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Sammendrag 

Brystkreft er kreftformen som rammer flest kvinner, 1 av 12 kvinner vil bli diagnostisert med brystkreft 

før fylte 75 år i Norge, og forekomsten fortsetter å øke. Det er en heterogen og kompleks sykdom, 

pasienter med lik diagnose kan respondere ulikt på samme behandling, og dermed ha forskjellig utfall. 

Det trengs mer kunnskap om sykdommen for å kunne utvikle mer persontilpasset behandling og bedre 

metoder for å overvåke behandlingsrespons. Prognosen for de fleste brystkreftpasienter er god, med 

best prognose ved tidlig oppdagelse. Derfor trengs det også mer kunnskap om de tidlige biologiske 

mekanismene bak dannelsen av brystkreft, slik at kvinner med høy risiko kan identifiseres tidlig og 

tilbys tettere oppfølgning, noe som potensielt kan bidra til redusert forekomst av avansert sykdom.  

Kreftceller har et endret energiomsetning (metabolisme) i forhold til vanlige, friske celler. Raskt 

voksende kreftceller omdanner næringsstoffer til biomasse samtidig som de må opprettholde en høy 

energiproduksjon. Denne prosessen kan observeres ved å måle konsentrasjonen av små molekyler, 

kalt metabolitter, som er aktive komponenter av cellenes energiomsetning. Den metodiske 

tilnærmingen som benyttes for å måle metabolittene kalles metabolomikk, og kan gjøres blant annet 

ved magnetisk resonans spektroskopi (MRS), hvor et bredt panel av metabolitter observeres samtidig. 

Denne metoden har for eksempel vist at metabolske profiler av vevsprøver fra brystkreftpasienter kan 

si noe om prognosen til pasientene. 

Hovedmålet i denne avhandlingen har vært å identifisere prognostiske og prediktive biomarkører for 

brystkreft gjennom en metabolsk tilnærming. For å kunne identifisere robuste biomarkører er det 

avgjørende å vite hvordan pre-analytiske prosesser kan påvirke metabolittene vi måler. I en biobank 

blir biologisk materiale oppbevart i fryst form, ofte over mange år. Hvor mange ganger disse prøvene 

er blitt tint og fryst igjen før analyse kan variere. Det er derfor viktig å vite effekten av slike sykluser 

på metabolittene, for å kunne tolke resultatene riktig. Artikkel II i denne avhandlingen er en 

metodeartikkel, hvor det er blitt undersøkt hvordan metabolitter målt i serum og urin, og lipoprotein 

partikler målt i serum, blir påvirket av gjentatte fryse- og tinesykluser. Denne studien viste at det ikke 

observeres særlige systematiske effekter av opptil 5 fryse og tine sykluser, noe som betyr at MRS er 

en god metode for analyser av biobank-prøver. 

I Artikkel I ble de metabolske effektene av behandling med neoadjuvant kjemoterapi i 

brystkreftpasienter undersøkt, både i vevsbiopsier og i serum. Tilgangen til to typer biologisk materiale 

i denne studien gjorde det mulig å undersøke korrelasjonsmønstre mellom metabolitter målt i vev og 

i serum, i tillegg til innad i hver type biologisk materiale. Svake korrelasjoner ble observert mellom 

konsentrasjonene av samme metabolitter målt både i vev og i serum. Studien viste også at de 

metabolske profilene av vevsprøvene, men ikke profilene fra serum, kunne predikere overlevelse.  
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Dette skyldes mest sannsynlig at den metabolske profilen av serum gir et mer helhetlig bilde av 

pasientens tilstand fordi blodet sirkulerer gjennom alle vev og organer i kroppen, mens den 

metabolske profilen til en vevsprøve beskriver mer direkte hva som foregår i selve svulsten.  

I Artikkel III ble cirka 2400 serumprøver av friske kvinner fra HUNT2 studien analysert, hvorav 

halvparten senere utviklet brystkreft. I denne studien fant vi assosiasjoner mellom fremtidig brystkreft 

og en rekke variabler knyttet til ulike egenskaper av lipoproteiner. Variablene var assosiert med en 

signifikant økning i risiko, men var ikke sterke nok til å utvikle en robust modell for prediksjon av 

fremtidig brystkreft. 

Samlet sett viser avhandlingen at metabolomikk har stor nytteverdi innen brystkreftforskning og kan 

være et verktøy for utvikling av kliniske biomarkører for forbedret persontilpasset diagnostikk og 

behandling.  
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Summary 

Breast cancer is the most common cancer type among women, 1 of 12 women will be diagnosed with 

breast cancer before turning 75 years in Norway, and the incidence rate is continuously increasing. It 

is a heterogeneous and complex disease, and patients with the same diagnosis respond differently to 

the same treatment, and may thus have a different outcome. There is a need for more knowledge 

about the disease in order to develop a more personalized treatment regime, and a minimally-invasive 

tool for monitoring treatment response. The prognosis is good for the majority of breast cancer 

patients, but is highly dependent on the stage of the disease at the time of diagnosis. Therefore, there 

is also a need for more knowledge about the early biological mechanisms driving the cancer formation, 

to identify women at a high risk for developing the disease, which may be given a closer follow-up, 

thus potentially reducing the incidence rate of severe cases. 

Cancer cells have a metabolism radically different than normal, healthy cells. Quickly growing cancer 

cells need to convert nutrients to biomass while maintaining a high energy production. This process 

may be observed by measuring the concentrations of small molecules, called metabolites, which are 

active components of the cell cycle. Metabolic profiling can be performed by magnetic resonance 

spectroscopy (MRS), where a range of metabolites can be observed simultaneously. This techniques 

has for example shown that metabolic profiles in tissue biopsies from breast cancer patients can 

provide information about the prognosis of the patients. 

The main aim of this thesis has been to search for prognostic and predictive biomarkers, using a 

metabolomics approach. In order to identify robust biomarkers it is crucial to know how the pre-

analytical processes may influence the metabolites we measure. In a biobank, biological material is 

stored frozen, often for many years. How many times these samples have been thawed and frozen 

prior to analysis can be variable, and it is therefore important to known the effect of such cycles on 

the metabolites to correctly evaluate findings based on samples from biobanks. Paper II in this thesis 

is a methodological paper, in which the effect of repeated freeze and thaw cycles on metabolites 

measured in serum and urine, and lipoprotein particles measured in serum has been assessed. This 

study showed that there was a small accumulated effect of up to five freeze and thaw cycles, which 

means that MRS is a good method for analyzing samples from biobanks. 

In Paper I the metabolic effects of neoadjuvant treatment in breast cancer patients were investigated, 

both in tissue biopsies and in serum samples. The availability of two types of biological samples in this 

study made it possible to investigate correlations between metabolites measured in tissue and in 

serum, and in each type of medium alone. Weak correlations were observed between the same 

metabolites measured in tissue and serum samples. The study also showed that tissue metabolic 
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profiles, but not serum metabolic profiles, could predict survival. This is probably because the serum 

metabolic profile gives a more whole picture of the current state of a patient, as blood circulates 

through all tissues and organs in the body, while the tissue metabolic profile describes ongoing 

metabolic processes in the tumor directly.  

In Paper III approximately 2400 serum samples of healthy women from the HUNT2 study were 

analyzed, of which half later developed breast cancer. In this study we found associations between 

future breast cancer and multiple lipoprotein parameters. Variables significantly associated with an 

increase in the risk of developing breast cancer, were not strong enough to develop a robust model 

for prediction of future breast cancer. 

In total, this thesis has shown that metabolomics is a useful tool in breast cancer research, and may 

have a future role in the development of clinical biomarkers for improved personalized diagnostics 

and treatment.  
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1 Introduction 

The human body is made of cells, in which complex biological processes take place continuously. Cells 

can grow and divide, allowing for replacement of worn out cells. Cell division is governed by a series 

of tightly regulated events, called the cell cycle [2]. The cell cycle involves the replication of 

deoxyribonucleic acid (DNA).  The DNA then separates into two sets and the cell divides its cytoplasm, 

forming two new cells. While normal cells are strictly controlled by regulatory signals, cancer cells are 

capable of avoiding these mechanisms, thus cancer cells exhibit uncontrolled growth and 

proliferation. 

Cancer refers to a high collection of diseases, which can occur in different organs of the human body, 

with a high complexity and variety in characteristics [3, 4]. Nevertheless, six essential alternations 

necessary for malignant growth which are common traits or capabilities of the disease, have been 

described. These are referred to as the Hallmarks of Cancer, first described by Hanahan and Weinberg 

in 2000 [5]. During tumor development, cancer cells become capable of (1) sustaining proliferative 

signaling, (2) evading growth suppressors, (3) resisting cell death, (4) enabling replicative immortality, 

(5) inducing angiogenesis, and (6) activating invasion and metastasis. The hallmarks of cancer have 

later been extended by two characteristics: (7) deregulation of cellular energetics and (8) avoiding 

immune destruction [1], as illustrated in Figure 1.1. 

Figure 1.1 The Hallmarks of cancer. Figure reproduced and modified with permission, Hanahan D,  Weinberg RA 
[1].  
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  Breast cancer 

Breast cancer is the most frequently diagnosed cancer among women in Norway and worldwide [4]. 

