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I. INTRODUCTION

The development of closed containment systems for sea-based fish farming has been

prompted by the increased problems due to sea lice and the negative environmental im-

pact, which are often associated with open aquaculture systems (net pens). By enclosing

the production volume, the risk of sea-lice infections and the need for medical treatment can

be reduced, and wastes can be safely collected for recycling. Furthermore, the production

efficiency can be improved by optimizing parameters such as water temperature, oxygen

saturation, and acidity. These advantages of closed cages, compared to the traditional net

pens, can potentially improve fish welfare and reduce the environmental impact of marine

fish farming in general. Studies show that the use of deep see water in the closed cages can

provide sufficient protection against sea lice1. For this, however, the water must be continu-

ously exchanged and circulated through the cage, which is typically enabled by a hydraulic

circulation system consisting of compressors, water pipes, inlets and outlets. Moreover, ade-

quate water-flow conditions in culture cages are vital for fish growth and welfare (e.g., Hvas

et al. 20202). Therefore, e.g., in circular (axisymmetric) closed cages for salmon production,

a water current is artificially maintained by the circulation system forcing the contained

water to move in a circular pattern – rotating flow.

Ocean waves may excite free surface oscillation of the liquid inside the floating cage causing

sloshing. Sloshing is the resonance of the fluid in a partially filled tank which causes large

response, i.e. large free-surface deformation, even for small amplitude of the forcing mo-

tion. For engineering applications, it matters when the excitation frequency is close to the

lowest natural frequency of the liquid motion. This is relevant for the resonant free-surface

motion of the fuel in the tank of missiles, rockets and airplanes3 possibly causing dynamic

instability, or for the violent liquid motion in the tank of a ship carrier, which could af-

fect the structural integrity of the tank (e.g. oil carrier, LNG ship), both due to the large

local hydrodynamic loads on the tank wall4,5 and the possible local hydroelastic effects6.

Sloshing flows have been widely studied in the past, in relation with the filling depth of the

tank which governs the natural frequency of the liquid motion, both for two-dimensional

(Bouscasse et al, 20137, in shallow water condition; Faltinsen et al, 20008, in finite water

depth) and three-dimensional9 ship prismatic tank. A comprehensive literature review can

be found in Malenica et al. (2017)5 in particular for the sloshing flows in LNG ship carri-
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ers. The literature about the sloshing flows in cylindrical tank is less intensive. Generally,

when a three-dimensional tank is considered, both prismatic or cylindrical shaped, swirling

wave motion occurs as a consequence of the solution bifurcation at a forcing frequency close

to the natural frequency10,11. Three bifurcation points can be identified, which bound the

frequency ranges where stable planar, swirling and irregular waves occur12. A “. . . highly

three-dimensional behaviour of the free surface and a rotational effect . . . ” was also exper-

imentally observed by Caron et al.(2018)13 near the resonance frequency region for several

water depths. The behaviour was confirmed by the same authors through an accurate nu-

merical study. By using the multimodal method, Faltinsen et al. (2016)12 investigated for

the first time, a combined surge-sway-pitch-roll tank motion leading to an elliptic and longi-

tudinal forcing. They concluded that when a rotary forcing is provided, the irregular wave

frequency range vanishes and co-directed (with the forcing) swirling waves cover the whole

primary resonance frequency region.

For the specific application related to the closed fish cage, sloshing may interact with the

internal flow and thus lead to complex hydrodynamic effects. Although different designs of

closed systems exist, e.g., raceways, we will consider only axisymmetric cages in which the

liquid flow is rotating around the vertical axis of the cage. For such cages, sloshing will occur

in a rotating liquid. As a result of, e.g., Coriolis effects, the characteristics of resonant slosh-

ing in a rotating liquid can be quite different from the resonant motions in a non-rotating

liquid14–16. From an aquaculture engineering perspective, these hydrodynamic effects may

represent a significant challenge as they cannot be modelled or predicted using conventional

methods for structural or hydrodynamic analysis. In the scientific literature, similar prob-

lems (fluid dynamic behaviour in spinning tanks) have been found only in the studies of

stability and control of rockets, space vehicles, liquid-cooled gas turbines and centrifuges17;

however, it is not straightforward to apply the results of these studies to aquaculture tanks.

From a marine technology perspective, a closed fish cage represents a large volume structure,

and most of its volume is occupied by a liquid. Considering the huge mass of the contained

liquid, its motion can exert significant loads on the cage and may affect its stability. This

is very important for the design of closed cages. Furthermore, to ensure the well-being of

the produced fish, it is essential to maintain a favourable environment in the cage, which

would mainly depend on the quality of the contained water, its velocities and accelerations.

The latter parameters are also directly related to the cage’s internal hydrodynamics, em-
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phasizing its importance for closed fish-farming systems. Thus, the problems of internal

hydrodynamics, including free-surface effects, rotating flows and their interaction with the

structural elements, are important design considerations for floating closed cages. However,

the knowledge on and experience with these problems are quite limited, as offshore fish

farming in closed cages is still a novel concept. Some few research studies on the behaviour

of such structures in the marine environment are found in Strand and Faltinsen (2019)18,

Tan et al. (2019)19, Strand (2018)20, Kristiansen et al. (2018)21, Lader et al. (2017)22 and

Lader et al.(2015)23. These authors focused on the seakeeping behaviour of various closed-

cage concepts, considering sloshing but neglecting the presence of rotation in the contained

liquid. The latter may be a serious limitation of these studies. In this paper, we present

a unique study on sloshing in an aquaculture closed-containment system with a slowly ro-

tating liquid. In contrast to the previous studies, the effect of rotation on the fundamental

sloshing modes is considered in detail, whereas the presence of fish is neglected. This study

also concerns amplitudes of sloshing waves, their damping and possible suppression due to

rotation and the overall effect of sloshing on the hydrodynamic loads on a circular-cylindrical

tank undergoing forced motion. Both laboratory experiments with a scaled physical model

and a numerical analysis are presented. Two theories were used in the analysis: a weakly

nonlinear multimodal theory for sloshing in a non-rotating liquid24 and a linear theory for

a rotating liquid15.

II. THEORETICAL BACKGROUND AND NUMERICAL MODELS

A. Assumptions

We consider a closed cage to be a vertical, cylindrical tank of radius R, and the liquid

depth inside the tank to be h. For the non-rotating liquid, we adopt a model based on

the infinite-dimensional nonlinear modal theory for liquid sloshing dynamics by Faltinsen

and Timokha (2009)24. Following the original formulation, the modal equations and the

equations of the tank motion are expressed in the tank-fixed coordinate system (Figure 1).

The tank is rigid, and it is partially filled with an inviscid incompressible liquid. The range

of possible liquid-depth-to-tank-radius ratios (h/R) is between 0.2 to 3.0. In general, any

unsteady velocity of the tank can be modelled; however, in our case, only small motions
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FIG. 1. Coordinate systems of the closed cage centered at the equilibrium free surface.

of the tank are considered, and therefore in the absence of rotation, the tank coordinates

(η1, η2, η3) can be considered equivalent to the fixed coordinates (x, y, z). If the liquid is

subjected to a uniform angular velocity Ω about the z axis, the free oscillations of the liquid

can be modelled in linear approximation in a coordinate system rotating with the liquid15.

