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Abstract: In building thermal energy characterisation, the relevance of proper modelling of the
effects caused by solar radiation, temperature and wind is seen as a critical factor. Open geospatial
datasets are growing in diversity, easing access to meteorological data and other relevant information
that can be used for building energy modelling. However, the application of geospatial techniques
combining multiple open datasets is not yet common in the often scripted workflows of data-driven
building thermal performance characterisation. We present a method for processing time-series from
climate reanalysis and satellite-derived solar irradiance services, by implementing land-use, and
elevation raster maps served in an elevation profile web-service. The article describes a methodology
to: (1) adapt gridded weather data to four case-building sites in Europe; (2) calculate the incident
solar radiation on the building facades; (3) estimate wind and temperature-dependent infiltration
using a single-zone infiltration model and (4) including separating and evaluating the sheltering
effect of buildings and trees in the vicinity, based on building footprints. Calculations of solar
radiation, surface wind and air infiltration potential are done using validated models published
in the scientific literature. We found that using scripting tools to automate geoprocessing tasks
is widespread, and implementing such techniques in conjunction with an elevation profile web
service made it possible to utilise information from open geospatial data surrounding a building site
effectively. We expect that the modelling approach could be further improved, including diffuse-
shading methods and evaluating other wind shelter methods for urban settings.

Keywords: thermal building performance; satellite-based solar radiation data; meteorological reanal-
ysis data; ISO 52016-1; single-zone infiltration

1. Introduction

Meteorological data like temperature, wind speed, and solar radiation are essential
input for characterising buildings’ thermal performance. Ideally, these elements are mea-
sured locally using a well-maintained weather station near the building site or on the
building itself. The increasing availability of high-resolution geospatial data, gridded
weather data and adequate modelling techniques (including web-services) can provide an
alternative approach to estimating local climatic building boundary conditions in the built
environment [1,2]. Using assimilated data-sources has several advantages, e.g., making it
possible to supplement low-cost air temperature observations, that are relatively common
to measure on-site, with other weather variables that are more difficult to capture or predict
in a simple way. Such as solar irradiance data from services built on remote sensing of sky
conditions, or wind speed estimations from numerical weather prediction (NWP)-models
in forecast or reanalysis-mode. Reanalysis is a method to reconstruct the past weather by
combining modelling of the atmospheric dynamics and physics of the earth climate sys-
tems with historical observations. Daily updated information about the past weather and
historical climate is available via Copernicus Climate Change Service (C3S) Climate Data
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Store (CDS) such as the ECMWF (European Centre for Medium-Range Weather Forecasts)
fifth-generation global reanalysis (ERA5) and the soon to be released Copernicus Regional
Reanalysis for Europe (CERRA). Advancements in temporal and spatial resolutions and
dedicated land surface analysis, like ERA5-Land [3], may extend the popularity and appli-
cation to many fields [4]. Some meteorology institutions are also developing hourly surface
analysis products on a regional level, combining their operational mesoscale models for
weather forecasting with observations and making the assimilated products available as
gridded datasets free-of-charge [5]. However, with the use of any gridded weather data
product for building energy performance evaluation, comes a need to adjust the data to fit
local building boundary conditions [1,2].

Plenty of methods exist to downscale or bias-correct gridded weather data and to in-
clude local effects from the terrain, vegetation and buildings in solar and wind assessments.
Downscaling techniques reaching the meso and micro-scale span from simple analytical
or statistical methods to running high-resolution NWP-models informed by global reanal-
ysis [6], or even computational fluid dynamics (CFD) codes uncoupled or coupled with
atmospheric models [7]. When it comes to including local sheltering effects, tools vary
significantly in the overall approach and temporal and spatial resolution. With increasing
interest in local renewable energy generation and urban scale modelling, numerous re-
search efforts have been initiated to develop and refine tools and methods to support wind
energy analysis, façade and rooftop solar potential assessments, urban building energy
modelling and urban micro-climate studies [8–10]. The diversity of methods and tools
logically reflect the wide variety of use cases, but also evident are the multiple ways to
represent surfaces and other features in geospatial datasets (e.g., terrain, tree canopies,
roofs and facades). Workflows integrated with graphical information system (GIS)-tools
operating on two-dimensional raster maps that supply the surface elevation are preva-
lent [10]. Modern toolkits offer to automate geoprocessing tasks through Python scripts
and web-mapping services [11,12]. To encompass height information, e.g., point-clouds,
into full 3D-processing, often requires time-consuming manual work and expertise [13,14].
Although more and more mapping agencies and local authorities are releasing point cloud
data or 3D-building models according to Open Geospatial Consortium (OGC) standards,
these are mostly limited to city-scale, province, or municipality levels. 3D-building models
and point clouds also risk being outdated if not updated at frequent intervals.

In the following, we use high-resolution height data from airborne laser scanning
which is becoming widely available in the form of pre-processed digital surface and terrain
models covering large land surface areas on a regional or national scale [15]. Despite that
these datasets may suffer from the same problems as above, they may easily be served in a
web-service and supplemented by building footprints with user-specified heights in the
nearby area of interest. Footprints are broadly available as open data from authorities or
volunteered geoinformation and usually produced at more frequent intervals [13].

The application of geospatial techniques combining multiple open datasets is not
common in the often-scripted workflows of data-driven building thermal performance
characterisation.

This work aims to investigate ways to adapt site-specific climate data for building
thermal energy analysis, by identifying suitable open geospatial datasets that can be served
in a web-service and demonstrate a scripted workflow that can be implemented to calculate
solar and wind effects on buildings facades. We present a method for processing time-series
from climate reanalysis and satellite-derived solar irradiance services, by implementing
land-use, and elevation raster maps served in an elevation profile web-service. Building
footprints from OpenStreetMap Overpass API complement the analysis by separating
buildings and trees in the vicinity.

1.1. Outline

This paper first addresses how much we can adapt gridded weather data to local
building boundary conditions using only building location (latitude, longitude) and a
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selection of free/open geospatial datasets covering Europe. A comparison between obser-
vations and the ERA5 reanalysis and CAMS-Rad satellite service is shown for a low-rise
building localised in a relatively open landscape in the south of Germany. Including a sur-
face wind downscaling method using weighted surface roughness derived from land-use
maps. Next, we investigate what detailed geospatial data was found for our three other
residential buildings in Norway, UK and Belgium. These are located in more urban settings,
where shading and wind sheltering of nearby obstructions have a more significant impact.
The four case studies are used to evaluate the proposed methods to assess solar radiation
distribution on the facades and wind and temperature-dependent infiltration; Two factors
influenced by nearby topography and obstructions that are not always considered physi-
cally in data-driven building energy performance evaluation. We focus on the influence of
sheltering of nearby obstacles, buildings, and trees in either case, using the methods:

(1) The Alberta single-zone air infiltration model [16], including a concept of wind
shadow on building facades, projected downstream by upwind obstacles [17].

(2) Solar irradiance modelling according to EN-ISO 52010:2017, including direct and
circumsolar beam façade surface shading from obstacles as outlined in EN-ISO
52016:2017.

1.2. Identifying Suitable Open Geospatial Datasets and Previous Works

Open geospatial datasets are growing in diversity, from crowdsourcing efforts to
data produced by authorities and scientific collaborations [18]. Developments around
open spatial infrastructures ease access to meteorological data and other relevant spatial
information. Open data and modelling are valuable, as building monitoring data is often
limited. Buildings are complex systems because their energy use and indoor conditions vary
dynamically under the influence of weather, occupancy and component performance [19].
The drive towards a more sustainable built environment and low carbon transition of
the energy system give rise to challenges that can only be met by multi-disciplinary
knowledge [20,21]. Interaction of open data and models may become fundamental for
monitoring, verifying and tracking performance at multiple levels [21].

Many geospatial datasets are available via the EU Copernicus Earth observation
programme which has operated a policy of open data since its inception. INSPIRE (In-
frastructure for Spatial Information in Europe) is a related EU initiative that aims to ease
access to public data through standardisation of spatial data among member states. Two of
Copernicus regional products, the Digital Elevation Model (DEM) over Europe (EU-DEM),
and the CORINE land cover (CLC) maps are relevant examples of pan-European coopera-
tion [22,23]. CLC maps have been used to derive surface roughness classes in numerous
wind resource studies [24,25]. The EU-DEM is a hybrid product based on the larger SRTM
and ASTER GDEM datasets produced by NASA Earthdata and Japan Space Systems [26],
two of many global and freely available DEM’s. These are satellite sensor-based models
representing the first-return earth surface (including trees, buildings) at a relatively coarse
resolution (from ca. 30 m) and accuracy (ca. 5 m to several hundred) [27]. Still, they
have been used in solar resource map creation and operating a service that returns a site’s
horizon profile, available from JRC’s PVGIS website [28].

Lately, more and more light detection and ranging (LiDAR) data obtained from
state-funded airborne laser scanning (ALS) are published around the world under free
licenses. Pre-built digital elevation models are distributed in high resolution as digital
surface models (DSMs) and digital terrain models (DTMs) covering entire regions and
countries. In Europe, the INSPIRE Geoportal keeps track of downloadable elevation
data [15]. For example, in Norway, both post-processed LiDAR point cloud data and digital
surface model data are made openly available by the Norwegian Mapping Authority under
CC-BY licensing [29]. Pre-built DSM and DTM-tiles in 1-m resolution covering the whole
country can be downloaded amounting to a combined download of ca. 2.5 TB in GeoTIFF
format. This national model is updated sector-wise when new surveys are produced.
For the other countries in the study, DSM’s and DTM’s in 1 m resolution published under
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open government licenses were available for the UK, and the region of Flanders, Belgium.
In parts of Germany, datasets are still proprietary and come at a cost [30].