There were 3623 new cases among Norwegian women in 2018 and breast cancer comprises more 

than 20% of female cancers [7]. 

The mortality rates of breast cancer have decreased during the last years, however, the incidence rate 

remains increasing [6, 7]. There are many known potential risk factors associated with the 

development of breast cancer, however, there is no method available to assess an individuals’ overall 

risk [8-10]. A minimally-invasive method for personalized risk stratification and early detection would 

be valuable to decrease the incidence rate and for evaluation of treatment applied at an early stage 

of the cancer formation. 

The five-year survival of breast cancer patients is estimated to be 90.7% in Norway. It is however 

difficult to predict each cancer patient’s outcome. Patients with the same diagnosis may have different 

response to treatment [11, 12]. It is therefore crucial to characterize breast cancer heterogeneity as 

well as response to treatment.  

1.1.1 Anatomy of the breast 

The breast contains a complex network of lobules, lobes (groups of lobules) and ducts, surrounded by 

adipose tissue [13], as illustrated in Figure 1.2. In nursing women, milk is produced in the lobules, 

which are connected to ducts that transport the milk to the nipple. Surrounding the breast are lymph 

nodes and vessels, containing immune cells, which fight harmful substances and germs that enter the 

body. The breast tissue undergoes changes throughout a life cycle, signaled by growth factors, 

cytokines and hormones [14, 15]. The majority of breast cancers originate from the lobules or ducts. 

Ductal carcinoma in situ (DCIS) is a precancerous condition characterized by the presence of abnormal 

cells in the ducts. Similarly, lobular carcinoma in situ (LCIS) is a precancerous condition which 

originates in the lobe [16]. LCIS is much rarer than DCIS, however it are associated with a greater risk 

of developing an invasive cancer, which spreads from its origin and infiltrates the surrounding tissue 

[17]. The basement membrane is a thin, dense sheet of extracellular matrix, between epithelial tissues 

and the underlying connective tissue [18]. It provides structural support to cells, divides tissues into 

compartments and acts as a platform for cell signaling [19]. If the basement membrane has not been 

broken, the cancer is classified as carcinoma in situ, invasive otherwise. Invasive carcinoma of no 

special type (NST), previously called ductal carcinomas, make up about 70-80% of breast cancer cases 
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in Norway, while 10-20 % are invasive lobular carcinomas [20]. In addition there are several rarer types 

of malignant tumors: sarcomatoid carcinoma, phyllodes tumors and sarcomas, for which specific 

treatment regimens exist. 

Cancer originating in the breast can metastasize to the bone, lungs or liver through hematogenous 

dissemination, or to local lymph nodes through lymphogenous spread. The term locally advanced 

breast cancer (LABC) is used to describe breast cancer that has progressed locally in the absence of 

distant metastasis  [21]. One or more of the following criteria must be met for a breast cancer to be 

classified as LABC, given that there is no distant metastasis: 1) the tumor is more than 5 cm in size, 2) 

the tumor has a direct extension to the chest wall or the skin, and 3) the tumor has spread to lymph 

nodes in areas near the breast [20]. 

1.1.2 Known risk factors in breast cancer 

The most significant risk factor for developing breast cancer is gender, as less than one percent of all 

breast cancer cases develop in men [8, 22, 23]. Breast cancer is an age-related disease, thus the second 

biggest risk factor is age, while about 5-10% of breast cancers are thought to be hereditary, caused by 

abnormal genes passed from parent to child [24].  Some of the risk factors, such as age, family history 

and medical history, are beyond the control of an individual, however other risk factors may be 

controlled, and preventive actions are possible [9, 25]. Common for some of the risk factors is that 

they are associated with the hormone estrogen, and higher estrogen levels increase the risk of 

developing breast cancer. Overweight is associated with the risk of developing breast cancer, 

especially for postmenopausal women [9]. Most estrogens are produced in the ovaries until 

menopause, while in postmenopausal women the ovaries cease to produce estrogen and estrogens 

mainly come from fat tissues, which produce and store estrogen [26, 27]. Taking combined hormone 

Figure 1.2 The anatomy of the female breast. The female breast consists mainly of complex networks of lobules 
and ducts, surrounded by adipose tissue. Surrounding the female breast are lymph nodes and vessels.  Figure 
reproduced with permission from Terese Winslow LLC.  
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replacement therapy, or estrogen alone, for several years can also increase the risk. Women who have 

had a full-term pregnancy or have their first child before 30 have a lower risk of breast cancer 

compared to women who gave birth after the age of 30 [28]. The risk decreases further with multiple 

full-term pregnancies and breast feeding [8, 29]. Smoking can increase the risk of developing breast 

cancer, especially among women who started smoking at adolescent or peri-menarcheal ages and 

women with a family history of breast cancer [30]. Alcohol consumption can increase the risk of 

developing breast cancer due to alcohol-induced hormonal dysregulations [30-33]. A healthy lifestyle, 

incorporating regular physical exercise and a diet rich in vegetables, omega 3, and low amounts of 

trans-fats, is associated with a lower risk of developing breast cancer [10, 34]. 

1.1.3 Breast cancer diagnosis and treatment 

Triple diagnostics is the common approach for diagnosing breast cancer in Norway. It consists of a 

clinical examination, image diagnostics and a needle biopsy [20]. Mammography is an x-ray 

examination of the breast, and is offered as a screening tool to identify cancer in women aged 50-69 

years in Norway. Ultrasound and magnetic resonance imaging (MRI) may in some cases aid as a 

supplement to mammography. The needle biopsy is used for a preoperative histological diagnosis. 

The stage of the breast cancer is classified, where the tumor size, degree of spread to lymph nodes 

and distant metastasis are considered, referred to as the TNM system [20]. The stages are T0 if no 

primary tumor, Tis for carcinoma in situ, otherwise T1-T4, with increasing tumor size. Number and 

location of lymph node metastasis may be classified into N0-N3, where increasing number is a higher 

degree of lymph node involvement. Distant metastasis is classified as M0 or M1, depending on its 

absence or present, respectively. These variables make up the TNM classification of the tumor, and 

define the stage (I-IV) of the tumor, where a higher stage means increased advancement of the tumor 

(size, spread to lymph nodes and distant metastasis). TNM classification is either clinical or 

pathological (pTNM), depending on whether it has been performed before or after surgery, 

respectively. The tumor is classified as primary operable (stage I or II) or inoperable (stage II if tumor 

> 5 cm in diameter, III or IV) [35].   

The choice of treatment regime is based on the preoperative examination, comorbidity and dialog 

with the patient. Primary treatment includes surgery, with the removal of the tumor and sometimes 

lymph nodes. The sentinel node is the primary lymph node or lymph nodes into which drains a tumor 

[36]. If sentinel lymph node biopsy reveals cancer, these and the remaining lymph nodes, are almost 

always removed. In LABC neoadjuvant chemotherapy (NAC) is necessary prior to the surgical removal 

of the tumor, which has the purpose of shrinking and downstaging the tumor. Secondary treatment 

following surgery is recommended in approximately 90% of the cases, which includes adjuvant 

treatment with chemotherapy and/or endocrine treatment (hormone therapy). The purpose of this 
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treatment is to reduce the risk of relapse, however certain patients may have a low-risk breast cancer 

for which adjuvant treatment is not justified due to its associated toxicities [37]. Endocrine treatment 

and chemotherapy are systemic treatments, while local radiation therapy is in addition given to 

patients which had breast-conserving surgery or with spread to the lymph nodes.  

Hormone receptors are proteins within and on the surface of certain cells that act like an on-off switch 

for a particular activity of the cell. When a signal molecule binds to its hormone receptor it induces a 

cascade of processes in the cell. Approximately 75% of breast cancers are estrogen receptor positive 

(ER+), meaning that at least 1% of tumor cells demonstrate positive nuclear staining by 

immunohistochemistry [38, 39], and the majority of these are also progesterone receptor positive 

(PgR positive) [40, 41].  Endocrine treatment is given receptor positive patients after a 

histopathological evaluation and assessment of the tumor’s expression of ER and PgR [42]. Human 

epidermal growth factor receptor 2 (HER2) is a protein that promotes cellular growth and 

proliferation, and can be targeted by anti-HER2 treatment [43].  An amplification or overexpression of 

HER2 occurs in approximately 15-30% of breast cancers, and is associated with shorter disease-free 

and overall survival and a higher risk of recurrence compared to normal expressions of this protein 

[44]. 

Chemotherapy kills rapidly dividing cells, through disrupting the microtubule function, which are 

essential to cell division.  As well as killing cancer cells, chemotherapy may impact healthy cells, 

especially rapidly-dividing ones, which include blood cells forming the bone marrow, hair cells, cells in 

the digestive tract and reproductive system [45]. There are different chemotherapy treatment 

regimes, of which anthracycline chemotherapy by fluorouracil, epirubicin and cyclophosphamide 

(FEC) or taxane is used in Norway.  

