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Abstract. Machine learning-based computational intelligence methods
are used more often recently in the cybersecurity area, especially for ma-
licious network activity detection. ML based solutions have been used
and discussed by a significant number of authors in literature. Several
methods, including deep learning, are used to develop models for solv-
ing this issue. So far, attackers try to generate malicious activities in
a network to put down several system services or steal some informa-
tion from the databases. More recent designs of security components use
predictive modeling approach to detect such kind of attacks. Thus, the
new target for the attackers is machine learning algorithm itself. Previ-
ous studies in cybersecurity have almost exclusively focused on attack
detection in a network. Another promising line of attack detection re-
search would be machine learning algorithm protection. There are some
attacks against deep learning models in the literature, including fast-
gradient sign method (FGSM) attack. This attack is the purest form of
the gradient-based evading technique that is used by attackers to evade
the classification model. This paper presents a new approach to protect a
malicious activity detection model from the FGSM attack. Hence, we ex-
plore the power of applying adversarial training to build a robust model
against FGSM attacks. Accordingly, (1) dataset enhanced with the ad-
versarial examples; (2) deep neural network-based detection model is
trained using the KDDCUP99 dataset to learn the FGSM based attack
patterns. We applied this training model to the benchmark cyber security
dataset.

Keywords: Cyber security · Machine learning · Adversarial attacks ·
Adversarial machine learning.

1 Introduction

Machine learning (ML) has been part of the cybersecurity area, especially in
malicious activity detection since the 2000s, and its applications are increasing
day by day [2, 12]. Predictive modeling in cybersecurity is attracting considerable
interest due to its flexibility to detect the different patterns of the same attack
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type. For the future, ML is considered as the de facto solution for security
components, especially for the distributed denial of service attacks detection
[13, 5].

Intrusion detection systems (IDS) and intrusion prevention systems (IPS)
are commonly used for preventing different cyber-attacks types. Early IPS/IDS
components used signature-based attack detections. Thus, they are not capable
of detecting changes in the attack pattern. When the attacker changes the sig-
nature of the attack, such as adding some bits to a network packet’s payload,
the attacker can evade its attack [11, 1, 8].

Some early studies focus on descriptive statistics to detect malicious net-
work flow. A most known type of network attack is distributed denial of service
(DDoS). In a typical DDoS attack, hackers utilize the compromised computers
that hacked earlier, to generate significant network traffic to a victim system
or computer. Such unusual differences could be discovered using descriptive-
analytical techniques. Feinstein et al. [9] use Chi-Square statistics to classify
network flow volume irregularities, is correct. The keyword is volume for DDoS
attacks. The authors introduced time window based entropy fluctuations in a
flow volume to detect malicious traffic.

Descriptive statistics based discovery schemes have relied on previously recorded
data. A distinct disadvantage of this type of method is that network flux irregu-
larities are a timely fluid target [4]. It is essential to discriminate against the set
of malicious traffic precisely. On the other hand, attackers continue to develop
a new type of malicious traffic. Consequently, a malicious traffic classification
model needs to bypass the overfit problem to any predefined set of malicious
traffic types.

Even if such overfitting problems are solved, the attackers always try to find
other evading techniques for the security components. One of the most powerful
evading techniques against ML-based detection method is adversarial machine
learning. The adversarial machine learning has been used to describe the attacks
to machine learning models, which tries to mislead models by malicious input
instances. Figure 1 shows the typical adversarial machine learning attack.

A typical machine learning model basically consists of two stages as training
time and decision time. Thus, the adversarial machine learning attacks occur
in either training time or decision time. The techniques used by hackers for
adversarial machine learning can be divided into two, according to the time of
the attack:

– Data Poisoning : The attacker changes some labels of training input instances
to mislead the output model.

– Model Poisoning : The hacker drives model to produce false labeling using
some perturbated instance after the model is created.

The main contributions of this research are to detect network attacks using
window-based training input instances according to deep neural networks un-
der adversarial machine learning attacks for model poisoning by hackers . We
performed adversarial training based model building and deep neural network
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Fig. 1: A typical adversarial machine learning attack.

algorithm based classification to detect normal network behavior and malicious
activities, including denial of service (DOS), probe, remote-to-local (r2l), and
normal behavior. The primary purpose of the introduced design is to use a mix-
ture model strategy [15, 19] for precise classification of malicious network flow
from several network packets. The adversarial training part of the proposed
model increase robustness against adversarial instances. The deep neural net-
work model layer tries to find out the exact malicious activity class. Our model
is able to respond to the model attacks by hackers who use the adversarial
machine learning methods. Figure 2 illustrates the system architecture used to
protect the model and to classify correctly.

