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a b s t r a c t 

To decrease colon polyp miss-rate during colonoscopy, a real-time detection system with high accuracy is 

needed. Recently, there have been many effort s to develop models for real-time polyp detection, but work 

is still required to develop real-time detection algorithms with reliable results. We use single-shot feed- 

forward fully convolutional neural networks (F-CNN) to develop an accurate real-time polyp detection 

system. F-CNNs are usually trained on binary masks for object segmentation. We propose the use of 2D 

Gaussian masks instead of binary masks to enable these models to detect different types of polyps more 

effectively and efficiently and reduce the number of false positives. The experimental results showed 

that the proposed 2D Gaussian masks are efficient for detection of flat and small polyps with unclear 

boundaries between background and polyp parts. The masks make a better training effect to discriminate 

polyps from the polyp-like false positives. The proposed method achieved state-of-the-art results on two 

polyp datasets. On the ETIS-LARIB dataset we achieved 86.54% recall, 86.12% precision, and 86.33% F1- 

score, and on the CVC-ColonDB we achieved 91% recall, 88.35% precision, and F1-score 89.65%. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Colorectal cancer (CRC) is the third most common cause of 

ancer mortality for men and women globally, and CRC is the 

verall second leading cause of cancer-related death ( Bray et al., 

018 ). CRC most often begins as growths of glandular tissue in 

he mucosal layer of the bowel. Most cases of CRC are initially 

on-cancerous called polyps. However, if polyps are left untreated, 

hey may become malignant and potentially life-threatening can- 

er ( Arnold et al., 2017 ). Thus, early detection and removal of pre-

ancerous polyps in the colon are crucial for prevention. 

Colonoscopy is the most sensitive method for colon screening. It 

s effective for detection of colonic lesions and polyps of any size, 

nd allows removal of lesions during the procedure. Colonoscopy 
∗ Corresponding author. 
∗∗ Principal corresponding author. 
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s an operator-dependent procedure and prone to human errors. 

olyp miss rate is reported to be as high as 22%-28% in certain 

ases ( Leufkens et al., 2012 ). A number of supportive systems have 

een proposed to help clinicians detect polyps and tumors dur- 

ng colonoscopy, thus reducing polyp miss-rate and optimize the 

creening procedure. 

Deep learning-based detection models which adopt pre-trained 

eep CNN networks have been successfully applied for automatic 

olyp detection ( Bernal et al., 2017; Shin et al., 2018; Qadir et al., 

019; Qadir et al., 2019; Sornapudi et al., 2019; Wang et al., 2019a; 

019b; Zhang et al., 2019 ). Most of these models are slow ( Yu et al.,

016; Pogorelov et al., 2018; Bernal et al., 2017; Shin et al., 2018; 

adir et al., 2019; Kang and Gwak, 2019 ) or have difficulty de- 

ecting ambiguous types of polyps such as flat-shaped or small 

olyps ( Bernal et al., 2012; 2013; Tajbakhsh et al., 2013; Qadir 

t al., 2019 ). A highly accurate supportive system may be crucial 

o help endoscopists reduce polyp miss rate during colonoscopy. 

oreover, a detection system can only be used if it is fast enough 

or real-time deployment. Most studies have focused on improving 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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etection performance rather than on real-time aspects. In recent 

ears, researchers have become increasingly interested in devel- 

ping real-time polyp detection systems ( Zhang et al., 2018; Mo- 

ammed et al., 2018; Wang et al., 2019a; 2019b; Zhang et al., 2019; 

iu et al., 2019 ). 

In the colon, there are many polyp-like structures with strong 

dges, including colon folds, blood vessels, specular lights, lumi- 

al regions, air bubbles, etc ( Qadir et al., 2019 ). This is one of the

ain challenges in the automatic polyp detection task ( Shin et al., 

018 ). When a model is trained to segment polyps from the back- 

round, binary masks are used as the ground-truth images, which 

ave very strong outer edges. During training, the binary masks 

ay lead the model to learn edges as one of the strongest fea- 

ures to distinguish polyps. Therefore, such models tend to produce 

any false positives (FP) ( Shin et al., 2018; Qadir et al., 2019 ). 