Angiogenesis is the formation of new blood vessels from existing vasculature, and has an essential 

role for supplying nutrients and oxygen to rapidly growing tumors [46]. This can be therapeutically 

targeted by antiangiogenic treatment, such as Bevacizumab, which has the ability to inhibit the 

proangiogenic vascular endothelial growth factor (VEGF) [47].  When Bevacizumab binds to VEGF, the 

proteins function will be altered and the tumor will have reduced blood and thus nutrient supply. This 

drug is currently accepted for treatment of metastatic breast cancers only, because of the possibility 

of fatal adverse events including hemorrhage, pulmonary embolism and gastrointestinal tract 

perforation [48]. It is however possible that the benefits of Bevacizumab for some women with a 

locally advanced cancer are worth the risks of treatment, thus a biomarker would be valuable for 

identification of women who are most likely to benefit from this treatment. Bevacizumab is still used 

for other cancers, such as colorectal cancer [49]. The different breast cancer treatment strategies, 

based on current treatment guidelines in Norway are summarized in Table 1.1. 
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Table 1.1 Breast cancer treatment strategies based on current treatment guidelines in Norway [20]. 

1.1.4 Treatment response criteria 

Due to different treatment strategies, several response criteria of NAC treatment have emerged. 

Pathological complete response (pCR) has been considered the gold standard treatment outcome, 

and refers to complete disappearance of cancer cells at treatment completion. pCR has been 

associated with improved survival, however the association between pCR and long-term outcome 

varies between different breast cancer subtypes [50]. Residual cancer burden (RCB) is a continuous 

index, which combines pathologic measurements of the primary tumor (size and cellularity) and nodal 

metastases (number and size) [51]. RCB can be divided into four classes, where class 0 is equivalent to 

pathologic complete response (pCR). Another response criteria, based on anatomical measurements 

of the tumor, is the Responsive Criteria in Solid Tumors (RECIST), which has four response categories: 

complete response (CR), partial response (PR), stable disease (SB) and progressive disease (PG) [52]. 

CR and PR refer to complete disappearance of tumor and >30% tumor shrinkage, respectively, while 

PG describes an >20% increase in tumor and/or appearance of new lesions. SD refers to tumors whose 

size has not changed enough to quantify to PR or PD. 

 The omics of breast cancer 

The omics cascade refers to the information flow, interactions and interrelations between the 

different omics levels: the genomics, transcriptomics, proteomics and metabolomics [53-55]. In all 

living cells, DNA is transcribed into RNA transcripts which are further translated into proteins. Proteins 

take part in molecular pathways, thus controlling metabolite levels. This flow of information from one 

omics level to another, illustrated in Figure 1.3, it is however also affected by additional factors, such 

as epigenetic alterations. 

  Operable tumor

 Inoperable tumor 

 Before surgery Surgery After surgery 

Treatment Neoadjuvant 
treatment 

Mastectomy or 
breast conserving 

surgery 

Radiation therapy 
Endocrine therapy 

Chemotherapy 
Anti-Her2 treatment 

Purpose Tumor shrinkage and 
downstaging 

Remove primary 
tumor and lymph 

nodes 
Reduce recurrence 
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Breast cancer is a highly heterogeneous disease, which can be manifested at different molecular 

levels.  Breast cancer genes (BRCA1 and BRCA2) produce tumor suppressor proteins, which help repair 

damaged DNA, ensuring the stability of the cells genetic materials. About 0.25% of the population 

carry mutated BRCA1 or BRCA2 genes [56], which no longer are capable of repairing broken DNA and 

preventing breast cancer. Individuals with BRCA mutations are more likely to develop breast cancer, 

and have a higher probability of recurrence once the primary cancer has been cured [57].  These 

mutations increase the lifetime risk for developing breast cancer, and 55-65% and 45% of women with 

BRCA1 mutation, or BRCA2 mutation, respectively, will develop breast cancer before the age of 70. 

The second level of the omics cascade is transcriptomics, which is the study of gene expressions 

through measuring the transcripts of DNA, called RNA. Based on the gene expression profiles, five 

intrinsic subtypes of breast cancer have been established: luminal A, luminal B, HER2 enriched, 

normal-like, and basal-like [58].  The characteristic differences in the gene expression patterns of these 

subtypes correlate with tumor characteristics and clinical outcome. Luminal A breast cancers are most 

often ER / PgR positive and are associated with the best prognosis. Basal-like has the worst prognosis, 

is often associated with the BRCA1 mutated gene, and is primarily ER / PgR negative [59]. Luminal B is 

often associated with the BRCA2 mutated gene [60]. Gene expression profiling, for identifying the 

intrinsic subtype, has recently been approved for use in the clinic in Norway, through the Prosigna test 

[61]. The aim of the Prosigna test is to assess the expected benefit from chemotherapy for breast 

cancer patients, and will be used for patients with HR+ / HER2- tumors, without spread to lymph 

nodes. The objective is that for patients with a low risk of recurrence, the negative side effects of 

chemotherapy will outweigh the benefit of treatment.  

Proteins are the functional products of genes, and do most of the work in cells and are required for 

the structure, function, and regulation of the body’s tissues and organs [62]. Protein activity is 

however also affected by several ongoing processes, such as post-transcription modifications. Also the 

proteomic level plays an important role in current breast cancer clinical decision making in terms of 

optimal treatment plan, based on the differences in the expression of estrogen, progesterone and 

Figure 1.3 The omics cascade. All levels of the omics cascade interact with each other. 
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human epidermal growth factor receptors. Patients with an ER and/or PgR positive breast cancer will 

often benefit from hormone therapy, and HER2 positive breast cancers are often treated with anti-

HER2 drugs, as described in chapter 1.1.3. However, triple negative breast cancer (TNBC) exhibit the 

greatest overlap with basal-like breast cancer, and has the worst prognosis. TNBC is ER, PgR and HER2 

negative, and the tumors are thus unresponsive to hormone and anti-HER2 therapy [63]. TNBC is 

therefore treated solely with chemotherapy, except for metastatic cases, for which immunotherapy 

has been approved in March 2020 [64].  

Six subtypes of breast cancer have been proposed based on the expression of proteins: basal, HER2, 

luminal A, luminal A/B, reactive I and reactive II [65]. These reverse phase protein array (RPPA) 

subgroups display considerable overlap with the gene intrinsic genetic subtypes, and have provided 

information about existing differences at the protein expression level. The reactive I and II protein 

subtypes are subsets of the luminal A intrinsic subtype and a combination of the intrinsic subtypes, 

respectively. The name reactive refers to the hypothesis, that many of the characteristic proteins are 

produced by the tumor microenvironment. 

Metabolomics is the last level of the omics cascade, lying closest to the phenotype. Metabolites are 

end points or intermediates of chemical processes needed for cell viability. The metabolic profile of 

biological sample depends on the preceding omics levels as well as environmental factors. 

Metabolomics will be discussed in more detail in section 1.2.1. 

1.2.1 Metabolomics 

Metabolomics is the analysis of metabolites within a biological sample [66], and the metabolome 

represents the complete set of metabolites in the sample. The metabolic profile of a sample refers to 

a set of metabolites in the sample, as there is no analytical tool which simultaneously can measure all 

metabolites to date.  Metabolites are small molecules (50-1500 Da), which are intermediates and 

downstream products of metabolism. The main groups of metabolites are sugars, amino acids, lipids, 

nucleotides and vitamins. The metabolome is comparable to the terms genome, transcriptome and 

proteome. Metabolites provide information closer to the phenotype, or the final observable 

endpoints of biological pathways, as they are the last level in the omics cascade [54]. The metabolome 

is a dynamic system, which in addition to the preceding levels in the omics cascade is influenced by 

environmental factors such as dietary intake, medication usage, gut microbiota and exercise [67-69]. 

The metabolic profile thus reflects the biological condition, giving an accurate snapshot of the current 

state of the system. Metabolomics has a wide range of common application, including plant biology, 

environmental studies, medicine and pharmacology, and has experienced an exponential growth 

during the last years [70, 71]. 
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Metabolomics can be targeted meaning that only predefined metabolites are of interest, or 

untargeted, in which case all metabolites within a certain range are measured. Unlike genes, the total 

number of metabolites is undefined, and with the current analytical platforms we usually measure 

just a fraction of the whole metabolome. 

There are two main analytical platforms for gaining insight into the metabolic profile of a sample: 

nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy (MS). These methods are 

complementary and have different strengths and limitations [72, 73]. The main difference is that MS 

has a higher sensitivity and can detect a higher range of metabolites, while NMR can provide 

information on chemical structure, is non-destructive and has a less extensive sample preparation.  

1.2.2 Tumor metabolism 

Cancer cells have an altered metabolism compared to normal cells and thus a reprogrammed energy 

metabolism for tumor survival, growth and proliferation [1, 74]. As metabolites are downstream 

products of the proceeding omics levels, small alterations in one of the preceding levels, such as 

alterations in the gene expression level, can be seen as amplified output of ongoing cellular activity, 

and can have an effect on metabolite concentrations. Cancer cells have three basic needs: 1) rapid 

generation of adenosine triphosphate (ATP) as a source of energy, 2) increased synthesis of lipids, 

carbohydrates, proteins and nucleic acids, and 3) proper redox stability, which are reflected in 

metabolic dysregulation of cancer cells [75]. 

