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Abstract

The study of the vibrational modes and stability of a given physical system
has strong bounds with the efficient numerical evaluation of its eigenvalues.
The operators governing the eigenproblem are, in general, nonlinear in the
eigenvalue and non-self-adjoint, which makes the repeated solution of the
eigenvalue problem (necessary for example when the effect of several param-
eter values on the system needs to be assessed) expensive. This study re-
views the adjoint-based incremental procedure for calculating the coefficients
of power series expansion of simple (non-degenerate) eigenvalues and their
eigenvectors. These expansions approximate the eigenvalues to any desired
order in a finite region. An efficient numerical implementation of the theory
is proposed, and it is shown how high-order power series approximations of
the eigenvalues give very accurate results within the radius of convergence of
the power series, which is finite and generally not small. Furthermore, the
domain of convergence of the power series might be extended by consider-
ing Padé expansions of the eigenvalues. Examples involving the stability of
the Orr–Sommerfeld equation, the biharmonic equation for the vibrational
modes of a membrane, and the emission of sounds from a Rijke tube because
of thermoacoustic feedback are used to assess and validate the theory.
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1. Introduction

Eigenvalue problems are of fundamental importance in science and en-
gineering. They are often associated with wave phenomena, arising, for ex-
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ample, from the Schrödinger equation in quantum mechanics, or from the
Helmholtz equation in acoustics. Other classic examples of eigenvalue prob-
lems are those that appear in the linear stability analysis of the equations
governing various physical phenomena. A more comprehensive list of research
fields in which eigenvalue problems commonly appear can be found in [1, 2].
Due to the abundant appearance of eigenvalue problems, and the fact that
these are rarely treatable analytically, efficient algorithms for their solution
are needed. When considering eigenvalue problems subject to parameter
variations over a certain range, a considerable computational effort may be
necessary. Solving the eigenvalue problem once may already be computation-
ally demanding – this is especially true for eigenvalue problems that depend
nonlinearly on the eigenvalue. Solving the eigenproblem multiple times for
different values of the parameter of interest is even more challenging, and
is often a poor strategy. Instead, using a perturbation approach, aided by
adjoint-based methods, can significantly speed up the computations.

The eigenvalue problems considered in this study involve linear operator
families L(z) which may depend nonlinearly on z ∈ C. 1 The problem
is phrased as follows: given an operator family L(z), find λ ∈ C and a
corresponding function v 6= 0 such that

L(λ)v = 0. (1)

The elements of the pair (λ, v) that solve the above eigenproblem are called
eigenvalue and eigenfunction, respectively. Equation (1) may also refer to
boundary value problems defined on a domain Ω. They can be written as

L(λ)v :=

{
LΩ(λ)v = 0 in Ω
L∂Ω(λ)v = 0 on ∂Ω

. (2)

The operator family L(z) is called self-adjoint if L†(z) = L(z); it is called
normal if LL† = L†L; and it is called non-normal otherwise (L† denotes the
adjoint operator of L, defined in §2). In this study, no assumption is made
regarding the normality of the operator L(z), meaning that the presented
theory is applicable to all of these classes of operators. Furthermore, the
eigenvalue problem associated with L(z) will be called linear if L(z) = (A+
zB), the classic eigenvalue problem, and nonlinear if L depends on z in a

1 As for the examples given below, for problems arising in practical engineering the
operator L is a mapping of an Hilbert space onto itself.
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nonlinear fashion, for example if the operator is polynomial in z or depends
exponentially on it.

From an operator theory viewpoint, eigenvalues are complex-valued num-
bers λ at which the family of linear operators L(z) possesses no inverse [3].
Throughout this paper it is assumed that L(z) is analytic in z in some neigh-
borhood around an eigenvalue λ. Moreover the discussion is limited to dis-
cretizations L(z) of L(z), which is assumed to be bounded. The set of all
eigenvalues of a discretized operator family is called the spectrum of the dis-
cretized operator family. Except for trivial cases where the operator family
is non-invertible for any z, the spectrum of a discretized operator family is
discrete, i.e., it consists of isolated points in the complex plane. An eigen-
value is classified depending on its algebraic and geometric multiplicity [3].
Eigenvalues with equal algebraic and geometric multiplicity are referred to
as semi-simple. This includes simple eigenvalues, which have algebraic and
geometric multiplicity equal to 1. Eigenvalues with an algebraic multiplic-
ity greater than one are referred to as degenerate. Degenerate eigenvalues
that are not semi-simple are called defective – their algebraic multiplicity
is greater than their geometric multiplicity. Although the spectrum of L(z)
may contain degenerate eigenvalues, the present study will only consider the
expansion around simple eigenvalues.

In addition to obtaining a specific solution of an eigenvalue problem, it
is often of interest to understand how the solution (eigenvalue and/or eigen-
vector) varies when some parameters governing the operator L are changed.
The parameter changes could be related to a comparison of several designs
in engineering applications, or to the evaluation of uncertainties in the mod-
eling parameters, particularly in stability analysis. ε represents a generic
parameter of interest that may affect any component of the problem – for
example the structure of the operator, the boundary conditions, or the shape
of the considered domain. By explicitly accounting for the dependence of the
operator on the parameter, the (discretized) eigenvalue problem (1) reads2

L(λ, ε)v = 0. (3)

Except for very simple cases, closed-form solutions to the parameter-

2Note that different symbols are used for continuous operators, L, and their finite-
dimensional discretization matrices, L. The same holds true for the eigenfunctions, v,
which are approximated by the eigenvectors, v. To ease the notation, however, λ indicates
an eigenvalue in both the continuous and discrete formulations.
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dependent eigenvalue problem (3) do not exist; however, an eigensolution
may be known for a specific value of the parameter ε. This is referred to
as the unperturbed solution. Without loss of generality, the unperturbed
solution can be assumed to correspond to ε = 0, and the corresponding
eigenpair is denoted with λ0 and v0 so that L(λ0, 0)v0 = 0. One can then
exploit the knowledge on the unperturbed solution and estimate the solutions
for values of ε 6= 0 by approximating the eigenvalues and eigenfunctions of
the perturbed problem with truncated power series. The stipulated power
series ansätze read

λ(ε) = λ0 +
∞∑
n=1

λnε
n and v(ε) = v0 +

∞∑
n=1

vnε
n (4)

for the eigenvalue and eigenfunction, respectively. This type of approxi-
mation and the machinery used to calculate the power series coefficients is
known as Rayleigh–Schrödinger perturbation theory, as it was first employed
by Lord Rayleigh to solve models of vibrating strings [4] and by Schrödinger
to compute spectral absorption lines of the hydrogen atom subjected to the
Stark effect [5].