To use the latter approach in our application, we assumed that equilibrium velocities of the

liquid in the circular cage can be approximated by a distribution corresponding to a rigid-

body rotation. This assumption was made based on the experimental results by Plew et al.

(2015)25, who measured mean flow velocities (driven by the inflow from the water supply

system) in a circular aquaculture tank with juvenile Atlantic salmon inside. The measured

profiles of tangential velocity were nearly linear and depth-independent, resembling a rigid-

body rotation and thus supporting our assumption. Note, however, that assuming the liquid

to rotate as a rigid body is only an approximation of the true velocity field, which in reality

may have a very complex structure.

Finally, we limit our analysis to rotation rates Ω that are less than half the sloshing frequency

(i.e., a slowly rotating liquid). The reason for this condition will be explained in Section

II C 1; however, it does not seem to lead to any serious limitation in the analysis of typical

circular closed cages. For the latter, we can simply require Ω < (g/R)0.5, where g is the

acceleration of gravity. For fish welfare, the maximum velocity in the cage ( Umax = RΩ)

should be limited by the critical swimming speed (i.e., the maximum velocity that can be

maintained by a fish for a specific period of time), which usually does not exceed 1 m/s for
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Atlantic salmon2. Thus, the liquid rotation rate in aquaculture cages is relatively low.

B. Modal approach for a non-rotating liquid

1. Natural sloshing modes

Following modal theory, the tank free-surface elevation ξ is expanded as a series in terms

of so-called natural sloshing modes χm,i,k(x, y):

ξ(x, y, t) =
∑
m,i,k

βm,i,k (t)χm,i,k(x, y) (1)

where βm,i,k are the generalized coordinates for liquid motion, which are infinite in number,

and the sum goes over all β. According to linear potential flow theory, the natural modes

for an upright circular cylinder in a cylindrical coordinate system (r, θ, z) can be expressed

as

χm,i,k(x, y) = χm,i,k(rcosθ, rsinθ) =
Jm(lm,ir/R)

Jm(lm,i)
×

cos(mθ)

sin(mθ)

 (2)

where Jm is the Bessel function of the first kind of order m, and lm,i are the nondimensional

roots of the equation Jm
′

(lm,i) = 0, and index k (= 1 or 2) corresponds to the cosine or sine

mode terms, respectively. For each natural mode, the corresponding natural frequencies are

σ2
m,i =

g

R
lm,i tanh(lm,i

h

R
) (3)

Here, g is the acceleration of gravity (9.81 m/s2), and m = 0, 1 . . . , i =1, 2, . . . are the

so-called azimuthal and radial mode numbers, respectively.

2. Modal equations for prescribed tank motions

When rigid-body motions ηi are known, the following ordinary differential equations

approximates liquid motion in terms of the generalized coordinates:

β̈1,j,1 + σ2
1,jβ1,j,1 + 2σ1,jδ1,jβ̇1,j +B1,j,1 = −Pj [η̈1 − gη5 − Sj η̈5] (4)

β̈1,j,2 + σ2
1,jβ1,j,2 + 2σ1,jδ1,jβ̇1,j +B1,j,2 = −Pj [η̈2 + gη4 + Sj η̈4] (5)

β̈2,j,k + σ2
2,jβ2,j,k + 2σ2,jδ2,jβ̇2,j +B2,j,k = 0 k = 1, 2 (6)
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β̈0,j,1 + σ2
0,jβ0,j,1 + 2σ0,jδ0,jβ̇0,j,1 +B0,j,1 = 0 (7)

Pj =
2l1,jtanh (l1,jh/R)

l21,j − 1
(8)

Sj =
2Rtanh (l1,jh/2R)

l1,j
(9)

In this approximation, j = 1, 2, . . . ≤ Ir (number of the radial modes), m = 0, 1, 2 – the

only azimuthal numbers that may have a nonzero contribution, and Bm,j,k are the nonlinear

terms defined below. The linear damping term (with modal damping ratios denoted by δm,j)

is introduced artificially in order to achieve steady-state solutions of the modal equations.

Possible values of δm,j are discussed in Section II B 3.

The nonlinear terms in the above modal equations are derived by Faltinsen and Timokha

(2009)24 for tank excitation frequencies close to σ1,1. Following the traditional notations,

p1 = β1,1,1,, r1 = β1,1,2, p0 = β0,1,1, p2 = β2,1,1, r2 = β2,1,2, the nonlinear terms read:

B1,1,1 =
d1

R2
p1

(
p1p̈1 + ṗ2

1 + r1r̈1 + ṙ2
1

)
+

d2

R2

(
r2

1p̈1 + 2r1ṙ1ṗ1 − r1p1r̈1 − 2p1ṙ
2
1

)
+

d3

R
(p2p̈1 + r2r̈1 + ṙ1ṙ2 + ṗ1ṗ2)−

d4

R
(p1p̈2 + r1r̈2) +

d5

R
(p0p̈1 + ṗ1ṗ0) +

d6

R
p1p̈0

(10)

B1,1,2 =
d1

R2
r1

(
r1r̈1 + ṙ2

1 + p1p̈1 + ṗ12
)

+

d2

R2
(p12 p̈1 + 2p1ṙ1ṗ1 − r1p1p̈1 − 2r1ṗ12)−

d3

R
(p2r̈1 + r2p̈1 + ṙ1ṗ2 − ṗ1ṙ2) +

d4

R
(r1p̈2 − p1r̈2) +

d5

R
(p0r̈1 + ṙ1ṗ0) +

d6

R
r1p̈0

(11)

B0,1,1 =
d10

R
(r1r̈1 + p1p̈1) +

d8

R

(
ṙ2

1 + ṗ2
1

)
(12)

B2,1,1 =
d9

R
(r1r̈1 − p1p̈1) +

d7

R

(
ṙ2

1 − ṗ2
1

)
(13)

B2,1,2 =
d9

R
(r1p̈1 + p1r̈1)− 2d7

R
ṙ1ṗ1 (14)

The nondimensional coefficients d1, . . . d10 in these nonlinear terms are tabulated by Faltin-

sen and Timokha (2009)24 for a range of h/R between 0.2 to 3.0. The presented model

includes nonlinear terms only for the two primary excited modes ((1, 1, 1) and (1, 1, 2)) and
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the secondary modes ((0, 1, 1) , (2, 1, 1) , (2, 1, 2)). Thus, there is no coupling between the

third-order modes and higher.

3. Viscous energy dissipation

Although potential theory assumes inviscid liquid, viscous energy dissipation in the liq-

uid can be included in the modal equations for liquid motion, as shown in the previous

section. In general, there is viscous dissipation in both the boundary layers and in the bulk.

However, bulk dumping is often considered small relative to boundary-layer damping and

is usually neglected24. Royon-Lebeaud et al. (2007)11 have shown that for dissipation at

the boundaries of a circular-cylindrical tank, the damping ratios can be estimated using the

following analytical expression:

δm,n =
1

2R

(
ν

2σm,n

)1/2 [
2lm,n

sinh(2lm,nh/R)
+

2lm,ncosh
2(lm,nh/R)

sinh(2lm,nh/R)
+

1 + (m/lm,n)2

1− (m/lm,n)2
− 2lm,nh/R

sinh(2lm,nh/R)

] (15)

where ν is the kinematic viscosity of the liquid. Note, however, that Royon-Lebeaud et al.