Many researchers have shown that high-resolution LiDAR data in its point-cloud
form is enabling determination of building geometry and shading from the surrounding
environment. Nonetheless, composed DSMs (of 1 m resolution) have proven up to the task
to capture the slope and aspect of basic roof shapes (without variation in the architecture
of the roof) required to estimate solar potential on rooftops [31,32]. At least two different
2.5D solar models are previously published detecting vertical façades from 1 m DSM pixels
and either estimating wall irradiances under clear-sky [33,34] or based on observations of
global horizontal radiation [35]. Another feature of the second model is the inclusion of
vegetation which is found to be crucial when modelling irradiance on walls in an urban
setting, especially where building heights are relatively low [35].

A model resolution of 1 m is interesting, as it allows handling large areas, but still
maintain a file-size that is easy to store and work with by splitting data in raster tiles.
Another reason to consider digital surface and terrain models over higher-resolution Li-
DAR point cloud data is that considerable work and expertise [36], has gone into creating
the DSM’s and DTM’s to meet the requirements of the commissioner. Airborne imagery,
stereography or orthophotos are also often overlaid in the creation. Likewise, imagery
integration is recommended for creating 3D building geometry from LiDAR point clouds
to capture objects more accurately [18–20], underlining that expertise in data fusion, pro-
cessing, and acquisition is needed. Other recent developments show that micro-drones [37]
or mobile ground-based laser surveying can be used for detailed building shape and façade
mapping [38], indicating new workflows and applications to the building industry.

Other works make use of building ground plans or roof perimeters obtained through
user-contributed data such as OpenStreetMap or derived from administrative databases to
extrude lower detail building models from the ground and up, or DSM’s with or without
terrain and surface model data available [10]. Some cities and local authorities are openly
distributing 3D city-scale models at higher detail level or building cadastral data at greater
accuracy then what can be expected by crowdsourced content [39,40].

However, all of the datasets above suffers from the same challenges: acquisition
and that the most recent dataset available may be outdated. Evaluating design or as-
built building energy performance as part of commissioning requires recent height-data.
There are also other applications than energy evaluation where better assessments of local
climatic conditions can positively influence the building design process or operation-phase.
Building information and geospatial assessment techniques can be used to reduce climate-
induced damages on buildings, improve user quality, and improve the balance between
climatic adaptation demands and other demands [41]. When it comes to design-studies,
the buildings under consideration may not even be built yet. Therefore, the proposed
approach will need to be easily updated when new DSM/DTM’s are available for an area.
It will also need to have multiple ways to input building footprint and height information
and separate between ground, buildings and other tall obstacles like trees to overcome the
identified gaps.

2. Methods

This section gives a brief overview of the methods, the code design and implementa-
tion. Calculation details and input data are provided in the Appendices A and B. A public
Github repository will be published with the full code when the paper is published. Exist-
ing packages and scripts used in the workflow include:

• Obtaining reanalysis data from the Copernicus CDS using the ecmwf R package [42]
• Solar radiation from the CAMS-Rad service using the rOpenSci camsRad client [43]
• Self-hosting elevation and land cover data in an Open Topo Data server [44]
• Modules to create horizon profiles from a viewpoint by calling elevation services [45]
• Solar irradiance transposition model according to the ISO 52010 standard [46]
• Wind speed interpolation using key portions of the R-code printed in [47] (p. 45)
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• The code implemented in the workflow relies on many additional popular Python
and R packages such as rcpp, ncdf4, gdal, pyProj, shapely and netCDF4.

Table 1 provides an overview of the different datasets, spatialisation techniques and
analytical models used in this study to process weather data sourced from the climate
reanalysis and satellite irradiance service in order to evaluate local solar and wind effects
on buildings facades.

Table 1. An overview of open geospatial data sources that cover different spatial scales.

Description Weather Data Acquisition Downscaling Area of Local Study

Scale Large scale (>10 km) Medium scale Small scale (<1 km)

User input Latitude, longitude Latitude, longitude Latitude, longitude and
building information

Datasets Climate reanalysis,
Satellite irradiance

Land cover maps,
Satellite DEM

Building footprints,
LiDAR DSM/DTM

Data resolution 5 to 30 km 30 to 100 m <1 m

Data sources Copernicus Climate &
Atmosphere Data Store

Copernicus programme, and
the JRC (PVGIS)

National authorities and
crowdsourced (OSM)

Modelling techniques Bilinear interpolation, nearest
neighbour selection

2-layer wind model [48],
Perez transposition model

Wind shadow method [17],
ISO shading method

The workflow needed to obtain the local data has largely been automated (Figure 1).
First, the area of the local study is defined by the geographic position. LiDAR DSM and
DTM raster maps in local projections were downloaded from national mapping services and
stored on the server. New rasters containing only DSM data within building footprints were
created from Open Street Map (OSM) building layers by calling the Overpass Application
Programming Interfaces (API) and an open map layer from the UK Ordnance survey (OSM
building outlines were not available for the area of interest in the UK at the time of study
(mid-2020)). The local area LiDAR raster datasets were stored as .tif and the building
footprints as .shp files. The rasters were served together with the EU-DEM and CLC land
cover maps via the elevation API configured to return JSON strings of height (or land
type classes) along paths resolved to sets of latitude and longitude points. The service
“Open Topo Data REST API” relies on Python’s gdal and pyProj packages for conversion
between latitude, longitude, and local map projections in meter [44]. Scripting was adjusted
to handle specifying latitude and longitude in decimal degrees with six decimal places
precision (translating to 0.11 m at the equator) and to include datum shifts, ensuring more
accurate conversions between latitude, longitude and local map projections (in meter).

Figure 1. Proposed workflow to assess local sheltering using the wind shadow method and the solar
shading model in Section 2.4.
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Before running the path profiling scrips, we define the footprint of the case building
from the centre point in decimal degrees (lat, lon) by the length of the building envelope
in the x-direction, length in the y-direction (in meter) and building rotation (in degrees).
We specify the intermediate distance of mapping points for each façade and calculate their
respective projection lines in all directions. Figure 2 shows the building and façade centre
viewpoints used for the path profiling calculations (in green). In this way, it is irrelevant if
the building is represented on the surface raster and building footprint shape layers or not.

Figure 2. The building façade geometry for solar shading and wind shelter calculations was created
from three inputs: length in the x-direction, length in the y-direction (in meter) and building rotation.
The latitude and longitude were selected to be the centre-point that the envelope is rotated around.

2.1. Environmental Variables
2.1.1. Environmental Variables Derived from Reanalysis Data

Meteorological data (Table 1) were derived from the ERA5 atmospheric reanalysis of
the global climate released by the European Centre for Medium-Range Weather Forecasts
(ECMWF) as part of the Copernicus Climate Change Service (CDS). A comprehensive
description of ERA5 is provided by Hersbach et al. [49]. ERA5 provides validated estimates
for each hour of the day, worldwide, with a two to three months delay and leading back to
1979, or as recent as up to a couple of days ago through the preliminary dataset ERA5T.

Table 2 also shows selected variables from “ERA5-Land” another current dataset
produced by ECMWF with around four times finer spatial resolution (~9 km grid spacing
compared to the ~31 km grid of ERA5). It is a simulation of the land surface components of
ERA5 forced by ERA5′s lower atmospheric fields, currently without coupling or additional
data assimilation, meaning that observations only influence the simulation indirectly
through the forcing [50].

Table 2. Climate variables acquired from ERA5 and ERA5-land reanalysis and the model transformation. The name of each
variable used in the comparison study is shown on the same line as the sourced variables according to their short names in
the Copernicus CDS.

Description Name ERA5 ERA5land Transformation

External air temperature at 2 m θe 2t 2t Kelvin to centigrade
Wind speed at 10 m U10m 10u, 10v 10u, 10v U10m =

√
10u2 + 10v2

Wind from direction at 10 m D10m 10u, 10v 10u, 10v D10m = atan2(10u, 10v) + π

Forecasted surface roughness z0;M fsr
Ground albedo without snow cover αgr ssr, ssrd fal * αgr = max(1− ssr/ssrd, fal)
Snow cover fsn snowc
Ground albedo with snow cover αgr;sn asn αgr;sn = fsn·

(
asn− αgr

)
+ αgr

Surface thermal radiation downwards ϕstrd strd Joule to Watt-hours
Sky temperature θsky θsky= (ϕstrd/σ)0.25 − 273.15 K

* fal is a diagnostic broadband albedo, whereas the true ground value is calculated by: αgr = 1—ssr/ssrd [51]. To account for increased
reflectance when the ground is covered by snow, the ERA5-Land surface model parameters: snow cover and snow albedo were included:
αgr;sn = snowc·asn + (1− snowc)· αgr.
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We used nearest-neighbour and bilinear interpolation to create hourly time-series for
each site-location. Figure 3 shows the four case studies’ location relative to the ERA5 grid
points and each grid tile’s relative weighting. The ERA5-land data were also interpolated
to the site (not shown).

