous time-stamp, is given in equation 11. An element-wise

product between the reset gate rt and Uht-1 is performed. This step handles what

information is needed to be removed from the previous time-stamps and apply the

tanh activation function. The tanh activation function squishes the values between

-1 and 1, thus regulating the output while performing the parameter tuning through
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successive runs.

ht = t anh(w X t + r t ¯Uht-1) (11)

6.4. Model Evaluation Metrics Used

For the evaluation, a rolling-forecast gets implemented, also known as walk-

forward model validation. Every time step of the test set gets escorted one at a

time. The prediction models are used to make a forecast on the MEL consump-

tion for the time step, and then the actual expected value from the test dataset gets

captured and made accessible to the model for the prediction on the next time step.

This walk-forward model validation mimics a sophisticated real-world setting where

training data would be accessible, and test data gets used in forecasting (in a one-

shot method), i.e., the energy consumption of the occupants. All forecasts on the

test dataset get accumulated; thus, an error score gets calculated to encapsulate the

skill of the prediction model.

For the evaluation of the models, the first metric used is Root Mean Squared Er-

ror (RMSE), and it quantifies the amount by which the estimator deviates from the

targeted output. The RMSE gets used as the evaluation metric as it penalizes signif-

icant errors, and the outcome is a score that is in the same units as the forecasted

data, i.e., occupants plug load energy consumption.

Another metric used is Mean Absolute Error (MAE), which is the average of the

absolute values of the differences between predicted and the corresponding obser-

vation in the plug load consumption data. The evaluation results are elucidated in

Section 9.

7. Hyper-parameter tuning and optimization strategies

The hyper-parameter for a model is a configuration that is external to the model

and whose value cannot get approximated from the data. The hyper-parameters are

often practiced to help estimate model parameters and are usually specified heuris-

tically. The hyper-parameters get tuned for a given prediction problem. The best
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value for a parameter tuning on a given problem is not known; however, we often

use different rules of thumb or explore for the best value by trial and error. The

hyper-parameters for the prediction model gets discussed below:

The number of training epochs is the number of times that the entire training

dataset gets demonstrated to the network during training. The batch size of a model

can be referred to as iterative gradient descent in the patterns exhibited and defin-

ing what patterns to read at one go and restore in-memory and discard others before

the weights get updated in the model [35]. Dropout layer was added to prevent over-

fitting. Mean squared error (MSE) is used as the loss function as it helps to evaluate

the accuracy of the model in predicting the test data.

Table 3: Hyper-parameters selected for the three different deep learning models

Hyper-parameters LSTM Bi-LSTM GRU

1) No. of

Training Epochs
100 100 100

2) No. of

Neurons Activated
64 64 64

3) No. of Layers 3 2 3

4) Batch-size 64 256 256

5) Dropout 0.1 0.1 0.1

6) Learning Rate 0.001 0.001 0.001

7) Activation

Function
tanh tanh tanh

8) Optimizer Adam Adam Adam

9) Loss Function MSE MSE MSE

10) Evaluation

Metric

MSE

MAE

MAPE

MSE

MAE

MAPE

MSE

MAE

MAPE

Optimization Strategies:. We implemented a grid search for hyper-parameter opti-

mization. Grid search helps to find the optimal hyper-parameters of the predictive
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model, which results in better predictions. Table 3 highlights the selected hyper-

parameters for the three different deep learning models. Also, we choose Adam

because it can get perceived as a merged version of RMSprop and Stochastic Gra-

dient Descent (SGD) with momentum [36]. The advantage of using Adam is that it

is computationally efficient and straightforward to implement for big datasets; also,

hyper-parameters have intuitive interpretation capabilities and require less param-

eter tuning. Adam is also appropriate for noisy datasets or a sparse gradient.

Batch Normalization (BN) is another optimization technique where the distri-

bution of each layer in the input of the deep learning model can change quite con-

sistently. As the input changes, the model parameters keep changing too, during the

training phase. Lower learning rates can be set to deal with the dynamic parameters.

However, lower learning rates slow down convergence and therefore make the learn-

ing process slower. There seems to be a trade-off between dynamic parameters and

learning rates. The trade-off gets more emphasized with saturating nonlinearities

across different layers in the deep learning model. It has been demonstrated how by

initializing values of parameters with zero mean and unit variance, also known as

normalization. By updating parameters as training progresses for every mini-batch,

and then back-propagating through time (BPTT), it is viable to use higher learning

rates, and to pay less attention to the initial values of the parameters. This process

not only makes learning more robust but also speeds up the training process, as

higher learning rates need fewer epochs to converge. Notably, batch normalization

acts as a regularizer, requiring less dropout and discouraging overfitting [37], nor-

malizing the loss, i.e., sum the loss terms along with the sequences and divide by

the maximum length of the sequence. In that way, it becomes easier to reuse the

hyper-parameters between multiple case scenarios.