Glycolysis is a linear metabolic pathway where glucose is broken down to pyruvate and a hydrogen 

ion. During this process the high-energy molecules ATP and reduced nicotinamide adenine 

dinucleotide (NADH) are formed. Depending on the presence or absence of oxygen, referred to as 

aerobic or anaerobic conditions, respectively, pyruvate can follow one of two possible pathways. If 

oxygen is available, pyruvate can be oxidized in the tricarboxylic acid (TCA) cycle, followed by 

phosphorylation to produce ATP. During this process about 23-30 ATP molecules are made per one 

oxidized glucose molecule, thus glucose is considered the main energy source of human cells. Under 

anaerobic conditions, however, pyruvate is broken down to lactate, yielding 2 ATP molecules, through 

a process called lactic acid fermentation. A specific characteristic of cancer cells is that most of the 

pyruvate is converted to lactate, independently on the presence of oxygen. This characteristic is called 

the Warburg effect, first described by Otto Warburg in 1930 [76]. Most tumors have an increase rate 

of glucose uptake, and perform glycolysis at a rate that is ten times faster than noncancerous tissues, 

to compensate for the inefficient ATP production [77, 78] .  As cancer cells often experience hypoxia, 

they are dependent on the production of ATP by breaking down pyruvate to lactate, and elevated 

lactate levels have been observed in cancerous tissues [79]. It is thought that this effect is an 
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adaptation of cancer cells to facilitate the update of nutrients needed to produce new cells. Other 

functions of the Warburg effect have also been proposed, related to biosynthetic pathways, tumor 

microenvironment and cell signaling [78].  

Amino acids are a group of organic compounds, characterized by the presence of amine and carboxyl 

functional groups, and a side chain specific to each amino acid. Amino acids serve as building blocks 

for proteins and play important roles as regulators or intermediates in several metabolic pathways for 

cell growth and maintenance. There are about 500 naturally occurring amino acids, though only 20 

are present in the genetic code, of which nine are classified as essential. These are histidine, isoleucine, 

leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine [80]. Essential amino 

acids are amino acids that cannot adequately be synthesized de novo by the organism and must be 

supplied through the diet, as opposed to non-essential amino acids. In tumor metabolism, however, 

non-essential amino acids play important roles in numerous aspects of tumor metabolism [81]. Their 

functions include providing precursors for biosynthesis of macromolecules, controlling redox status 

and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications 

[82]. Glutamine is a non-essential amino acid, which has been found to be essential for rapidly dividing 

cells [83]. Glutamine can also be converted by glutaminase to glutamate which can be used for 

production of other amino acids, such as alanine, aspartate, serine and glycine. Glutamine is 

responsible for redox homeostatis and cancer signaling, and some cancer cell lines have shown 

glutamine addiction. Glutamate can also be utilized to produce ATP and thus help rapidly proliferating 

cells meet the increased demand for ATP, by replenishing TCA cycle intermediates. Glycine can also 

be produced from choline and has been associated with large tumors and poor prognosis [84, 85].  

Lipid metabolism 

Lipids refers to a class of large and diverse macromolecules, with multiple biochemical functions 

including energy storage, cell signaling and acting as structural components of cell membranes. They 

can be obtained from food (exogenous uptake) or can be synthesized by the liver (endogenous 

synthesis). A third pathway, called the reverse transport pathway, is a mechanism by which the body 

removes excess cholesterol from peripheral cells and transports it to the liver [86]. Figure 1.4 shows a 

simplified flowchart of lipid metabolism. Lipid metabolism involves lipid degradation and synthesis in 

cells, and abnormal lipid metabolism has been associated with numerous diseases, including type 2 

diabetes, coronary artery disease, sleep apnea and cancer [87].  

Lipid metabolism pathways in cancer cells are dysregulated by a number of cancer-cell intrinsic 

processes, and extensive studies have provided strong evidence for reprogramming of lipid 

metabolism in cancer [88].  Due to the metabolically challenging environment of cancer cells, with 

scare availability of oxygen and nutrients, the balance between the endogenous synthesis and 
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exogenous uptake of fatty acids is altered, and in general, cancerous tissues have an increased rate of 

lipid synthesis as part of the reprogrammed metabolism of cancer cells [89]. Depending on the tumor 

type, tumor cells can synthesize fatty acids de novo in spite of sufficient dietary lipid supply [90]. 

Activation of fatty acid synthesis is thought to be required for carcinogenesis and tumor cell survival. 

Lipid metabolism in cancer cells is differently regulated depending on environmental factors, in 

particular nutrient and oxygen availability.  

Cancer cells with a sufficient supply of nutrients and oxygen mainly use glucose-derived acetyl-CoA 

for fatty acid synthesis for rapid cell proliferation [89, 91]. They can also acquire fatty acids from the 

environment, through utilizing both the lipogenic and lipolytic pathways [92, 93]. Under insufficient 

nutrient supply normoxic cancer cells mainly rely on endogenous fatty acid desaturation through 

acetate metabolism. The tumor microenvironment is however mostly hypoxic, meaning that it is 

deprived of adequate oxygen supply, and cancer cells either switch to alternative carbon sources 

(glutamine or acetate) or increase their fatty acid uptake. If the cells in addition are nutrient deprived, 

de novo fatty acid synthesis will be upregulated and the cancer cells will be fully dependent on 

glutamine or acetate for fatty acid synthesis.  

The main two forms of circulating lipids in the body are triglycerides and cholesterol. These are 

insoluble in water and can be transported through the bloodstream as part of lipoproteins. 

Figure 1.4 Simplified flowchart of lipoprotein metabolism, showing the main steps of the Exogenous, Endogenous
and Reverse transport pathways. FFA: Free fatty acids; LPL: Lipoprotein lipase; HDL: High density lipoprotein; 
VLDL: Very low density lipoprotein; IDL: Intermediate density lipoprotein; LDL: Low density lipoprotein. 
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Lipoproteins are complex particles. They have an inner core, composed mainly of triglycerides and 

cholesteryl esters, surrounded by an outer core, which is a hydrophilic membrane consisting of free 

cholesterol, phospholipids and apolipoproteins. There are five main fractions of circulating 

lipoprototeins, each with its own characteristic protein and lipid composition: very low density 

lipoproteins (VLDL), intermediate density lipoproteins (IDL), low-density lipoproteins (LDL), high-

density lipoproteins (HDL) and chylomicrons (CM) which can be further subdivided into subfractions 

based on their density [94, 95].  As lipid molecules are less dense than proteins, the most distinguishing 

feature of the main classes is the relative amounts of lipid and proteins, which is reflected in the 

density forming the basis for the definition of lipoprotein subfractions. Figure 1.5 shows the 

relationship between lipoprotein sizes and density, and the different parts of the lipoproteins. IDLs 

have a density and size in-between LDL and VLDLs, while CMs are much larger and less dense than 

VLDLs.  

Chylomicrons are large particles rich in triglycerides, produced by the intestine. Their function is to 

transport dietary triglycerides and cholesterol to peripheral tissues, and their size depends on the 

amount of dietary fat. VLDLs are produces by the liver and are rich in triglycerides. They take part in 

the endogeneous pathway, where they transport lipids to the capillaries, in which triglycerides and 

cholesterol are taken up by muscles and adipose tissue, and their remnants (IDLs) are transported 

back to the liver or are synthesized to LDLs (which are enriched in cholesterol) and transported to 

peripheral tissues.  HDLs are synthesized by the liver, and take part in the reverse transport pathway, 

where they pick up cholesterol in peripheral tissues and deliver it to tissues that need it, to other 

lipoproteins or back to the liver [95]. LDLs are pro-atherogenic (lead to buildup of cholesterol in the 

arteries), while HDL is anti-atherogenic, and for that reason HDL is commonly referred to as a good 

cholesterol, while LDL is sometimes called a bad cholesterol. Apolipoproteins are distributed over all 

lipoprotein main fractions, however with a varying proportion. They act as ligands for lipoprotein 

receptors, provide structure to the lipoprotein, guide the formation of lipoproteins and serve as 

activators involved in the metabolism of lipoproteins [95]. They may be classified as peripheral, or 

integral, depending on whether they are connected on the outside of the cell membrane, or are 

permanently embedded in the membrane. Apo-B is the major structural component of VLDLs, IDLs 

and LDLs. HDLs contain mostly Apo-A1 and Apo-A2, which are peripheral apolipoproteins, synthesized 

by the liver. Apo-A2 also activates lecithin cholesterolacyltransferase (LCAT) which is responsible for 

the formation of cholesteryl esters, while Apo-A1 activates hepatic lipase. There has been increased 

awareness that the lipid picture is more complicated, and that focusing on the subfractions instead of 

the main fractions gives important additional biological information. For example, Madssen et al. 

showed that chemotherapy induced an increase in LDL parameters, except for LDL2, which decreased 
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during the same period, in the serum of breast cancer patients [96]. Small LDLs have been found to be 

important biomarkers for atherosclerotic diseases [97] and it has been shown that LDL particle size 

and number provide are strong predictors of cardiovascular diseases [98]. The diverse characteristics 

of lipoproteins may aid the development of new therapeutic strategies for metabolic diseases [99-

101].  