Figure 3. Locations of cases (a) Holzkirchen DE, (b) Trondheim NO, (c) Gainsborough UK, and (d)
Brussels BE, and nearest ERA5 grid cells (red lines) overlaid over local area maps. The percentages
illustrate the resulting bilinear weighting of the adjacent cells. Map data from OpenStreetMap.

2.1.2. Environmental Variables Derived from Remote Sensing

For solar radiation, it is possible to use surface downwelling radiation from the reanal-
ysis, but several studies show that better products exist to account for clouds’ variability.
Services that combine solar models with remote sensing techniques provide greater tem-
poral and spatial resolution. An overestimation of solar radiation is often observed in
reanalysis, and an underestimation is observed in satellite methods [52].

Solar irradiance data were acquired from Copernicus Atmosphere Monitoring Service:
CAMS Radiation Service (CAMS-Rad) version 3.2 [53]. CAMS-Rad’s satellite-based solar
irradiance data are available at a spatial resolution of ~5 km over central Europe in 15-min
time steps from 2004 until the present time (up to two days ago) and covers the field of
view of the Meteosat satellite (Europe, Africa and the Middle East). An account of the
radiative transfer scheme in CAMS-Rad is provided by Qu et al. [54]. We used the camsRad
R-package [43] to obtain 1-min time-series of direct normal, global horizontal and diffuse
horizontal irradiance for clear-sky and cloudy conditions. The dataset was then resampled
to 10-min intervals for the shading calculations.

2.2. Downscaling
2.2.1. Local Wind Speed Estimation

The ERA5 reanalysis is already being applied in wind energy assessment, showing
improvements over previously released global and regional reanalysis datasets [55–57].
In several recent studies, dynamical downscaling of ERA5 data using the high-resolution
Weather Research and Forecasting (WRF) model has demonstrated an added value of
introducing a higher spatial resolution [6,57,58]. The near-surface wind speeds in the
reanalysis are advised not to be used directly to indicate surface wind conditions at a
site [56], as the relatively low spatial resolution lacks the local representativity of the
site surroundings. This recommendation is reflected by a word of caution in the API-
documentation:

“Care should be taken when comparing this variable with observations because wind
observations vary on small space and time scales and are affected by the local terrain,
vegetation and buildings that are represented only on average in the ECMWF Integrated
Forecasting System.”

In fact, the 10-m near-surface winds in ERA5 are parametrised as the potential wind
in open terrain [59], which can differ substantially from the model representation over
the whole grid cell [60]. Overland, exposure correction in ERA5 is done taking the lowest
model level winds (at a height above the surface that is less influenced by underlining
terrain) and applying vertical interpolation to 10 m through a logarithmic wind profile
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including stability indices (Monin-Obhukov theory). An open-terrain surface roughness
(0.03 m) is used in the transformation [60].

In an attempt to better represent surface conditions, a simple analytical downscaling
method is used. First presented by Wieringa [59], the “2L-method” consists of a two-layer
model of the atmospheric boundary level to account for the difference in surface roughness
from one location to another. It is to be used in combination with roughness lengths
obtained through anemometric analysis or a surface roughness map. We used parts of
the code as printed in [47] and a surface roughness conversion table (see Appendix C)
for our implementation. Other more sophisticated models reported in the literature are
included in the widely used commercial software WAsP, WindSim, and windPRO. There
are similarities between the procedures implemented in WAsP, the 2L-method, and another
simple model by De Rooy and Kok [61–63]. The latter was recently used to create a
1 km gridded dataset for Germany of hourly surface variables using station records and a
regional climate reanalysis model [4]. Other authors have successfully combined WAsP
and statistical approaches [6,64]. These simple downscaling methods are not claimed to
represent the full complexity of the boundary layer. The 2L-method has mainly been used
to create wind resource maps and determining extreme open-water winds [47,48,62,65].
It was first developed as an interpolation method for surface wind measurements [59] and
has later been developed by Verkaik [66,67] and by Wever and Growen [68]. Evaluations
over land have revealed mixed results, outlining that the roughness lengths significantly
impact model performance and that the use of uniform (non-directional) roughness values
leads to large errors [47,65–67].

We follow the approach of Verkaik [66,67] using a high-resolution land-use map with
derived surface roughness values together with a simplified footprint model to downscale
model wind. In the lower level, the surface wind is transformed into the so-called blending
height, where local disturbances have been blended out (Figure 4). Next, the wind speed
in the upper layer is determined by using the NWP-model grid cell roughness value and
geostrophic resistance laws [59]. At the height of the boundary layer, the wind speed is
interpolated between model grid points to site. The wind speed at the blending height is
calculated using regional surface roughness length and transformed back to surface height
(10-m) using local roughness length in the given wind direction.

Figure 4. The 2-layer downscaling model concept applied to the reanalysis model surface wind.

If the surface roughness used in the upwards and downwards transformation in the
upper layer are identical (the model grid cell roughness and the regional roughness is set to
the same value), the 2-layer model reduces to a neutral logarithmic wind profile conversion
via blending height [59]. In the result section, we refer to this common conversion as the
1L-method:

Uloc = U10m

ln
(

zbh
z0;WMO

)
ln
(

zloc
z0;loc

)
ln
(

10
z0;WMO

)
ln
(

zbh
z0;loc

) , z0;WMO = 0.03 m (1)



Energies 2021, 14, 802 9 of 32

where zloc is the local height to use in the conversion (10 m or roof height), zbh is the
blending height, U10m is the wind speed from reanalysis, z0;loc is the local roughness length
at the target location and z0;WMO is the open-terrain surface roughness (Equation (1)).

For the land cover classification, we use the CORINE land use (CLC) map covering the
entire Europe. The map was stored in the elevation path profile web-service. The returned
land cover classes along paths (with an intermediate spacing of 100 m) were used to assign
their relative roughness using tables from literature (see Appendix C). The details of the
regional and local roughness length calculation and the footprint model is given in the
Appendix C.

2.2.2. Transforming Solar Irradiance Data Using a Satellite DEM

In CAMS Radiation Service, the irradiance calculations are done under the assumption
of a flat terrain within the satellite pixel, without considering the diffuse parts masked
or reflected by surrounding slopes [53]. In this study, no attempts are made to calculate
the diffuse part reflected by the surrounding slopes, but it could be possible to use the
satellite-derived DEM to calculate reflections. For the direct irradiance, to account for
shading from local hills or mountains, we combined the matrices with the terrain shading
angle from the JRC’s PVGIS API, selecting the two’s maximum shading angle in each
sector. The PVGIS horizon angles were interpolated to match sectors of 2.5◦, from the
native 7.5◦ sectors corresponding to half-hour intervals. A distance of 10 km was assumed.
Except for the PVGIS horizon profile API, no existing services were found to consider local
hill-shading effects. Still, many web-based height map services provide tools to create
elevation profiles manually along user-defined paths. We also want to test to what extent
services that calculate terrain shading angle from satellite-derived DEM’s can supplement
or substitute higher-resolution DSM’s/DTM’s covering the nearby building vicinity.

2.3. Transformations to Local Building Boundary Conditions Using Detailed Surface Models
2.3.1. Wind Shadow Sheltering on Facades by Nearby Upwind Obstacles

The wind shadow model to calculate wind sheltering effects on building air-infiltration
is implemented into a Python script in the following work. The main concept of this
simple empirical model first presented in Walker, Wilson and Forests 1996 paper [17],
is a wind shadow projected downstream by upwind obstacles to determine the effect of
wake velocity on the building surfaces. It applies a Gaussian-shaped weighting reduction,
projected and weighted on the facades, that extends beyond the width of the obstacle in
the far wake region. In the following, we apply the calculated directional sheltering factor
to scale the wind speed in the infiltration model as intended in the original paper, not
trying to solve the full wind profile with urban canyon effects, localised flow accelerations,
vertical spread and other effects, which would be possible with CFD-simulation or with the
three-dimensional diagnostic urban wind models described in the Appendix B that share
the empirical parameterisation for far wakes [69,70]. In complexity level, the analytical
model implemented here is more similar to the extensive work focusing on deriving wind
conditions in urban environments using morphometric approaches [71].

The method calculates an effective mean wind speed Uλ based on the unobstructed
wind speed U, multiplied by the shelter factor λw which takes a value between 1 (no
shelter) to 0 (complete shelter), or 1 to 0.3 in a physical setting where large buildings are
immediately adjacent [16]:

Uλ = U·λw(θ) (2)

where the shelter factor λw(θ) is expressed as a function of wind direction angle θ.
The authors of the wind shadowing method make it clear that the coefficients to find

λw and Uλ (Equation (2)), were not based on measured wake velocities, but on measured
sheltered and unsheltered façade surface pressures. See Appendix B for further discussion.

The other unique feature of the model is a flapped notch wake used to simulate the
effect of wind direction fluctuations on near wake spread and growth. The notch wake
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indicated by notch centreline velocity in Figure 5, is flapped over a range of wind angles
assuming a Gaussian distribution of wind direction about the mean angle θ:

λw(θ) =
61

∑
j=1

f
(
φj, θ, σθ

)
·λw

(
φj
)

(3)

where the standard deviation of the wind distribution σθ is estimated based on a function
that changes with averaging time, e.g., 10◦ for a time-step of 1 h [17], which translates into
a range φj of +/− 30◦ for each side of the mean wind angle θ (Equation (3)).