Another strategy is early pruning of the training phase to avoid overfitting and to

evade from training a neural network more than needed. Detecting when a model

offsets to overfit the data is a challenge and one of the few methods to discover when

the network is not learning anything new about the data comprises of investigating

the validation loss, which gets calculated on the validation dataset. If the validation

loss does not improve, it indicates that further training doesn’t add anything new to
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Figure 3: Training Loss vs. Validation Loss for the LSTM, Bi-LSTM and GRU Model respectively, using

Mean Squared Error as the Loss Function. The unit is in kW.

the current parameters of the model. Early pruning is decided based on the patience

parameter in Keras. In our case, a value of 30 epochs was used for the early pruning

of the models if the validation loss doesn’t decrease and remains almost stagnant for
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30 epochs).

A good fit represents a case where the performance of the deep learning model is

extremely well on both the training and validation sets. This can get diagnosed from

a plot where the train and validation loss decrease and stabilize around the same

number of epochs. We have highlighted diagnostic plots for the three deep learning

models, see Figure 3 for LSTM, Bi-LSTM, and GRU, respectively. The Figure 3 shows

that the models stabilize around the same point indicating a well-fitted model. The

loss function used is Mean Squared Error (MSE).

8. Experimental Results

This section highlights the day-ahead and week-ahead prediction for the differ-

ent plug load devices in Figure 4 and 5, respectively, for Occupant No. 6. The week

chosen for the week-ahead prediction was selected based on its high occupancy.

In order to compare the occupancy between different weeks, diversity factors were

used. Diversity factors represent the ratio of actual occupancy to the maximum pos-

sible occupancy of an hour. These factors form the basis for generating standard

occupancy schedules in offices [38] [39]. The week selected was the one with the

highest diversity factor.

The six plug load devices are - Miscellaneous (no fixed device label i.e., occu-

pants had the flexibility to plug in any device), dock charging station, monitor 1,

monitor 2, laptop, and desk lamp.

From Figure 4, it is evident that the traffic of occupants starts at around 9 am.

Based on the prediction result analysis, Occupant No. 6 has unstable patterns for

the Miscellaneous plug load. Miscellaneous is hard to predict, and the reason is that

there is less training data, and it becomes hard for the models to learn and cap-

ture the consumption patterns for it. However, the Bi-LSTM model was the best

one to capture the miscellaneous plug load patterns with the least RMSE and MAE.

The lower value of RMSE and MAE interprets that the predictions were closer to the

groundtruth data.

As seen in Figure 4, dock consumption had quite a consistent pattern during
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Figure 4: Day-ahead Prediction for Occupant 6 shows comparison between the prediction models (LSTM

(baseline), Bi-LSTM and GRU with the actual MEL consumption (dashed) for the six plug load devices [in

kW].
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Figure 5: Week-ahead Prediction for Occupant 6 shows comparison between the prediction models

(LSTM (baseline), Bi-LSTM and GRU) with the actual MEL consumption (dashed) for the six plug load

devices [in kW].
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office hours. However, it can be noted that there is a peak right before midnight,

which coincides with the deviation in the models’ prediction (LSTM, Bi-LSTM, and

GRU). This peak is again repeated in the monitor and laptop consumption as well.

This would constitute a scenario where the desk occupant has stayed much longer

than the regular office hours. Nevertheless, the deviation of the prediction is less

than two decimal points, indicating the accuracy and reliability of such a prediction.

The peak consumption of the monitors starts with the regular office hours, taking a

dip at noon, which represents the occupants leaving for lunch. The similarity in the

consumption patterns for the monitors is corroborated by the fact that both of the

monitors are simultaneously switched on and used by the occupant.

The peak load for laptop consumption occurs from 12 pm to 1 pm, indicating a

lag in the initiation of the consumption compared to the monitors and the dock. In

comparison to the rest of the devices, the lamp is rarely used by the occupant. The

area of study was well lit by the motion-controlled lights, which were complemented

with natural daylight during the day. Hence, the need to use the lamps did not often

arise, which can be seen in both Figure 4 and Figure 5.