Schrödinger considered problems arising from quantum mechanics, which
are typically self-adjoint and linear in the eigenvalue λ. Furthermore, he
only considered perturbations of the operator that are linear in the parame-
ter ε, explicitly derived first-order equations, and sketched how the approach
can be generalized to arbitrary order. Soon after, the method was general-
ized by Fues [6] to account for a nonlinear dependence of the operator on
the parameter ε; his work contains the equations for large-order eigenvalue
and eigenvector corrections of self-adjoint operators that depend linearly on
the eigenvalue. The method can also be extended to generalized eigenvalue
problems, as in [7]. Nowadays, perturbation theory of linear, self-adjoint
eigenvalue problems has become a well established mathematical tool, and is
extensively treated in [8]. Multi-paramneter approximation theory for linear
self-adjoint eigenvalue problems can be, e.g., found in [9]. Focusing on simple
eigenvalues, which are those investigated in this study, explicit formulas for
the eigenvalue and eigenvector corrections up to 4th order arising from non-
normal operators that are linear in both the eigenvalue and the perturbation
parameter were given in [10]. In fluid mechanics, the use of non-self-adjoint
perturbation theory for the investigation of the influence of base-flow modi-
fications on the eigenvalues of the (non-normal) Navier–Stokes equation was
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proposed by [11], and applied by [12] at first order for the cylinder flow, and
by [13] at second order for a wake flow. [14] contains a detailed explana-
tion of how this can be achieved numerically even for operators discretized
by very large matrices. In more recent years, the use of adjoint-based per-
turbation theory has been quite successful in the field of thermoacoustics,
which involves the study of non-normal eigenvalue problems that are non-
linear in both the eigenvalue and the perturbation parameter. This was
introduced in [15] for first-order sensitivities only, and generalized to higher
orders in [16]. The theory for nonlinear eigenvalue problems is significantly
younger and not nearly as far developed as for linear problems. General re-
views on nonlinear eigenvalue problems are [17, 18]. [19] demonstrated how
to derive arbitrary order sensitivity equations for simple eigenvalues utilizing
both the corresponding adjoint and direct eigenvectors. In our study, this
theory is presented for completeness, and is derived using a more explicit
notation which is more suitable for an efficient numerical implementation of
the perturbation theory at high orders. An alternative algorithm using no
adjoint eigenvectors is presented in [20]. Some theorems on the existence and
convergence of large-order polynomial expansions for semi-simple eigenval-
ues can be found in [21], and aspects of defective eigenvalues are discussed
in [22]. Chapters 7 and 11 in [23] give a comprehensive literature review and a
modern introduction to the perturbation theory of non-self-adjoint boundary
eigenvalue problems.

When first introduced, performing large-order perturbation calculations
was a tedious task, as it requires the evaluation of several derivatives and
the combination of numerous terms, whose number grows exponentially with
perturbation order. With the advancements in computer technology this has
become considerably easier. Algebraically perturbing (undiscretized) differ-
ential equations to large orders with computer algebra systems is nowadays
a standard technique in theoretical physics, see e.g. [24]. Indeed, computers
and numerical methods have become so powerful that accurately solving the
eigenvalue problem (2) by means of, e.g., high-dimensional finite-element dis-
cretization methods is feasible, although it remains numerically demanding.

For large problem sizes, with nonlinear dependence of L on λ, solving (3)
may require considerable computational effort. In this context, Rayleigh–
Schrödinger perturbation theory plays a key role. By performing once the
calculations of the coefficients for a high-order power series expansion of the
solutions of (3), one can then accurately estimate the eigenvalues and eigen-
functions for any value of the perturbation parameter ε within a certain range
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(the convergence radius of the power series). This range can be considerably
extended by using rational polynomial approximations. Several applications
of this concept are found in the literature, and include computation and
continuation of dispersion curves (e.g., for photonic crystals [25]), sensitivity
analysis (e.g., in flow control [13]), or Monte Carlo-free uncertainty quantifi-
cation of stability analysis results (e.g., in thermoacoustics [26]).

This study focuses on adjoint-based high-order perturbation theory of
simple eigenvalues. The theory in its most general form is presented. It
contains all the formulas needed for calculating at an arbitrary order the
coefficients for the power series expansions of simple eigenvalues and corre-
sponding eigenvectors of nonlinear eigenvalue problems. The procedure is
analogous to that outlined in [19], but it is more explicit and uses a notation
that can be straightforwardly coded. This allows us to efficiently implement
the theory in a framework that is independent from a particular physical
problem, and can accurately estimate eigenvalue and eigenvector corrections
to very high orders. Using these corrections, accurate predictions on the de-
pendence of the eigenvalues on a parameter can be made within the radius
of convergence of the power series. In addition, we also utilize Padé approx-
imants – i.e, rational polynomials – to overcome the limit imposed by the
radius of convergence of the power series, which is a standard method for
series acceleration [24, 27].

The manuscript is organized as follows: in §2 a detailed derivation of the
large-order equations is presented and discussed; it is followed by a discussion
on how these concepts are efficiently implemented into a numerical framework
in §3. Three test cases, chosen from eigenvalue problems arising in the fields
of fluid mechanics, §4.1, structural mechanics, §4.2, and thermoacoustics,
§4.3, are subsequently used to exemplify the theory with practical emphasis
on vibrational problems. We also demonstrate that the rate of convergence
of the eigenvalues greatly increases when the functional ansatz is changed
from a power series to a Padé series. Finally, a summary of the study and
some concluding remarks close the study in §5.
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2. Theory

To find the coefficients of the power series ansätze, eqs. (4) are substituted
into the eigenvalue problem (3):

L

(
λ0 +

∞∑
n=1

λnε
n, ε

)(
v0 +

∞∑
n=1

vnε
n

)
= 0. (5)

It is assumed that L is analytic in both z and ε in some neighborhood of the
unperturbed solution λ0 for ε = 0. By truncating the power series at the
desired order of approximation N , the operator L(z, ε) can be expanded into
the bi-variate power series

L(λ0 + ∆z, ε) ≈
N∑
n=0

εn
N∑
m=0

(∆z)mLm,n. (6)

The ≈ symbol emphasizes that, by truncating the series, we introduce an
error of order O

(
εN+1

)
, using the big O notation in the ε → 0 limit. This

notation will be adopted throughout the article, whenever the equations con-
tain truncated power series. Moreover, Lm,n are the Taylor-series coefficients
defined by

Lm,n :=
1

m!n!

∂m+nL

∂zm∂εn

∣∣∣∣
z=λ0
ε=0

. (7)

Introducing (6) into (5), defining ∆λ :=
∑N

n=1 λnε
n = ∆z, leads to[

N∑
n=0

εn
N∑
m=0

(∆λ)mLm,n

][
N∑
n=0

vnε
n

]
≈ 0. (8)

Introducing the multi-index µ := [µ1, µ2, . . . , µN ], the tuple λ := [λ1, λ2, . . . , λN ],
and exploiting the multinomial theorem yields

(∆λ)m =

(
N∑
n=1

λnε
n

)m

=
∑
|µ|=m

(
m

µ

) N∏
n=1

(λnε
n)µn =

∑
|µ|=m

(
m

µ

)
λµε|µ|w .

(9)
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By definition, the entries of the multi-index µ are non-negative integers,
µi ∈ N. Moreover, the following standard definitions and properties of multi-
indices hold:

|µ| :=
N∑
n=1

µn,

(
|µ|
µ

)
:=

|µ|!
N∏
n=1

(µn!)

, λµ :=
N∏
n=1

λµnn . (10)

Additionally, |µ|w denotes a weighted sum of the multi-indices:

|µ|w :=
N∑
n=1

nµn. (11)

Plugging (9) back into (8) yields

N∑
n=0

N∑
m=0

∑
|µ|=m

N∑
l=0

εn+|µ|w+l

(
m

µ

)
λµLm,nvl ≈ 0. (12)

In order to sort for like powers of ε, the substitution k = n+ |µ|w + l is made.
This eventually yields

N∑
k=0

εk
k∑

m=0

∑
|µ|w=m

k−|µ|w∑
n=0

(
|µ|
µ

)
λµL|µ|,nvk−n−|µ|w ≈ 0. (13)

In the last step, the summation limits have been changed to account only
for powers of ε up to order N . Indeed, eq. (12) contains terms of order
O
(
εN+1

)
and higher. These terms are irrelevant for the calculation of the

power series coefficients up to the desired order N , and are neglected in the
following. In particular, because in (13) the index l cannot be negative, one
has l = k − n − |µ|w ≥ 0. Thus, the sum over n is limited to k − |µ|w.
The set of multi-indices on which the third summation is performed has also
changed from |µ| to |µ|w, in order to guarantee that k−|µ|w ≥ 0. From their
definitions, it is clear that the weighted sum |µ|w is greater or equal than |µ|,
therefore the set of multi-indices having |µ|w ≤ k is a subset of those having
|µ| ≤ k. It is only this specific subset contributing to the relevant powers of
ε.
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Lastly, the second and third summations can be merged, yielding

N∑
k=0

εk
∑

0≤|µ|w≤k

k−|µ|w∑
n=0

(
|µ|
µ

)
λµL|µ|,nvk−n−|µ|w ≈ 0, (14)

where
∑

0≤|µ|w≤k

denotes the sum over all multi-indices having a weighted sum

greater than or equal to 0 but less than or equal to k. One can show that such
a list of multi-indices has a strong connection with the problem of identifying
all the partitions of integer numbers, as it will be further discussed in §3.