Figure 5. The concept of a Gaussian-shaped wake extending beyond a (a) wide obstacle of
8 × 8 × 10 m (b) narrow obstacle of 2 × 2 × 10 m.

Figure 5 illustrates how narrow and wide objects differ in notch wake velocity deficit
and how fast the wake assumes a Gaussian profile behind the obstacle. A standard
deviation of σθ = 10◦ was used for the calculations (Equation (3)).

As described in Appendix B, to determine the scaling length, the obstacles’ aspect ratio
is considered (calculating a characteristic dimension in the wind direction), but not includ-
ing the roof pitch or edges of the obstacle relative to the wind direction, or the geometrical
relationship between the two objects in consideration. These and other simplifications of
the three-dimensional flows are discussed in the paper [17] and wind-tunnel experiments
that evaluate the model [72]. Other studies show that although the assumption of wake
symmetry may be a reasonable approximation for simple cubes oriented normal to the
wind, for more complex geometries the functional form of the velocity deficit in the far
wake is neither symmetric nor Gaussian [73,74]. For situations where the obstacle has pro-
truding edges in the wind direction, standing vortices are formed that may lead to velocity
deficits that differ significantly from what is predicted by a simple wake model [74].

In our implementation, the effective distance between the obstacle and the facade
is calculated differently for the wind shadow coming into the facade, fully immersed,
and out of the facade. When the projection line intersects with the façade, the distance
is calculated from the intersection point to the obstacle’s edge. For the particular case,
when the wind direction is perpendicular to the façade, the mid façade point is used in the
distance calculation, which is the situation described in the paper.

For each façade, j, the effective shelter λw;j is found by a weighting of sheltered and
unsheltered portions of the wall:

λw = 1− (1− λw;c)

(
Ls

Lw

)
(4)

where λw;c;j is the shelter factor on the wake centerline, Lw;j is the length of the façade, and
Ls;j is the sheltered façade length (Equation (4)). The sheltered façade length and distance
between the obstacle and the façade (the wake distance) will differ for each wall and wind
angle. Every façade and obstacle are considered independently, and upwind walls do not
shelter downwind building walls on the same building, as these effects are accounted for
in the pressure coefficients [17].

The footprint of the building under consideration was defined as described in Figure 2.
The nearby building footprints (including calculated mean building height information)
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were imported from building shape layers and analysed with Python’s shapely library.
Trees and vegetation can be included as points (narrow obstacles), but this was not tested
as there were no tall trees located within 2–3 building heights in the prevailing wind
direction of either case building. Finally, we evaluate the maximum sheltering factor on
each façade for every wind direction resulting in a combined directional sheltering factor
for the building.

2.3.2. Approach to Calculate Sheltering from Surface Digital Elevation Models (DEM)

For the shading study, we created path profiling scripts using the gdal library for
Python and later found Python modules of [45] and shifted to use these modules together
with the elevation API. Calling the API repeatedly, one can use a façade sub-division, yet we
restricted the evaluation to a single point per façade. For each case building, the digital
elevation maps hosted in the elevation API covered a radius of at least 100 m around the
building. Focusing on obstacles in the close surroundings is in agreement with Lingfors [31]
who found that for roof surfaces a radius of 50 m is satisfactory with little impact on annual
direct irradiance beyond 75 m. Further procedure:

(1) Surface height and distance were evaluated extending at least e = 100 m outwards
in each façade direction, using a spacing n of 1 m and a sector angle s of 2.5 degrees,
creating matrices of dimension (e/n) · (360/s), see also Figure 2 for illustration.

(2) In the next step, the terrain reference height (above mean sea level) for the building
and the façade height was used to calculate each sector’s maximum obstacle angle.
We return the height and distance to this obstacle along with the obstacle height angle
based on projection lines from mid-façade height, creating three arrays of (360/s)
values for each façade. Knowing the façade orientations, the length of these arrays
can optionally be reduced by half (to 180/s sectors).

(3) To account for shading from local hills or mountains, we combined the matrices with
the terrain shading angle from the EU-DEM mapping (up to 10 km) and the PVGIS
API, selecting the maximum shading angle in each sector. The PVGIS horizon angles
were interpolated to match sectors of 2.5◦, from the native 7.5◦ sectors correspond-
ing to half-hour intervals. A distance of 10 km was assumed to calculate PVGIS
terrain height.

(4) A fixed sky view factor was calculated for each façade orientation based on the
mid-façade height horizon angle. Finally, the variable percentage of façade surface
shaded by obstacles was calculated based on the full façade height, solar height and
solar azimuth position according to the ISO52010 methodology. The selected 2.5◦

sectors correspond to 10 min intervals, making it straight forward to apply to 10-min
time-series.

We start evaluating the horizon angle a few meters away from the façade to avoid
heightmap slope artefacts or exclude trees or other nearby obstructions that are not shield-
ing the entire façade. For the lower resolution DEMs, starting the evaluation, e.g., 5 m
away also help to reduce how precisely the façade lines need to be defined relative to the
underlying surface DEMs. Following the methodology laid out in the EN ISO 52016-1:2017
standard, it is suggested that building self-shading or “side-fins” are assessed separately.

2.3.3. Solar Shading by Nearby Objects

We follow the procedure of EN ISO 52016-1:2017 for calculation of solar shading reduc-
tion factors of nearby (and distant) objects. The standard differentiates between shading
reduction factor by objects and on or close by the building itself like overhangs, sides and
rebates. In the present work, we did not consider building self-shading. The standard
gives two methods to assess shading of diffuse radiation; either disregard shading of the
diffuse or use a sector-based evaluation applied to the Perez transposition model. In this
anisotropic model, the diffuse part is separated into sky diffuse, circumsolar, horizon band
and ground reflected irradiance (EN ISO 52010:2017 calculation method). The technical
report accompanying the standard also outlines how some sky patch dome models are



Energies 2021, 14, 802 12 of 32

compatible with the Perez model. An example of implementing a sky patch model with
Perez surface transposition and LiDAR data for shading analysis is found in [35]. As objects
may not only block solar irradiance on a surface, but may also reflect solar radiation (e.g.,
hills, trees, other buildings, or other parts of the same building), the three-dimensional
problem quickly calls for more advanced methods, e.g., ray-tracing supported by GPU ac-
celeration. For simplicity, we follow the first approach in the standard, which is equivalent
to a situation where the radiation reflected or transmitted by objects in the environment is
equal to the diffuse radiation blocked by these object.

The direct radiation (including circumsolar) is fully or partially blocked by a factor
Fsh if the object is between the sun and surface (Figure 6).

Figure 6. Shading of direct and circumsolar beam irradiance and the vertical shading factor.

2.4. Including Environmental Variables and Local Sheltering Effects

In the following section, we discuss models that can be used pre-process weather
variables in order to capture the thermal tie between indoor temperature, and boundary
conditions, in this case, incident solar insolation and temperature- and wind-dependent
air-leakages across the building envelope which result in infiltration losses.

2.4.1. Infiltration Losses

Infiltration is the uncontrolled air leakage through cracks and other unintentional
openings in the building envelope introducing outdoor air into a building. Many infil-
tration models for residential buildings have been developed based on statistical fits of
infiltration data. By considering that weather is the dominant driving force, infiltration
flow can be assumed to be linearly dependent on the outside-inside temperature difference
and wind-speed [75]. However, the simplicity of regression is not without limitations.
The fitted coefficients carry little physical meaning, and the collinearity between heat trans-
mission across the building envelope and infiltration losses driven by the indoor-outdoor
temperature difference may lead to identifiability issues.

An empirical single-zone infiltration model accounts for infiltration, relying on phys-
ical parameters and building information, the AIM-2 model. We use the model form
presented by Lundström in [58], where the calculated potential specific infiltration flow
rate Q∗inf [Pan] multiples with the infiltration coefficient Cinf [l/(s Panm2)] which can
be estimated by inverse approaches or obtained from fan pressurisations tests. A litera-
ture review of studies using the model and the differences in our implementation to [58]
are presented in Appendix B. The single-zone infiltration models’ performance is mainly
sensitive to the highly uncertain distribution of air leakages across the envelope and the
parameters used for converting wind data measured at a weather station to the building
site and local wind shelter effects from typography and nearby buildings. This uncertainty
can be reduced by wind measurements on-site. However, shelter coefficient may still
apply as a simplified approach to account for direct wind shielding caused by trees and
neighbouring buildings located within 2–3 building heights of the building facades [16,17].
To estimate local wind velocity Uloc, AIM-2 uses unobstructed wind speed transformed
to building eave height at the building site. A power law wind profile conversion was
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used in the original AIM-2 model, whereas a logarithmic wind profile conversion can be
found in the implementation in the popular building energy simulation software ESP-r [76].
Furthermore, the wind shelter coefficient λw of 0–1 is multiplied by the wind speed at roof
height. Both the authors of AIM-2 and the LBL infiltration method recommends making
this shelter effect directional based on wind direction [16,75].