(2007)11 used this expression for smooth-wall cylinders with radii up to 0.15 m. We use this

expression in Eqs. (4) - (7) and will investigate whether it can also be applicable for a larger

cylindrical cage equipped with a pipe system generating a rotating flow inside the cage (as

in our experiment).

4. Hydrodynamic force

The total hydrodynamic force on the tank can be expressed via the generalized coordi-

nates following Faltinsen and Timokha (2009)24:

Fη1 = πρR2h(gη5 − η̈1 +
1

2
hη̈5)−

Ir∑
j=1

πρR3

l21,j
β̈1,j,1 (16)

Fη2 = πρR2h(−gη4 − η̈2 +
1

2
hη̈4)−

Ir∑
j=1

πρR3

l21,j
β̈1,j,2 (17)

Fη3 = −πρR2h(g + η̈3) (18)
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where ρ is the liquid density. The hydrodynamic moment can also be expressed via the

generalized coordinates in the same manner. However, its expression becomes lengthy due

to the introduction of so-called Joukowsky inertial tensor, which is different from the inertia

tensor of a solid, but can be expressed analytically for a cylindrical tank (e.g., Faltinsen and

Timokha 200924).

C. Linear theory for sloshing in a rotating liquid

1. Governing equations

In this section, we consider free oscillations of a rotating liquid in a circular tank under the

assumption that the equilibrium motion of the liquid be a rigid-body rotation (as explained

in Section II A). Resonant oscillatory motions superimposed on the liquid rotation can exert

extremely large forces on the tank. For that reason, the natural frequencies of the rotating

liquid are of much interest, and a method to calculate them is presented here. This method

follows from the mathematical model for linear oscillations of a liquid in a vertical, rotating,

circular cylinder developed by Miles (1959)15.

For the liquid subjected to a uniform angular velocity Ω about the z axis, the governing

equations of small motion can be expressed in a fairly simple way if the liquid velocity (q)

is measured relative to a set of axes rotating with Ω about z (Figure 1). In this case, the

Euler equation for an inviscid liquid in a rotating polar coordinate system (r, θ, z), when

nonlinear terms are neglected, reads as15:

∂q

∂t
+ 2Ω× q + Ω× (Ω× r) = −∇

(
p

ρ
+ gz

)
(19)

where the radius vector r is perpendicular to the spin axis z, i.e., Ω = (0, 0,Ω). This equation

is simplified further by introducing the acceleration potential:

ψ =
p

ρ
+ gz − 1

2
Ω2r2

which specifies the pressure in excess of the steady state pressure caused by the centrifugal

and gravitational force fields. The free surface shape ξ is therefore defined by the condition

ψ = 0 and p = 0.

The fluid motions are assumed to be harmonic in time with a frequency σ (i.e., q exp(iσt));

hence the time derivative ∂q
∂t

can be replaced by iσq(r, θ, z), where now q is the spatial part
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of the velocity. With these definitions and assumptions and using the fact that the liquid

is incompressible ( ∇ · q = 0), the following differential equation is derived by taking the

divergence of the above Euler equation and differentiating twice with respect to time14:

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+

[
1−

(
2Ω

σ

)2
]
∂2ψ

∂z2
= 0 (20)

where ψ is now defined as only the spatial part of the acceleration potential. The solutions

of this equation must satisfy boundary conditions at the tank walls and bottom (velocity

perpendicular to the wall is zero) and at the free surface. The latter reads

g
∂ψ

∂z
− σ2ψ = 0 (21)

and is to be satisfied at z = 0.

The differential equation Eq. (20) is elliptic when σ > 2Ω, and therefore we may expect the

associated solution to be qualitatively similar to its counterpart for Ω = 0, i.e., sloshing of a

non-rotating liquid. It is reasonable to assume σ > 2Ω for typical aquaculture tanks, hence

only this case is considered. A suitable set of elementary solutions to Eq. (20) is given by

Miles (1959)15:

Ψ = ei(σt+mθ)+κzJm (kr) (22)

where m is any integer, k is to be determined, and κ = k/

√[
1−

(
2Ω
σ

)2
]
. The corresponding

radial velocity (the radial component of q) is given by

u =
∂Ψ

∂r
+m

2Ω

σ

Ψ

r
(23)

and there are similar expressions for the tangential and axial velocity components.

The construction of more general solutions from those of Ψ leads naturally to orthogonal

expansions in Jm (kr) for those eigenvalues of k, say kn, determined by

∂Jm
∂r

(x) +m
2Ω

σ

Jm (x)

x
= 0 x = knR (24)

corresponding to u = 0 at r = R. An alternative form of this expression, more suitable for

determining the natural frequencies, is

(λ− 1) J|m|−1 (x) + (λ+ 1) J|m|+1 (x) = 0 (25)

where λ = −2Ω
σ

sign (m).

Now, we outline a method to determine the natural frequencies for sloshing in a rotating
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liquid. We seek those values of λ (and corresponding σ) which satisfy both Eq. (25) and

the free surface condition Eq.(21). If the tank is assumed to be sufficiently deep (say depth

> diameter) to permit the approximation tanh (κh) ≈ 1, the elementary solutions Ψ satisfy

Eq. (21) individually. This additional assumption simplifies our analysis; however, it can

be avoided if an iterative approach is adopted as explained by Miles (1959)15. Substituting

Ψ in Eq. (21) yields

σ2 = gκ = gk/

√√√√[1−
(

2Ω

σ

)2
]

(26)

For m 6= 0 and real x, eliminating λ between Eq. (25) and Eq. (26) leads to:

λ1 ≡ ±

√√√√1

2

(
1 +

√
1 +

(x
b

)2
)

=
J|m|−1 (x) + J|m|+1 (x)

J|m|−1 (x)− J|m|+1 (x)
≡ λ2 (27)

where b = 2Ω2R
g

. The roots x = knR of Eq. (27) are determined by the intersections of

λ1 and λ2, which can be found numerically, leading to the natural frequencies σn. It will

be shown in the subsequent numerical analysis that these natural frequencies can be quite

different from the ones determined for the non-rotating liquid (Section II B 1). Note also

that the frequencies calculated in this section are for an observer in the rotating reference

frame, whereas the frequencies in Section II B 1 are for an observer in a fixed reference frame.

2. Solution for forced oscillations

In this paper, we consider primarily forced oscillations of the free surface resulting from

a simple harmonic translation ( cos (σt)) of the tank in a fixed, horizontal direction. The

mathematical formulation of this problem will be expressed for the case with liquid rotation,

and a similar formulation for the non-rotating case can be obtained by assuming Ω = 0.