From eq. (14), the equation that needs to be solved at each order k ≤ N
can be identified:

∑
0≤|µ|w≤k

k−|µ|w∑
n=0

(
|µ|
µ

)
λµL|µ|,nvk−n−|µ|w = 0. (15)

In deriving explicit formulas for the solution of a generic order k, it is con-
venient to rewrite (15) as

L0,0vk = −rk − λkL1,0v0, (16)

where

rk :=
k∑

n=1

L0,nvk−n +
∑

0<|µ|w≤k
µ6=1k

k−|µ|w∑
n=0

(
|µ|
µ

)
λµL|µ|,nvk−n−|µ|w . (17)

Here the sum over the multi-indices excludes the multi-index

1k := [

k terms︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0], (18)

as this is the only term containing λk, and it is explicitly accounted for in
eq. (16). This definition of rk will be convenient in §2.1.

Given a baseline solution L0,0v0 = 0, eq. (16) provides a set of linear,
non-homogeneous equations that need to be solved in ascending order for
1 ≤ k ≤ N . For example, the baseline problem and the equations for the
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first and second order are:

O
(
ε0
)

: L0,0v0 = 0, (19a)

O
(
ε1
)

: L0,0v1 =− L0,1v0 − λ1L1,0v0, (19b)

O
(
ε2
)

: L0,0v2 =− (L0,1 + λ1L1,0)v1 − (L0,2 + λ1L1,1 + λ2
1L2,0)v0

− λ2L1,0v0. (19c)

2.1. Incremental scheme for the calculation of power series coefficients

The term rk in eq. (16) depends on coefficients λn and vn of orders less
than k. Because these coefficients have already been calculated at lower
orders, the only remaining unknowns in eq. (16) are λk and vk. However,
L0,0 is not invertible because L0,0v0 = 0. Hence, some conditions need to be
imposed on eq. (16) to guarantee its solvability. These conditions are known
as Fredholm alternatives, and they guarantee the existence of the solution,
i.e., of the unknowns λk and vk [28, Chap. 9]. Because the matrix L0,0 is

generally non-self-adjoint, the calculation of the adjoint eigensolution v†0 of
the unperturbed problem is required for the formulation of the solvability
condition.

The adjoint eigenvector v†0 is defined as the eigenvector of the adjoint
operator corresponding to the same eigenvalue λ0:

L†0,0v
†
0 = 0. (20)

Given an inner product
〈
·
∣∣·〉, the adjoint L†0,0 of L0,0 is defined by〈
L†0,0g

∣∣f〉 =
〈
g
∣∣L0,0f

〉
, (21)

which needs to hold for arbitrary vectors f and g. In particular, by choosing
as a test vector g the adjoint eigenvector v†0, one has〈

v†0
∣∣L0,0f

〉 (21)
=
〈
L†0,0v

†
0

∣∣f〉 (20)
=
〈
0
∣∣f〉 = 0. (22)

Since f is an arbitrary vector, L0,0f is an arbitrary element in the range of
L0,0. Therefore, eq. (22) proves that the range of L0,0 is orthogonal to the
adjoint eigenspace. Because (16) admits a solution if and only if its r.h.s.
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is in the range of L0,0, the following solvability condition – the Fredholm
alternative – must be satisfied3:〈

v†0
∣∣rk + λkL1,0v0

〉
= 0. (23)

For the case of a simple eigenvalue there is only one Fredholm condition,
and (23) effectively defines the eigenvalue expansion coefficient at order k:

λk := −
〈
v†0
∣∣rk〉〈

v†0
∣∣L1,0v0

〉 . (24)

Substituting λk into (16) guarantees that a solution for the eigenvector vk
exists, and can be expressed in terms of the generalized inverse Lg0,0 of L0,0

as:

vk = −Lg0,0

[
rk −

〈
v†0
∣∣rk〉〈

v†0
∣∣L1,0v0

〉L1,0v0

]
+ ckv0 := v⊥k + ckv0. (25)

The solution to eq. (16), vk, is not unique as there is the freedom to add an
arbitrary (complex-valued) multiple ck of eigenvector v0 of the unperturbed
operator. This is because v0 belongs to the nullspace of L0,0. To that ef-
fect, v⊥k in (25) denotes the component of vk that is orthogonal to v0, i.e.,〈
v⊥k
∣∣v0

〉
= 0. v⊥k is furthermore the minimum-norm solution to eq. (16), and

it will be convenient in §2.2, where it is shown that imposing a normaliza-
tion condition on the perturbed eigenvectors removes the ambiguity on the
constant ck.

Note that solving the above equations requires knowledge of only the
direct and adjoint eigenvectors corresponding to the simple eigenvalue of in-
terest. In contrast, classical Rayleigh–Schrödinger perturbation theory, as
often presented in the literature (e.g. [24]) for linear self-adjoint problems,
requires knowledge of all eigenvalues and eigenfunctions of the unperturbed
matrix family L(z, 0). The latter is necessary because the eigenvector cor-
rections vk can be expressed as a linear combination of a complete basis.
For self-adjoint, linear eigenvalue problems, the set of eigenvectors – which

3This holds true for bounded operators, and is sufficient for the scope of this study
because, for any numerical application, one deals with a discretized, finite-dimensional
matrix representation of the operators.
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are orthogonal to each other – is chosen as basis for the considered vec-
tor space. Although generalizable to non-Hermitian, nonlinear eigenvalue
problems, this approach has the drawback that the eigenvector series may
converge slowly to the desired eigenvector correction terms. Furthermore, for
discretizations represented by large matrices, it is numerically demanding to
calculate a large set of eigenfunctions of the unperturbed operator. Hence,
even for self-adjoint, linear eigenvalue problems, the correction terms are
nowadays obtained by directly solving eq. (16) using the described adjoint-
based solution approach [19, 29, 28].

The equations presented in this section give rise to an incremental pro-
cedure: starting with the knowledge of a simple eigenvalue λ0 of L(z, ε = 0),
its direct eigenvector v0 and its adjoint eigenvector v†0, one can compute the
power series coefficients λn and vn order by order, by solving the set of linear
equations (24) and (25). This allows for accurately estimating the eigenval-
ues and eigenvectors of the eigenproblem for values of ε 6= 0. This procedure
is straightforward to implement in a numerical algorithm, but particular care
needs to be taken for efficiently evaluating rk – which contains a very large
number of terms at high orders, eq. (17) – as will be discussed in §3.

2.2. Eigenvector normalization

The eigenvector corrections vk as defined in (25) are not uniquely deter-
mined because v0 lies in the kernel of L0,0. Hence, if vk is a solution of (16),
so is vk + ckv0, where ck is an arbitrary constant. Ultimately, this ambiguity
of the eigenvector correction arises because eigenvectors can be arbitrarily
scaled. Imposing a normalization condition to the eigenvectors removes this
ambiguity and determines the eigenvector corrections vk uniquely. This sec-
tion presents two methods that can be used for determining the normalization
coefficients: an a priori method in §2.2.1, which can be solved order by or-
der together with the equations for the eigenvalues and the eigenvectors; an
a posteriori method in §2.2.2, to be performed after the calculation of the
power series coefficients.