 

Serum metabolomics 

In the context of cancer metabolism, the serum metabolome contains metabolic signals from both the 

tumor itself and the host organism [102-104]. The metabolic activity is influenced by several 

endogenous and exogenous factors, as depicted in Figure 1.6 [67-69]. Examples of endogenous factors 

are genetics, body composition, physical activity, microbiome, endocrine response, mental stress, 

inflammation and circadian rhythm. Examples of exogenous factors affecting the metabolism are diet, 

medication and smoking. This further implies that the serum metabolome varies highly across 

individuals. However, being minimally invasive, serum metabolomics can potentially be applied 

directly in the clinic for early diagnosis and treatment monitoring. Recent studies have reported 

associations between circulating metabolite concentrations and breast cancer risk in a prospective 

approach [105-108]. A study by Kuhn et al. found higher plasma levels of lysophosphatidylcholine 18:0 

to be related to a lower risk of common cancers, including breast cancer [108]. His et al. performed 

prospective analysis of plasma metabolites and breast cancer risk on a cohort consisting of 1624 first 

primary incident invasive breast cancers and 1624 matched controls, where they concluded that the 

acetylcarnitine C2 and PC ae C36:3 were associated with risk of breast cancer [105]. Similarly, Léucyer 

et al. performed a prospective nested case-control study, which revealed plasma metabolites 

Figure 1.5 The relationship between lipoprotein sizes and density. IDLs have a density and size in-between LDL 
and VLDLs, while CMs are much larger and less dense than VLDLs. CMs are left out in this illustrations for 
simplicity. Apolipoproteins can be peripheral or integral, as shown in the figure to the right, where they are either
connected to the outer cell membrane, or are embedded permanently in the membrane. 
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associated with a risk of developing breast cancer within the following decade [107]. A study by Bro 

et al. published a model that can predict an increased risk for developing breast cancer 2-5 years after 

the sample has been taken [106]. 

 

Figure 1.6 The serum metabolome is a highly dynamic system, affected by the preceding levels of the omics 
cascade, but also external factors such as physical activity, medication usage, age, and body composition. 
Reproduced with permission from [109]. 

 Nuclear magnetic resonance (NMR) spectroscopy 

1.3.1 Principles of NMR 

The basis of nuclear magnetic resonance spectroscopy (NMR) is the concept of spin ( ). Spin is a 

quantum mechanical property that atomic nuclei can possess. The spin depends on the number of 

protons and neutrons in the nucleus, thus distinct spin configurations will arise for different 

combinations of these particles. The overall spin of a nuclei is only present for uneven number of 

protons and neutrons, as even numbers of these particles will experience antiparallel spin pairs which 

will cancel each other out, giving =  0. Nuclei having a non-zero spin generate their own magnetic 

moment ( ) proportional to the spin, giving rise to an NMR signal. This includes 1H, 13C, 14N, 15N, 19F 

and 31P, of which 1H is most commonly used in biomedical applications as it the highest natural 

abundance and sensitivity. Quantum mechanics states that a nuclei has 2  +  1 possible orientations, 

and thus energy states. 1H has spin  =  ½, and thus two possible energy states. 

The magnetic moment  of a nuclei is usually oriented at random. If placed in an external magnetic 

field, ,  will align parallel or antiparallel to , in a low (  =  ½) or high ( = ½) energy state, 
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respectively [110]. Given a constant temperature, a small excess of protons will be present at the 

lower energy than the higher energy state, producing a net magnetization ( ) along  , from the 

sum of magnetic moments of all protons. The resonance frequency of the nuclei in an external 

magnetic field, called the Larmor frequency ( ), corresponds in the energy difference between the 

energy states and is given by =  / 2 , where  is the gyromagnetic ratio [111]. 

If a radio frequency (RF) pulse is applied at the same frequency as the Larmor frequency of the nuclei 

of interest, nuclei in the low energy state will excite to a higher energy state, disturbing the equilibrium 

and tilting the magnetization vector  away from  . This tilt is dependent on the pulse magnitude 

and duration and a 90° pulse will flip  with an angle of 90° from the z-axis to the xy-plane. Once the 

RF pulse is switched off, the excited nuclei gradually return to the equilibrium state with longitudinal 

( ) and transverse ( ) relaxation times, releasing the absorbed energies. A signal, called the free 

induction decay (FID), can be detected during this process. The FID can be converted from the time 

domain to the frequency domain via a Fourier transformation, giving the NMR spectrum [112]. 

Nuclei of the same type that are in different magnetic environments will experience slightly different 

magnetic fields due to shielding from surrounding electrons, and will resonate at different 

frequencies. This frequency deviation due to electron shielding is known as the chemical shift, , and 

nuclei from different molecules appear as peaks at different positions of the spectrum. The chemical 

Figure 1.7 The basic principles of NMR. An atomic nuclei will orient in a random direction in the absence of a 
magnetic field. If an external magnetic field  is applied, nuclei with spin number ½, will either align parallel or
anti-parallel with the magnetic field, at a higher or lower energy state, respectively. A slight excess of nuclei will
align in the low energy state, causing a net magnetization in the direction of . The energy difference between
these two spin states is dependent on the strength of . A radio frequency pulse can excite nuclei to a higher 
energy state. These nuclei will thereafter return back to the original energy state through a process called
relaxation. Energy released in this process can be detected as a signal called free induction decay, which after a
Fourier transformation, will result in a spectrum in the frequency domain. RF: Radio frequency; NMR: Nuclear 
magnetic resonance. 



1   INTRODUCTION 
 

16 

shift is independent of the magnetic field strength, however other factors such as pH and temperature 

alter the chemical shift. The chemical shift is commonly expressed in terms of parts per million (ppm).   

Due to spin-spin interactions, which is the influence by spins of closely located nuclei on the nuclei of 

interest, peaks may be split into singlets or multiplets. The chemical shift together with the splitting 

pattern provide information about the molecular structure allowing to identify the compounds. Signal 

intensity in an NMR spectrum is proportional to the concentration of the nuclei producing the signal, 

making it possible to quantify detected compounds, after necessary preprocessing. Figure 1.8 shows 

a representative CPMG spectrum of a serum sample with annotated metabolite peaks. 

Transverse magnetization decays exponentially at a rate determined by the transverse relaxation rate 

constant  given by: ( ) = (0) , 

where ( ) is the x-magnetization at time  and (0) is the initial value [111]. The higher the rate 

constant, the faster the decay. The reciprocal of the rate constant  is the time constant for the 

decay of transverse magnetization = 1/  called the  relaxation.  may be measured with a 

spin-echo sequence, such as the CPMG sequence. By running an experiment using a short pulse to 

form multiple echoes, the decay can be observed and used to estimate  values [112]. Spectra 

corresponding to each echo can be used to determine the height of the peaks of individual 

Figure 1.8 A representative CPMG spectrum of a serum sample with annotated metabolite peaks. 1: leucine; 2: 
valine; 3: isoleucine; 4: dimethylglutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: 
acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate; 14: methionine; 15: creatine; 16: 
creatinine; 17: ornithine; 18: proline-betaine; 19: dimethylsulfone; 20: glucose; 21: methanol; 22: glycine; 23: 
lactate; 24: tyrosine; 25: phenyllanine; 26: histidine; 27: formate; 28: lipid1; 29: lipid2. 
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metabolites. These values, and the corresponding times ( ) can be used to fit an exponential function 

to model the decay and thus estimate . The percentage of signal present after a full CPMG 

experiment is given by / , where  is the length of the  filter in the CPMG experiment.  

1.3.2 Preprocessing of NMR metabolomics data 

Raw NMR spectra are inadequate for statistical analysis as there may be variations in the spectra not 

related to the biological traits of interest [113]. Experimental inaccuracy can lead to differences in the 

sample weights of tissues or fluid volumes, which again can lead to higher spectral peaks. Also the 

composition of the tissue varies across samples, while for urine in specific, different concentrations of 

metabolites are strongly influenced by the amount of water (dilution) in a given sample.  Further, 

peaks may shift during NMR acquisition due to instability in temperature or pH conditions during the 

experiments. Peaks appearing at slightly different positions in the ppm scale make comparisons 

between samples impossible. To remove these unwanted effects, preprocessing of the raw spectra is 

necessary prior to data analysis [114]. Preprocessing decreases the probability of inaccurate biological 

interpretations emerging from unwanted error sources, and common preprocessing steps together 

with their purposes are summarized in Table 1.2. 

Table 1.2 Different steps in preprocessing of NMR spectra with their purposes. 

 

Baseline correction 

Acquired spectra may have a distorted baseline. To correct for this, baseline correction may be applied 

[115]. A simple method for correcting baseline offset is to subtract the minimum value of each spectra 

from the spectra. This method shifts the spectra vertically, removing the baseline offset, at the same 

time keeping the shape of the spectra unchanged. This method may however lead to problems if the 

spectra includes negative peaks. Another baseline correction method is asymmetric least squares 

method [116]. This method works by subtracting a spline function following the raw spectra baseline. 

One disadvantage of this method is, however, that the spline function is highly affected by broad 

peaks. Small neighboring peaks may thus be highly affected from this baseline correction method.  