Measuring θ in the rotating coordinate system such that the angle between the axis θ = 0

and the axis of translation is Ωt, the resulting boundary condition is

u|r=R = Ucos (σt) cos (θ + Ωt) =
1

2
U<(ε+ (θ, t) + ε− (θ, t)) (28)

ε± (θ, t) = exp {i [(σ ± Ω) t± θ]} (29)

where U is the amplitude velocity of the tank oscillation. The solution of Eq. (20) satisfying

the above boundary condition is found by Miles (1959)15 and reads as:

ψ =
1

2
U<(ψ+(r, z)ε+ (θ, t) + ψ−(r, z)ε− (θ, t)) (30)
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ψ± (r, z) = −i (σ ∓ Ω)

{
r −

∑
n

A±n J1 (knr) cosh [κn (z + h)]

cosh [κnh]− (σ ± Ω)−2 κngsinh [κnh]

}
(31)

A±n =
2R (σ ± Ω) (σ ± 3Ω)[

(σ ± Ω)2 (knR)2 − (σ ∓ Ω) (σ ± 3Ω)
]
J1 (knR)

(32)

where the kn are determined by Eq. (25), and κn = kn/

√[
1−

(
2Ω
σ

)2
]
. This solution can be

used to evaluate the free surface displacement, which now becomes:

ξ =
U

2g
<(ψ+(r, z)ε+ (θ, t) + ψ−(r, z)ε− (θ, t)) (33)

The horizontal hydrodynamic force on the tank can be calculated by integrating ρψ over

the vertical walls of the cylinder. This integration in the fixed reference frame yields:

Fx =
πURρ

2
<(F+ε+(−Ωt, t) + F−ε−(−Ωt, t)) (34)

Fy =
πURρ

2
<(F+ε+(−π

2
− Ωt, t) + F−ε−(−π

2
− Ωt, t)) (35)

where

F± = −i (σ ∓ Ω)

{
Rh−

∑
n

A±n J1 (knR) sinh [κnh] /κn

cosh [κnh]− (σ ± Ω)−2 κngsinh [κnh]

}
(36)

and it is assumed that at t = 0, θ = 0 and θ = −π
2

correspond to the x and y axes,

respectively .

III. LABORATORY EXPERIMENTS

A. Experimental set-up

Forced-motion sloshing experiments with a scaled model of a closed rigid cage for salmon

farming (Figure 2) were performed at the CNR-INM Sloshing Lab in Rome. The model

was made of plexiglass in the shape of a right circular cylinder with internal and external

diameters of 940 mm and 980 mm, respectively. It was filled with water to a level of 470 mm,

measured from the bottom. A six-degree-of-freedom mechanical rig (Mistral by Symetrie),

consisting of a hexapod and a rigid platform on the top, was specifically designed for sloshing

experiments at the CNR-INM. The model tank was firmly mounted on the rig top platform

through an in-house designed multicomponent aluminium balance which uses piezo-electric

force transducers (Kistler 9366CC). The purpose of the latter was to measure the forces and
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FIG. 2. Experimental set-up.

moments induced by sloshing in the tank. The main characteristics of this load-measurement

system are given by Antuono and Lugni (2018)26: the piezo-electric technology ensured the

measurement without any displacement of the sensors; the structural natural frequency

(of the rig) was around 600 Hz; the system was calibrated and certified by Kistler to a

maximum linearity error less than 0.1%FSO (Full Scale Output) and a cross-talk error less

than 1%; FSO was certified along each measurement axis, for a value of FSO = 0.3 kN.

The acquisition of data from these sensors was set to a sampling rate of 10000 Hz.

In all experiments, the tank was undergoing sinusoidal lateral motions x(t) with a constant

frequency f = 1/T . In order to reduce the transient regime related to the dependence on

the initial conditions, a ramp function on the motion amplitude has been prescribed for the

first N oscillations, according to the following law:

x = A(t) sin (2π
t

T
)
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FIG. 3. Sketch of the nozzle configuration (a, b, d) and of the wave probes arrangement (c).

with A(t) the amplitude varying in time according to the following function:

A(t) =

 1
2
A0(1− cos (2π t

Tr
)) if 0 ≤ t ≤ Tr

A0 if t > Tr

where the time duration of the ramp function, Tr = NT , is proportional to the forcing

period. In our experiments N = 20 has been chosen for the planar wave cases, while N = 40

for the swirling wave cases. This initial ramp contributes to reduce the transient effects

on the wave evolution inside the tank. A specific study about the transient effects and

the possible hysteretic behavior characterizing the sloshing flow in the cylindrical tank is

of interest and will be the focus of future investigations. Various excitation amplitudes

A0 and frequencies f were used as presented in the subsequent sections. A specific wire
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potentiometer and an encoder are used to measure the time history of the imposed motion

and the hexapod velocity. Two accelerometers, on the balance and on the top of the tank,

respectively, are used; they enable the force measurement to be depurated by the inertial

forces induced by the tank structure, In some of the experiments, tiny capacitance probes

were used to measure free surface elevations at several locations across the tank (see their

position in Figure 3. However, they were later removed for practical reasons in the experi-

ments with circulating water; four ultrasound probes are mounted on the top of the tank in

the position reported in Figure 3. They were collected in the latter experiments along with

the force measurements and the video recordings.

B. Water-circulation system

The hydraulic system with 4 vertical pipes inside the cage shown in Figure 3 was designed

to circulate water inside the cage by generating a steady rotating flow. Each of the pipes had

10 evenly distributed inlets – nozzles with a diameter 3 mm (Figure 4) – directing the water

nearly tangentially to the tank walls. An external pump with large flow rate was supplying

water to this hydraulic system, while a valve and a pressure gauge allowed controlling the

flow rate. An outlet was placed in the bottom of the tank, in its centre, discharging the

water back to the pump.

The hydraulic system was calibrated to set the water volume inside the tank in rotation at

a given rotation rate Ω, which was approximately measured by tracking light particles on the

free surface with a stopwatch. Although the flow was not strictly uniform, the assumption

of a rigid-body rotation (see Section II A) was fair for the largest part of the tank’s internal

domain, except for a relatively narrow column of water in the central region, where a vortex

system was formed, supported also by the outflow in the center of the tank bottom. To

reduce this effect, potentially dangerous for the generation of ventilation on the pump, a

suitably designed plastic cover has been used on the tank central hole.

C. Considerations on scale and viscous effects

The conducted model tests were designed to be relevant for generic closed fish cages
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FIG. 4. Nozzles generating water flow in the tank.

for salmon aquaculture with typical full-scale containment diameter in the range 20 m to

60 m. Hence, relevant scale factors are in the range 20 to 60. Geometric scaling applies

for the model geometry, while Froude scaling applies for the surge excitation frequency of

the model (ω = ωFS
√

(R/r)) as well as the angular velocity of the rotating water body

(Ω = ΩFS

√
(R/r)), with ωFS and ΩFS the corresponding quantities in full scale, and R the

radius of the full scale prototype. There are several viscous effects in the model tests that

might represent a scaling issue. The pipes used for the water circulation system (see Fig. 3)

appear as vertical circular cylinders inside the tank that experience drag forces due to the

rotating body of water. Correspondingly, the body of water experience counter forces from

the pipes. The Reynolds number for the cross-flow of the pipes due to the steady circulation

of water can be written Rn = rΩd/ν, where for a given pipe, r is the radial position in

the tank of the pipe axis from the tank axis, d is the external diameter of the pipe, Ω is

the angular velocity of the body of water and ν is the kinematic viscosity coefficient. In

the model experiments for the largest rotation speed Ω = 0.55 rad/s, the Reynolds number
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was Rn = 4000, i.e. sub-critical flow regime, which means laminar flow near the pipe with

a turbulent wake in the far field (Rn > 200). The corresponding Reynolds number in full

scale based on Froude scaling with scale factor λ = 20 is Rn = 2× 105, around the critical

Reynolds number for a smooth circular cylinder. The change of drag force on the pipes

due to transition from laminar to turbulent boundary layer flow will influence the required

discharge of momentum from the nozzles to obtain the sought circulation speed of the water

body. However, as the angular velocity of the water body is used as a test parameter, and

not the discharge rate from the nozzles, this possible scaling issue is avoided.