2.2.1. A priori normalization

Without loss of generality, a normalization condition can be imposed that
requires the norm of the perturbed eigenvectors to be unity, i.e. ‖v(ε)‖2 =〈
v(ε)

∣∣v(ε)
〉

= 1 for any value of ε. Expanding the expression for v(ε) us-

12



ing (4) and collecting the terms for powers of ε up to N yields〈
N∑
k=0

εkvk

∣∣∣∣∣
N∑
k=0

εkvk

〉
≈

N∑
k=0

εk
k∑
j=0

〈
vk−j

∣∣vk〉 = 1, (26)

which implies

〈
v0

∣∣v0

〉
= 1 and

k∑
j=0

〈
vk−j

∣∣vj〉 = 0 for k = 1, 2, . . . , N. (27)

Because the scalar product is generally defined over the field of complex
numbers C, the normalization condition (26) still leaves freedom on a global
phase factor on v(ε). It is convenient to choose this phase such that the
projection of the perturbed eigenvector on the unperturbed one is a real-
valued number:

Im
[〈
v0

∣∣v(ε)
〉]

= 0. (28)

Power series expansion yields

Im
[〈
v0

∣∣v(ε)
〉]

= Im

[(
1 +

N∑
k=1

εk
〈
v0

∣∣vk〉)] = 0

⇔ Im
[〈
v0

∣∣vk〉] = 0 ∀k ∈ [1, N ].

(29)

Combining this with the anti-linearity of the scalar product yields

Im
[〈
v0

∣∣vn〉] = Im
[〈
vn
∣∣v0

〉]
= 0 ⇔

〈
v0

∣∣vn〉 =
〈
vn
∣∣v0

〉
∈ R, (30)

where the overbar denotes complex conjugation. This can be used for ob-
taining an explicit formula for the coefficients ck. From (27) follows

〈
vk
∣∣v0

〉
+
〈
v0

∣∣vk〉+
k−1∑
j=1

〈
vk−j

∣∣vj〉 = 0, (31)

where the first and last term were pulled out from the sum. Using eqs. (25)
and (30) results in

〈
v0

∣∣vk〉 =
〈
v0

∣∣v⊥k + ckv0

〉
=
〈
v0

∣∣v⊥k 〉︸ ︷︷ ︸
=0

+ck
〈
v0

∣∣v0

〉︸ ︷︷ ︸
=1

= ck = −1

2

k−1∑
j=1

〈
vk−j

∣∣vj〉.
(32)
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The right hand side in the above equation only depends on eigenfunction
corrections of order lower than k. This allows computing ck explicitly order
by order, in an incremental fashion like the computation of λk. A general
result is that, regardless of the problem under investigation, c1 = 0, which
is a common condition that can be found in the literature for first order
approximations [29, 28].

2.2.2. A posteriori normalization

Because the normalization coefficients do not affect the calculation of
the eigenvalue and eigenvector corrections, they can be calculated in a post-
processing step for any ε of interest. Indeed, their calculation is not necessary
if the analysis concerns only the eigenvalues. From the power series expansion
follows

v(ε) ≈ v0 +
N∑
k=1

(v⊥k + ckv0)εk =

(
N∑
k=1

ckε
k

)
︸ ︷︷ ︸

:=c(ε)

v0 +

(
v0 +

N∑
k=1

εkv⊥k

)
︸ ︷︷ ︸

:=v∗(ε)

. (33)

In this equation, c(ε) is the unknown factor of vectors v0 to be added to v∗(ε)
to have the best estimate of the perturbed eigenvector v(ε). When this is
achieved, the perturbed eigenvalue problem (3) is satisfied so that

L

(
N∑
k=0

λkε
k, ε

)
(v∗(ε) + c(ε)v0) ≈ 0. (34)

In order to ease the notation, the following variables are introduced:

a := L

(
N∑
k=0

λkε
k, ε

)
v∗(ε), b := L

(
N∑
k=0

λkε
k, ε

)
v0. (35)

Decomposing the vector a into components parallel and orthogonal to b
yields

a = a‖ + a⊥ =

〈
a
∣∣b〉〈
b
∣∣b〉b+ a⊥. (36)

Substitution in (34) yields(〈
a
∣∣b〉〈
b
∣∣b〉 + c(ε)

)
b+ a⊥ ≈ 0. (37)
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For this equation to hold, the component a⊥ needs to vanish – this is easy
to see in the asymptotic limit ε→ 0 – whereas for the component parallel to
b to vanish, it is necessary that

c(ε) = −
〈
a
∣∣b〉〈
b
∣∣b〉 . (38)

Although the a posteriori procedure avoids the incremental normalization
scheme and, thus, slightly reduces the effect of round-off errors, it has higher
computational costs because a different value for c(ε) has to be computed for
each ε of interest. In §4 both types of normalization schemes are applied to
test cases, and it is shown that they lead to similar approximation accuracies
for the eigenvectors.

3. Discussion on numerical implementation

Details on the numerical implementation of the theory are discussed in
this section. The source code used to produce all the results shown in §4 is
freely available online4.

3.1. Continuous vs discrete adjoints

A different representation L† of the adjoint operator L† is obtained de-
pending on whether the adjoint operator is first derived from the governing
equations and then discretized or vice versa. The former is commonly referred
to as continuous adjoint, and the latter as discrete adjoint [30]. Throughout
the present study, the discrete adjoint is considered, because of two reasons:

(i) when using the standard inner product5
〈
y
∣∣x〉 = yHx =

∑
i yixi, the

discrete adjoint of an operator is simply the Hermitian transpose of its
matrix representation, L† = LH, which is straightforward to compute.
Moreover, direct and adjoint eigenvectors become then equivalent to
right and (conjugate transpose of) left eigenvectors of L, and can be
automatically computed by means of standard linear-algebra software
packages;

4https://bitbucket.org/pyholtzdevelopers/public
5Note that, although this choice of the inner product is convenient, apart from the

normalization of the eigenvector the results of the perturbation theory are inner-product
independent.
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(ii) in a discrete adjoint formulation, it is guaranteed that the direct and
the adjoint operators feature exactly the same eigenvalues (by construc-
tion). In a continuous formulation, instead, the eigenvalues of L and L†

can be slightly different – depending on how the chosen discretization
acts on the structure of the continuous direct and continuous adjoint
operators [31]. From a numerical viewpoint, this is not fully consis-
tent because the results can be biased by which eigenvalue – direct or
adjoint – is chosen to perform the analysis with.

3.2. Data structuring

In order to efficiently implement the perturbation theory, an appropriate
data structure representing the considered nonlinear eigenvalue problem is
required. It is convenient to express the matrix families as

L(z, ε) =
∑
i

fi(z, ε)Mi, (39)

where fi are scalar functions in z and ε and Mi are constant matrices. A ma-
jor advantage of this representation is that it allows to compute the matrices
Lm,n as

Lm,n :=
1

n!m!

∂m+n

∂zm∂εn
L(λ, 0) =

1

n!m!

∑
i

∂m+n

∂zm∂εn
fi(λ, 0)Mi. (40)

This avoids the error induced by numerical differentiation schemes. More-
over, when performing power series expansions at high orders, it is convenient
to build a library providing the functions fi(z, ε) together with their deriva-
tives for use at runtime rather than evaluating the derivatives symbolically
at runtime. Note that the implementation of the collection of nonlinear
eigenvalue problems given in [1] uses a similar data structure for all non-
polynomial and non-rational eigenvalue problems. The decomposition (39)
is not unique, and leaves some room for optimal implementation, which is
generally problem dependent. A strategy that is always possible is to asso-
ciate each matrix entry with an individual coefficient function fi. Provided
that there is a library containing all these functions, it would suffice to store
pointers to these very functions. The memory requirement to store these
pointers is comparable to the one needed for storing one dense matrix of
floating point numbers. However, many problems feature a number of func-
tions fi much lower than the total number of matrix entries. In these cases,
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a factorization of the terms proportional to the functions fi naturally arises
from the problem statement. This latter strategy is exploited in all the ex-
amples given in §4. In any case, because the terms of the summation can be
individually evaluated, the data structure has a high potential for paralleliza-
tion. Also note that the operators Mi can be represented in a matrix-free
fashion, providing only a function that returns the result of the represented
matrix–vector multiplications.

