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Forensic analysis of beverage stains 
using hyperspectral imaging
Binu Melit Devassy* & Sony George 

Documentation and analysis of crime scene evidences are of great importance in any forensic 
investigation. In this paper, we present the potential of hyperspectral imaging (HSI) to detect and 
analyze the beverage stains on a paper towel. To detect the presence and predict the age of the 
commonly used drinks in a crime scene, we leveraged the additional information present in the HSI 
data. We used 12 different beverages and four types of paper hand towel to create the sample stains 
in the current study. A support vector machine (SVM) is used to achieve the classification, and a 
convolutional auto-encoder is used to achieve HSI data dimensionality reduction, which helps in easy 
perception, process, and visualization of the data. The SVM classification model was re-established 
for a lighter and quicker classification model on the basis of the reduced dimension. We employed 
volume-gradient-based band selection for the identification of relevant spectral bands in the HSI data. 
Spectral data recorded at different time intervals up to 72 h is analyzed to trace the spectral changes. 
The results show the efficacy of the HSI techniques for rapid, non-contact, and non-invasive analysis 
of beverage stains.

For a crime scene investigator, it is crucial to find the presence of all micro–macro scale physical, chemical, and 
biological evidences in the scene. These evidences assist in describing what incidences led to the criminal activ-
ity. In many cases, criminal behavior occurred under the influence of alcoholic beverages or used the drinks as 
a means of poisoning or sedating victims to facilitate sexual abuse or  robbery1–3. In evaluating the crime scene 
and modeling the suspect or victim´s actions, the identification and analysis of widely used drinks such as coffee, 
beer, and cocktails play a critical role. The detection of human body fluids such as blood, sweat, urine, saliva, 
and semen are previously studied by various  researchers4–6, however, the presence of beverage stains are seldom 
 examined7. In addition, examination of a paper towel collected from the crime scene will provide evidence rel-
evant to the crime 8,9 such as information about fingerprints, the tools used for crime, body fluid samples, and 
the beverages used. Aging analysis of  stains10 also plays a vital role in crime analysis to predict the appropriate 
timelines of a crime. Aging of stains from human body fluids are studied several  times11–13 and some of them are 
capable of predicting aging up to a couple of  years14, however the application of scientific imaging techniques 
for understanding the aging of beverage stain is not yet analyzed.

Existing methods for detecting the presence of beverage stains are mainly destructive chemical  methods7 
which require contact with the samples, however, forensic analysts prefer to have contactless and non-destructive 
techniques that preserve the evidence even after the analysis. Imaging techniques offer these desired  qualities15–17, 
however lack the ability to record accurate appearance of the scene. Hence, in this work we investigated the poten-
tial of hyperspectral imaging (HSI) to detect and analyze the beverages from the paper towel. The HSI blends 
ordinary imaging with spectroscopy, which can simultaneously collect both spectral and spatial  data18, HSI can 
provide much more details about the material under investigation with the aid of additional information along 
the spectral axes compared to conventional imaging techniques. HSI was initially developed for use in satellite 
 imaging19, but later evolved as an important tool in many fields such as food  processing20,  agriculture21, cultural 
 heritage22, medical  imaging23 and  forensics24. HSI data consists of different band images as layers and some-
times called as an HSI data cube having spatial information along X and Y-axes and spectral information along 
Z-axis as in Fig. 1. Each point on the HSI data cube characterizes the material property by having a spectrum 
that can be regarded as a specific material signature and can be used to identify the material. As mentioned, HSI 
already used in many forensic applications such as bloodstain  analysis10, ink and paper  analysis25,26, fingerprint 
 detection27, and face  detection28. However, the potential of HSI imaging has not yet been extended to forensic 
analysis of beverage stains, and through this work, we are trying to exploit the potential of HSI in this direction.

The HSI capture data over a broad spectral region, and this leads to challenges in handling the data for visu-
alization, storage, and more computating power is needed for analysis. Dimensionality reduction is therefore 
considered an essential preprocessing phase in HSI research, which will also allow the classifier to construct a 
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detailed model at minimum computational expenditure. Visualization is another important outcome of dimen-
sionality reduction, it is expected in many forensic cases that the number of stains present is unclear, visualiza-
tion of the data gives some clue about this, it also allows the investigator to schedule the appropriate processing 
pipeline. Principal component analysis (PCA)29 and independent component analysis (ICA)30 are the most widely 
used dimensionality reduction techniques, but because of their simple linearity assumption, they are more suited 
for a linear data  set31. In this work, we used convolutional auto-encoder (CAE)32 as a dimensionality reduction 
tool because of its ability to provide a more efficient and nonlinear generalization of the input data than  PCA33. 
To achieve an efficient dimensionality reduction, the CAE learns its parameters during the training process 
and then the convolutional encoder (CE)34 will be separated from CAE and used for dimensionality reduction.