Our system consists of three main parts, data enhancing, algorithm training,
and classification.

The rest of the paper is organized as follows: The related work is presented
in Section 2. Section 3 gives brief preliminary information. Our model evaluation
and real system test results are presented in Section 4. The concluding remarks
are given in Section 5.

2 Related work

In recent years, with the rise of the machine learning attacks, various researches
have been submitted to build preventive actions against this kind of attacks.
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Fig. 2: General system architecture. Architecture consists of 3 parts; data en-
hancing, algorithm training, and classification.

Data infertility and learning resistance are suggested as countermeasures in fix-
ing a machine learning training phase [20]. Most of the researches in these areas
has been adjusted on particular adversarial attacks and usually showed the the-
oretical analysis of the adversarial machine learning area [14, 10].

Bo Li et al. present a binary domain and classifications. In their work, the
proposal begins with mixed-integer linear programming (MILP) with constraint
generation and provides instructions on top of these techniques. They further
practice the Stackelberg game multi-adversary model algorithm and the other
algorithm that feeds back the produced adversarial examples to the training
phase, which is called as RAD (Retraining with Adversarial Examples) [16].
Contrarily, their research is individual and operates only in particular systems.
It is offered as a comprehensive protection scheme. They have suggested a system
that achieves healthy outcomes.

Furthermore, Xiao et al. present a technique to enhance the speed of defense
training toward the rectified linear unit (ReLU) [21]. They apply weight sparsity
and RELU confidence for reliable confirmation. Their methodology does not
present a comprehensive proposal.

Yu et al. suggest a study that can decide the neural network’s features un-
der opposed attacks. In their study, the relationship between the input training
data and malicious instances is presented. Furthermore, the relationship between
the network strength and the decision surface geometry as a sign of the mali-
cious strength of the neural network is presented. By spreading the loss surface
to decision surface and other several ways, they provide adversarial robustness
by decision surface. The geometry of the decision surface cannot be confirmed
mostly, and there is no exact decision border between right or faulty prediction.
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Robustness can be improved by creating an immeasurable model, but it can
change with attack strength [25].

Mardy et al. study artificial neural networks immune with adversity and
improve accuracy scales with various methods, principally with optimization,
and demonstrate that there can be extra strong machine learning models [24].

Pinto et al. present a system to explain this problem with the promoted
learning process. In their research, they express learning as a zero-sum, minimax
objective function. They offer machine learning models that are more immune
to changes that are difficult to model through the training and are strongly in-
fluenced by changes in training and test circumstances. They induce reinforced
learning on machine learning models. They introduce a ”Robust Adversarial Re-
inforced Learning” (RARL), where they train an agent to act in the behavior of a
destabilizing adversary that involves change drives to the system. Nevertheless,
in their work, Robust Adversarial Reinforced Learning may overfit itself, and
seldom it can miss predicting without any adversarial being in presence [22].

Carlini et al. propose a model that the self-logic and the strength of the
machine learning model with a strong attack can be affected. They prove that
these types of attacks can often be used to evaluate the effectiveness of potential
defenses. They propose defensive distillation as a general-purpose procedure to
increase robustness [6].

Harding et al. similarly investigate the effects of malicious input instances
generated from targeted and non-targeted attacks in decision making. They pro-
vide that non-targeted samples are more effective than targeted samples in hu-
man perception and categorization of decisions [3].

Bai et al. present a convolutional autoencoder model with the adversarial
decoders to automate the generation of adversarial samples. They produce ad-
versary examples by a convolutional autoencoder model and use pooling com-
putations and sampling tricks to achieve these results. After this process, an
adversarial decoder automates the generation of adversarial samples. Adversar-
ial sampling is useful, but it cannot provide adversarial robustness on its own,
and sampling tricks are too specific [18].

Sahay et al. propose an FGSM attack and use an autoencoder to denoise the
test data. They have also used an autoencoder to denoise the test data, which is
trained with both corrupted and healthy data. Then they reduce the dimension
of the denoised data. These autoencoders are specifically designed to compress
data effectively and reduce dimensions. Hence, it may not be wholly generalized,
and training with corrupted data requires many adjustments to get better test
results [17].