Method Goal 

Baseline correction Remove baseline distortions 

Removal of water signal and 

contaminants 
Avoid interference with signal of interest 

Peak alignment Correct for differences in chemical shift 

Normalization Correct for differences in concentrations of metabolites in samples 

Centering and scaling Correct for differences in average abundance of metabolites 
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Peak alignment 

Peaks can be shifted from their expected chemical shift due to changes in pH or temperature, 

inhomogeneous magnetic field or molecular interactions during acquisition. Shifted spectral peaks 

may be aligned using an alignment method. The icoshift algorithm is an approach based on correlation 

shifting of spectral intervals [117]. In this algorithm, the spectra are divided into segments, which may 

be equally distributed along the spectra, or user-defined regions. Each segment is treated individually 

and the spectra in each segment is aligned to a reference, referred to as the target, such that the 

correlation between the spectra segment and the reference is maximized, without distorting the 

shape of the signal. The reference may for example be the spectrum with the highest correlation to 

all other spectra in a given batch, or the mean of the spectra.  

Removal of water signal and contaminants 

Water signal appears as a big peak in the spectrum, and varies largely from sample to sample due to 

varying success of water suppression [118]. Contamination may also occur, which means that a 

compound, which does not occur naturally in a biological sample, is present. Different sources for a 

contamination exist, such as poor cleaning of the equipment, medication usage or long-term storage 

in cryotubes, and the origin might be difficult to identify.  A contamination may give rise to one or 

multiple peaks in the spectra, which may overlap with signals of biologically relevant metabolites. 

Signals from water and any contaminations are not of interest in metabolomics studies, and should 

be removed from the spectra prior to normalization, if this is possible. If a signal from contamination 

is overlapping with signals of interest, correcting for it might be feasible, however it should be 

performed with caution. 

Normalization 

As metabolic responses are reflected in differences in concentration of specific metabolites, variations 

in dilution factors or sample weights should be removed making spectra comparable [119]. Different 

normalization approaches have been developed, which aim to remove this effect. Mean 

normalization, also referred to as area normalization, divides each data point by an equal total area 

of the spectrum. This eliminates variance related to the amount of sample analyzed. Another 

commonly used normalization method is probabilistic quotient normalization (PQN) [120]. In this 

approach, the most probable dilution factor is calculated based on the distribution of quotients. The 

quotients are derived from dividing the spectra to be normalized by a reference spectrum. When 

analyzing tissue biopsies, lipid peaks arising from adipose tissue, whose intensity may interfere with 

signals that are related to the biological effects of interest, should be removed [113]. 
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Centering and scaling 

Metabolites that are more abundant will generally display larger differences among samples in a 

batch, than metabolites that are of low abundance. The highly abundant metabolites will thus mask 

changes in low abundant metabolites, which may be biologically important. Scaling is an operation 

that aims to balance signal intensity variances that originate from difference in average abundance of 

metabolites. It is performed variable-wise, unlike normalization, which is performed independently 

for each spectra [121]. Prior to scaling mean centering is typically performed, which transforms all 

values so that they vary around zero instead of varying around the mean value. Autoscaling divides 

each variable by the standard deviation of the variable after mean centering, converting all 

metabolites to have unit variance. Noise will be given higher influence after applying autoscaling, thus 

it less suitable for spectra than for quantified metabolites. 

Quantification of metabolites and lipoproteins 

Metabolites may be quantified from the NMR spectra as the area under each peak is proportional to 

the concentration of the corresponding metabolite in the sample. The most common approach is to 

integrate the area under each peak, however recently methods for deconvolution of the NMR 

spectrum are increasingly used [122, 123].  

Metabolite concentrations may be normalized by mean-normalization or PQN normalization, which 

yields relative concentrations in a batch. These relative concentration changes are informative, 

however, a direct comparison of significant metabolic changes across studies may be difficult. Further, 

the presence of lipids highly affects the relative metabolic concentration and thus the correlation 

between the variables in the data [124]. The advantage of absolute quantified concentrations is that 

comparison of findings across studies may be performed in a more accurate manner, keeping the 

original correlations of the biological variables unaltered. Absolute quantification is also more relevant 

for a clinical application. To perform absolute metabolite concentrations, each peak must be adjusted 

for the number of protons giving rise to the peak.  

NMR spectroscopy is also well suited for the identification and quantification of lipoproteins in serum. 

Different lipoprotein subfractions have different chemical compositions and sizes [125, 126] giving rise 

to distinctive NMR signals. Lipoproteins contain triglycerides and cholesterol esters, which give rise to 

broad peaks at 0.8 and 1.2 ppm, arising from methyl (-CH3) and methylene (-CH2-) groups. The shape 

of these peaks is determined by the complexity of the composition of lipoproteins in the sample, and 

thus the envelopes of these peaks may be used for lipoprotein quantification for example through PLS 

regression [126].  
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 Data analysis 

1.4.1 Descriptive statistics 

A variety of descriptive statistics have been used in this thesis for different purposes.  

Median percentage change 

Often it is the case that the metabolomics data are not normally distributed but rather follow a skewed 

(unsymmetric) distribution. Comparing the mean values of metabolite levels across groups may thus 

not be optimal, as the mean is highly influenced by extreme values. The median value is more 

appropriate as its value is less affected by the extremes. Assume we have a set of observed values. To 

calculate the median value, the values must first be ordered in an increasing direction. Median is the 

value which divides the observed values into two equal halves.  

The median percentage change can be calculated to compare if a variable has undergone an increase 

or decrease between two measurements. Given repeated measurements of a variable at two distinct 

time points, with median values  and , at time point  and , respectively. The median 

percentage change from time point 1 to time point 2 is given by   =   | | 100% , 

where || denotes the absolute value. 

Coefficient of variation 

The coefficient of variation (CV) is a measure of the dispersion in the data in relation to the mean 

[127]. Given a set of observed values, with a standard deviation,  and a mean value x, the coefficient 

of variation is given by CV = 100% . 
Thus, low CVs indicate little variation within the samples, whilst high CVs indicate high variation within 

the samples. CV is a useful descriptive statistic as, in contrast to the standard deviation, it is 

independent of the unit in which the measurement has been taken. It thus allows for comparisons 

across data sets with different units or with widely different means. CV is also a useful tool for 

comparing the reproducibility of repeated measurements. 

Pearson correlation 

The Pearson correlation coefficient  is a measure of how two variables  and  covary. 

= (  )( )( )  

The range of values for the Pearson correlation coefficient is from +1 to -1. A value > 0 indicates that 

there is a positive association between the two variables, whereas a value < 0 indicates that there is a 
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negative association. A value of 0 indicates no association between the variables. Thus, the strength 

of the association between the two variables increases with the magnitude of the Pearson correlation 

coefficient, as shown in Figure 1.9.  

 

Figure 1.9 Pearson correlation. The magnitude of the Pearson correlation coefficient indicates how strong the 
association between two variables, while the sign indicates if the association in positive (Figure to the left) or 
negative (Figure to the right). A Pearson correlation coefficient close to 0 indicates no association (the middle 
Figure). r: Pearson correlation coefficient ( ). 

Intra class correlation 

The intra class correlation coefficient (ICC) is the ratio of the between-group variation, divided by the 

total variation in the data (between-group and within-group variations), and ranges between 0 and 1. 

A value close to 1 indicates high similarity between values from the same group, while a value close 

to 0 means that values from the same group are not similar [127] (Figure 1.10). 

There is more than one possible method for calculating the ICC. Here, we will concentrate on the 

method involving a random effect model. Assume we have a random effect model: = + + , 

Figure 1.10 Intra class correlation coefficient. High (figure to the left) and low ICC (figure to the right) indicate 
high and low between-group variation, respectively. 
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where  is the -th observation of the -th group,  is the overall mean,  is random effect specific 

for group , and  is a noise term. Further, assume that  . . .~  (0,  ),  . . .~  (0, ) and 

that the ’s and ’s are mutually independent. The correlation between two observations in the 

same group, called the within-group correlation coefficient is given by   

( , ) =  , ( ) =  +  

for j . This becomes the intra class correlation coefficient for inserted parameter estimates of the 

random intercept model. 

1.4.2 Univariate analyses 

The significance of differences in individual metabolite levels between two sampling points or groups 

may be assessed by performing univariate hypothesis testing on the quantified amounts. The null 

hypothesis, that there is no difference between the two groups, against the hypothesis that there is a 

significant difference between the groups is tested. Statistical tests can be either parametric or non-

parametric, where the latter has lower statistical power. The choice of the statistical test must be 

dependent on the nature of the data. To apply a parametric test, underlying model assumptions 

should be checked. These are normality, homogeneity of variance (homoscedasticity) and 

independence. The requirement of normality is fulfilled if the data follows a normal distribution, i.e. a 

symmetric bell-shaped curve. Normality can be assessed by making a quantile-quantile (QQ) -plot of 

the data or by a normality test, such as the Shapiro-Wilk or Kolmogorov-Smirnov tests. The assumption 

of homoscedasticity implies that the variance in the data should be stable with no increasing or 

decreasing trend. Homoscedasticity can either be evaluated by a graphical inspection of the data or 

by a statistical test, e.g. the Levene’s test. Data, which is not normal or homoscedastic can sometimes 

meet these requirements after a logarithmic transformation. Independency in the context of 

metabolomics implies that a sample is unrelated to the other sample. 