Most of the CNN-based encoder-decoder models, which are 

ommonly used for object segmentation, can be implemented for 

eal-time applications ( Ronneberger et al., 2015 ) because they are 

esigned to predict a binary mask in a single shot feed-forward 

ully convolutional neural network (F-CNN), meaning there is no 

eed for a second stage or anchor proposals ( Ren et al., 2015; Liu

t al., 2016 ). These models can only predict pixel-wise confidence 

alue and a threshold value is applied to produce the final out- 

ut binary masks. For object detection, a more explicit mechanism 

s needed to predict the confidence value for the whole object 

 Ronneberger et al., 2015 ). The confidence value is important be- 

ause a threshold value can be set for the detection confidence to 

liminate some FP outputs which tend to have low detection con- 

dence values ( Qadir et al., 2019; Shin et al., 2018; Qadir et al.,

019 ). 

In this paper, we aim to use CNN-based encoder-decoder net- 

ork variants for polyp detection. To tackle the two problems dis- 

ussed above, we propose to use two-dimensional (2D) Gaussian 

asks as the ground-truth masks for polyp regions instead of us- 

ng binary masks, which are normally used to train these types of 

NN networks for object segmentation. In this way, we force the 

NN networks to predict 2D Gaussian shapes for polyp regions. 

e propose that 2D Gaussian masks are more efficient than bi- 

ary masks to reduce the impact of the outer edges during train- 

ng because a 2D Gaussian shape has smaller values on the tails 

ompared to the values around the mean. This property of the 2D 

aussian shape can give less importance to the outer edges and 

orce the models to learn surface patterns more efficiently than bi- 

ary masks. The strength of the predicated 2D Gaussian shapes can 

e used as the confidence values of the detection to further reduce 

P outputs. 

. Methods 

.1. Polyp detection as a 2D Gaussian shape 

Fig. 1 presents our approach to detect polyps in a one-shot 

anner. Instead of generating a binary output, we enforce a CNN- 

ased encoder-decoder network to predict a 2D Gaussian shape, 
ˆ 
 (x, y ) ∈ [0 , 1] W ×H×1 , for a polyp region in an input RGB image,

(x, y ) ∈ [ R ] W ×H×3 , where W is the width and H is the height of

oth I(x, y ) and 

ˆ Y (x, y ) . 

To train a CNN model for 2D Gaussian shape predictions, 

e convert the binary ground-truth masks, f (x, y ) ∈ { 0 , 1 } W ×H×1 ,

o 2D Gaussian ground-truth masks, Y (x, y ) ∈ [0 , 1] W ×H×1 , as de-

cribed in Section 2.2 . The 2D Gaussian ground-truth masks can 

educe the impact of the outer edges during training, forcing the 

odel to learn not only the outer edges but also other important 

eatures of polyps such as surface patterns. They also help to use 

he strength of the predicted 2D Gaussian shapes as the detection 

onfidence ( Zhou et al., 2019 ). 
2 
The output 2D Gaussian shape ˆ Y (x, y ) has the same resolution 

s the input image I(x, y ) , i.e., downsampling is not applied on the

round-truth mask Y (x, y ) during training the models. In contrast 

o ( Zhou et al., 2019 ), this elimination of downsampling allows us 

o ignore: 

• computation of the loss for a local offset prediction as there is 

no need to recover the discretization error. 
• the regression for the polyp size as it is calculated from the 

predict 2D Gaussian shape ˆ Y (x, y ) which has the same size as 

the input image I(x, y ) , using size-adaptive standard deviations 

σx and σy ( Law and Deng, 2018; Zhou et al., 2019 ) described in 

Section 2.4 . 

.2. Binary masks to 2D Gaussian masks conversion 

Usually, for a dataset of polyp images, binary masks f (x, y ) ∈ 

 0 , 1 } W ×H×1 , are provided as the ground-truth images to indicate

he location of the polyps. These binary masks are drawn and con- 

rmed by expert clinicians. In the masks, white pixels (1’s) corre- 

pond to the polyp regions whereas black pixels (0’s) correspond 

o the background. Fig. 2 (b) shows a binary mask provided for the 

olyp shown in Fig. 2 (a). We use a 2D elliptical Gaussian kernel 

xpressed in Eq. (1) to convert all the binary masks, f (x, y ) , in the

raining dataset to 2D Gaussian masks, Y (x, y ) ∈ [0 , 1] W ×H×1 , 

 = A · exp 

(
− (a (x − xo) 2 +2 b(x − xo)(y − yo) + c(y − yo) 2 ) , 

)
(1)

here A is the amplitude located at the center, (x o , y o ) , of mass in

he binary image f (x, y ) , 

 00 = 

∑ 

x 

∑ 

y 

f (x, y ) , (2) 