I-Ting Chen et al. also provide with FGSM attack on denoising autoen-
coders. They analyze the attacks from the perspective that attacks can be ap-
plied stealthily. They use autoencoders to filter data before applied to the model
and compare it with the model without an autoencoder filter. They use au-
toencoders mainly focused on the stealth aspect of these attacks and used them
specifically against FGSM with specific parameters [7].
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Gondim-Ribeiro et al. propose autoencoders attacks. In their work, they
attack 3 types of autoencoders: Simple variational autoencoders, convolutional
variational autoencoders, and DRAW (Deep Recurrent AttentiveWriter). They
propose to scheme an attack on autoencoders. As they accept that ”No attack
can both convincingly reconstruct the target while keeping the distortions on
the input imperceptible.”. This method cannot be used to achieve robustness
against adversarial attacks [23].

3 Preliminary Information

In this section, we will briefly describe adversarial machine learning, attack en-
vironments, and adversarial training that we have used in this study.

3.1 Adversarial Machine Learning

Machine learning model attacks have been utilized mostly by attackers to evade
security components that protect a network. Attackers also apply model evasion
attacks for phishing attacks, spams, and executing malware code in an analysis
environment. There are also some advantages to hackers in misclassification and
misdirection of models. Such attacks, the attacker does not change training in-
stances. Instead, he tries to make some small perturbations in input instances in
the model’s decision time to make this new input instance seem safe (normal be-
havior). We mainly concentrate on this kind of adversarial attacks in this study.
There are many attacking methods for deep learning models, and FGSM is the
most straightforward and powerful attack type. We only focus on the FGSM at-
tack, but our solution to prevent this attack can be applied to other adversarial
machine learning attacks.

Fast-Gradient Sign Method (FGSM) FGSM works by utilizing the gradi-
ents of the neural network to create an adversarial example to evade the model.
For an input instance x, the FGSM utilizes the gradients ∇x of the loss value
` for the input instance to build a new instance xadv that maximizes the loss
value of the classifier hypothesis h. This new instance is named the adversarial
instance. We can summarize the FGSM using the following explanation:

η = ε ∗ sign(∇xJ(θ,x, y)) (1)

3.2 Adversarial Training

Adversarial training is a widely recommended defense that implies generating
adversarial instances using the gradient of the victim classifier, and then re-
training the model with the adversarial instances and their respective labels. This
technique has demonstrated to be efficient in defending models from adversarial
attacks.
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Let us first think a common classification problem with a training instances
X ∈ Rm×n of dimension d, a label space Y We assume the classifier hθ has been
trained to minimize a loss function `as follows:

min
θ

1

m

m∑
i=1

`(hθ(xi, yi)) (2)

Given a classifier model hθ(·) and an input instance x, whose responding
output is y, an adversarial instance x∗ is an input such that:

hθ(x
∗) 6= y ∧ d(x, x∗) < ε (3)

where d(·, ·) is the distance metric between two input instances original input
x and adversarial version x∗. Most actual adversarial model attacks transform
Equation 3 into the following optimization problem:

argmax
x

` (hθ(x
∗), y) (4)

s.t.d(x, x∗) < ε (5)

where ` is loss function between predicted output h(·) and correct label y.
In order to mitigate such attacks, at per training step, the conventional train-

ing procedure from Equation 2 is replaced with a min-max objective function to
minimize the expected value of the maximum loss, as follows:

min
θ

E
(x,y)

(
max

d(x,x∗)<ε
`(h(x∗), y)

)
(6)

4 Experiments

In this section, we conduct experiments on the KDDCUP99 dataset from the
publicly available data set repositories. We implemented the proposed mitigation
method using Keras and TensorFlow libraries in the Python environment.

In Figure 3a, the training history of the model, which uses normal input
instances, is shown. As it can be seen in history, the graph of loss and accu-
racy progresses smoothly. Figure 3b shows the confusion matrix of the test data
set using the trained model. As can be seen from the Figure, the classification
performance of the model for normal instances is quite good. Figure 3c shows
the confusion matrix of adversarial samples. As can be seen from the graph, the
classification performance of the model decreases considerably.

In order to show the effect of adversarial samples on the model in more detail,
we have shown the results of the classification reports in Table 1-2. According
to these tables, the weighted average F1 value of the benign test dataset is
0.997379. The weighted F1 value of the adversarial dataset, which was created
from the same model and created from the test dataset, dramatically decreased
up to 0.176636. As one can see here, a classification model created by applying
only the training data is highly vulnerable to adversarial attacks.