Furthermore, during sloshing experiments with internal flow, the flow velocity can be de-

composed into a mean velocity component U0 and an oscillatory velocity component with

amplitude Ua. If the ratio of the oscillatory flow velocity amplitude and the mean flow

velocity Ua/U0 > 1 at a given location, the flow changes direction. If this occurs at the

location of the vertical pipes, the induced cross-flow drag is characterized by the Keulegan-

Carpenter number KC = (UaT )/2r, with T the oscillation period. The KC number is depth

dependent, as the flow velocity amplitude due to sloshing decays with depth. According to

Faltinsen and Timokha (2009)24, if KC < 10, the depth dependent drag coefficient can be

approximated as CD(z) = C1KC(z) where the constant C1 ≈ 0.2 for sub-critical flow. The

associated drag force causes dissipation of energy and hence represent a damping mechanism

for sloshing. This damping is found to be small in the model tests. In full scale, turbulent

flow separation will likely cause reduced drag coefficient and hence reduced damping effect

on sloshing. For these reasons, to properly evaluate the effects of the internal current, we

have repeated the tests and compared the results with and without internal currents.

IV. RESULTS AND DISCUSSIONS

A. Various sloshing regimes

Depending on the forcing frequency, f , various sloshing regimes were observed in the

experiments. These regimes are characterized by different shapes and amplitudes of the wave

patterns on the free surface of the liquid. Possible wave patterns at excitation frequencies

close to the lowest natural frequency ( f1 = σ1,1/2π) are shown in Figure 5, and some

examples of other sloshing regimes at higher frequencies are shown in Figure 6. Following
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the multimodal sloshing theory (Section II B), these wave patterns can be considered as

various superpositions of excited natural modes. According to linear sloshing theory, only

natural modes with the azimuthal number equal to 1 can be excited in a rigid circular

cylinder24. However, other sloshing modes may also be excited due to various nonlinear

effects, as can be clearly seen, e.g., in Figure 5c) and Figure 6a). The most pronounced

nonlinear effects, which may cause high wave responses, are mainly observed at excitation

frequencies close to f1 .

Royon-Lebeaud et al. (2007)11 studied three substantially different regimes in the non-

rotating liquid: planar waves, swirling waves and chaotic sloshing (as shown in Figure 5),

which can be observed when the forcing frequency f is close to the lowest natural frequency

f1 . They showed that when f < f1, chaotic sloshing and wave breaking may occur quasi-

periodically in the following order: growth of planar wave amplitude at a rate depending on

the forcing amplitude, collapse, irregular swirl and again growth of planar wave amplitude.

When the forcing frequency is slightly larger than f1 , planar wave motion may bifurcate to a

swirling wave regime, the amplitude of which grows exponentially and saturates at a certain

value. As the amplitude of the swirling wave is significantly larger than the planar-wave

amplitude (compare Figure 5b) and c)) at the same excitation parameters, the coexistence

of these regimes may represent a critical design consideration for floating closed cages.

In the presence of rotation, the resonant sloshing regimes near f1 were altered, however,

the wave patterns were qualitatively similar to those in the non-rotating liquid (Figure 5).

We study both the amplitude- and force responses at these sloshing regimes in more detail

in the subsequent sections.

B. Free surface displacement

In this section we briefly analyse the free surface displacements obtained from the wave

probes in the experiments without rotation. As these data showed good correlation with

the corresponding measurements of the horizontal force on the tank, the latter were used to

characterise sloshing regimes in the experiments with a rotating liquid.

In the experiment without rotation, wave amplitudes due to sloshing were accurately

measured with the capacitance probes placed at multiple positions in the tank (Figure 3).

The outermost probes were located at 20 mm from the tank wall along and perpendicular to
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FIG. 5. Irregular (a), planar (b) and swirling (c) wave regimes observed in the sloshing experiments

with a non-rotating liquid at excitation frequencies close the lowest natural frequency and excitation

amplitude 5 mm. The time between two successive images is 0.16 s.

the direction of forced motion and thus allowed measuring nearly maximum wave amplitudes

in both directions. These wave amplitudes, b, obtained at steady states are plotted in

Figure 7 against the nondimensional excitation frequency f/f1 . The different marker shapes

correspond to the three different forcing amplitudes (A/R = 0.006, 0.011, 0.032, where R is

the tank radius); the empty markers correspond to planar waves, and the full ones indicate

swirling. The experimental results shown with the black markers are compared with different

numerical solutions: one, obtained with WAMIT according to linear potential theory, the

second solution is predicted by the nonlinear modal approach (Section II B), and the third

solution is predicted by the simplified linear theory (n = 1) presented in Section II C . As can

be seen, all the models can accurately predict the amplitudes of the planar waves. However,

the difference between these models becomes significant at excitation frequencies close to a

natural frequency. Firstly, linear theory predicts typical resonance curves with infinite wave

amplitudes, as the wave motion is undamped, and secondly, the swirling regime at f ≈ f1

is not captured. In contrast, the nonlinear model predicts the occurrence of swirling waves
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FIG. 6. Various wave patterns observed in the sloshing experiments with a non-rotating liquid at

different excitation frequencies (given under a, b and c) and excitation amplitude 5 mm. The time

between two successive images is 0.16 s.

near f1 , and their amplitudes seem to compare well with the experimental points.

As only two points (at f ≈ f1 ) corresponding to swirling were obtained in these experi-

ments, the numerical simulations with the nonlinear model were extended to slightly higher

frequencies to demonstrate that the swirling- and planar-wave regimes may coexist. In this

model, a steady-state swirling wave was fist established at f ≈ f1 and then the excitation

frequency was gradually increased, leading to new steady-state swirling regimes with larger

wave amplitudes. Increasing the excitation frequency too fast would instead lead to a planar

regime with a much smaller wave amplitude, as shown in Figure 7, at f/f1 ≈ 1.1. Thus,

both regimes are possible for a wide range of excitation frequencies. As swirling waves are

characterised by much greater wave amplitudes than their planar counterparts, and great

internal waves usually imply great loads, the swirling wave regimes are of particular concern

for the design of floating closed cages. We discuss sloshing-induced loads in the next section.

The nonlinear model predicted also irregular waves (with unsteady amplitudes) at a range

of excitation frequencies slightly lower than f1 , which was also observed in the experiments
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FIG. 7. Experimental and numerical maximum steady-state wave elevations, normalised with

the displacement amplitude A, for different forcing frequencies and amplitudes. Empty markers

correspond to planar regimes, and filled markers imply swirling. All data are for the non-rotating

liquid sloshing in the tank with the circulation system removed.

(e.g., Figure 5 a). These waves represent a transition between a planar regime and swirling,

and thus may reach the same amplitude as the swirling wave, as already well assessed

in literature, through experimental11 and theoretical12 studies. However, irregular waves

cannot be characterised by a steady-state amplitude and therefore are not shown in Figure 7.

In the experiments, similar wave regimes were also observed at excitation frequencies close

to f1,2, but their largest amplitudes were approximately in the same range as the planar

waves. For these cases, WAMIT predicted an infinite resonance peak (at f/f1 ≈ 1.75 in

Figure 7), whereas the nonlinear model predicted damped steady-state responses. Neither

of these solutions agree with the experiment.