 10 = 

∑ 

x 

∑ 

y 

x f (x, y ) , (3) 

 01 = 

∑ 

x 

∑ 

y 

y f (x, y ) , (4) 

x o , y o ) = 

(
m 10 

m 00 

, 
m 01 

m 00 

)
. (5) 

To rotate the output 2D Gaussian masks according to the orien- 

ation, θ, of the polyp mask in f (x, y ) , we set 

 = 

cos 2 (θ ) 

2 σ 2 
x 

+ 

sin 

2 (θ ) 

2 σ 2 
y 

, (6) 

 = 

−sin (2 θ ) 

4 σ 2 
x 

+ 

sin (2 θ ) 

4 σ 2 
y 

, (7) 

 = 

sin 

2 (θ ) 

2 σ 2 
x 

+ 

cos 2 (θ ) 

2 σ 2 
y 

, (8) 

here σx and σy are the polyp size-adaptive standard deviations 

 Law and Deng, 2018; Zhou et al., 2019 ). We compute the orienta-

ion, θ , of the mask in f (x, y ) as, 

= 

1 

2 

tan 

−1 

[
2 m 11 

(m 20 − m 02 ) 

]
, (9) 

 11 = 

∑ 

x 

∑ 

y 

(x − x o )(y − y o ) f (x, y ) , (10) 

 20 = 

∑ 

x 

∑ 

y 

(x − x o ) 
2 f (x, y ) , (11) 

 02 = 

∑ 

x 

∑ 

y 

(y − y o ) 
2 f (x, y ) . (12) 
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Fig. 1. Our MDeNetplus model for automatic polyp detection. The model is trained on 2D Gaussian masks to predict 2D Gaussian shapes for polyp regions in input images. 

Fig. 2. An example showing how a binary polyp mask is converted to a 2D Gaus- 

sian mask. (a) is the original image with a polyp, (b) the binary mask provided by 

clinicians, (c) is the 2D Gaussian mask obtained from Eq. (1) . 
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Similar to ( Zhou et al., 2019 ), we set the coefficient A = 1 , and

se it as the confidence value of the detection at the inference 

ime. If two Gaussians overlap, we take the element-wise maxi- 

um ( Cao et al., 2017 ). Fig. 2 (c) shows a 2D Gaussian mask ob-

ained from Fig. 2 (b) using the equations presented above. 

.3. F-CNN models for polyp detection 

To prove our concept, we evaluate several different F-CNN 

ased encoder-decoder models, including UNet ( Ronneberger et al., 

015 ), Hourglass ( Newell et al., 2016 ), MDeNet ( Qadir et al., 2019 ),

nd MDeNetplus—our proposed model. We compare these mod- 

ls for two tasks: 1) polyp segmentation using binary masks as 

he ground-truth images for training, 2) polyp detection using 2D 

aussian masks as the ground-truth images to force the models to 

redict 2D Gaussian shapes for polyp regions. 

Typically, these models consist of two parts: a contracting path 

the encoder) to capture context, and 2) an expanding path (the 

ecoder(s)) that enables precise localization (see Fig. 1 ). The en- 
3 
oder follows the typical architecture of a CNN with alternating 

onvolution and pooling operations to progressively downsample 

he resolution and increase the depth of feature maps at every 

ayer. In this study, we use ResNet50 ( He et al., 2016 ) pre-trained

n ImageNet database ( Deng et al., 2009 ) as the encoder network 

or all the models. The decoder(s) gradually up-samples the fea- 

ure maps at each layer to increase their resolutions and predict 

n output of the same size as the input RGB image, I(x, y ) . 

UNet ( Ronneberger et al., 2015 ): UNet is developed for medical 

mage segmentation and has proven itself very useful when there 

s limited amount of data available for training. This network com- 

ines up-sampled features maps at the decoder part with the cor- 

esponding high-resolution features maps from the encoder part 

ia skip-connections. This feature combination enables precise lo- 

alization ( Ronneberger et al., 2015 ). For our UNet model, we use 

lbuNet34 proposed by ( Shvets et al., 2018 ) for angiodysplasia de- 

ection. 

EncDec : For the Encoder-Decoder (Enc-Dec) model we use the 

ame architecture of AlbuNet34 without the skip connections. 

Hourglass : To build our hourglass model, we stacked two mod- 

ls of AlbuNet34. Hourglass network is famous for yielding the best 

ey-point estimation performance ( Newell et al., 2016 ). 