An engineering approach to make the wind sheltering directional is proposed by
Walker and Wilson [16] and can be found reprinted in the ASHRAE Handbook of design
guidelines [77]:

λw(θ) = 0.5·
(
(λw;1 + λw;3)· cos2 θ + (λw;1 − λw;3)· cos θ + (λw;2 + λw;4)· sin2 θ + (λw;2 − λw;4)· sin θ

)
, (5)

where λw(θ) is the shelter factor for the particular wind direction θ, and λw;j is the shelter
factor when the wind direction is normal to a wall j (estimated perpendicular to each side
building side) which can be estimated from sheltering class tables in literature [78].

We compare this interpolation approach (Equation (5)) to the wind sheltering model
in the result section.

2.4.2. Solar Heat Irradiance on Facades

The solar irradiance is calculated as a weighted mean vertical input according to the
proportions of total solar gains expected for each façade orientation. This input can be used
in simplified thermal models that are suitable to determine building heat transmission
losses (HTC) [79]. When measuring and accounting for solar gains in steady-state whole
building heat loss experiments, one approach is weighting each façade by their respective
glazing proportions. Stamp et al. found that for north-south oriented dwellings, vertical
south-facing or weighted means provide the most accurate results to determine heat trans-
mission losses (HTC), whilst estimating solar gains from global horizontal measurements
overestimated HTC [80]. For east-west facing dwellings, mean or weighted means may
provide more accurate results than a single vertical measurement in the dominant direction,
particularly where there are local shading effects [80]. The presence and operation of solar
shading devices represent a considerable uncertainty.

3. Results and Discussion

The proposed method is applied to four buildings:

• The TWIN detached house oriented directly towards south at the Fraunhofer IBP test
site in Holzkirchen, Germany.

• The ZEBLL Living Lab detached house oriented south with 4◦ westward tilt on the
main campus of NTNU, Trondheim, Norway.

• The GBORO south-facing apartment end-unit oriented 12◦ eastwards in Gainsbor-
ough, UK.

• The UKULE townhouse oriented 71◦ westwards from the south in a historic part of
Brussels, Belgium.

Figure 7 illustrates that nearby buildings do not shade the east, south, and west
façades of the TWIN house, at the 15. of February ca. 9:30 in the morning, 12:30 mid-day
and 15.30-afternoon local time (or any other time in winter). The ZEBLL house at the
NTNU campus, on the other hand, is shaded in the afternoon on this day from a nearby
building located west of the house. We evaluate the shading model by using data from a
pyranometer on the south façade in Section 3.2.

Figure 7. Shading of east, south and west facades on the 15. February with solar position 135◦ (SE),
180◦ (S) and 225◦ (SW). (a) TWIN, Holzkirchen, DE; (b) ZEBLL, Trondheim, NO.
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3.1. Comparison of Sourced Weather Data to Observations at the Holzkirchen Site

The key weather variables sourced from the reanalysis and the satellite irradiance
service are presented, by comparing a two and a half month-long winter period to obser-
vations at the Fraunhofer IBP test site in Holzkirchen. The weather data was collected at
the IBP’s weather station at 1-min intervals, provided as 10-min averages for the period 7
December 2018 to 28 February 2019 as part of IEA EBC Annex 71. The 10-min data were
processed to hourly observations for the following analysis.

3.1.1. Air Temperature and Sky Longwave Irradiance

The air temperature and sky longwave irradiance from reanalysis are seen to represent
the diurnal cycle (Figure 8). The ERA5-Land temperature at 2-m scores somewhat better
on central performance metrics (0.33 ◦C, 2.04 ◦C and 1.36 ◦C) compared to ERA5′s (1.32 ◦C,
2.27 ◦C and 1.61 ◦C) for mean bias difference, root mean square error and mean absolute
difference respectively. The errors are largest under cold spells. Both products underpredict
the temperature under cold conditions, which is a feature of NWP models, they struggle to
represent cold temperatures in stable conditions well [81].

Figure 8. Observed outdoor temperature and longwave sky radiation at the Holzkirchen site compared to the ERA5
reanalysis for the period 7 December 2018 to 28 February 2019.

The longwave sky irradiance and the sky temperature, calculated from the ERA5
longwave sky irradiance and air temperature (using the conversion in Table 2) correlate to
local measurements on most of the days. In Figure 9, the distribution and sorted values in
ascending order (black) reveal a bias across the distribution. These quantile-quantile plots
are helpful to determine if the distributions are similar. The actual hourly values aligned in
time are shown as coloured point samples. The reanalysis does not match observed hourly
temperature in the lower end, but the distributions are similar, so more confidence can be
placed for longer periods (e.g., monthly averages).

3.1.2. Wind Speed and Direction

As described in the method section, the near-surface 10-m wind in the reanalysis is
not itself a direct output of the model: instead, the lowest predicted model level wind is
post-processed using an exposure correction to better represent observed 10-m wind in
open terrain [60]. In this case, the wind mast’s local surroundings match the condition of
open unobstructed terrain in the prevailing wind direction, making a direct comparison
possible. When comparing the reanalysis data to site-observations, there is a clear bias
in the reanalysis (Figure 10). Both products generally capture the hourly fluctuations
reasonably but a consistent underprediction effect is observed.
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Figure 9. Observed outdoor temperature and sky temperature (computed from longwave radiation)
at the Holzkirchen site compared to the ERA5 reanalysis for the period 7 December 2018 to 28
February 2019.

Figure 10. Observed wind speed and direction 10 m above ground at the Holzkirchen site compared to the ERA5 reanalysis
for the period 7 December 2018 to 28 February 2019.

By applying the 2L-method, the 10 m near-surface wind from ERA5 is bias-adjusted,
leading to a better match with the observed wind (Figure 11). More details on the correction
factors are presented in the downscaling chapter. As with the temperature comparison,
the actual hourly values aligned in time are shown as coloured point samples and sorted
in ascending order (black) to see model bias across the theoretical distribution (Q-Q plot).
A Weibull distribution is overlaid on top of each scatter plot, displaying the observations
series in grey and the reanalysis in colours.

After the bias correction, the Weibull scale parameter is increased from 3.1 m/s to
3.8 m/s, compared to the observed 4.0 m/s. The mean bias difference is reduced from
−0.85 m/s to −0.2 m/s, and the mean absolute difference is improved by 0.4 m/s from 1.2
to 0.8 m/s.

3.1.3. Global Horizontal and Diffuse Irradiance

The global horizontal and diffuse irradiance observed at the site compares quite well
to the satellite-derived irradiance from the CAMS-Rad service (Figure 12) on most days.
There is a series of days in February, towards the end of the period, where diffuse irradiance
is overpredicted, and the global horizontal is underpredicted. These are clear-sky days
not interpreted as such by the satellite-model product. Earlier in the period, the cloud
cover appears to be predominantly overcast (global horizontal and diffuse irradiance are
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equal), but some day-to-day variability can be spotted in both observations and satellite
irradiances.

Figure 11. Observed wind speed and direction 10 m above ground at the Holzkirchen site compared
to the ERA5 reanalysis for the period 7 December 2018 to 28 February 2019.

Figure 12. Observed global horizontal (GHI) and diffuse irradiance (Gdif) at the Holzkirchen site compared to the variables
from CAMS radiation service for the period 7 December 2018 to 28 February 2019.

3.1.4. Snow Depth and Ground Surface Albedo

The snow model depth in the ERA5-Land grid cell matches the observed depth quite
well (Figure 13). The calculated snow broadband albedo adjusted for snow cover (equation
in Table 2) is compared to the measurements from two pyranometers on-site, filtered by
solar azimuth height (only displaying values when the sun is 5◦ above the horizon) to
account for uncertainty at sunrise and sunset. The uncertainty in the measurements is
likely to be high at low radiation intensity, so applying more precise criteria could improve
the correlation.

3.1.5. Vertical Solar Irradiance on Facades

The TWIN buildings and weather station at the Holzkirchen site lie unobstructed in a
flat open terrain making it impossible to evaluate the shading model with measurements
from this site. It is still included to show the calculated horizontal and vertical solar
irradiance compared to observations, as TWINS is the only case with measurements in all
four façade orientations. On the particular day selected for analysis, clear sky conditions
can be observed from ca. 10:00 in the morning (Figure 14). Even if the global horizontal
irradiance from CAMS-Rad matches observations well, the calculated irradiance on each
façade orientation is underestimated. We can observe that the diffuse fraction on the
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vertical appears to be underestimated in every facade direction even when using clear-sky
irradiance as input to the solar transposition model. Possible explanations are due to how
diffuse radiation is parametrised in the Perez anisotropic sky model (including model
attenuation coefficients), the assumption that diffuse sky irradiance is isotropic in the
shading calculations (each surface sees 50% of the sky) and physical effects caused by
terrestrial reflectance or measurement errors. Due to fresh snow, the modelled ground
reflectance was set to a high value of 0.70 at this day (calculated from the ERA5-Land
snow cover).

Figure 13. Observed snow depth and ground reflectance (calculated from ground reflected short wave radation) at the
Holzkirchen site compared to the ERA5 reanalysis forecasted albedo for the period 7 December 2018 to 28 February 2019.
The dashed blue line shows the calculated snow albedo of Table 2.

Figure 14. Observed global horizontal (GHI) and total vertical irradiance measured in each direction
for a sunny day in winter at the Holzkirchen site compared to the calculated surface irradiances
using the (a) CAMS radiation service as input. The (b) clear sky data are based on the CAMS-Rad
McClear service.