In our nonlinear multimodal analysis, the number of radial modes Ir was set to 2, which was

sufficient to match both the experimental results and the WAMIT predictions outside the

resonance frequencies; however, larger Ir may be needed to achieve agreement with WAMIT

at high frequencies. As demonstrated, the main advantage of the employed nonlinear model,

compared to the linear one, is the capability of the former to predict the nonlinear sloshing

effects at excitation frequencies close to f1 (although, only for the non-rotating liquid). From
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the experiments, it was found that other nonlinear effects are possible at higher frequencies,

e.g., the excitation of mode (3,1) at f ≈ f3,1 ( f/f1 ≈ 1.55 in Figure 7) and the occurrence

of irregular waves at f ≈ f1,2. Although neither method can predict these effects, they do

not seem to lead to large wave motions, as compared to swirling waves at f ≈ f1 .

C. Hydrodynamic force on the tank with a non-rotating liquid

The sloshing force on the tank parallel to the forced motion direction ( F ) can be identified

from the measurements as F = Fmeasured−Ma, where Fmeasured is the measured force between

the rig and the tank, which is the force needed to move the tank along the given axis with

the prescribed acceleration a, and M is the total mass of the cage, including the mass of the

liquid. As the tank acceleration in the perpendicular direction is zero, the transverse force

( F⊥) follows directly from the measurements. Similarly, F and F⊥ can be also obtained

from Eqs. (16) – (17) and Eqs. (34) – (36) by leaving out the inertial terms. Further, F and

F⊥ are made dimensionless by dividing them by ma, where m is the mass of the contained

liquid.

In the case of the non-rotating liquid, the measured forces agree well with the ones predicted

by the nonlinear modal method (Section II B) for various forcing amplitudes and a wide

range of frequencies, as shown in Figure 8. Moreover, the experimental points collapse on

the curve predicted by the linear theory (Section II C) with Ω = 0 outside the resonance.

At f ≈ f1 , the resonant swirling phenomenon may occur, as discussed in the previous

section. In this case, only the predictions by the nonlinear modal method are comparable

with the experimental results. Note that the transverse force F⊥ is not plotted in Figure

8 as it is nonzero only when the swirling phenomenon occurs, and then F⊥ ≈ F . The

agreement between the nonresonant forces from the experiment and the predictions by the

linear theory with n = 1 (equivalent to the number of radial modes in the multimodal theory)

suggests that high-order sloshing modes do not have a significant effect on the sloshing force,

except for the regimes with swirl waves at f ≈ f1 . Although free surface elevations may

be under predicted by the linear theory with n = 1, as e.g., at f/f1 ≈ 1.55 in Figure 7,

the corresponding prediction of the sloshing force agrees with the experiment within the

measurement accuracy (see Figure 8). Thus, we may use n = 1 in all our linear analyses, in

which resonant phenomena other than that at f ≈ f1 are outside the scope of this study.
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FIG. 8. Nondimensional sloshing-induced force on the tank along the excitation direction. All data

are for the non-rotating liquid sloshing in the tank with the circulation system removed (Ω = 0

rad/s). The markers are explained in Figure 7. The transverse force F⊥ is not plotted, since

F⊥ ≈ F at swirling regimes and 0 otherwise.

D. Hydrodynamic force on the tank with a rotating liquid

Similar to the analysis in the previous section, here we consider the longitudinal and

transverse sloshing forces F and F⊥, respectively, acting on the tank with a rotating liquid.

As the nonlinear modal approach (Section II B) is not applicable for rotating liquids, the

only theory we refer to here is the one presented in Section II C. Experimental data were

obtained for cases with different rotation rates Ω and a fixed set of excitation frequencies

between 0.86 and 1.1 Hz. In the case with Ω = 0.33 rad/s, a broader range of frequencies,

0.5 – 2.0 Hz, was used to allow comparison with the non-rotating cases in Figure 8. For the

same reason, all frequencies in this section are scaled with f1 , which is the lowest natural

frequency of sloshing in the non-rotating liquid. Unless stated otherwise, the amplitude of

the forced motion was 5 mm, i.e., A/R ≈ 0.011.

Figure 9 shows the forces obtained from the experiments and compares them to the linear

theoretical predictions for a liquid rotating at Ω = 0.33 rad/s. By comparing these results

with those in Figure 8, one can immediately observe that the transverse force F⊥ is nonzero
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for a much wider range of frequencies ( 0.8 < f/f1 < 1.2) when the liquid is rotating. The

cases with a nonzero F⊥ correspond to swirling wave regimes. Unlike the case with the

non-rotating liquid, the experiments with Ω = 0.33 rad/s show also stable swirling waves at

”nonresonant” frequencies, e.g., f/f1 < 0.95 and f/f1 > 1.1; however, the force amplitudes

at these frequencies are significantly lower than those at f ≈ f1 , where violent swirling waves

occur. It is thus demonstrated that rotation introduces linear swirling regimes, which were

not observed previously in the non-rotating liquid sloshing. From the theoretical point of

view, linear swirling waves in a rotating liquid are not surprising and are the consequence

of the Coriolis term in Eq. (19). In fact, both F and F⊥ are accurately predicted by the

adopted linear theory for a wide range of frequencies, except the cases at f ≈ f1 , as shown

in Figure 9.

The sloshing behaviour at f ≈ f1 shown in Figure 9 is nontrivial and appears to be quite

different from the nonlinear sloshing of the non-rotating liquid shown in Figure 8. It is

also strongly nonlinear, as the experiments with different motion amplitudes ( A/R ≈ 0.011

and A/R ≈ 0.006) suggest, including stable and unstable regimes, which are difficult to

characterise based on available theories. Therefore, the identification of steady-state force

amplitudes from the experiments at f ≈ f1 with rotation can be challenging. In some cases,

the measurements showed long-lasting beating effects and instabilities of apparent steady

sloshing regimes. One example is shown in Figure 10, where the force first appears to be

steady, but after 5 minutes it collapses and turns into a beating force. This example corre-

sponds to the maximum measured force in Figure 9 (as obtained from the first 5 minutes of

the measurement), whereas the other tests at greater f show lower steady-state amplitudes,

which match with the linear predictions.

E. Effect of rotation on resonant sloshing

To study the effect of rotation on the resonant sloshing near the fundamental frequency f1 ,

several experiments were conducted at different rotation rates Ω in the range 0− 0.55 rad/s

and a fixed motion amplitude A/R ≈ 0.011 for a set of excitation frequencies f between 0.86

and 1.1 Hz with 0.02 Hz (or 0.01 Hz) regular increments . At these frequencies, sloshing of

the non-rotating liquid may occur at three different regimes, as discussed in Section IV A:

chaotic waves with unstable amplitudes at f . 1 and steady-state swirling or planar waves
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FIG. 9. Top panel: Nondimensional sloshing-induced forces on the tank with a liquid rotating at

Ω (R/g)0.5 ≈ 0.07 ( Ω = 0.33 rad/s). F⊥ is the transverse force.

Bottom Panel: Enlarged view around the first resonance frequency range

at f & f1 (e.g., as shown in Figure 8). In the presence of rotation, these regimes are altered

(as indicated in Figure 9) and, according to the theory, different resonance curves should be

observed depending on Ω. The effect of Ω is demonstrated in Figure 11 – Figure 14, where

both the theoretical resonance curves and the experimental data are presented.