MDeNet : MDeNet is proposed by ( Qadir et al., 2019 ) for semi-

utomatic polyp annotation. MDeNet consists of an encoder and 

ultiple paths of decoders. Similar to other models, ResNet34 is 

sed as the encoder part to extract different levels of features. At 

ach layer of the encoder, the extracted features are decoded by 

 decoder. The multiple decoders are meant to increase contextual 

nd semantics information by utilizing the features from different 

cales and receptive field which helps to segment polyps of dif- 

erent sizes more precisely ( Pinheiro et al., 2016; Yu et al., 2018 ).
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Fig. 3. 2D Gaussian mask (a) is overlaid on the original RGB image (b) and pro- 

jected back as a bounding box and confidence value shown in (b). 
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Fig. 4. An example shows that image (a) is cropped to remove the non-informative 

part as presented in image (b) which is a square image of size 512 x 512 pixels. 
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e predict the final output from the outputs of the decoders after 

oncatenating them into a single layer. 

MDeNetplus : Our MDeNetplus shown in Fig. 1 is similar to 

DeNet with some modifications. Unlike MDeNet, MDeNetplus 

as feedback connections from decoders of deeper layers to the 

ecoders of previous layers. The feedback connections sum the 

ctivation maps of similar layers of different decoders. We prefer 

umming the activations rather than concatenating them into a 

ingle layer to build a smaller network with fewer parameters, 

elping to realize the network for real-time implantation. This 

odel is based on the concept of aggregation of layers to acquire 

ich representations that span levels from low to high ( Yu et al., 

018 ), scales from small to large, and resolutions from fine to 

oarse, iteratively and hierarchically merge the feature hierarchy 

o make a model with better accuracy. 

.4. From 2D Gaussian shape prediction to bounding boxes and 

onfidence values 

At the inference time, we use the peaks in the predicted 2D 

aussian shapes as the confidence values of detection. We cal- 

ulate the two size-adaptive standard deviations ( σx and σy ) for 

he size of the detection. Fig. 3 shows an example in which the 

D Gaussian shape obtained using Eq. (1) is projected back as a 

ounding box calculated from σx and σy and a confidence value 

coefficient A) onto the original image. This process allows us 

o generate all outputs directly from the predicted 2D Gaussian 

hapes without the need for any post-processing such as IoU-based 

on-maximum suppression (NMS) ( Zhou et al., 2019 ). This is im- 

ortant to make polyp detection fast for real-time implementation. 

. Experimental details 

.1. Public datasets 

To train the models and evaluate their performance, we use 

hree publicly available datasets of polyp images and videos: 

1. ETIS-LARIB ( Silva et al., 2014 ): This is a dataset of 196 still im-

ages extracted from 34 colonoscopy videos. In total, there are 

44 examples of different polyps presented in various sizes and 

viewpoints. The images have an HD (high definition) resolution 

of 1225 x 966 pixels. Some images contain two or three polyps, 

making the total number of polyp appearances 208. 

2. CVC-ColonDB ( Bernal et al., 2012 ): This dataset comprises of 

300 still images presenting 15 unique polyps coming from 15 

different studies. The images have an SD (standard definition) 

resolution of 574x500. In every image, there exists only one 

polyp. 

3. CVC-ClinicDB ( Bernal et al., 2015 ): This contains 31 unique 

polyps extracted from 29 colonoscopy videos and presented 

646 times in 612 still images with a pixel resolution of 384x288 
in SD (standard definition). 

4 
In our experiments, we use CVC-ClinicDB for training the mod- 

ls while ETIS-LARIB and CVC-ColonDB are used for the perfor- 

ance evaluation. All three datasets come with ground-truth im- 

ges in the form of binary masks provided by clinical experts. The 

round-truth masks indicate the polyp pixels in the images. The 

asks are drawn as exact boundaries around the polyp regions. 

.2. Augmentation strategies and preprocessing 

We apply several simple pre-processing methods to the input 

mages before used for training the models: 

1. Image cropping is applied to remove the canvas around the in- 

formative part of the images (see Fig. 4 ). 

2. The input images are resized to 512 × 512 because the pre- 

trained Resnet34 accepts this image resolution. 

3. We re-scale the input images from [0, 255] to [0, 1] and use 

the mean and standard deviation calculated from the ImageNet 

dataset to normalize them. 