3.2. Comparison of Sourced Weather Data to Observations at the NTNU Campus
Vertical Solar Irradiance on Facades

The ZEBLL campus building also features pyranometers measuring global horizontal
irradiance on the roof and total vertical irradiance on the south façade. This building has
its largest windows towards south, and the view from the wall-mounted sensor is shown
in Figure 15. In winter, the afternoon sun is obstructed by large buildings towards west,
well-captured by the shading model (Figure 16).
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Figure 15. Panoramic view from a vertical sensor positioned south, ZEB Living Lab, NTNU Campus.

Figure 16. Observed global horizontal (GHI) and total vertical irradiance measured from south
sensor position, ZEB Living Lab, NTNU campus compared to the calculated surface irradiances
using the CAMS radiation service as input. The CAMS-Rad irradiance over-evaluates cloud cover (a)
and clear sky (b).

The CAMS-Rad irradiance over-evaluates cloud cover on this particular day (Figure 16a,
but a better match can be seen in the clear sky irradiance from the CAMS-Rad McClear model
(Figure 16b). The discrepancy on how vertical solar irradiance is calculated is likely due to
surfaces partially shaded by trees before noon (Figure 15), because only buildings and terrain
are considered in this particular diagram. The difference between observed hourly global
horizontal irradiance and what is interpreted by the satellite product as mostly diffuse sky
irradiance on this particular morning, also exemplifies how surface shading is left unaffected
when cloud cover is predominant over the hour in the satellite product. Improving the shading
calculations to include diffuse shading and not only effects on direct surface radiation.

3.3. Horizon Angle and Solar Radiation
3.3.1. Horizon Profile Using a Satellite-Derived Pan-European Surface Height Model

The proposed workflow for solar and wind assessment has in common that the
same datasets are used on a local level, but in different ways. Moreover, that available
dataset for downscaling to medium scale covers all of Europe (or global datasets), whereas
the local effects are only assessable using local area height maps or building footprint
vector map-layers with user contributed height-specification. Although there are initia-
tives of standardisation and contribution within the INSPIRE framework, including OSM
contribution, and a community-led project to derive a pan-European terrain model on-
line [82], high-resolution models involve more complex issues that are less pronounced
in lower-resolution models due to the already high uncertainty. The EU-DEM v.1 prod-
uct is evaluated to a vertical accuracy of 2.9 m RMSE, with higher values for the Nordic
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countries (e.g., 5.75 m RMSE for Norway) [83]. EU-DEM v1.1 used in this study is an
improvement over the first version, but it has not been validated yet [23]. In order to use
different datasets together, we implemented datum conversion and height adjustment to
the different national height systems [82]. For Norway, the difference between the national
height and the one used in EU-DEM was less than 1 cm, but for Belgium, the offset is as
much as 2.31 m.

We tested combinations of height information from the EU-DEM model and the
local high-resolution DSM’s. However, when mapping from the EU-DEM model surface
height, which may very well be above the building height in steep terrain or in places
with low buildings and heigh vegetation, we did not find a significant benefit to use the
30-m resolution of EU-DEM compared to the existing horizon profile API of PVGIS, which
is a service that relies on a pre-processed global SRTM of 3 arc-seconds (around 90 m).
However, we found that if we have actual information about the building elevation height,
and create a buffer around the viewpoint (e.g., 50 to 100 m), we can create a horizon profile
that in some situations is roughly similar to the detailed DSM’s.

3.3.2. Horizon Profile Using Local High-Resolution Surface Height Models

Figure 17, shows the calculated horizon angle at mid-façade height using the maxi-
mum local terrain profile of the PVGIS API (thin black line) and the high-resolution digital
surface models filtered to buildings only (thick black line) or without filter (green), for the
various case buildings. The TWINS building (a) is located in an open flat area. ZEBLL (b)
is located in Norway where solar height at the summer solstice (red line) is lower than
the others, and in this case, vegetation towards north-east and larger campus buildings
westward block morning and afternoon sun. GBORO (c) is shaded by a neighbouring
townhouse distanced 7 m from the south façade, and UKULE (d) is also located in an urban
environment facing a street and a backyard with trees in the backyard.

Figure 17. Calculated horizon angle at mid-façade height using the maximum local terrain pro-
file of the PVGIS API (thin black line) and the digital elevation model DEM filtered to buildings
only (thick black line) or without filter (green) for the (a) TWINS, (b) ZEBLL (c) GBORO and (d)
UKULE buildings.
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Table 3 summarises the average calculated horizon height per façade, separated by
considering only buildings obstacles (abbreviated “Build.”) or all obstacles including
vegetation (abbreviated “Surf.”).

Table 3. Calculated average shading angle at mid-façade height filtered by terrain and building outlines, or without surface
filtering (including all trees or other obstacles from the surface DEM).

Mean Horizon TWINS ZEBLL GBORO UKULE

Angle from DEM Build. Surf. Build. Surf. Build. Surf. Build. Surf.

North façade (◦) 3.1 3.1 8.2 28.6 - - - -
East facade (◦) 1.8 2.0 6.8 29.2 11.2 11.2 11.8 12.6

South façade (◦) 1.4 1.8 8.9 12.7 19.4 19.4 - -
West façade (◦) 2.6 2.7 13.8 15.9 8.1 8.3 5.3 10.3

Figure 18 shows the clear-sky shade index per winter month by [31] defined as the
ratio of shaded and unshaded clear-sky irradiance (only direct and circumsolar beam is
included in the following). The impact of vegetation is presented as a range from fully
opaque (by an x mark) to fully transparent (by a cross mark) and a mix of the two (dot).

Figure 18. Monthly clear-sky shading index per façade for the winter months presented per façade
from left to right: (a) ZEBLL (b) GBORO (c) UKULE.

- For ZEBLL, the incoming direct radiation on the south and west façades is reduced
substantially (up to 60%) by buildings in winter, and if trees are included, they may
block beam insolation from south and east.

- For the GBORO case building, trees have no shading impact, but the south façade is
almost entirely in shadow from December to February, rapidly diminishing in March
as the mid-day solar angle climbs.

- For UKULE, which on average has moderate shading of vertical beam irradiance (ca.
20% reduction) on the two facades, the west façade is only shaded from vegetation.

By weighting the calculated surface radiation by the glazing ratios, we can estimate
the solar heat gains on the window facades in the winter months and estimate a total solar
aperture for the building.

3.4. Surface Roughness and Wind Sheltering
3.4.1. Unobstructed Height Adjusted Wind Speed

ERA5 has a model resolution of approximately 31 km and lack the local representa-
tivity of the site surroundings. To better represent surface conditions upwind influence,
a downscaling method is used in an attempt to increase the local accuracy. The method
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consists of a high-resolution land-use map with derived surface roughness values from
tables (Appendix A) and a simple two-layer model of the atmospheric boundary layer.

The analysis in Section 1 illustrated that 10-m surface wind speed at the Holzkirchen
site (TWINS) is underestimated in the reanalysis. An explanation can be found in the high
forecasted model surface roughness, indicating that the model grid box surface-average
does not represent the local site conditions. The forecasted z0;M = 1.5 m (Table 4) is a value
typically representative for forested areas. The site is located in an open agricultural area
bordering the nearby town of Holzkirchen to the north-west and a golf course towards
the south (Figure 9). The prevailing wind direction is west-south-west, and the first km
up-wind are open landscape. Further out forest surrounds the farmland, influencing the
regional scale weighted mean surface roughness plotted in Figure 17.

Table 4. Surface roughness from ERA5 grid cells and local value derived from the land cover maps.

Surface Roughness z0 (in Meter) TWINS ZEBLL GBORO UKULE

z0;M ERA5 forecasted in the nearest grid cell (31 km) 1.52 1.17 0.23 0.34
z0;WMO ERA5 open terrain roughness for U10 wind 0.03 0.03 0.03 0.03
z0;CLC Land cover map grid cell closest to site (100 m) 0.03 1.00 1.00 1.00

First, the forecasted surface roughness for each grid cell was extracted from the ERA5
reanalysis. Table 4 show the values for each site, together with the open terrain roughness
used to compute 10-m wind in ERA and the derived surface roughness from the closest grid
cell of the CORINE Land Cover (CLC) 2018 map paired with a table of roughness values
(Appendix C). The roughness length for the land use type “Sport and leisure facilities” was
adjusted to a lower value from 0.5 m to 0.03 m to represent the snow-covered golf course.

Next, the directional surface roughness from the footprint model applied to local scale
(up to 1.8 km), and regional scale (up to 9 km) scale are plotted (Figures 19–22). For TWINS
we can see that on the local level, the surface roughness is well approximated to 0.03 m
in the prevailing wind direction (SW), but the model level of 1.5 is many classes higher
than the regional level z0, except in the north direction (due to the proximity to forest).
The difference between the model average forecasted in the nearest grid cell (z0;M), and the
regional footprint model is less pronounced for cases (b) to (d) (Figures 20–22). However,
all display a considerably higher surface roughness on local-level than the open terrain
roughness (z0;WMO).