3.3. Obtaining a baseline solution

For the perturbation theory to yield accurate predictions for the eigen-
values and eigenvectors as functions of the parameter, it is mandatory to
first calculate a high-precision baseline solution – viz., both the eigenvalue,
and direct and adjoint eigenvectors. The present study uses a modified ver-
sion of the generalized Rayleigh quotient iteration [32]. The scheme is a
Newton-type iteration on the linear eigenvalue problem

L(λ, ε = 0)v = ξv, (41)

where λ (the eigenvalue of interest) is treated as a parameter, and ξ is a
dummy variable representing the eigenvalues of the matrix L(λ, 0). The
idea is to find for which values of λ the linear eigenproblem (41) has an
eigenvalue ξ = 0. Because for these eigenvalues the right hand side vanishes,
these λ = λ0 and their corresponding v = v0 are solutions of (3) at ε = 0.

Equation (41) is a linear eigenvalue problem in ξ. It can be solved by
means of standard eigenvalue solvers, perturbation theory, and Newton’s
method as follows. Starting from an initial guess λ{0}, the direct and adjoint
eigenvalue problems for ξ are solved – note that only the eigenvalue ξ with
minimum magnitude is of interest. One can then compute the sensitivity
λ′ := dξ

dλ
, and update the guess for λ{1} ← ξ − λ{0}

λ′
. The sensitivity can

be obtained using standard perturbation theory for linear eigenvalue prob-
lems. For this study, Newton’s method has been replaced by a third-order
Householder method [33]. This extension of the method requires third-order
perturbation theory – as presented in this article – and results in a faster
convergence of the iterative algorithm. By iterating this procedure until a
desired tolerance is achieved, ξ is steered towards 0, and a solution for the
eigenvalue problem (3) is obtained. The recent review [18] provides more
details on generalized Rayleigh quotient iteration and a general discussion
on methods for the solution of nonlinear eigenvalue problems. A benefit of
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this iterative method is that, by prescribing a strict stopping tolerance, it
allows computing the baseline eigenvalue at a predefined accuracy.

Note that, the described procedure is a local technique, that usually finds
eigensolutions close to the initial guess. An initial guess may be found from
a contour-integration-based method see e.g. [34, 18] for a mathematical pre-
sentation of such techniques or [35] for a practical application to a thermo-
acoustic configuration.

3.4. Numerical implementation of the perturbation theory

Algorithm 1 is an efficient implementation of the perturbation theory
with a priori normalization outlined in the previous section. Note that, al-
though L0,0 is rank-deficient with v0 spanning its kernel, the linear system
L0,0x = y admits a solution as y fulfills the solvability condition. However,
the solution is not unique, as outlined in §2.2. In order to guarantee unique-
ness at this stage, the function x← solve(L0,0,y) is assumed to return the
minimum-norm solution of L0,0x = y. Computing this solution may be effi-
ciently achieved using a LU-factorization of L0,0 and appropriate projection
operations to reduce the norm of y. Because the system matrix L0,0 appears
at every perturbation order, its LU-factorization is only to be computed once.
At no stage it is necessary to build the complete generalized inverse of L0,0.

Note that any vector norm might be used in Algorithm 1. However, the
adjoint eigenvector v†0 fed to the algorithm must be consistently defined with
respect to this norm. Commonly, the norm will be induced from the dis-
cretization of the considered problem, amounting to

〈
a
∣∣b〉 = aHYb where

Y is some symmetric positive-definite matrix. In the simplest case Y is the
identity matrix I and the norm reduces to the standard norm. Because, the
eigenvalue coefficients are independent of the norm, the algorithm may be
implemented using the standard norm and the corresponding adjoint eigen-
vector in line 16 in order to save matrix-vector multiplications, while using
a different norm for the normalizations starting in line 18.

The multi-indices necessary to generate rk are read from file rather than
computed at run time. Importantly, the multi-indeces are problem-independent
so that they can be built once – up to the order of interest – and re-used
whenever necessary. Although reading the multi-indices from a file requires
more memory usage, the computation is nonetheless significantly accelerated
at large perturbation orders. Also, the steps necessary to compute rk are
loop-independent, and the loop can be parallelized, which is crucial for very
high-order applications.
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Algorithm 1 Factorized implementation of the perturbation theory with a
priori normalization

1: function perturb(Lm,n,v0,v
†
0, N)

2: for k ← 1, . . . , N do
3: rk ← 0
4: for m← 0, . . . , k do . parallelizable loops
5: for n← 0, . . . , k −m do
6: if (m,n)=(0,0) then
7: continue . the term carrying L0,0 is not part of rk
8: end if
9: w ← 0

10: for µ ∈ {µ : |µ| = m, |µ|w ≤ k} \ {1k} do . read this set
from prepared file

11: w ← w + vk−n−|µ|wλ
µ
(
m
µ

)
12: end for
13: rk ← rk + Lm,nw
14: end for
15: end for

16: λk ← −
〈
v†0

∣∣rk〉〈
v†0

∣∣L1,0v0〉
17: v⊥k ←solve(L0,0,−rk − λkL1,0v0) . is solvable due to solvability

condition

18: ck ← 0 . a priori normalization
19: for l← 1, . . . , k − 1 do
20: ck ← ck − 1

2

〈
vl
∣∣vk−l〉

21: end for
22: vk ← v⊥k + ckv0

23: end for

24: return [λ1, . . . , λN ], [v1, . . . ,vN ]
25: end function

Generating the table of the multi-indeces exploits a connection to number
theory, which was reported in [36] for the case of linear eigenvalue problems.
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In order to calculate rk as defined in (17) it is necessary to sum over all
multi-indices in the set Ml := {µ | |µ|w = l}. From the definition of |µ|w,
and because the elements of the multi-index µ are integers, it follows

|µ|w =
N∑
k=1

µkk =
N∑
k=1

µk∑
n=1

k = l. (42)

This equation shows that the set Ml is equivalent to all the possible decom-
positions of the integer l into a sum of integers k. In number theory such a
decomposition is called a partition of l. Thus, finding all multi-indices featur-
ing |µ|w = l is equivalent to finding all possible partitions for a given integer
l. The accelerated ascending composition generation algorithm (AccelAsc)
proposed in [37] has been used to efficiently generate a sequence of all the
partitions of a given integer.

3.5. Reduction of matrix-vector multiplications

The interpretation of the multi-indices as partitions of integers is also
useful for the analysis of the computational complexity of the algorithm.
Let us denote with p(l) the partition function, which returns the number of
possible partitions of l. The number of terms in the power series expansion
of the eigenvalue problem (14) is

number of terms =
N∑
k=0

∑
0≤|µ|w≤k

k−|µ|w∑
n=0

1 =
N∑
k=0

k∑
m=0

∑
|µ|w=m

k−m∑
n=0

1

=
N∑
k=0

k∑
m=0

p(m)(k −m+ 1). (43)

The number of terms of the Nth-order equation is shown in Fig. 1. It in-
creases quickly with N , and its asymptotic behavior is about two orders of
magnitude larger than that of the partition function. The computationally
most expensive operation in each of these terms is the matrix–vector multi-
plication L|µ|,nvk−n−|µ|w . It is, therefore, desirable to minimize the number
of these operations. Because the same operator L|µ|,n acts on several vec-
tors, factorizing these matrices saves a significant number of matrix–vector
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multiplications. From eq. (14), simple index manipulation yields

N∑
k=0

εk
k∑

m=0

k−m∑
n=0

Lm,n
∑
|µ|=m
|µ|w≤k

(
m

µ

)
λµvk−n−|µ|w

︸ ︷︷ ︸
:=wm,n

, (44)

where the last sum runs over the set of all multi-indices with |µ| = m and
|µ|w ≤ k. Thus, by first calculating the vectors wm,n defined in (44) and
then performing the operations Lm,nwm,n, the total number of matrix-vector
multiplications becomes polynomial:

number of matrix–vector multiplications =
N∑
k=0

k∑
m=0

k−m∑
n=0

1

=
1

6
N3 +N2 +

11

6
N + 1. (45)

Figure 1 compares the numerical effort arising from a brute-force implemen-
tation of eq. (14) with that resulting from an optimal rearrangement of the
terms, as in (44) and implemented in Algorithm 1. Already at moderate
values of the expansion order N , the two quantities differ by several orders
of magnitude.