To improve model generalization during training, we apply sev- 

ral image augmentation methods on the fly such as random affine 

ransformations, (e.g., rotation, vertical and horizontal flips), ran- 

om zoom-in (up to 25%) and zoom-out (up to 50%), and color 

ugmentations in HSV space. Unlike zoom-out, to keep the balance 

etween large and small polyps, we apply zoom-in only up to 25% 

ecause the training dataset contains more large polyps than small 

nes. 

.3. Training the models 

We randomly split the training dataset using 5-fold cross- 

alidation to train the models and choose hyper-parameters. We 

nly use images that contain polyps for training. To prevent 

he models from over-fitting due to shortage of training data, 

esnet34 was initialized with ImageNet pre-train weights and the 

p-sampling layers were randomly initialized. We use Adam opti- 

izer to train the models for 60 epochs with learning rate 0.0 0 01 

chosen using cross-validation) and a batch size of 2 (due to GPU 

emory restriction). 

.4. Loss functions 

It is a known fact that loss function plays an important role in 

he performance improvement of deep learning. There are many 

oss functions to choose from and it can be challenging to decide 

hat to pick to obtain the best performance. In this study, we eval- 

ate three loss functions: 1) mean absolute error (L1 loss), 

 1 loss = 

1 

N 

N ∑ 

i 

| Y i − ˆ Y i | , (13) 
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Table 1 

Performance evaluation of the models when trained on Gaussian masks and binary masks. 

Model Gaussian Mask Binary Mask MPT (ms) 

TP FP FN Sen % Pre % F1% TP FP FN Sen % Pre % F1% 

UNet 174 44 34 83.65 79.81 81.7 165 106 43 79.32 60.88 68.9 31 

EncDec 173 45 35 83.17 79.35 81.22 159 116 49 76.44 57.81 65.83 28 

Hourglass 167 81 41 80.29 67.34 73.25 157 120 51 75.48 56.68 64.74 67 

MDeNet 175 34 33 84.13 83.73 83.93 146 97 62 70.19 60.08 64.75 35 

MDeNetplus 177 32 31 85.1 84.68 84.89 161 145 47 77.40 52.61 62.64 39 
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) mean square error (L2 loss), 

 2 loss = 

1 

N 

N ∑ 

i 

(Y i − ˆ Y i ) 
2 , (14) 

) generative adversarial network (GAN) loss, 

GAN l oss = 

1 

N 

N ∑ 

i 

[
l ogD 

(
concat(I i , Y i ) 

)
+ logD 

(
1 − concat(I i , ̂  Y i ) 

)]
, 

(15)

here N is the number of samples in the epoch, concat is a sim- 

le concatenation of I with either Y or ˆ Y , D is the discriminator 

etwork, and G is the generator network. For GAN, we use VGG16 

 Simonyan and Zisserman, 2014 ) as the D network to evaluate the 

utput of the G network which can be one of the models discussed 

n Section 2.3 . 

.5. Evaluation metrics 

To clinically evaluate a computer-aided diagnosis (CAD), it is 

mportant to compute the following medical terminologies: 

True Positive (TP) : This is a true detection output where the 

entroid of the detection is located within the polyp masks. Only 

ne is counted if there are multiple overlapped detection outputs 

or the sample polyp. 

True Negative (TN) : This is a true detection output where there 

s no detection for a negative image (image without polyps). 

False Positive (FP) : This is a false alarm where a wrong detec- 

ion output is provided for a negative region. 

False Negative (FN) : This is a false detection output where a 

olyp is missed in a positive image (image with polyp). We use 

hese terminologies to evaluate the performance of the models in 

erms of: 

Sensitivity (Recall) : It measures the ratio of true detection out- 

uts to the total number of polyps in the test dataset. This metric 

hows the detection ability of a specific model. Sensit i v it y (Sen ) =
 P/ (T P + F N) × 100 

Precision : It measures the ratio of true detection outputs to the 

otal number of predicted outputs including false alarms. This met- 

ic shows the ability of a model to make correct predictions. 

P recision (P re ) = T P/ (T P + F P ) × 100 

F-1 score : This metric is clinically important because it shows 

he balance between sensitivity and precision. 

F 1 = (2 ∗ Sen ∗ P re ) / (Sen + P re ) × 100 

Mean Processing Time per Frame (MPT) : It is the actual 

mount of time needed by a detection model to process a single 

rame. 