Figure 19. Derived surface roughness for TWINS site (a) in 10 km radius adapted from CLC map (© European Union,
Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)); (b) Directional local and regional surface
roughness weighted by distance to building-site. Darker green colour indicates higher surface roughness values.
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Figure 20. Derived surface roughness for ZEBLL site (a) in 10 km radius adapted from CLC map2; (b) Directional local
and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

Figure 21. Derived surface roughness for GBORO site (a) in 10 km radius adapted from CLC map2; (b) Directional
local and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

Figure 22. Derived surface roughness for UKULE site (a) in 10 km radius adapted from CLC map2; (b) Directional
local and regional surface roughness weighted by distance to building-site. Darker green colour indicates higher surface
roughness values.

The resulting unobstructed surface winds transformed to roof height are used together
with the wind sheltering method in the estimation of infiltration loss (see Section 3.4.3).
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3.4.2. Wind Sheltering of Nearby Obstructions

The wind sheltering model results are shown below for the three cases (b) to (d) where
nearby buildings wake significantly impact surface conditions in the dominating wind
direction. For the campus building (Figure 23), obstacles downwind coincide with the
dominating south-west wind direction. Likely, these buildings will also influence the wind
direction and lead to more complex airflow patterns than captured by the model.

Figure 23. Air infiltration sheltering for the NTNU Living Lab (ZEBLL) case (a) Upwind obstacle
geometries in red (OSM building footprints) and building exterior facades in green overlaid on the
local DSM height map by Kartverket/CC-BY 4.0; (b) The combined directional shelter factor for the
four facades using the shelter model (red) and the table-values obtained for each building side (blue).

For the two other cases, GBORO and UKULE, located in urban/semi-urban setting,
the calculated maximum sheltering coefficient from building obstacles are more irregular
(Figure 24). Therefore, it fits less to the interpolated values (using Equation (5)) estimated
qualitatively for each building side from sheltering classes in literature [78]. Instead
of a selecting the sheltering factor manually from a table, one could use the model to
approximate the sheltering factor from obstacles located perpendicular to each façade
orientations (when the wind direction is normal to a wall).

Figure 24. Air infiltration sheltering (a) for the GBORO case-building; (b) and for the UKULE case
building. The combined directional shelter factor for the three exterior facades of either plotted over
the wind direction. Only the obstacles that yielded an impact to the shelter factor are enumerated.

In the presence of more tightly-spaced building obstacles, the limitations of the shelter-
model implementation become evident. First, overlapping sheltering is not considered,
which may be detrimental to performance. We have no way to assess skimming flow that
is usually accounted for in urban wind morphometric approaches by increasing the zero-
plane displacement height [71]. Secondly, with more complex and overlapping geometries,
the functional form of the velocity deficit in the far wake is not Gaussian [72–74]. In the
urban/semi-urban situation below, limiting the assessment to approximate the sheltering
factor in the four façade directions and interpolating using Equation (5) may be a more
physically sound and robust simplification.
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3.4.3. Infiltration Loss

In this section, the infiltration model results are plotted against the potential wind
speed of ERA5 at 10-m = height to illustrate the effect of the wind exposure and shelter
correction. The AIM-2 models physical model output, “infiltration potential” (a scalable
time-dependent variable) is multiplied by the results of air-pressurisation tests n50 value.
It could be replaced by either a design-value or a parameter estimation in an inverse
modelling approach. All the four cases (which are well-insulated and air-tight residential
buildings) have measured air-pressurisation n50 values of 1.0 air change rate per hour at
50 Pa pressure difference, except the last case d) with a lower value of 0.5 h−1.

The slope of the infiltration air change rate at 1 atm. pressure (Figure 25) is mainly
influenced by the n50 value, the shelter coefficient used in AIM-2 and what kind of exposure
correction is made from ERA5 10 m potential wind speed (in open terrain) to building roof
height, Urf.

Figure 25. Calculated infiltration rate (air change per hour) over six months in winter versus 10-m
wind speed in open terrain from reanalysis and estimated cumulative distribution (ECFD) (a) TWINS;
(b) ZEBLL; (c) GBORO; (d) UKULE.

• The black horizontal line is a common conversion of the n50 infiltration rate to 1 atm.
pressure, simply multiplying the n50 values by a constant of 0.07, a rule-of-thumb
conversion factor representative of a moderately sheltered building with more than
one exposed façade.

The first two AIM-2 model variants uses a 1-layer (1L) logarithmic transformation of
the wind speed (up to a blending height of 60 m) which is a common conversion method
in many Building Energy Simulation (BES) tools.

• The black dots show the infiltration rate with a neutral logarithmic correction to roof
height using the same surface roughness value of 0.03 m present in the reanalysis
surface wind.

• The grey crosses show the infiltration rate using a transformation from 10-m potential
wind to roof height using a local roughness value. The local surface roughness
obtained from the CLC-classification is 0.03 m for case (a) TWINS and 1.0 m for the
other cases (Table 4).



Energies 2021, 14, 802 25 of 32

In the last two AIM-2 model variants, the full 2-layer (2L) downscaling method
was used with and without the directional surface sheltering method. In the 2L-method,
the directional surface roughness upwind to the site is obtained for the required regional
and local footprint using derived surface roughness from the CLC-classification.

• The green points show the infiltration rate using the full 2L transformation of reanaly-
sis wind.

• The red points show the infiltration rate using the same 2L transformation with the
directional surface sheltering method to account for nearby obstructions.

For the first two model runs using fixed surface roughness, the variability of air change
comes from the outdoor indoor temperature difference, which is more pronounced at calm
wind conditions. This effect is explained by the AIM2-models sub-addition of stack and
wind-driven infiltration, where the stack effect loses significance at higher wind speeds.
At higher wind speeds, the wind direction plays a role when the two-layer downscaling
method is applied and through the wind shelter method in cases (b) to (d) where there are
buildings located in the prevailing wind direction (Figure 25).

The resulting infiltration loss over the six-month winter period is presented in the table
below in W/m2 K indoor-outdoor temperature difference and W/m2 assuming a constant
indoor temperature of 21 ◦C in the period (Table 5). Consistent with the hourly infiltration
air change rate (Figure 25), including shading from nearby obstacles significantly impacts
the average infiltration heat loss over the winter period for cases (b) to (d). Comparing
the average infiltration loss with nearby sheltering effect (final line) to the “rule-of-thumb”
approach of scaling n50 by a constant of 0.07 (first line), the mean differences between the
two are less than 30 % except for case b) ZEBLL.

Table 5. Infiltration loss calculated mean over the six month winter period per floor area in W/Km2 and assuming an
indoor temperature of 21 ◦C in W/m2 heated floor area.

Infiltration Heat Loss (a) TWINS (b) ZEBLL (c) GBORO (d) UKULE

Average Per Floor Area W/m2 K W/m2 W/m2 K W/m2 W/m2 K W/m2 W/m2 K W/m2

Constant n50 · 0.07 0.08 1.35 0.08 1.57 0.07 0.89 0.03 0.47
AIM2-1L, z0;WMO, λ = 1 0.06 1.00 0.04 0.87 0.09 1.11 0.04 0.60
AIM2-1L, z0;CLC, λ = 1 0.06 1.00 0.03 0.60 0.05 0.66 0.03 0.43
AIM2-2L, z0(θ), λ = 1 0.10 1.68 0.04 0.76 0.09 1.10 0.03 0.46
AIM2-2L, z0(θ), λ(θ) 0.10 1.63 0.03 0.67 0.06 0.78 0.02 0.33

4. Conclusions

In this paper we examine how open geospatial data can be used to refine weather
variables for building energy performance evaluation with focus on incident solar radi-
ation and wind-driven infiltration modelling. By using only building location (latitude,
longitude) and a selection of free/open geospatial datasets covering Europe, we were
able to acquire and adapt gridded weather data variables to local building boundary
conditions. The nearly three-month-long winter comparison of a building test-site in South-
Germany indicates that hourly surface variables from climate reanalysis and satellite-based
solar radiation can become a feasible supplement to local observations for heating season
building performance modelling and evaluation. However, the air temperature, vital to
heating analysis, did not fully capture the extreme lows. In Europe, local observations of
air-temperature and to some extent other weather variables are commonly available closer
to site than the resolution of the current global reanalysis datasets (as was the case for the
four case buildings). New regional surface products are expected to take advantage of ob-
servation stations’ density and reduce the need for site-correction techniques by featuring
higher spatial resolution.

To include local effects from the terrain, vegetation and buildings in solar and wind
assessments, 1-m resolution DSM’s and DTM’s from airborne laser scanning were acquired
for each case building. The separation of nearby vegetation and buildings is essential to
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model incident solar insolation on low-rise building facades. The impact of distinguishing
between the two was clear on the building-sites with trees. The separation was obtained
by pre-processing the DSM into a new raster based on building outlines, but this operation
could be made more efficient by using the Overpass API directly within the elevation
profile web service to obtain building footprints and filter between building obstacles and
vegetation. The building footprints (with building heights obtained from the DSM) were
also used to include wind sheltering effects in the infiltration calculations. Including wind
sheltering from nearby building obstacles in the AIM-2 model significantly impacts the
average infiltration heat loss over the winter period for three of the four cases. Based on
the four case studies, it seems like the approach work better for more open situations, other
approaches may be better suited for buildings situated in a more dense urban setting.