From the week-ahead predictions in Figure 5, it can be seen that the largest de-

viations occur in the miscellaneous plug load and lamp consumption. Both of these

categories had the least amount of training data since the occupants rarely used the

lamps, and miscellaneous plug load had no consistent device attached to it. Figure

6 highlights validation loss [in kW] for the different prediction models. It shows that

the Bi-LSTM model is more stable compared to GRU and the baseline LSTM model.

The monitors consumed extra power, and the least power was devoured by the

lamp, out of the six plug load devices. After the comparison of the different models,

we can see that the LSTM predictions were better for day-ahead predictions. How-

ever, the LSTM model performance dropped significantly for the week-ahead pre-

dictions, and the comparison is illustrated in Figure 4 and Figure 5. On the contrary,

GRU did not perform very well on the day-ahead predictions; however, it captured

the future consumption patterns more competently in the week-ahead predictions.

Furthermore, when comparisons are made between Bi-LSTM and GRU, Bi-LSTM is

slightly better than GRU.
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Figure 6: Validation loss [in kW] for the three different prediction models

9. Model Evaluation Results

In this section, we explicitly describe how we evaluated the model. As mentioned

in section 6.4, the evaluation metrics used are RMSE and MAE. The RMSE is directly

interpretable, making it a better measure of goodness of fit rather than using a cor-

relation coefficient. Furthermore, the errors are squared before they are averaged,

thus applying a relatively high weight to significant errors. In this case, RMSE is an

appropriate metric since it provides the benefit of penalizing large errors. Table 4

highlights the average RMSE [in kW] from each plug load device for the different

prediction models for the day-ahead and week-ahead predictions.

The RMSE values for the GRU model for the plug load devices were closer to the

groundtruth, except miscellaneous plug load, see Figure 7 in subplot A and C, for

comparison. Finally, we can interpret from the plots that the miscellaneous plug

load has a vital role in the MEL prediction, and it can negatively impact the perfor-

mance of the prediction models.

Another evaluation metric used is Mean Absolute Error (MAE) for evaluating the

three different deep learning models. The Mean Absolute Error is the average of all

absolute errors between actual and predicted values. Table 5 highlights the MAE val-

ues from each plug load device for the different prediction models for the day-ahead

and week-ahead predictions. The MAE values for the GRU model mirrored the val-

ues from the RMSE evaluation, by being closer to the groundtruth except for the
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miscellaneous plug load. The comparison can be seen in Figure 7 between subplot

B and D.

Table 4: Average RMSE Comparison [in kW] between the different prediction model on the plug- load

devices [Bold indicates lowest RMSE out of the three prediction models for individual plug load devices]

Prediction
Day- Ahead

Prediction

Week-Ahead

Prediction

Devices/Model LSTM Bi-LSTM GRU LSTM Bi-LSTM GRU

RMSE_Misc 0.7527 0.3960 1.3805 3.1515 1.5172 2.0673

RMSE_Dock 0.0281 0.0430 0.0413 0.1302 0.1387 0.0874

RMSE_Monitor1 0.0741 0.0760 0.0749 0.2388 0.2454 0.2355

RMSE_Monitor2 0.0667 0.0672 0.0674 0.2116 0.2189 0.2142

RMSE_Laptop 0.0600 0.0855 0.0969 0.3613 0.3843 0.2860

RMSE_Lamp 0.1020 0.0765 0.0651 0.2353 0.2123 0.3107

Table 5: Mean Absolute Error (MAE) Comparison [in kW] between the different prediction model on the

plug load devices [Bold indicates lowest MAE out of the three prediction models for individual plug load

devices]

Prediction
Day- Ahead

Prediction

Week-Ahead

Prediction

Devices/Model LSTM Bi-LSTM GRU LSTM Bi-LSTM GRU

MAE_Misc 0.0078 0.0041 0.0144 0.3939 0.1897 0.2584

MAE_Dock 0.0003 0.0005 0.0005 0.0163 0.0173 0.0109

MAE_Monitor1 0.0008 0.0009 0.0008 0.0298 0.0307 0.0294

MAE_Monitor2 0.0008 0.0008 0.0008 0.0265 0.0274 0.0268

MAE_Laptop 0.0008 0.0009 0.0011 0.0452 0.0480 0.0357

MAE_Lamp 0.0011 0.0008 0.0007 0.0294 0.0265 0.0388

10. Discussion and Lessons Learned

A significant conclusion from this state-of-the-art overview is that user behavior

has a significant impact on energy consumption and device utilization in commer-

cial buildings, and institutional buildings reflect the same pattern.