. Results 

.1. Performance comparison of binary and Gaussian masks 

We used the ETIS-LARIB dataset and L1 loss to compare Gaus- 

ian and binary ground-truth masks on different models. Table 1 
5 
hows that Gaussian ground-truth is more efficient and effective 

han the binary ground-truth. When Gaussian masks were used 

o train the models to predict 2D Gaussian shapes, all the mod- 

ls were able to detect more TPs and eliminate a number of 

Ps. These results indicated that our hypothesis of using Gaussian 

round-truth is valid. Many FPs could be removed from the final 

esults, because the confidence values (coefficient A) of the pre- 

icted masks were less than the threshold value which we set to 

e 0.5. Many other FPs were eliminated because Gaussian masks 

ere successful for reduction of the effect of outer edges during 

raining. 

It can be concluded from Table 1 that MDeNetplus experienced 

he largest performance improvement with 2D Gaussian masks, es- 

ecially in terms of precision. The main reason for this superior- 

ty is that MDeNetplus hierarchically merges the feature hierar- 

hies to better fuse semantic and spatial information for more ac- 

urate detection. This outcome is in line with the results obtained 

reviously ( Yu et al., 2018 ). MDeNetplus was also able to produce 

ewer FPs because feature aggregation across different layers helps 

o improve inference of what and where ( Yu et al., 2018 ), making

he model well constructed to precisely predict the 2D Gaussian 

hapes for the polyp regions. However, his method of feature fu- 

ion might not be suitable for binary masks because edge informa- 

ion may dominate the features in every decoder of the expanding 

ath, leading to generate more FP outputs. When the network is 

rained on 2D Gaussian masks, the impact of the edges are reduced 

nd the network more efficiently decodes other types of features to 

ake fewer FP detection outputs and precisely detect more polyps. 

ig. 5 presents two examples showing that the MDeNetplus trained 

n Gaussian masks could precisely predict the location of the polyp 

ithout producing FPs, while the same model trained on binary 

asks produced two FPs along with one correct detection. As can 

e seen, the two FPs are generated at two locations bounded by 

ome sort of round edges in the image. 

We run our tests on an NVIDIA GeForce GTX 1080 Ti to investi- 

ate the inference speed of our models. The EncDec model seems 

o be the fastest model requiring only 28 ms to process a single 

rame. Compared to other models, the EncDec model has no skip 

onnections and fewer parameters, making it the smallest model. 

DeNetplus is the slowest (MTP = 39 ms) model with the best per- 

ormance, but still fast enough for real-time implementation on 

ideos with 25 frames per second. 

.2. Performance evaluation of 2D Gaussian and binary masks on 

ifferent types of polyp mythologies 

In this section, we compare the performance of 2D Gaus- 

ian and binary masks in detecting different types of polyps. 

ased on the morphological shapes, Paris classification divides 

olyps into several categories: pendunculated (0-Ip), sessile (0- 

s), slightly elevated (0-IIa), flat (0-IIb), slightly depressed (0-IIc) 

nd excavated (0-III) (see Fig. 6 ). ETIS-LARIB dataset contains only 

endunculated (0-Ip), sessile (0-Is), and slightly elevated (0-IIa). 

he sessile and pedunculated polyps are most common types 

leugels et al. (2017) . Sessile and slightly elevated polyps lie flat 
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Fig. 5. Two examples presenting the predicted outputs by MDeNetplus model. (a) shows the input images, (b) shows polyp masks drawn by expert clinicians, (c) shows the 

outputs with no FPs predicted by MDeNetplus when trained on 2D Gaussian masks, (d) shows the outputs contaminated with FPs when MDeNetplus is trained on binary 

masks. 

Fig. 6. Paris classification for polyp morphology. 

Table 2 

Number of missed polyps by 2D Gaussian and 

binary masks in ETIS dataset. 

Types 0-Is 0-Ip 0-IIa 

Total no. of polyps 119 29 60 

Binary 15 3 29 

2D Gaussian 11 3 17 
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Table 3 

Performance evaluation of using different loss functions. 

loss function TP FP FN Sen % Pre % F1% 

L1 loss 177 32 31 85.1 84.68 84.89 

L2 loss 174 36 34 83.65 82.85 83.25 

GAN loss 180 28 28 86.54 86.12 86.33 
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gainst the surface of the colon’s lining, making them harder to 

etect in CRC screening while pedunculated polyps are mushroom- 

ike tissue growths with a long and thin stalk Vleugels et al. (2017) .