The linear theory for a rotating liquid predicts a pair of resonance frequencies, f− <
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FIG. 10. Collapse of an apparent steady-state swirling force after a long time with constant

A/R = 0.006 and f/f1 = 1.03 in the experiment at Ω (R/g)0.5 ≈ 0.07 ( Ω = 0.33 rad/s).

f1 < f+, splitting the resonance curve at f = f1 and leading to infinite sloshing responses

at f = f− and f = f+ and a finite amplitude at f = f1, where F⊥ is nonzero. The

experimental results in terms of F and F⊥ show an agreement with the linear predictions at

nonresonant frequencies and indicate the presence of the pair of natural frequencies near f1

(see, e.g., Figure 13). However, near f− and f+, the experimental results deviate from the

theoretical predictions, indicating the occurrence of strong nonlinear effects in this frequency

range. Like in the case with the non-rotating liquid at f . f1, the sloshing in the rotating

liquid is chaotic at f . f− , and therefore there is no experimental data with a steady-state

amplitude at f/f1 ≈ 0.96 (0.92 Hz) in, e.g., Figure 13. In fact, we observed chaos in all

experiments at f/f1 ≈ 0.96 and A/R ≈ 0.011 independent of Ω.

Nonlinear steady-state swirling regimes in the rotating liquid can also be observed: first

at f & f− and then at greater f until a certain frequency greater than f+, above which the

nonlinear swirling switches to the linear one with a significantly lower amplitude. However,

in the experiments with Ω ≥ 0.33 rad/s, the amplitudes of the F and F⊥ dropped at

f ≈ f1 , whereas the amplitude of the swirling wave in the non-rotating liquid should increase

monotonically with f (see Figure 8). Moreover, in the former experiments, the sloshing-

induced forces at f = f1 were significantly lower than those in the experiment without

rotation (compare Figure 11 and Figure 14). We discuss this sloshing suppression effect in

Section IV H.

The direction of the swirl motion is opposite to that of the current (Ω) at f < f1, but it
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FIG. 11. Nondimensional longitudinal and transverse sloshing-induced forces on the tank with the

circulation system installed but deactivated (i.e., Ω = 0).

FIG. 12. Nondimensional longitudinal and transverse sloshing-induced forces on the tank with a

liquid rotating at Ω (R/g)0.5 ≈ 0.05 ( Ω = 0.22 rad/s).

inverts at f ≈ f1 and at f > f1, both the swirl and the current move in the same direction.

This behaviour can also be predicted by the linear theory considering the phase difference

between F and F⊥, which changes by 180 degree at f ≈ f1 . The latter is verified by

27



FIG. 13. Nondimensional longitudinal and transverse sloshing-induced forces on the tank with a

liquid rotating at Ω (R/g)0.5 ≈ 0.11 ( Ω = 0.48 rad/s).

FIG. 14. Nondimensional longitudinal and transverse sloshing-induced forces on the tank with a

liquid rotating at Ω (R/g)0.5 ≈ 0.12 ( Ω = 0.55 rad/s).

computing the inverse tangent of the ratio of the imaginary and real parts of the expressions

in Eqs. 34 – 35 and taking the difference between them, which gives the phase difference

between F and F⊥. Both the experimental results and the theoretical predictions of the
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phase appear to be nearly independent of Ω, as shown in Figure 15. The phase difference

( ϕ) between the longitudinal force F and the cage acceleration determines the sign of the

added mass coefficient associated with sloshing, whereas F
ma

(as defined in Section IV D)

determines its magnitude. If ϕ = 180◦ the added mass is positive, and if ϕ = 0◦, it is

negative.

The linear theory predicts that ϕ should alter from 180◦ to 0◦, then vice versa and then

again between the pair of natural frequencies f− and f+, which depend on Ω. A somewhat

remotely similar behaviour can be observed only in the experiments at Ω = 0.55 rad/s

(Figure 16). However, the experiments with lower rotation rates demonstrate a different

phase behaviour: ϕ gradually changes from 180◦ to approximately 90◦ (depending on Ω)

and then abruptly drops to approximately 0◦. It can also be observed that the added mass

becomes negative ( ϕ ≈ 0◦) earlier, i.e., at lower frequencies f , in the cases with lower Ω.

This fact is important for floating aquaculture cages, for which maintaining a positive added

mass for a broader range of frequencies would lead to smaller cage responses in wavy sea

conditios.

FIG. 15. Phase difference between F and F⊥ at swirling regimes.
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FIG. 16. Phase difference between the longitudinal sloshing force F and the acceleration of the

cage.

F. Dissipation of sloshing waves

The damping ratios of the dominant sloshing mode ( δ1,1) were evaluated from the mea-

surements of the force ( F ) due to free liquid oscillations (decay tests). In these tests, the

tank was instantly moved 2 or 8 cycles with an amplitude of 3 mm at frequencies near

σ1,1, and then the free decay of the force was measured. The force decay is assumed to

be exponential in time, such that F exp (−γt), where γ = δσ, and δ and σ have the same

meaning as in Eq. (15). Thus, determining the exponential trend of the force decay leads

to the identification of the damping ratio for a given natural frequency of free oscillations.

However, the decay tests with the rotating liquid consistently showed two frequencies close

to σ1,1 causing a beating effect in the measured force (see Figure 17 and Figure 18). As will

be shown later, these two frequencies are the result of the rotation-induced splitting of σ1,1.

It was challenging to separate these two frequencies in the decay test; therefore, we used

measurements containing both harmonics and, assuming that they decay at nearly equal

rates, we determined the exponential trends for successive peaks of the beating signals as

shown in Figure 17 and Figure 18.

The damping ratios were evaluated for the setup with the water-circulation system at

different flow rates Ω, including 0 rad/s, and for the tank with the circulation system re-
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FIG. 17. . Free oscillations of the sloshing-induced force and their exponential decay trend at

Ω = 0.22 rad/s. The beating is caused by two dominant harmonics at approx. 0.945 Hz and 0.983

Hz, which correspond to the first pair of natural frequencies of sloshing in a liquid rotating at

Ω = 0.22 rad/s.

FIG. 18. Free oscillations of the sloshing-induced force and their exponential decay trend at

Ω = 0.48 rad/s. The beating is caused by two dominant harmonics at approx. 0.923 Hz and 1.007

Hz, which correspond to the first pair of natural frequencies of sloshing in a liquid rotating at

Ω = 0.48 rad/s.

moved, which is called here ”bare tank”. The results are summarised in Table I, which gives

also an estimate for the bare tank following from Eq. (15). As can be seen, δ significantly

increases with Ω and can be as much as twice greater (at Ω > 0.48 rad/s) than the damping

ratio for the non rotating liquid. Nevertheless, this increase of δ does not seem to lead to
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any significant decrease of the sloshing force in the broad frequency range shown in Figure

9, except for a narrow band of frequencies near σ1,1. However, near this resonant frequency,

the effect of δ on the sloshing amplitude and phase can be significant.

Ω [rad/s] 0 0.22 0.33 0.48 0.54 Bare tank Eq. (15)

δ1,1 × 104 [-] 11 ± 2 15 ± 2 17 ± 3 21 ± 3 22 ± 3 10 ± 2 12

TABLE I. Damping ratios for the sloshing mode with the lowest natural frequency. The experi-

mental values are given for both the bare tank (without the circulation system) and the tank with

the circulation system at different flow rates Ω.