The main objective of this research is to investigate the HSI’s capability for the detection and classification 
of beverage stains at different periods, with the aid of support vector machines (SVM) and CAE. In addition, 
we also evaluate the spectral changes that occur over 3 days for each drinks. The volume-gradient-based band 
selection (VGBS)35 algorithm is used to detect the significant bands in the HSI data acquired, VGBS is suitable 
for unsupervised band selection. The remaining part of this paper is organized as follows: in second section, 
“Materials and methods” used for the study are listed, “Results and discussion” are described in next section, 
and in last section, “Conclusions” of this study are presented.

Materials and methods
Materials. We have prepared the samples for the study in the lab, which allows to understand the contents 
better and later evaluating the algorithms effectively. Four different types of paper towels were used as a substrate 
for creating the sample stains. Six beverage samples were used in the first paper (paper1) and twelve beverage 
samples in the other three paper towel types (paper2, paper3, and paper4). The paper1 was used to study the bev-
erage stains spectral changes over time and others were used for classification. Three samples from each paper 
type (paper2, paper3 and paper4) were collected in order to perform the classification tasks. The beverages used 
on the paper1 are white wine (Weingut Robert Weil), beer (Aass Fatøl), port wine (Velhotes), Martini (Bianco 
Vermouth), coffee (Green Forest, Arvid Nordquist), and red wine (Altano). For classification task, we used the 
same beverages except white wine and beer (Aass Fatøl) along with tea (Yellow Label, Lipton), Fanta, Coca-
Cola, beer1 (Heineken), beer2 (Corona Light), orange juice (freshly squeezed), apple juice (Balholm) and dry 
Jin (Bombay Sapphire). As shown in Fig. 2, samples from all these selected drinks were poured onto the paper 
towel. The HSI of the samples were acquired at 0, 15, 30 min and 1, 3, 24, 48 and 72 h. The paper towel with stain 
samples was kept at room temperature during this period. To replicate the real scenario, we have not followed 
any procedures to avoid the surface shrinking of the paper, which happens due to the drying of the stains.

Hyperspectral image acquisition. A push broom hyperspectral camera HySpex VNIR-180036, devel-
oped by Norsk Elektro Optikk AS, is used for the HSI acquisition. This camera has sensitivity over a spec-
tral range of 400–1000 nm with a spectral resolution of 3.18 nm, which results in a spectral dimension of 186 
(bands). The imaging system records 1800-pixels across the field of 10 cm in the configuration we used for the 
present study. The sample paper towel was placed at a distance of 30 cm from the camera on a translator stage 
as, in Fig. 3. This moving stage was synchronized with the integration time of the camera. The setup consists of 
two halogen light sources with 45°:0° geometry with respect to the camera to illuminate the sample. A contrast 
multi-step  target37 of known reflectance was placed next to the paper towel and this was used later for estimating 

Figure 1.  Hyperspectral image data  representation25.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6512  | https://doi.org/10.1038/s41598-021-85737-x

www.nature.com/scientificreports/

the normalized reflectance of the sample. We used a polarizer in front of the lens while acquiring samples of the 
paper types except for paper1.

Convolutional auto-encoder. An auto-encoders (AE) is an algorithm for extracting features based on 
an unsupervised neural network, which learns the best parameters possible for rebuilding its output as close as 
possible to its  input33. AEs are extensively used in dimensionality reduction and feature extraction  problems38, 
however a CAE is a special type of auto-encoder which employs convolutional neural networks (CNN) for 
achieving this. A CAE consists of an encoder and a decoder part, usually the decoder design follows a mir-
ror image of encoder with down sampling replaced with up-sampling. The input will be passed to the encoder 
which compress the data into a smaller dimension and then the decoder learns to recreates the input from the 
encoded signal by adjusting parameters. The error (loss) will be calculated as the difference between decoded 
output and the input signal, here we used mean squared error (MSE) as a loss function. Here we considered that 
each spectrum as a vector having a dimension equal to the number of bands (186), the encoder compresses the 
vector to three-dimensional (3D) space and the decoder try to reconstruct the original vector from the encoded 
3D data. During training the encoder and decoder parameters will learn to obtain a minimal loss. The detailed 

Figure 2.  Paper1, wine samples in the paper are marked by a, b, & c and d, e and f are corresponding to 
Martini, coffee, and beer.