Further improvement of the algorithm is possible when dealing with eigen-
value problems that are polynomial in the eigenvalue and the parameter,
which is common in many applications. Indeed, in these cases all matrices
Lm,n with m or n greater than the polynomial order of the eigenvalue or of
the parameter, respectively, trivially vanish. As an example, Fig. 1 shows
how the number of matrix–vector multiplications reduces for problems that
are linear in both the eigenvalue and the parameter.

4. Application examples

This section exemplifies the theory discussed in §2 on the basis of three
problems of physical relevance. The perturbation theory results will be com-
pared with eigenvalues and eigenvectors obtained solving the nonlinear eigen-
value problem for several values of the perturbation parameter ε, using the
generalized Rayleigh quotient iteration outlined in §3.3. The results of the
discussed examples can be reproduced from the publicly available source-
code4.
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Figure 1: Number of terms and the number of unique factors Lm,n necessary to form rk
for (i) a generic dependence of L(z, ε) on its parameters z and ε and (ii) the special case
of a linear dependence. The behavior of the partition function is shown for reference. The
number of matrix-vector multiplications required by a brute-force algorithm is equivalent
to the number of terms, while it reduces to the number of unique factors Lm,n when using
Algorithm 1. The number of vector-vector additions required is equal to the number of
terms and identical for a brute-force implementation and Algorithm 1.

4.1. Orr–Sommerfeld equation

As a first example, the Orr–Sommerfeld equations are considered. These
equations are obtained from a linearization of the Navier–Stokes equations
in two dimensions, using the ansatz f(x, y, t) = v(y)ei(λx−ωt). They serve as
a model for the modal stability of parallel viscous flows. When unstable,
structures known as Tollmien-Schlichting waves arise, which can be observed
in channel and boundary layer flows [38, 39, 40]. The equation for a channel
flow reads[(

d2

dy2
− λ2

)2

− iRe

(
(λU − ω)

(
d2

dy2
− λ2

)
− λU ′′

)]
v = 0. (46)

The x-coordinate points into the flow direction, while the y-direction is set
perpendicular to it. In this example, plane Couette flow is considered, with
walls at y = ±1. The laminar base velocity profile is parabolic, U = 1− y2.
Re denotes the Reynolds number. No-slip boundary conditions must be
satisfied by the mode v at the walls:

v(±1) = v′(±1) = 0. (47)
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Figure 2: a) Eigenvalue trajectory when the Reynolds number is varied between Re =
5772±5601. The arrowhead indicates the direction of increasing Re. The black dot denotes
the base eigenvalue at ε = 0. b) Absolute value and phase of the mode shape for Re = 171.
The colored lines indicate the approximations obtained from various perturbation orders,
while the black solid line denotes the exact mode shape. The black dashed line indicates the
unperturbed mode shape at Re = Re0. For the present example, already the first order
approximation results in a reasonable prediction of the mode shape. c) Error between
exact and estimated eigenvalue for various perturbation orders and Reynolds numbers.
Solid lines represent power series while dotted lines indicate the error for diagonal Padé
approximants obtained at even orders. d) error in the eigenvector estimate for the same
set of parameters. Thick dashed lines correspond to the a posteriori method, while solid
lines are obtained using the a priori method. Dotted lines represent results from the a
priori method converted to diagonal Padé approximants.

The spatial stability problem is solved, in which a real oscillation frequency
ω is prescribed, and wavenumber and growth rate of the spatial mode are
computed as real and imaginary parts of the eigenvalue λ, respectively. The
eigenvalue problem is non-normal, quartic in the eigenvalue, and linear in its
parameters Re and ω. The problem has been extensively investigated in the
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literature, see e.g. [38, 41]. The discretization is the same as that presented
in [1], i.e. a Chebyshev collocation method using 64 points. The discretized
operator takes the form

L(λ,Re) =λ4I + iλ3ReU− 2λ2D2 − iλ2ωReI

− iλRe (UD2 + 2I) + iωReD2 + D4, (48)

where I is the identity matrix, D2 and D4 denote the discretization of the
second and fourth order derivative operators, respectively, and U is the dis-
cretization matrix of the mean flow field. The discretized inner product
amounts to the standard inner product

〈
a
∣∣b〉 = aHb.

In order to compare the results with those in the literature, the values
of the frequency and the Reynolds number are fixed to ω0 = 0.26943 and
Re0 = 5772, respectively. A neutrally stable eigenvalue exists for this choice
of parameters, see [41] for further details. Application of the computational
procedure discussed in §3.3 yields a baseline eigensolution corresponding to
the eigenvalue λ0 = 1.02056 + 9.7 × 10−7i, which agrees with that reported
in [1]. This baseline solution is fed to the perturbation algorithm, using as a
perturbation parameter a variation in the Reynolds number, ε := Re− Re0.

Figure 2a) shows the trajectory of the eigenvalue λ in the complex plane
when the Reynolds number is varied between Re = 5772±5601, as predicted
by perturbation theory at various orders. The eigenvalue is more sensitive
to variations in the Reynolds number when the latter is decreased rather
than when it is increased, as the tail (Re = 171) is farther away from the
unperturbed solution than the head of the arrow (Re = 11373). This em-
phasizes that the dependence of λ on Re is nonlinear. Figure 2a) also shows
that the higher the order of the perturbation expansion, the better are the
estimates for the eigenvalue. However, for large variations of the Reynolds
number, the error on the eigenvalue remains large – note the distance be-
tween the tails of the eigenvalue trajectories of the exact and 50th-order
approximation. This is because the power series expansion has reached the
limit of its range of convergence. Indeed, it can be shown that, for any
power series approximation the convergence rate – of both the estimated
eigenvalue and the estimated eigenvector – decreases the stronger the per-
turbation parameter deviates from the unperturbed value. The series does
not converge for values of |ε| above a critical value δ, the radius of conver-
gence. Focusing on the eigenvalue, the radius of convergence can be calcu-
lated from the expansion coefficients themselves as δ := limk→∞ |λk/λk+1|,
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provided that this limit exists. Figure 3 shows the first 50 terms of the se-
quence δk := |λk/λk+1|, containing the ratio of two consecutive coefficients
of the power series, which tends to the radius of convergence for large k.
This estimate approaches the value of Re0 = 5772. Indeed, at Re = 0 the

Orr–Sommerfeld equation reduces to
(

d2

dy2
− λ2

)2

v = 0, which is a defective

operator6, as can be seen from the second and fourth terms of its general
solution v(y) = C1e

−λy+C2ye
−λy+C3e

λy+C4ye
λy. The problem is therefore

defective at Re = 0, which limits the radius of convergence.
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Figure 3: Radius of convergence δ as estimated from the coefficients of the eigenvalue
power series predicted by perturbation theory. As expected, the convergence of the power
series is limited by the singularity at Re = 0, so that δ = Re0.

Figure 2b) shows the unperturbed eigenfunction for Re = Re0, corre-
sponding to the baseline solution. In addition, the eigenfunction at Re = 171
is shown, obtained from either perturbation theory estimates at various or-
ders or solving directly the nonlinear eigenvalue problem. This plot demon-
strates how the mode shape obtained from perturbation theory becomes an
increasingly better approximation of the exact solution as the perturbation
order is increased.