Parametric tests 

If the assumptions of normality and homoscedasticity are valid, the parametric t-test can be applied 

to the data. The t-test assumes that the two groups which are compared follow a normal distribution 

and compares the difference in the mean values of the two groups. If the samples are independent, 

an unpaired t-test is performed, otherwise, the paired t-test should be chosen, for example if one has 

repeated measurements of a variable.  
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Nonparametric tests 

If the data is non-normal, a nonparametric test can be applied. Nonparametric tests do not rely on the 

data to belong to any parametric family of distributions. Depending whether or not the two groups 

compared are independent or not, the Mann-Whitney U test (also called the Wilcoxon rank-sum test) 

or the Wilcoxon signed-rank can be used. 

Linear mixed-models 

For analyses where there are repeated measurements the responses may be correlated. The repeated 

measurements can either be clustered (grouped) or longitudinal. Grouped data refers to the case that 

the data are nested and there is no natural ordering of the units within each group, like patients in 

different hospitals. Longitudinal data is when data for each individual are observed at multiple time 

points, like repeated sampling from patients undergoing treatment. Linear mixed models (LMM) are 

extensions of the linear regression model, which allow for the inclusion of both fixed and random 

effects [128]. A fixed effect is a parameter that is somewhat systematic, while random effects are 

parameters that are unsystematic, and which we want to account for, but are not interested in the 

estimated parameters. In a medical context, the fixed effect might be treatment type, while the 

random effect might be the patient id. 

Mathematically, the response for group  can be expressed as: = + +  ,  ~ N(0, ),      ~N 0, 2  

where  is a random vector of length  with the responses in group ,   (  ×  ) and  (  ×  ) 

are known fixed-effects and random-effects design matrices (also called regressor or model matrices), 

 is a -dimensional vector of fixed effects, which is common for all groups,  is a - dimensional 

vector of random effects used to model correlated responses, and is the random error vector [128, 

129].  

Figure 1.11 An linear regression model (left) a linear mixed model with a random intercept (middle) and a linear 
mixed model with a random intercept and random slope (right). 
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A random slope should be included if the relationship between the response variable and a covariate 

is different for each group  of the random effect matrix, and is modelled by adding an interaction 

term between the random and fixed-effect matrices, which modifies the  matrix in the equation 

[129].  Figure 1.11 shows the difference between a linear regression model, a linear mixed model with 

a random intercept and a linear mixed model with a random intercept and a random slope. In 

particular, the linear regression model assumes that the mean response is equal for all groups. 

Another advantage of linear mixed models, is that it can handle missing observations, meaning that if 

the response variable of a patient is missing at one time point, that patient is not left out from the 

analysis.  

Logistic regression (LR) 

Logistic regression is a regression analysis for binary response variables, i.e. variables that can take on 

one of two possible outcomes. It is a predictive analysis, and the task is to predict the outcome based 

on one or multiple independent variables. Let  and = ( , , , … , ) denote the response 

variable and the  independent variables for individual , respectively. The response variable is 

typically coded as 0/1, where = 1 corresponds to class 1, success, and = 0 to class 2, failure. The 

probability that an observation comes from class 1, the probability of success, is ( = 1 | ) =( ), and the probability of failure is 1 ( ). 

The model assumes a linear relationship between the covariates and the log-odds of the event = 1. 

Mathematically, given p covariates, logistic regression estimates a multiple linear regression function 

defined as: ( ( )) = ( )( ) = +  +  + + , 

where = ( , , … . , ) are covariates of the -th observation [130]. This assures that the 

probability lies in the interval between zero and one as the logistic curve is s-shaped. The parameter 

 for a covariate  determines the rate of increase or decrease of the s-shaped curve, and the sign 

of  indicates whether the curve ascends or descends [131]. 

An advantage of the logistic regression model is the interpretability associated with the odds, which 

is the probability of success divided by the probability of failure. The odds of = 1 for observation  

is: 

= ( )1 ( ) =  = ( ) ( ) ( ) . 
The odds increase multiplicatively by  for every one-unit increase in , thus the odds at level  + 1 is equal to odds at  multiplied by , when all other variables are kept constant. When 
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= 0, = 1 the odds does not change as  changes, and > 0 and  < 0 correspond to an 

increased or decreased odds, respectively. For each coefficient in the model, a p-value is returned for 

testing the hypothesis H0: there is no association between the covariate and the outcome (odds ratio 

= 1) vs. Ha: there is an association between the covariate and the outcome. Thus a significant p-value 

indicates that there is an association present. 

When fitting a multivariate logistic regression model to a dataset, often not all of the covariates 

included will be significant. Keeping all of the variables in the model makes the interpretability of the 

model more challenging, and might lead to overfitting, especially for small sample sizes. There are 

various approaches for variable subset selection, aiming at retaining only a subset of the variables that 

are sufficient for explaining their joint effect on the response, such as forward-, backward-, and best 

subset selection. These approaches search through multiple candidate models by either adding or 

removing one and one covariate, and comparing the model fit [132]. Alternatively, a shrinkage method 

can be applied, such as the lasso, Rigde or elastic net regularization which will retain all variables, but 

shrink model coefficients which are of less importance [133]. Lasso has the ability to shrink some 

variables to zero, thus is suitable for subset selection [134]. It has however some limitations: 1) if there 

is a higher number of variables then observations ( > ) it selects at most  variables before it is 

saturated, and it therefore not well suited; 2) in the presence of high pairwise correlations, the lasso 

tends to select only one of the variables; and 3) when there is a higher number of observations then 

variables ( > ), if the variables are highly correlated, Ridge regression tends to perform better 

[135]. Elastic net regularization is a shrinkage method that linearly combines the penalties associated 

with the lasso and ridge methods [135]. 

1.4.3 Machine learning methods 

Machine learning is a field within the artificial intelligence field, where a computer is given the ability 

to learn without being explicitly programmed [136]. By feeding a machine learning method with 

multiple examples (training data) it is able to learn from the data, and generate rules that can be 

applied to predict outcomes for new samples [137]. 

For the purpose of multivariate analysis, with  samples over  variables, it is common to condense 

the data into an  ×   dimensional matrix , where each row and column represents one sample 

and variable (metabolite), respectively. Multivariate statistical methods can be subdivided into two 

types: unsupervised and supervised methods. Unsupervised methods aim to describe naturally 

occurring patterns in the data, without any knowledge on the response variable. Supervised methods 

make use of the labeling to create models, which can be used for predicting the outcome for 

unobserved data. 
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NMR data are highly collinear, making standard statistical methods unsuitable. In addition, the 

number of variables ( ) often exceeds the number of samples ( ). Multivariate methods utilizing the 

use of latent variables are thus commonly used for analyzing NMR data. 

Principal component analysis (PCA) 

Principal component analysis is an unsupervised statistical procedure, which uses orthogonal 

transformation to convert a set of observations of correlated variables into a set of linearly 

uncorrelated variables, called principal components (PCs). PCs are linear combinations of the original 

variables, where the first principal component, PC1, is chosen in the direction along which the samples 

show the largest variation [138], as illustrated in Figure 1.12. The second principal component is 

orthogonal (thus uncorrelated) to the first principal component in the direction of the greatest 

remaining variation. In this way, the dimension of the original data set is reduced, and most of the 

variation in the data is explained by few new variables (PCs). When the number of variables is larger 

than the number of samples and there is a high degree of collinearity, PCA may greatly reduce the 

dimensionality of the data without loss of information. 

Mathematically, the decomposition of  by PCA results in  =   +  , where  and  are the 

scores and loadings matrices, respectively, and  is a matrix of residual variance which is not a part of 

the model [138]. Here,  indicates the matrix transpose. PCA has only one tuning parameter, which 

is the number of principal components. This is directly related to the residual variance matrix  and 

as the number of included PCs in the model increase, the residual variance decreases. The optimal 

number of PCs can be determined from a scree plot, where the variance explained is plotted against 

the number of principal components in the model. Typically, the curve should be steep at first, then 

have a bend, followed by a flat part. The number of PCs that are associated with the bend should be 

chosen. PCA is an unsupervised method, it is often used as an explanatory tool for detecting underlying 

patterns and outliers. 

The results of a PCA are displayed in a score plot in the new coordinate system defined by the PCs. 

This is a scatter plot, where each sample is projected down onto the new coordinate system, 

represented by a point. By coloring the points by groups of interest, the amount of separation 

between the groups can easily be observed. Also, any underlying patterns in the data can be revealed. 

Complementary to the score plot is the loadings-plot, where the contribution of each original variable, 

its weight, on the PCs is shown. The scores and loadings can alternatively be plotted together in a 

biplot, to rapidly overview the correlation between sample scores and variable loadings.  
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Figure 1.12 Principal component analysis. The figure to the left shows data in the original 3-dimensional space, 
where points corresponding to two different groups are colored in different colors. The figure to the right shows 
the same points propagated down to a 2-dimensional space, where the highest variance along PC1. 

Partial least squares discriminant analysis (PLS-DA) 

Partial least squares discriminant analysis (PLS-DA) is a supervised statistical procedure, with many 

similarities to PCA. PLS-DA however is a combination of dimensionality reduction and discriminant 

analysis, in one algorithm [139]. The original data matrix  is decomposed into a set of new orthogonal 

variables, called latent variables (LV).  