Figure 3.  Hyperspectral image acquisition setup.
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architecture of our CAE design is shown in Fig. 4, encoder part is designed in a way that the input data will be 
compressed to half at each level, a level consists of a pair of a 1-dimensional CNN with ReLU (rectified linear 
unit) as activation and a Maxpooling layer. To achieve this size reduction, the input vector is augmented to 192 
dimensions by duplicating last feature, which originally has 186 dimensions. Even though CAE is designed to 
get a 3D encoder output, by removing a few pairs of Conv1D and sampling layers from both the encoder and 
the decoder, it is also possible to get higher output dimensions from the encoder. Here, we used six-dimension 
(6D) for evaluating classification capabilities of encoded data using SVM, the input spectra was compressed to 
6D by removing a pair of Conv1D and Maxpooling from encoder side and a pair of Conv1D and Upsampling 
from decoder side.

Data analysis. The processing starts with camera software, which applies sensor and radiometric correc-
tions along with dark current reduction. For each instance, the HSI camera provides an HSI data cube with a 
resolution of 1800 × 11,144 × 186 (width × length × bands) pixels and a dynamic range of 16-bit unsigned inte-
gers. The HSI data was converted to normalized reflectance (floating point, 32 bit) values between 0 and 100% 
during the normalization process, representing the spectral response at each pixel which is calculated with the 
aid of the known reflectance values obtained from the multilevel reference target present in the scene. As seen in 
the Eq. (1), the spectral reflectance value can be computed as the ratio of reflected to incident light.

Here R(x, y, λ) is the reflectance for wavelength λ at location x, y, the Li and Lr are the incident and reflected 
lights for wavelength λ at x, y. Equation (1) can be re-arranged to determine the incident light as below.

Incident light across the field of view will be calculated using the known reflectance of the reference target 
and reflected light intensities obtained from HSI camera by applying Eq. (2). Since the camera is a line scanner, 
we can reuse the incident light to calculate reflectance of the entire HSI image using Eq. (1). The next step is to 
select the center points of each type of beverage stain in the paper towel, which later used to extract the spectrum. 
A square-shaped region of interest (ROI) having a side length of 25 pixels around the center point of each stain 
is used. The size is selected based on the maximum possible ROI area for all stain present in the sample. For 
each type of beverage, the ROI will be used for extracting spectra, 80%of each stain spectrum has been used for 
training and 20% has been used to evaluate the proposed method. Accuracy is used as the parameter for assess-
ing the classification capacity of the system, which can be defined as the fraction between the results predicted 
correctly (true positive + true negative) and the sum of all predictions.

Figure 5 describes the data flow pipeline, the normalized spectral data from the samples were used to train 
the CAE with MSE loss function, the CAE trained to minimize the error. After the learning phase, the encoder 
part is detached from CAE and used for encoding the input spectra into a lower dimension. In order to train 
the SVM to detect beverages, 80% spectra from each sample at a particular time duration will be fed to SVM 
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Figure 4.  Convolutional auto-encoder (CAE) architecture, generated using  Netron39.
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and the remaining 20% (not used for training) will be used to evaluate the accuracy. To make a lighter and faster 
classification, the output from the encoder is used to train the SVM similar to the previous full spectral band 
training and testing. To classify the stains based on age, spectrum of each beverage at different time duration is 
extracted and followed similar strategy for training and testing that of identification of beverage stain.

A number of optimal wavelengths were chosen to create multispectral imaging systems in order to eliminate 
redundant information for the realization of HSI in future online  inspections40. To remove the redundant bands, 
we selected volume-gradient-based band selection (VGBS), which is an unsupervised method attempts to suc-
cessively remove the most redundant  bands35. We selected this algorithm as a candidate because of its minimal 
computational complexity and popularity in band  selection41–43 applications. In regards to a HSI, the VGBS uses 
a “subtle relationship between the volume of a subsimplex (or a subparallelotope) and the volume gradient of 
a simplex (or a parallelotope)”35, which makes the VGBS method extremely time efficient. In particular, while 
the VGBS method aims to find the band set with the largest volume, it does not need to measure any volume or 
even the distance spanned by the other bands between one band and the hyperplane. Instead, VGBS removes 
the most redundant bands, only based on the volume gradient.