In Table 1 , we can notice that 16 additional polyps were de- 

ected by 2D Gaussian masks than by binary masks. To be exact, 

e present how many more 0-Is and 0-IIa polyps were detected by 

D Gaussian masks in Table 2 . As it can be seen, 2D Gaussian was

uccessful to detect 4 additional sessile and 12 additional slightly 

levated polyps. The same 0-Ip polyps were missed by both types 

f masks. This outcome shows that 2D Gaussian ground-truth was 

elpful to detect more flat shaped polyps. Fig. 7 presents two 0- 

Ia polyps (barely noticed by human eyes) detected successfully by 

ur MDeNetplus model trained on 2D Gaussian masks whereas the 

ame model trained on binary masks missed them. 

.3. Comparison of different loss functions 

Table 3 shows the performance of MDeNetplus when trained 

sing different loss functions. As seen in the Table, GAN loss is 

ore effective than L1- and L2- loss to force the model to pre- 

ict 2D Gaussian shapes. We surmise this is because GAN is not 
6 
nly computing the loss between Y and 

ˆ Y , but also can assess the 

uality of the predicted Gaussian shapes. If the model predicts an 

utput with irrelevant Gaussian shape, the GAN loss will become 

arge, forcing the model to predict more precise shapes. 

.4. Comparison with other methods on ETIS-LARIB 

We followed the same dataset guidelines recommended by en- 

oscopic vision challenge in MICCAI 2015 to train and evaluate 

ur detection models. CVC-ClinicDB is used for training whereas 

TIS-LARIB dataset is used for testing. In Table 4 , we compare 

he performance of our best model, MDeNetplus trained with GAN 

oss, against several state-of-the-art models on ETIS-LARIB dataset. 

DeNetplus could outperform the other methods including Faster 

-CNN, the-state-of-the-art object detector, in terms of sensitivity 

86.54%), and F1 score (86.33%). AFP-Net ( Wang et al., 2019a ) has 

.42% better precision (88.89%) than our model (86.12%). We sur- 

ise this is because they utilized more data to train their model. 

hey used CVC-ClinicVideoDB ( Angermann et al., 2017 ) which com- 

rises 18 videos with a total number of 11,954 frames in which 

0,025 frames contain at least a polyp. 

Table 4 shows the inference time of the models to process a 

rame. The fastest model is AFP-Net with only 19 ms of MPT per 

rame. However, we must mention that they run their model on 

n NVIDIA GeForce RTX 2080 Ti which is faster than our NVIDIA 

eForce GTX 1080 Ti. Nevertheless, we are confident that our 

DeNetplus can run faster on an NVIDIA GeForce RTX 2080 Ti. 

.5. Comparison with other methods on CVC-ColonDB 

In this experiment, we used CVC-ColonDB to further compare 

ur results with other methods. Table 5 shows that our MDeNet- 

lus trained with GAN was able to produce fewer FP outputs and 

hus the highest precision (88.35%) and F1 score (89.65%). RCNN- 

ask has the highest sensitivity (95.67%) whereas our MDeNetplus 
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Fig. 7. Two output examples produced by MDeNetplus for slightly elevated polyps in the ETIS-LARIB dataset. The model was able to predict precise 2D Gaussian shapes for 

all the polyps presented in the two input images. (a) shows the input images, (b) shows the polyp masks drawn by expert clinicians, (c) shows the predicted 2D Gaussian 

shapes by MDeNetplus model, and (d) is the final detection outputs from the model. 

Table 4 

Comparison of Polyp Detection Performance on ETIS-LARIB Dataset. 

Methods Description TP FP FN Sen % Pre % F1% MPT (ms) 

OUS ( Bernal et al., 2017 ) AlexNet with input patches of 96 × 96 131 57 77 63 69.7 66.1 5000 

CUMED ( Bernal et al., 2017 ) deep contextual network as the backbone 144 55 64 69.2 72.3 70.7 200 

Mask R-CNN ( Qadir et al., 2019 ) Resnet50 as the backbone N/A N/A N/A 72.59 80.0 76.12 430 

AFP-Net ( Wang et al., 2019a ) anchor free polyp detector 168 21 40 80.77 88.89 84.63 19 

RCNN-Mask ( Sornapudi et al., 2019 ) R-CNN with Resnet101 + feature pyramid 167 62 41 80.29 72.93 76.43 317 

Faster R-CNN ( Shin et al., 2018 ) Inception-ResNet-v2 as the backbone 167 26 41 80.3 81.5 80.9 390 

Ensemble Mask R-CNN ( Kang and Gwak, 2019 ) Two Mask R-CNN models combined N/A N/A N/A 74.37 73.84 N/A N/A 

MDeNetplus Trained with GAN loss 180 28 28 86.54 86.12 86.33 39 

Table 5 

Comparison of Polyp Detection Performance on CVC-ColonDB Dataset. 