The convergence properties of the method are further illustrated in Figs. 2c)
and 2d). The errors of the eigenvalue and eigenvector estimates obtained
from perturbation theory are shown as a function of the perturbation order
for various Reynolds numbers. A common technique to improve the con-

6Also, note that given the boundary conditions v(±1) = v′(±1) = 0, the differential
equation does not have non-trivial solutions v 6= 0.
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vergence properties is to convert the series into Padé approximants (see e.g.
[27]). This consists in finding a rational function that features the same
asymptotic behavior as the power series expansion at the expansion point:

λ(ε) ≈
N∑
n=0

λnε
n ≈

L∑
l=0

alε
l

1 +
M∑
m=1

bmε
m

. (49)

Given the first N + 1 coefficients of the power series, L + M + 1 = N + 1
degrees of freedom (the coefficients al and bm) in the Padé approximant can
be determined. The coefficients are found by multiplying eq. (49) by the
polynomial at the denominator of the r.h.s., sorting by like powers of ε, and
solving the arising linear system of equations. In this study we focus on diag-
onal Padé approximants, i.e. approximants for which the polynomial degree
of the numerator and of the denominator are equal (L = M). Note that, be-
cause L+M = N , these approximants are only defined for even perturbation
orders N . In general, the numerical cost for the conversion from power series
to Padé approximants is the solution of an (N + 1)× (N + 1) linear system.
For scalar quantities, this is negligible w.r.t. the numerical costs of obtaining
the N power series coefficients. For instance, using our implementation of
the theory, solving the discretized Orr-Sommerfeld equation to find the base-
line solution takes 0.2 s; computing the coefficients of the power series up to
10th, 30th, and 50th order – including an a priori normalization – takes 0.3,
7.9, and 387.8 s respectively7; converting the 50th order power series coeffi-
cients of the eigenvalue expansion into a diagonal Padé approximant takes
1 ms. Evaluation of the power series for the eigenvalue at 50th order for
one specific Reynolds number took about 5 µs using Horner’s scheme. The
evaluation time of the power series for the eigenvector scales accordingly with
the problem dimension of 64. As shown in Fig. 2c), the Padé approximants
feature a smaller error than the power series approximations, and converge
faster towards the exact solution.

Figure 2d) displays the errors between exact and estimated eigenvec-
tors obtained using (i) the a posteriori normalization on the power series

7All reported times are wallclock times obtained at a Thinkpad Yoga 12 with an Intel
Core i7-5500U CPU at 2.4 GHz operated with Ubuntu 18.04.02 LTS using Julia 1.1.0.
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expansion (dashed lines); (ii) the a priori normalization on the power se-
ries expansion (solid lines); (iii) Padé approximations on each coefficients of
the eigenfunctions (dotted lines). Despite minor differences, the first two
methods exhibit the same convergence properties. At Re = 171 the rate of
convergence is slow; only little improvement is gained by increasing the per-
turbation order. This is because this value is approximately Re0 − δ, i.e., it
lies at the edge of the domain of convergence. Also, the error saturates due to
machine precision, after having decreased by about 11 orders of magnitude.
As for the eigenvalues, additional conversion of the power series to diagonal
Padé approximants yields a quicker drop in the error with the perturbation
order.

4.2. Biharmonic equation

This section considers the 2-dimensional biharmonic equation. The bi-
harmonic operator naturally arises when modeling the vibration of a mem-
brane [42]. For this example, a perturbation term proportional to an arbi-
trary parameter ε has been included in the equation. This could, for exam-
ple, represent a non-homogeneous property of the membrane. The eigenvalue
problem reads (

∇4 + ε cos(2πx) cos(πy)
)
v = λv in Ω (50a)

v = ∇2v = 0 on ∂Ω. (50b)

In physical applications, the eigenvalue may be defined as the square of the
angular frequency, λ := ω2. The eigenvalue problem is real, self-adjoint, and
linear in both the eigenvalue λ and the perturbation parameter ε. Because
the problem is self-adjoint, all eigenvalues are real. The domain has been set
to Ω = (0, 2)× (0, 1 +

√
5). This choice makes the aspect ratio of the domain

irrational and avoids the occurrence of accidental degenerate eigenvalues,
which would require further care. Again, a Chebyshev collocation method is
used to discretize the problem. The method uses 32 collocation points for
each dimension. Consequently, the discrete operator is a dense 1024× 1024-
matrix, and reads

L(λ, ε) := D4 + εP− λI, (51)

where P is the matrix discretization of the spatially dependent perturba-
tion, cos(2πx) cos(πy). Again the discretized inner product amounts to the
standard inner product

〈
a
∣∣b〉 = aHb.
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For the unperturbed problem, obtained by fixing ε = 0, analytic expres-
sions for the eigenvalues and eigenvectors can be found. For the present
geometry they are

λn,m = π4

n2 +

(
1 +
√

5

2

)2

m2

2

, vn,m(x, y) = sin (nπx) sin (mπy) .

(52)
By numerically evaluating the smallest eigenvalue of (51) for ε = 0, we
obtain λ0 ≈ 1275.10, which is consistent with the theoretical value for λ1,1.
In the next step the perturbation algorithm is applied to this eigenproblem,
considering a power series expansion to 50th order and its conversion into a
Padé approximant.

Figure 4a) compares the trajectory of the eigenvalue λ as a function of
ε. It also indicates that the radius of convergence for the eigenvalue power
series is δ ≈ 12× 103. Figure 4b) shows the unperturbed eigenfunction and
perturbed ones corresponding to ε = 10.73 × 103. For the perturbed case,
various approximation orders and the exact solution are compared. The
perturbation strongly affects the structure of the eigenfunction, but the power
series expansion captures this effect well. As the perturbation parameter is
within the radius of convergence, the approximation improves with higher
perturbation order.

Figure 4c) shows the error evolution of the eigenvalue λ when the pertur-
bation order is increased, for various values of the perturbation parameter
ε. The error does not evolve in a smooth manner. A similar trend can be
observed in the error of the Taylor series expansion of, for example, cos(x) at
x = 0; the error decreases at even expansion orders and remains constant at
odd expansion orders. It is indeed not necessary for a power series to reduce
the approximation error order by order even within the radius of convergence.
It simply converges to the solution for high expansion orders, which is what
Fig. 4c) shows for ε . 12×103. The error saturates due to machine precision
after decreasing by about 11 orders of magnitude. Note that conversion to di-
agonal Padé approximants significantly improves the convergence property.
For ε = 14500 the Padé approximant converges even though the original
power series was clearly divergent. Analogous results can be seen in Fig. 4d)
for the eigenvector error when using the a posteriori normalization method.
In contrast, the a priori procedure yields smoother convergence. This might
be attributed to the fact that in the former the eigenvalue approximations
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Figure 4: a) Eigenvalue λ of the perturbed biharmonic equation as a function of the
perturbation parameter ε. b) Unperturbed (base) eigenfunction for ε = 0 and eigenfunc-
tions for ε = 10.73 × 103, obtained from either perturbation theory and by numerically
solving the perturbed eigenproblem. Note that the axes are not equally scaled. c) Error
between exact and estimated eigenvalue for various perturbation orders and parameter
variations. The solid lines represents power series results while the dotted line indicate di-
agonal Padé approximants. d) Error between exact and estimated eigenvectors for various
perturbation orders and parameter variations. Solid and dashed lines indicate power series
results obtained with the a priori and a posteriori approach, respectively. The dotted line
represents results found when converting the a-priori normalized results to diagonal Padé
approximants.

are explicitly used to calculate the coefficients c(ε) [eq. (35)], whereas in the
latter, the coefficients ck explicitly depend on the eigenvectors only [eq. (32)].
Nonetheless, for high perturbation orders the, two methods yield analogous
rates of convergence when using power series and conversion to diagonal Padé
approximants clearly accelerates the convergence.
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4.3. Thermoacoustic Helmholtz equation

In the last example, the thermoacoustic Helmholtz equation as a model
for a Rijke tube is considered. Rijke-tube configurations are frequently used
as models for thermoacoustic systems, for example, in [43, 44, 45, 26]. The
model equation reads

∇ ·
(
c2∇p̂

)
+ ω2p̂ =

A

V

(
c2
b − c2

u

)
ne−iωτ ∇p̂|xref

· nref . (53)