Overall, we found that using scripting tools to automate geoprocessing tasks in
conjunction with an elevation profile web service made it possible to utilise information
from open geospatial data surrounding a building site effectively. However, there are needs
for improvements to the methodology and risk of oversimplification. A next step could be
to include diffuse-shading models and evaluate other wind conversions to site and shelter
methods for urban settings. It appears that the often-scripted data-driven building thermal
evaluation workflows can benefit from using climatological and spatial tools and datasets,
especially to include local effects, but more practical evaluation studies are needed.
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Appendix A

Table A1. Building information and assumptions used to estimate solar irradiance on the facades. Façade glazing
distribution and azimuth orientation are given in a list form where the four cardinal directions (N E S W) are (180 90 0 -90)
degrees.

Parameter (N, E, S, W) TWINS ZEBLL GBORO UKULE

Facade height hk 4 m 2.8 m 5.0 m 6.5 m
Aperture above gr. h0;k 1.2 m 0.6 m 0.5 m 1.7 m
Façade azimuth az (◦) (180 90 0 -90) (176 86 -4 -94) (-168 112 12 -78) (-161 109 19 -71)

Glazing distribution fgl (.07 .21 .49 .23) (.19 .25 .40 .16) (0 .22 .39 .39) (0 .41 0 .59)
Window area Awi 23.9 m2 39.3 m2 14.7 m2 40.1 m2

Frame factor Ffr;wi 0.23 0.40 0.33 0.31
Transmittance ggl;n;wi 0.67 0.5 0.67 0.67
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Table A2. Building information and assumptions used in the building infiltration model.

Parameter Case 1 Case 2 Case 3 Case 4

Floors Nfl 2 1.5 2 4
Int. building height hb 5.2 m 3.4 m 5.5 m 11.3 m

Air tightness n50 1.0 h−1 1.0 h−1 1.0 h−1 0.5 h−1

Flow coefficient n 0.67 0.67 0.67 0.67
Indoor temperature 21 21 21 21

Appendix B

B.1. The AIM-2 Infiltration Model

A single zone infiltration model is used to account for building air-infiltration. Em-
pirical single-zone infiltration models were developed in the 1980s and have seen some
renewed interest in later years [84–88]. In most simplified infiltration models, the stack
and wind-induced infiltration rates are assessed and derived separately and then superpo-
sitioned for a total infiltration rate. Two of the most established models are the LBL and
AIM-2 models, adapted into simplified and advanced form in the ASHRAE Fundamentals
Handbook. AIM-2 was developed by Walker and Wilson (1990) for houses [16], and a
model implementation can be found in the BES software ESP-r [76].

The accuracy of the AIM-2 model to predict infiltration rates in dwellings can be
excellent (±10%) when the model parameters are well known according to validations by
the authors [78]. A separate validation study found a mean error of 16–27% assessing ten
single-family homes [89]. Another study found an average error of about 19% predicting
air infiltration rates for 16 detached houses under a wide range of weather conditions [84].
More recently, the AIM-2 model was utilised to predict infiltration rates in three stone-
churches in Sweden [85]. The median absolute prediction error was 25%. Considering
the model was not developed for large structures, a correction factor of 0.8 to account
for overprediction was shown to reduce the error from 25 to 11%. In another recent
study, the infiltration model was validated on a single building, obtaining a mean absolute
value error of 17–35% by using different parameters for envelope leakage distribution [86].
A methodology is presented in successive work to determine the air change rate in near-
real-time by combining the AIM-2 model with a tracer gas decay test method, reducing the
error to 10% [90].

Lundström implemented the AIM-2 model in a building energy model [87], recently
transformed to stochastic state-space form followed by a Bayesian calibration proce-
dure [91]. The stochastic approach includes a logistic function to model occupant induced
manual venting during heating and cooling season. Lundström presents the following
version to calculate infiltration loss φin f in [87], where the calculated potential specific
infiltration flow rate Q∗inf [Pan] multiples with the infiltration coefficient Cinf [l/(s Panm2)]
which can be estimated or obtained from fan pressurisations tests.

φin f = Cin f ·Q∗in f ·κ·ρa·(θe − θi), Q∗in f = Q/Cin f (A1)

Q∗in f =
(
(Q∗s )

1
n + (Q∗w)

1
n − 0.33·(Q∗s ·Q∗w)

1
2n
)n

(A2)

where, ρa is the density of outdoor air, κ is the heat capacity, and exponent n is the
building leakage flow coefficient of the orifice power law. Like many simple infiltration
models, AIM-2 uses a superposition technique where the infiltration flow rates due to wind
and stack effects, Q∗s and Q∗w, are added non-linearly in addition to an interaction term
(Equations (A1) and (A2)).

In [87], building height H is adjusted for buildings taller than two floors to H* (m),
resembling the correction factor used by [85] to account for over-prediction. Potential
infiltration rates due to stack and wind effects can be pre-calculated by either using the
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calculated indoor temperature from the previous time-step in [91] or by assuming a constant
pre-defined set-point temperature in [87].

Q∗s = fs(∆Ps)
n = fs

(
9.806·H∗·pa·|θe − θi|

θi + 273.15

)n
(A3)

Q∗w = fw(∆Pw)
n = fw

(
0.5·U2

loc·λ
2
w·ρa

)n
(A4)

Assuming evenly distributed envelope leakage, no flue (chimney), and basement
or slab-on-grade foundation, the wind and stack factors reduces to fs = 0.25 [(Pa/K)n]
and fw = 0.22 [(Pa s2/m2)]. However, in this simplified form AIM-2 loses some of its
flexibility to utilise building and site-specific data. The leakage distribution input values
is a major source of uncertainty influencing AIM-2 and determining the values through
measurements is difficult [78]. Noting a lack of reliable data, one of the validation studies
shows that minor improvement is achievable (over the default uniform values) if certain
building characteristics are taken into consideration [84]. Based on the optimisation of the
leakage distribution (between ceilings, floors, and walls) on different groups of houses,
their study recommends using values provided in a guideline for estimating leakage
distribution parameters according to house types, number of storeys, and foundation type
by Lew [92]. The leakage distribution tables by Lew were implemented as cited in the
ESP-r source-code [76]. The full equations for fs and fw can be found in [78] including
model forms for building flues or crawl spaces.

B.2. The Wind Shadow Method

The concept of a Gaussian-shaped wake in Walker, Wilson and Forest’s wind shadow
method [17] is similar to a more commonly used shelter model “WEMOD” for far wake
effects by Taylor and Salmon [65] that can be found implemented in the QUICK-URB and
SkyHelios urban wind models [69,70]. Both QUICK-URB and SkyHelios are light-weight
diagnostic urban wind models that do not solve the full Navier-Strokes equations but are
based on empirical parameterisations, and mass conservation principles first compiled by
Röckle [93] and later improved with updated parameterisations like the WEMOD wake
model [69,70]. A difference between the wake model by Walker et al. and the WEMOD
model is that the latter was developed to adjust wind speed measurements in a single point
in space as opposed to being used on whole building facades. However, being of the same
family of models many of the assumptions and limitations apply to both.

The sheltering factors were derived from measured sheltered and unsheltered surface
pressures [17]. Therefore, the authors suggest that the surface pressure coefficients Cp of a
building shielded by adjacent obstacles could be predicted by correcting the Cp obtained
for an isolated building. This was later investigated in wind tunnel experiments using scale
building models with different shapes and surrounding conditions by Sawachi et al. [72].
Their results indicate that the influence of the upwind building on the Cp distribution of the
downwind building is clearly different inside and outside of the wind shadow. The best
correlations are shown when the distance of an adjacent building (obstacle) is more than
twice the obstacle’s height and width. It is suggested that when the adjacent building
obstacle is closer, the width of the wind shadow should be given a wider area, depending
on the depth of the shielding obstacle. Still, it is unclear from the paper whether they
applied the flapping technique or simply projected a shadow of constant width. Another
proposition is that the distance beyond where the shielding effect is negligible could be
defined more clearly by the full three- dimensional size and geometrical relationship
between the two objects in consideration [72].

For the scaling length in the model, a characteristic dimension of the obstacle is consid-
ered which is an empirical relationship between the smallest and the largest dimensions in
projected width or height (cast in the direction of the wind). The definition is supported by
former experimental studies. We refer to the original paper for the theoretical explanation
of model assumptions and the functional form of the wake decay [17].
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Appendix C

The roughness length table for each CLC type used in this work is published on the
Finish wind atlas website with distinctive values for summer and winter. The values for
winter are used.

To calculate the regional and local roughness length, a surface drag coefficient Cd;i
is averaged at the blending height which is a method to give weighting to the larger
roughness values [59,66]:

Cd;i =

(
κ

ln(zbh/z0)

)2
, κ = 0.4 (A5)

where zbh is the blending height and z0 is the roughness computed for each map point i
(100 m). A simple footprint model is used to scale the significance of roughness further
away from the site:

Cd =
WnCd;i

∑ Wn
, Wn = exp

(
− xn

D

)
(A6)

where the scaling factor D is 600 m for the local footprint and 3 km for regional footprint [66].
A source area of up to 3 times D is considered, resulting in an effective evaluation length of
1.8 km for the local scale and 9 km for the regional, which accounts for a total of 80% of
the integral of Wn (Equation (A6)). Other studies using this footprint model have reported
other distance weightings [48,63].
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