8 F.O. Catak et al.

0 50 100 150 200 250 300
epoch

0.8

0.9

1.0

ac
cu

ra
cy

train
validation

0 50 100 150 200 250 300
epoch

0.0

0.2

0.4

lo
ss

train
validation

(a)

do
s

no
rm
al

pr
ob
e r2

l

dos

normal

probe

r2l

1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.03 0.96 0.00

0.00 0.08 0.02 0.90

0.0

0.2

0.4

0.6

0.8

(b)

do
s

no
rm
al

pr
ob
e r2

l

dos

normal

probe

r2l

0.57 0.09 0.09 0.24

0.55 0.00 0.02 0.43

0.22 0.15 0.34 0.29

0.47 0.01 0.02 0.51
0.1

0.2

0.3

0.4

0.5

(c)

Fig. 3: Original classifier model for KDDCUP99 dataset. (a) accuracy and loss
plot with epoch, (b) test dataset confusion matrix, (c) adversarial instances
confusion matrix.

Table 1: Original model with normal instances’ classification report
Classes precision recall f1-score support

dos 0.998901 0.999450 0.999175 10911
normal 0.997949 0.998119 0.998034 17546
probe 0.971239 0.962719 0.966960 456
r2l 0.920635 0.896907 0.908616 194

accuracy 0.997389 0.997389 0.997389 0.997389
macro avg 0.972181 0.964299 0.968196 29107
weighted avg 0.997372 0.997389 0.997379 29107
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Table 2: Original model with adversarial instances’ classification report
Classes precision recall f1-score support

dos 0.388392 0.569150 0.461710 10911
normal 0.014298 0.000912 0.001714 17546
probe 0.098680 0.344298 0.153395 456
r2l 0.009416 0.505155 0.018487 194

accuracy 0.222661 0.222661 0.222661 0.222661
macro avg 0.127697 0.354879 0.158827 29107
weighted avg 0.155820 0.222661 0.176636 29107

Figure 4a shows the history of the classification model trained using the
adversarial training method for the train and test set. In Figure 4b, the confusion
matrix of the adversarial training model is shown. As can be seen from the
Figure, the classification performance of the model for adversarial instances is
quite good.
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Fig. 4: Adversarial trained classifier model for KDDCUP99 dataset. (a) accuracy
and loss plot with epoch, (b) adversarial instances confusion matrix.

In order to show the effect of adversarial training on the model in more detail,
we have shown the results of the classification report in Table 3. According to
these tables, the weighted average F1 value of the benign test dataset is 0.996858.

According to the table, the original vulnerable model’s F1 metric decreases
up to 0.176636 with adversarial input instances, while the original F1 value was
0.996858. With our protection methods, the new classification model’s F1 metric
is 0.996858, almost the same as the original F1 metric. As can be seen, the ma-
licious network traffic classification model shows high classification performance
with only a small loss.
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Table 3: Adversarial trained model with adversarial instances’ classification re-
port

Classes precision recall f1-score support

dos 0.998901 0.999542 0.999221 10911
normal 0.997493 0.997948 0.997721 17546
probe 0.975281 0.951754 0.963374 456
r2l 0.873684 0.855670 0.864583 194

accuracy 0.996874 0.996874 0.996874 0.996874
macro avg 0.961340 0.951229 0.956225 29107
weighted avg 0.996848 0.996874 0.996858 29107

5 Conclusion

In this study, we explained the methods of developing model robustness to adver-
sarial instances during the detection of malicious network attacks. The malicious
network traffic detection methods is a mature research subject in the literature,
but how the model itself behaves under adversarial attack is not much researched.
Attackers want to continue their malicious activities by evading network secu-
rity components by applying adversarial machine learning techniques. With the
increasing use of machine learning models in cybersecurity soon, there will be an
increase in such attacks. In this study, we would have recommended a method to
detect malicious network traffic by keeping the classification performance almost
identical even under the attack of the model itself that detects network attacks.
Attackers can reduce the F1 value of a model used without this precaution from
0.997379 to 0.176636. With our method, the F1 value decreases only to 0.996858,
detecting malicious network traffic at very high rates.

In this study, we examined the FGSM attack. In future studies, we plan to
improve our robustness method by analyzing other attack methods such as the
basic iterative method and DeepFool.
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