Results and discussion
Spectral variation over time. Mean spectral reflectance curves of the six beverages were determined 
from the proposed ROI over 3 days from paper1, and shown in Fig. 6, they have different patterns of reflectance 
spectrum variance as a function of time. The spectral variation of the red wine sample over 72 h (3 days) is 
represented in Fig. 6a, with less variation between the mean spectra in the visible region (400–700 nm) relative 
to that in the near infrared (NIR) region over the observation period. They have a low reflectance values up to 
550 nm, and the reflectance curve increases steadily up to 700 nm (approximately) and retains a reasonably high 
reflectance values up to 1000 nm. It was also noted that the spectral reflectance variation over time is unpredict-
able. However, while their reflectance values are different, all the spectrum has nearly the same spectral shape. 
The spectrum of white wine is shown in Fig. 6b, it has more significant changes over time duration relative to red 
wine. It has also been noted that these changes do not follow any pattern over time. Another important finding 
is that spectral data has saturation at certain wavelengths, where the reflectance value moved beyond the upper 
limit of the normalized reflectance (1.0). This shows the presence of specular reflection that is obtained over time 
from the liquid residue and the irregular bumps that form over the paper surface.

The spectral changes of port wine is seen in Fig. 6c, where the NIR response is almost identical to that of red 
wine with saturated pixels in the NIR range. But in the visible region, spectrum from both exhibit a significant 
change. Figure 6d illustrates the Martini spectrum that follows a similar NIR features of white wine, both of 
which have an almost similar spectral shape in the NIR region. However, both of them possess distinct spectral 
features in visible range. Figure 6e is the standard coffee  spectrum44, and aside from the initial spectrum, the 
variations over time are marginal for coffee spectrum. Finally, Fig. 6f possesses the spectra of beer, like coffee 
except for initial spectrum all others possess nearly identical spectra. In general, we found that changes in the 
spectral signature of the samples occurred over time, but for all the six beverages used in this analysis, no gen-
eral patterns of changes for spectrum over time were noticed. After a visual review, we found that the spectral 
changes occurring in the last three timings appear marginal for the last four drinks, they are port wine, martini, 
coffee, and beer. The mean spectra of six beverage stains are significantly different from each other especially in 
the visible region and towards the end of the NIR region.

Figure 5.  High level architecture of processing pipeline, the classifier accepts either one of the input based on 
settings.
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Dimensionality reduction using encoder. The CAE model was implemented, trained, and tested on the 
HSI data set of the beverage stains. The proposed CAE architecture was implemented using  Keras45 in Python. 
The encoder, which is disconnected from the CAE, is used after training to reduce the dimensionality of spectral 
data. From the original dimension of 186, the encoder will reduce the input spectra to a lower three-dimensional 
space, which can then be visualized using a three-dimensional plot, as shown in Fig. 7. This form of visualization 
will give the investigator some clues about the possible number of materials present in the study sample. In this 
particular case, from Fig. 7 we can deduce the number of materials as seven, including paper towel, this infor-
mation is useful in many cases where we do not have any prior knowledge about the number of samples present 
in the scene. Therefore, each cluster is well differentiated from other clusters a classifier can effortlessly separate 
these materials. Also, the clustering quality of the encoder output was measured using the Silhouette Index (SI)46 
and normalized mutual information (NMI)47 and obtained 0.55 and 0.81 for SI and NMI, respectively. Both 
indexes define a good clustering, if the measured clustering index value is close to one. The values obtained here 
are moderately suitable for both indexes and which indicates the clustering obtained in this particular case is 
acceptable.

Classification results. Three samples collected from paper2, paper3 and paper4 were used for calculat-
ing classification accuracies. The average spectrum of all 12 beverage stains obtained is included in Appendix 
(Fig. 11). The SVM classifier with polynomial kernel was used to achieve the classification goals. The first objec-
tive was to classify the beverage stain, and the second was to detect the stains aging. We have used fivefold cross-
validation to calculate the average accuracy and computation time on training data (80% of total data) and used 
the test data to calculate the test accuracy. For the first case, the SVM model was applied using full spectral data, 
considering the reflectance data as X variables and the stain type (beverage type) as Y variables. As shown in 
Table 1, the SVM models obtained convincing results with the overall classification accuracy of 94.40% on train-
ing data and 93.30% on test data sets. However, the calculation time will be influenced by the high dimensional-
ity of the input spectrum (186), and the redundant characteristics can affect the robustness of the classification 
at a later level. Therefore, we attempted to detect beverage stains with the low dimensional data (used six dimen-
sion) obtained from the encoder output and obtained an average training accuracy of 89.50% and a test accuracy 
of 89.10%, which is extremely useful in forensic  applications48–50. These values are much closer to that with full 
spectrum accuracy with approximately 5 times improvement in training time and 62 times lower memory usage. 
Table 1 provides detailed information on the average training time taken, calculated on a computer with an Intel 
Core i7 8650U CPU and 16 GB of RAM. The confidence interval (CI) plots give more detailed information about 