As mentioned, the decay tests were performed by moving the tank either 2 or 8 complete

cycles at a given frequency. The difference between these tests was that the latter resulted

in nearly three times greater initial amplitudes of the liquid oscillations than those shown

in Figure 17 and Figure 18, which both correspond to the 2-cycle excitation. The obtained

measurements were used to determine whether δ could be assumed nearly independent of

the initial sloshing amplitude. It was found that the damping ratios determined at lower

sloshing amplitudes (2 cycles) were consistently greater than ones corresponding to greater

amplitudes (8 cycles); however, the difference was less than 5%, which is nearly the same as

our method accuracy (see Table I). Thus, within this accuracy, the identification of δ was

not affected by the initial sloshing amplitude.

G. Rotation-induced splitting of the natural frequencies

Miles (1959) has found that one effect of rotation is to split the natural frequencies of the

non-rotating liquid. Our experimental results confirm the presence of frequency pairs near

σ1,1 in the tank with a rotating liquid. This can be seen in both the frequency dependence of

sloshing-induced forces due to forced motion (Section IV D) and free oscillations of the liquid

(Section IV F). The adopted linear model has proved to be capable of predicting the exact

values of the observed frequency pairs depending on the rotation rate Ω. In the further

analysis, the splitting of the natural frequencies of sloshing for a range of rotation rates,

Ω < 0.5σ, is numerically evaluated for the dominant antisymmetric modes (m = 1) and

the symmetric modes with m = 2 (the latter may be important for nonrigid cages). The
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computational method is presented in Section II C 1 and is straightforward for a deep tank

(Eq. 27). The results determined by Eq. (27) will be qualitatively similar to those for a

tank with an arbitrary depth, except for cases with h� 2R15. Figure 19 shows the pairs of

frequencies calculated for the first- and higher order modes up to n = 3. As seen, the effect

of Ω is significant for the primary modes (n = 1) and is negligible for n > 1. In the absence

of rotation ( Ω = 0), all frequency pairs converge to their counterparts for the non-rotating

liquid, as defined by Eq. (3). Note that the frequencies in Figure 19 are calculated for an

observer in the rotating reference frame; and in the fixed frame (as in Sections IV D – IV F

for m = 1), they become σ ∓ Ω , where the upper and lower signs correspond to the upper

and lower pairs in Figure 19, respectively. Thus, the separation between the frequencies

split by rotation is in the order of Ω in the fixed reference frame and always increases with

Ω.

FIG. 19. Rotation-induced splitting of the first three natural frequencies of the antisymmetric slosh

modes with m = 1 (left) and symmetric ones with m = 2 (right) for a deep circular tank of radius

R at different rotation rates Ω. The frequencies are given for an observer in the rotating reference

frame.

H. Sloshing suppression due to rotation

As shown in Section IV F, one effect of rotation is to increase the viscous damping of

sloshing waves; however, this effect is not strong enough to suppress the sloshing. In contrast,

the rotation-induced splitting of the natural frequencies may lead to a partial suppression of
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sloshing near the natural frequency of the non-rotating liquid. The results in Section IV D

indicate that at a sufficiently great separation between the pair frequencies (i.e., at great Ω),

the sloshing at a resonant frequency of the non-rotating liquid may become ”non-resonant”,

as at f1 in Figure 13 and Figure 14. In these cases, the sloshing amplitude can be several

times smaller than it would be otherwise at f1 in the absence of rotation. Empirically, we

have shown that a significant suppression effect can be observed already at Ω (R/g)0.5 &0.11

and A/R ≈ 0.011, or Ω&0.48 rad/s and A = 5 mm in the model scale (see Figure 13 and

Figure 14). However, in our cases, the amplitudes decreased only within a relatively narrow

range of frequencies near f1 , and outside this range, new resonance peaks were observed

near the altered natural frequencies. In the experiments by Saito and Sawada (2018)16

with a much greater rotation rate Ω (R/g)0.5 ≈ 0.45 and A/R ≈ 0.02, the sloshing was

efficiently suppressed within a broad frequency range between approximately (1± 0.1) f1 .

All these results suggest that rotation may help preventing violent sloshing waves at certain

frequencies of forced motion. Theoretically, sloshing due to forced motion of a closed cage can

be suppressed (or made non-resonant) by altering the natural frequencies with a sufficiently

great Ω. This would be possible if the frequency spectrum of the excitation forces were

narrow compared to Ω, i.e., all excitation frequencies would be located between the pair of

the natural frequencies altered due to rotation. However, great Ω would imply great liquid

velocities in the cage, which may not be tolerated by the fish. For example, Ω (R/g)0.5 ≈ 0.11

for a typical cage with R = 20 m in the full scale, would lead to a maximum equilibrium

flow velocity in the cage Umax = RΩ ≈ 1.5 m/s, and for Ω (R/g)0.5 ≈ 0.45, Umax ≈ 6 m/s.

The latter would be obviously too high compared to the critical swimming speed of fish (see,

e.g., Hvas et al. 20202), although the corresponding volume-averaged velocity in the whole

cage would be somewhat lower than Umax. Thus, this sloshing suppression method can be

practical only for fish cages with a relatively small radius (say R < 10 m).

Note that here we discussed a method for suppressing sloshing due to forced motion, i.e.,

in situations where the sloshing force does not significantly influence the cage motion. The

latter is possible, e.g., if an integrated floating farm is considered, and its mass is much

greater than the mass of the liquid contained in an individual closed unit. For a single cage,

however, one may observe from Figure 8 that the added mass of the closed cage may be

several times greater than the mass of the contained liquid ( F
ma

> 1 at 0.9 < f/f1 < 1.3). If

this is the case for a floating closed cage exposed to sea waves, its motion in this frequency
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range would be dominated by the added mass due to sloshing, and the cage response would

be low if the total mass is great. Attempting to suppress sloshing waves in this case would

decrease the added mass, naturally leading to an increased motion, and thus, the amplitude

of the sloshing waves may not be reduced as intended.

V. CONCLUSIONS

Sloshing in an aquaculture closed-containment system with a slowly rotating liquid has

been studied. It is found that the most important effect of the rotating flow is to split the

natural frequencies of the non-rotating liquid, which leads to sloshing regimes that are not

observed for the non-rotating liquid. It is shown that in the presence of rotation, transverse

liquid oscillations causing swirling can be excited linearly in a wide range of frequencies.

This contrasts with resonant sloshing in non-rotating liquids, where swirling is attributed to

nonlinear effects as, e.g., near the lowest natural frequency f1 . Further, nonlinear resonant

swirling regimes can also be observed in a rotating liquid; however, they occur near each of

the pair frequencies split by rotation and not necessarily at f1 .

The violent sloshing that was observed in the non-rotating liquid at f1 can be partly sup-

pressed by rotation at sufficiently high angular velocities Ω (e.g., at Ω (R/g)0.5 > 0.11 in

our experiments). Relatively small cages (say R < 10 m) may benefit from this effect under

forced-motion conditions. For larger cages, the same Ω would lead to flow velocities too high

for fish. Lower Ω would not result in any significant sloshing suppression, as shown in our

experiment at Ω (R/g)0.5 ≈ 0.05.
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