Equation (53) models acoustic oscillations coupled to a time-delayed source,
where the latter is, in turn, driven by the acoustic field at a reference position.
The equation is obtained by introducing the ansatz p(x, t) = p̂(x)eiωt into
a corresponding wave equation. Consequently, the eigenvalue ω describes
frequency and growth rate of an associated pressure fluctuation mode p̂(x).
The left hand side of the equation models acoustic wave propagation, with c
denoting the spatial distribution of the speed of sound. The right hand side
originates from an unsteady heat release rate term. It is expressed by the
so-called n–τ model, which represents the linear response of the heat release
rate fluctuations with respect to acoustic velocity fluctuations at a reference
position xref , located just upstream of the heat source [46]. τ denotes the time
delay and n the coupling strength between the acoustic velocity fluctuation
and the heat release rate. In this example, n = 1 in the domain of heat
release – a thin region located in the middle of the tube with a length of
0.1 mm and with the same cross-sectional area A of the tube – and n = 0
elsewhere. Across the domain of heat release, the temperature increases due
to the heat addition; cb and cu denote burnt and unburnt gas temperature,
respectively. Length and diameter of the tube are set to L = 0.5 m and D =
0.05 m. Moreover, sound hard (∇p ·n = 0) and sound soft (p = 0) boundary
conditions are set at the inlet and the outlet of the tube, respectively. The
speed of sound in the unburnt and burnt regions is set to cu = 348 m/s and
cu = 696 m/s, respectively.

Perturbations in the time delay parameter τ are considered. The time
delay is, therefore, split into the baseline value τ0 and the perturbation pa-
rameter ε = ∆τ := τ − τ0. The problem is discretized with a Bubnov–
Galerkin finite element method using linear tetrahedral Lagrange elements.
The discretized eigenproblem features 730 degrees of freedom, and reads

L(ω, τ)v :=
[
K + ωC + ω2M + e−iω(τ0+∆τ)Q

]
v = 0, (54)
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Figure 5: a) Eigenvalue trajectory when the time delay is varied between τ =
1.000 ms ± 0.33 ms; the arrowhead indicates the direction of increasing τ . The black dot
denotes the base eigenvalue. Note, that the divergence of the 50th order approximation is
so strong that the ends of the trajectory are not shown. b) Absolute value of the eigen-
function for the baseline setting and a value of τ = 1.295 ms and error of approximations
computed by either perturbation theory of various orders. c) Error between exact and
estimated eigenvalue for various perturbation orders and time delays numbers. Power se-
ries approximations are highlighted by a solid line, the dotted line indicates diagonal Padé
approximants. d) Error between exact and estimated eigenvectors for various perturba-
tion orders and time delays. Power series approximants obtained with solid line highlights
the a priori method while the dashed line indicates results obtained from the a posteriori
approach. In the present case, the a posteriori method yields slightly better results.

where K is the stiffness matrix arising from the discretization of ∇ · c2∇, C
the damping matrix originating from the boundary conditions, M the mass
matrix representing the discretized identity operator, Q the discretization
matrix accounting for the heat release, and v is the eigenvector, containing
the values of the pressure at the mesh nodes. With this discretization the
discretized inner product that is used to normalize the modes amounts to〈
a
∣∣b〉 = aHMb.The eigenvalue problem (54) is non-normal and, due to the
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time-lag term, highly nonlinear in both the eigenvalue ω and the parameter
τ . The unperturbed eigenproblem (∆τ = 0) features an eigenvalue ω0 ≈
4475 + 78i s−1. In conjunction with the corresponding direct and adjoint
eigenvectors, this baseline solution is fed to the perturbation algorithm. The
calculation of the power series coefficients for the eigenvalues and eigenvectors
is performed up to 50th order. The power series coefficients are used to
calculate the coefficients of diagonal Padé approximants.

Figure 5a) shows the trajectory of the eigenvalue ω when the time de-
lay is varied between ∆τ = ±0.330 ms. This variation exceeds the radius of
convergence, which is δ = 0.0295 ms as estimated from the coefficients of the
eigenvalue power series. Hence, the estimates obtained from perturbation
theory diverge from the exact solution at the ends of the shown trajectory;
they converge to the exact solution otherwise. Note that for a decrease in τ
the imaginary part of the eigenvalue decreases again after moderately increas-
ing before. This means the mode destabilizes. This effect is not accurately
captured by low-order theory, yet by the higher-order approximations. Fig-
ure 5b)shows the absolute value of the base-line mode shape (leftmost) and
the perturbed mode shape at ∆τ = 0.191 ms (rightmost). Additionally, it
compares the absolute value of the error of the eigenfunctions as obtained
from perturbation theory of various orders. It is obvious how the error de-
creases with an increasing perturbation order.

Figure 5c) and d) further illustrate the convergence properties of the
method. The error of eigenvalue and eigenfunction approximations is shown
for various values of τ . The eigenvector error is shown for the results obtained
using the a priori (solid) and the a posteriori (dashed) normalization schemes
for the power series expansions. They show the same convergence properties
for this case. For a time delay τ = 1.330 ms, the error in both the eigenvalue
and the eigenvector increases at high perturbation orders; this parameter
value lies outside the radius of convergence. For smaller values of τ , the power
expansions for both eigenvalue and eigenvector converge, and are limited
by machine precision. Again, conversion to diagonal Padé approximants
improves the convergence rate of eigenvalues and eigenvectors (dotted lines).
Furthermore, even for τ = 1.330 ms, which lies outside of the convergence
radius of the power series, a convergent Padé approximant is obtained.
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5. Conclusions

A high-order, adjoint-based theory for the calculation of power series coef-
ficients of simple eigenvalues and their associated eigenfunctions, arising from
the perturbation of (generally) nonlinear and non-self-adjoint eigenproblems,
was discussed. Two different normalization methods for the estimation of
the corresponding eigenfunctions were compared. The derived explicit, in-
cremental formulas and the proposed numerical algorithm are independent
of the considered eigenvalue problem and highly parallelizable.

The three applications examples discussed demonstrate the broad applica-
bility of the theory. They encompassed eigenvalue problems that (i) depend
linearly, polynomially, and exponentially on the eigenvalue; (ii) are repre-
sented by both self-adjoint and non-self-adjoint operators; and (iii) describe
one-, two-, and three-dimensional eigenproblems arising in different scientific
fields. Both eigenvalues and eigenvectors of the considered examples con-
verged to the exact solution within the radius of convergence of the power
series. More specifically, the convergence rate of the eigenvectors was shown
to be independent from the normalization method chosen. As expected from
the asymptotic behavior of power series expansions, the smaller the consid-
ered perturbation in the parameter the less terms are needed to have an
accurate approximation. Moreover, the accuracy of the estimates can be im-
proved when converting the power series to Padé approximants, which also
have a larger domain of convergence than the power series approximations.

Whether the perturbation method is more efficient than repeatedly solv-
ing the eigenvalue problem cannot be said per se. This depends on the rele-
vant parameter range for which the eigensolutions are needed, on the number
of data points to be evaluated in this range, on the required accuracy, and
on the capacity of the available hardware for parallelization. Nonetheless,
besides the possible reduction of computational costs, there are more advan-
tages of large-order perturbation theory. First, as it makes the dependence
of the eigenvalue on the parameter explicit, derivatives of ω with respect to
the parameter that go beyond first-order sensitivity are directly accessible,
unveiling the nonlinear dependency of the eigenvalues on the parameters of
interest. As the expansion is asymptotic, it can also be used to estimate the
truncation error when truncating the series at lower order. Second, on top of
allowing a quick estimation of the eigenvalues in a given region in parameter
space, the presented theory can also be used to accelerate the performance
of existing nonlinear eigenvalue solvers. For example, using the eigenvalue
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approximations obtained at low perturbation order (say 5th), good guesses
can be fed to, e.g., the Rayleigh quotient iterative method. Starting from
a good guess guarantees the convergence of the algorithm towards a close-
by solution, and greatly reduces the number of iterations required by the
algorithm to converge towards it.
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