Figure 6.  Spectral reflectance changes of beverage stains over time (paper1).
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the variation of accuracies between different folds in k-fold validation. The Fig. 8 depicts the CI of the paper3 
and the CI of other papers are given in Appendix as Figs. 12 and 13. The Table 2 gives the Analysis of variance 
(ANOVA) of the accuracies obtained over k-fold validation, all the p-values are greater than 0.05 implies that 
there is no significant differences between the accuracies.

Figure 7.  Encoder output for paper1 (ROI 20)—spectra in lower dimensions.

Table 1.  Accuracies (average) for detecting beverage stains and processing time on the training data.

0 min 15 min 30 min 1 h 3 h 1 day 2 days 3 days Average

SVM with encoder

Acc % 93.67 92.40 90.67 91.80 90.33 87.67 82.80 86.67 89.50

Time (s) 1.2 1.3 0.9 1.5 2.1 0.9 1.2 1.1 1.272

SVM only

Acc % 97.00 96.20 96.20 97.00 94.20 92.40 89.87 92.33 94.40

Time (s) 1.3 4.5 1.7 4.7 5.1 5.7 11.3 8.9 5.40

Figure 8.  Paper3 confidence interval (CI) plot for beverage classification, (A) represents CI for SVM only and 
(B) represents CI for SVM with encoder.
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The reflectance data of the same beverage stain from each time interval was used as the X variable to iden-
tify the spectra based on age, and the corresponding time interval was used as the Y variable to train the SVM 
model. The model was initially trained and tested using full spectrum data and obtained a very good average 
training accuracy of 88.75% and 88.61% on test data, the detailed accuracy obtained are given in Table 3. The 
SVM was then retrained using the encoder output (six dimensions) to verify the influence of dimensionality 
reduction and obtained a comparable average training accuracy of 61.16% and test accuracy of 59.6% with an 8 
times reduction in the training time. In further analysis we find that the variations in the last three timings (1, 2 
and 3 days) seems marginal for the last four drinks (port wine, martini, coffee and beer), and the SVM and CAE 
were misleading during training. Thus, retrained the SVM alone and then CAE with SVM by using the first six 
timings for all beverage stains, by eliminating the last two readings (2 days and 3 days). Which improved the 
SVM classification accuracy from 88.75 to 93.52% and the accuracy of the combination using encoder with SVM 
from 61.16 to 80.46%. The Fig. 9 depicts the CI of the paper3 aging classification and the CI of other papers are 
given in Appendix as Figs. 14 and 15. The Table 2 gives the ANOVA of the classification accuracies obtained over 
k-fold validation, all the p values are greater than 0.05 implies that there is no significant differences between 
the accuracies.

Spectral changes of the substrate. We have analyzed the spectral changes in the substrate material, 
which is obtained from the paper towel used for sample preparation. Like the beverage samples, we selected a 
ROI of side 100 pixels in the paper towel and calculated the mean spectral variation which is plotted in Fig. 10. 
The spectrum follows a similarly identical spectral shape at different time durations, but the magnitude of the 
reflectance values differs over time. Which is primarily caused by the specular reflection that occurs over time 
from the drying of the stains. Also noticed that the spectrum has a local minima around 580 nm and a gradual 
rise in reflectance until approximately 630 nm and follows a nearly same reflectance value throughout the NIR 
range. The analysis of background spectra helps us to identify and track the beverage stains more accurately by 
avoiding the background spectra at each time duration.

Optimal spectral band selection. To remove redundant details for the realization of HSI in potential 
real time examinations, a number of optimal wavelengths were selected using the VGBS algorithm, to create a 
multispectral imaging system. The data set has 186 spectral bands between 400 and 1000 nm, using VGBS we 

Table 2.  ANOVA of the accuracies for k-fold results.