Methods Description TP FP FN Sen % Pre % F1% MPT (ms) 

( Deeba et al., 2020 ) WE-SVM 259 256 41 86.33 50.29 56.88 N/A 

( Bae and Yoon, 2015 ) Discriminative feature learning 212 88 88 70.67 70.67 70.67 637.5 

( Bernal et al., 2012 ) Valley information 215 241 85 71.67 47.15 56.88 N/A 

( Bernal et al., 2013 ) Modified valley information 203 90 97 67.77 69.28 68.52 N/A 

( Tajbakhsh et al., 2013 ) Shape in context 220 90 80 73.33 70.96 72.13 2700 

( Sornapudi et al., 2019 ) RCNN-Mask with Resnet50 287 77 13 95.67 78.85 86.58 220 

MDeNetplus Trained with GAN loss 273 36 27 91 88.35 89.65 39 

h
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as the second-highest (91%) compared to all other methods. How- 

ver, our MDeNetplus is much faster than RCNN-Mask and needs 

nly 39 ms to process an image. Fig. 8 presents two images in 

VC-ColonDB. Again, our method successfully detected a very dif- 

cult polyp as shown in the first row of Fig. 8 , and even predict

he polyp orientation in the image as shown in the second row of 

ig. 8 . We also encountered FP detection outputs that are shown in 

ig. 9 . The first row of Fig. 9 shows that MDeNetplus was able to

etect the polyp in the input image along with an FP output. The 

econd row of Fig. 9 shows that the model missed the polyp and 

enerated an irregular Gaussian shape in a normal region. 

.6. Effect of resizing the 2D Gaussian and binary masks on the 

erformance 

In this experiment, we resized the 2D Gaussian and binary 

asks to evaluate the effectiveness of smaller and larger masks on 

he model performance. Fig. 10 shows that when smaller 2D Gaus- 

ian masks ( < σ ) are used for training the model, sensitivity is low 

nd precision is high because when smaller 2D Gaussian masks are 
7 
sed, less weights are given to the polyp outer edges during train- 

ng, leading to less FPs being generated for folds and objects with 

trong edges. When larger 2D Gaussian masks are used, sensitivity 

ncreases while precision decreases. From Fig. 10 , it can be con- 

luded that the polyp outer edge: a) is an important feature to 

etect more polyps, b) contributes to produce the majority of FP 

utputs. 

Fig. 11 demonstrates the effect of different sizes of binary 

asks on model performance. The figure shows that using smaller 

inary masks ( < actual polyp region) are not as effective as us- 

ng 2D Gaussian shapes to reduce the effect of polyp edges. This 

s because when smaller binary masks are used, unlike 2D Gaus- 

ian masks, part of the polyp region, including the outer edges, are 

otally excluded from training of the model. It seems that edges 

annot be ignored because they are important parts of polyp fea- 

ures. This way of training may fool the model and make it diffi- 

ult for the model to distinguish between polyp and background. 

n contrast, 2D Gaussian masks do not totally ignore the edges, but 

educe the importance of them by giving them less weights during 

raining of the models. 
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Fig. 8. Two output examples produced by MDeNetplus for input images in CVC-ColonDB. (a) shows the input images, (b) shows the polyp masks drawn by expert clinicians, 

(c) shows the predicted 2D Gaussian shapes by MDeNetplus model, and (d) is the final detection outputs from the model. 

Fig. 9. Examples of FP and FN outputs produced by MDeNetplus for input images in CVC-ColonDB. The yellow bounding box is a TP box while the red bounding boxes are 

FP outputs. (a) shows the input images, (b) shows the polyp masks drawn by expert clinicians, (c) shows the predicted 2D Gaussian shapes by MDeNetplus model, and (d) 

is the final detection outputs from the model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Effect of resizing 2D Gaussian masks on the model performance. Fig. 11. Effect of resizing binary masks on the model performance. 

8 
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. Conclusion 

In this paper, we proposed a method for real-time automatic 

olyp detection with good accuracy. Instead of binary masks, we 

sed 2D Gaussian masks as the ground-truth images to train sev- 

ral convolutional neural networks based encoder-decoder variants 

hich are usually used for object segmentation. We showed that 

D Gaussian masks are more effective and efficient than binary 

asks to detect more polyps and reduce the number of false pos- 

tives. 
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