The influence of user behavior is a challenge to quantify for methodological in-

terpretation. The decision-making process of end-user is multi-factorial and com-
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Figure 7: Average RMSE and MAE comparison [in kW] between the different prediction models: LSTM,

Bi-LSTM and GRU from the six plug load devices for day-ahead predictions in subplot: A and B and week-

ahead predictions in subplot: C and D.

.

plex; thus, factors influencing behavior are also numerous and varied. The dynamic

nature of occupant’s energy behavior is hard to comprehend, and multi-disciplinary

approaches and meticulous investigations are required to contribute new insights

into the energy-use domain.

To determine building occupant behaviors, a scientific study that interprets the

dominant factors that are involved in energy behaviors has to be conducted with the

users. Since the users do not always make rational decisions, the manner of present-

ing the choice itself becomes determinant in adopting energy-efficient behaviors.

Also, the energy conservation measures introduced without taking into account user

comfort and satisfaction can often have negative impacts and be counter-productive

30



because users are likely to try to adapt to their environment to attain satisfactory

conditions.

The prediction of energy-use complements the process of understanding and

optimizing building energy consumption by providing valuable insights regarding

the occupant’s consumption patterns and device-utilization. These predictive mod-

els used in this research work become vital for implementing demand-response as-

sessments, as well as providing pathways for valid pricing and tariffing for energy

usage. Moreover, the benefits of such models can get amplified through the use of

software tools to achieve these objectives.

11. Application and Future Research Directions

An essential application of this work is the light it sheds on the accuracy of MEL

prediction using deep learning models. These estimates through software tools can

be beneficial to building owners and facility managers in design and decision-making

processes to recommend energy-saving control strategies and identifying energy

footprints from each device. Another important application is the usage of these

predictions to identify periods of peak loads for equipment to further recommend

energy retrofit measures more efficiently.

Studies investigating the effect of feedback on user consumption patterns high-

light that it has indeed been a successful strategy [40]. The results of this work are

useful in highlighting the diversity of occupant energy-use patterns with regards to

MELs, and illustrates the subsequent opportunities that arise for contributing to

such potential feedback systems.

An example of inducing behavioral changes can be in the form of gamification

approaches in offices/mixed-use building, wherein occupants are provided with in-

centives for adopting energy-saving measures. However, case studies in this regard

are rare and warrant further research and evidence. Some potential applications of

MEL predictions to incorporate energy-saving measures can be:

1. Developing occupant awareness programs, coupled with awards or financial

incentives for reducing their energy usage.
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2. Identifying the requirements of occupants through feedback systems and as-

sess the trade-off between those requirements and actual energy usage.

3. Investigating heterogeneous sensing modalities to adopt the best metering

technique for extrapolating such data.

For future studies, attention has to be paid to the interaction between the oc-

cupants’ preferences and advanced building automation systems. Another aspect

could be the comparison of predictions when inputs from the HVAC systems are

available. There are still some open research questions and scope for further in-

vestigation about the design of such building control systems regarding occupant

behaviors and preferences. One aspect is the synergy between the building control

systems, with the occupant preferences regarding their comfort and energy usage.

Another aspect is the flexibility or robustness of those control systems towards oc-

cupant behaviors, and how well they can adapt to those behaviors.

12. Conclusion

This work was successful in performing a case study focused on MEL prediction

through deep learning methods. The data comprised of the MEL consumption of

each occupant and the associated device-utilization. This data was used to develop

a baseline LSTM model for MEL predictions, which was suitably efficient for pre-

dicting consumption patterns over a shorter period. Furthermore, the study com-

pared the results from this baseline model with two state-of-the-art deep learning

models (Bi-LSTM and GRU) and highlighted the evaluation results of each model.

The experimental results on this new dataset collected demonstrate that consider-

ing device-utilization patterns and occupant interactions with these devices is fun-

damental for miscellaneous loads prediction.

In this paper, our comparative analysis results show that in terms of RMSE and

MAE, all three deep learning models can achieve the best results depending on the

considered devices and also the duration of the prediction required, i.e., short-term

or long-term prediction. The low RMSE and MAE values indicate that the deviation

of the predicted values from the measured values was quite low. Besides, Bi-LSTM

32



proved to be the marginally more stable model out of those three, in both day-ahead

and week-ahead predictions. Usually, due to GRUs less complicated structure and

fewer gates, the training phase is faster and converges faster than other models. But,

in our case, GRU and Bi-LSTM converge around the same number of epochs. As

discussed in Section 10 and 11, the accuracy of these prediction models can be ben-

eficial to building management systems and can enable the BMS authorities to per-

form intelligent energy management strategies.
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