Paper type

Beverage type classification Beverage age classification

SVM only
SVM with 
encoder SVM Only

SVM with 
encoder

F p value F p value F p value F p value

2 0.06 0.99 0.02 0.99 0.02 0.99 0.3 0.87

3 0.04 0.99 0.004 0.99 0.02 0.99 0.96 0.43

4 0.03 0.99 0.34 0.84 0.01 0.99 0.18 0.94

Table 3.  Accuracies (average) for detecting aging of beverage stains and training time for training data set.

Beverage

SVM only
SVM only without 
last two timings SVM with encoder

SVM with encoder 
without last two 
timings

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

Tea 87.27 61.4 94.73 4.1 60.53 4.2 83.00 4.1

Coffee 85.60 51.4 94.67 4.4 61.20 7.3 80.67 5.7

Orange juice 93.33 13.8 94.67 3.7 73.33 6.1 84.93 9.1

Apple juice 84.93 121.5 90.87 11.1 56.27 13.5 78.13 3.9

Fanta 95.20 34.6 95.00 15.3 77.13 10.8 84.00 11.3

Coca-Cola 94.47 25.1 95.67 14.3 66.00 9.8 82.47 8.4

Beer1 87.27 188.7 95.20 8.7 58.67 12.5 82.60 4.5

Beer2 86.00 44.3 93.60 3.4 60.40 16.4 81.67 12.8

Martini 84.67 104.84 90.40 9.1 60.07 17.9 77.80 5.6

Red wine 88.73 30.1 92.47 7.7 52.47 8.5 78.13 4.2

Port wine 88.93 25.1 93.20 4.2 56.73 9.3 80.27 3.4

Gin 88.60 175.1 91.80 20.4 51.07 13.9 71.80 7.3

Average 88.75 73.00 93.52 8.87 61.16 10.85 80.46 6.69
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extracted a total of five wavelengths, which are 450.05, 472.3, 507.5, 871.35 and 976.6 nm. The first three bands 
extracted by the VGBS algorithm belong to the visible region and the last two belong to the end of the NIR 
region, which are aligned with our visual observation from the mean spectra of the stains. After finding these 
wavelengths, the SVM classifier was re-launched for both types of classification tasks and obtained the average 
test accuracies as 83.16% for stain detection and 60.95% for aging detection. This proves the potential of spectral 
selection, which can help to design a portable and cost-effective device for accurate onsite documentation of 
crime scenes. Compared to HSI systems, a multispectral system with limited number of selected spectral bands 
which can produce similar results as HSI will be very useful for forensic applications.

Conclusions
Hyperspectral imaging was successfully used to detect, age estimation, and characterize the beverage stains on 
three different types of paper towels using twelve beverage types. Established classification methods using SVM 
and obtained promising classification accuracies. We have implemented and evaluated dimensionality reduc-
tion using CAE and analyzed the impact of lower spectral dimension on classification accuracy and processing 
time. We have also investigated the variations in spectral characteristics of the six beverages over 3 days as well 
as identified the relevant bands for classification and age estimation, using VGBS algorithm. It was observed that 
there are chances of challenges in capturing accurate spectral reflectance data in some locations due to specular 
reflections from liquid samples. The potential future work will be to extend this research with more beverages 
and other substrate samples of the sort generally found in crime scenes. The present study shows that HSI helps to 
document and examine beverage stains present in the crime scene and perform in-depth analysis. This tool also 

Figure 9.  Paper3 confidence interval (CI) plot for beverage aging classification, (A) represents CI for SVM only 
and (B) represents CI for SVM with encoder.

Figure 10.  Mean spectral variation of the paper towel (paper1) over time.
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provides forensics experts the opportunity to scientifically document, reconstruct the incident, and understand 
the suspect´s actions before the incident.

Data availability
On fair request, the datasets produced during and/or analyzed during the current study are available from the 
corresponding authors.

Appendix
See Figs. 11, 12, 13, 14 and 15.

Figure 11.  Spectra of 12 beverage stains over time (paper3).
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Figure 12.  Paper2 confidence interval (CI) plot for beverage classification, (A) represents CI for SVM only and 
(B) represents CI for SVM with encoder.

Figure 13.  Paper4 confidence interval (CI) plot for beverage classification, (A) represents CI for SVM only and 
(B) represents CI for SVM with encoder.

Figure 14.  Paper2 confidence interval (CI) plot for beverage aging classification, (A) represents CI for SVM 
only and (B) represents CI for SVM with encoder.
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