The general underlying model for a PLS-DA can be written as: = +  = +  

Where  is the original data matrix and  is the response matrix with class memberships. Further,  

and  are the score matrices for  and , respectively. Similarly,  and  are the loading matrices for 

 and , and  and  are the error matrices.  and  are decomposed in such a way that the 

covariance between  and  is maximized.  Thus, the first LV will place the highest weights on the 

variables most strongly related to the response. There exist a number of algorithms for performing 

PLS-DA, of which SIMPLS [140] is most commonly implemented in statistical software, as it performs 

faster than the traditional non-linear iterative partial least squares (NIPALS) algorithm. 

Model tuning and interpretation is similar to that of PCA. As PLS-DA is a supervised method, the 

number of LVs should be chosen based on the prediction accuracy through cross validation.  As for 

PCA, the results of a PLS-DA model can be visualized by score and loading plots. The score plot shows 
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each sample projected to the new coordinate system spanned by the principal components, and the 

loading plot shows the weight of each original variable on the score. 

PLS-DA can be extended through orthogonal projections to latent structures (OPLS-DA). This results in 

separating the predictive from non-predictive variation, in cases where there are more than one LV in 

the model. This extension improves the interpretability of the model, but not the predictive 

performance [141]. 

Multilevel PLS-DA 

Multilevel PLS-DA is an extension of PLS-DA, effective for paired data structures in a multilevel study 

[142]. The multilevel approach consists of two steps.  First, the variation between individuals is 

separated from the variation within the samples. Secondly, PLS-DA analysis is performed on the within 

subject variation.  

Let  be a matrix containing all observations from sampling point 1, and similarly  a matrix 

containing all observations from sampling point 2. Then the between subject variation, , in the 

multilevel model is defined by =  ++ , 

and is thus the average of the two sampling time points. 

The within subject variation, , is defined by 

= , 

And is the net difference between the two sampling time points. 

The second step in the multilevel approach is to analyze the within and between subject variations 

separately using PLS-DA. This is an effective tool for longitudinal data, where there are two or more 

multivariate measurements per subject. This approach can also be used for evaluating a treatment 

intervention, where  would then contain observations from treatment group, and  from control 

group. Exploiting the paired data structure provides complementary information about the diversity 

and abundance of the treatment effect within different subgroups across the study population as well 

as the intrinsic differences between the individuals in the study. 

Random forest 

A decision tree is made up by binary splitting of the decision space following a top-down approach. At 

each step of the algorithm a split of the decision is made to maximize the homogeneity of the two 

new parts. This is best illustrated by an example. Suppose we want to predict the body mass index 

(BMI) of an individual, given only the waist and the hip circumferences of the individual. The data is 
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shown in Figure 1.13, where the points are colored according to the associated BMI category, as 

defined by the world health organization (WHO) [143].  

Figure 1.14 shows the process of fitting a classification tree to the data. The top split assigns individuals 

having hip circumference < 97.5 cm to the left branch. The predicted BMI category for these 

individuals is the majority vote of the BMIs of all points enclosed in this space, namely underweight. 

Thus if the algorithm was stopped here, all individuals with a hip circumference < 97.5 cm would be 

classified as underweight, while all above as having a normal weight. The second split is at hip 

circumference = 112.5 cm. Now, in addition to the previous split, all individuals with a hip 

circumference above 112.5 cm are classified as pre-obese. This splitting is repeated, until a stopping 

criteria is met. The bottom figure of Figure 1.14 (bottom-left) shows the final classification tree fit to 

the data, and the associated partitions of the predictor space. Each rectangle in the predictor space is 

associated with a terminal node, and the points along the tree where the predictor space is split, are 

referred to internal nodes. The lines connecting the nodes are named branches.  To make a new 

prediction, one starts at the top of the tree, and follows the criteria met at each internal node, until a 

terminal in met. This example showed a classification tree. However, it could easily be transformed to 

a regression tree, by replacing the BMI categories with the exact BMI values. In such a case, the 

predicted value at each terminal node would simply be the mean value of all observations in the 

corresponding space. A decision tree is intuitive and easily interpretable, however its performance is 

often worse than for other regression and classification approaches. Trees are also non-robust, 

meaning that a small change in the data can cause a large change in the final estimated tree.  

  

Figure 1.13 The decision space for BMI as a function of the variables WaistCirc and HipCirc, which are waist and
hip circumferences of some individuals, respectively. 
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By combining multiple decision trees the performance can be much improved.  A random forest (RF) 

is an ensemble of B decision trees, where each tree in the forest is constructed on a bootstrapped 

sample of the original data [133, 144, 145]. The bootstrapped sample is created by sampling with 

replacement from the original data [146]. This approach largely reduces the variance and increases 

the robustness of the model. Another difference between a decision tree and a random forest, is that 

when growing a tree in the random forest, only a random subset, , of the  predictor variables can 

be considered at each split of the tree. 

The objective for this is to break up the correlation between the trees in the forest, and to hinder 

strong predictors to dominate the model. When a random forest is grown, the final prediction for a 

new observation is the majority vote, or the mean value, of the individual trees, for classification and 

regression problems, respectively. A random forest has two tuning parameters. The size of the tree 

ensemble, , must be sufficiently large, for the error rate to reach a stable minimum, however it will 

not overfit if  is increased [133]. The number of predictor variables, which can be considered at each 

split, must also be chosen. It is typically set to m=   or /3 when building a random forest of 

classification or regression trees, respectively. However, the best choice will depend on the problem, 

and a small value of  will typically be beneficial when there is a large number of correlated predictors 

in the data [145].  A disadvantage of RFs is that the interpretability is lost at the expense of an 

increased prediction accuracy, compared to decision trees. The overall summary of importance of 

each predictor can however be obtained using the Gini index or root-mean squared error (RSS) for 

classification and regression problems, respectively, and is often represented in a bar plot. The total 

amount that the Gini index or RSS is decreased by splits over a given predictor variable, averaged over 

all  trees can be recorded. A high value will indicate an important predictor.  
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Figure 1.14 The process of fitting a classification tree to the decision space in Figure 1.13. 
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Gradient boosting machines 

Similarly to random forests, gradient boosting machine is an ensemble of decision trees. However, 

boosting does not involve bootstrap sampling, instead trees are grown sequentially, where each tree 

is fit on a modified version of the original data set [133, 145, 147, 148]. Given a current model, a 

decision tree is fit to the residuals from the model. This new tree is added to the existing tree 

ensemble, and the residuals are updated. The model is thus improved in areas where it performs 

poorly. The boosting approach is thus to learn slowly, where each individual tree is rather small. There 

are different variants of boosting algorithms, which will not be discussed in detail here [136]. 

Depending on the exact implementation of the algorithm, there can be different tuning parameters. 

Importantly, the distribution function must be chosen to be Gaussian or Binomial, depending on if it 

is a regression or classification problem, respectively. The size of the individual trees must also be set, 

governed by the interaction depth, .  A model with only tree stumps (  =  1) often outperforms 

models with higher interaction depths, if the number of trees is sufficiently large. To make the 

algorithm learn even more slowly, a shrinkage parameter, , can be set [148]. By setting  to be below 

one, at iteration of the algorithm a shrunk version of a new tree is added to the tree ensemble. It is 

typically set to 0.01 or 0.001, depending on the problem. A very small  might require using a very 

large ensemble size for achieving good performance. Another important tuning parameter is the 

number of trees in the ensemble, . This number is typically considerably higher than for a random 

forest, as each individual tree is here very small. These tuning parameters can be chosen during the 

training process by cross validation. Similarly as to RFs, relative variable influence in the model is given 

as an output. 

1.4.4 Deep learning 

An artificial neural network (ANN) is a ML algorithm inspired by the human brain. It consists of layers 

of interconnected neurons [137]. These neurons are computational units, which can receive some 

input, process it, and propagate some output downstream, as visualized in Figure 1.15. The input layer 

takes in the raw data, which is then propagated to the nodes of the hidden layer. At each node, a 

weighted sum of the input values is calculated, biased and passed through an activation function, 

before being propagated further through the network [149]. For neurons in the first layer, the input 

will be the raw data. For neurons further downstream in the network, the input will be the output of 

the previous layer. The type of activation function and the number of nodes in the hidden layer can 

be varied. Some commonly used activation functions are rectifying linear units (ReLU), hyperbolic 

tangent, the unit step function and identity. 

Deep Learning (DL) is a class of ML methods based on artificial neural networks, with more than one 

hidden layer. In general, the more number of hidden layers and neurons per layer, the more complex 
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models can be built. Opposed to other ML algorithms, a DL system is self-teaching, meaning that it 

learns by filtering information through multiple hidden layers [150]. This is achieved through back-

propagation, where during training of the network, the output of the network (predicted value) is 

compared to the truth, and the weights are adjusted [149]. The mismatch between the truth and the 

predicted value is calculated through the loss function, which takes the prediction of the network, and 

the true target, and computes a distance score. There exist different methods for the optimization of 

neural networks, where stochastic gradient descent (SGD) is one of the most commonly used. This 

algorithm searches for the minimum point of the loss function, the point for which the gradient of the 

loss function is 0 [137]. This gives the analytical combination of the weight values that yield the 

smallest possible loss. The algorithm is as follows: 1. Run the network with a set of initial weights to 

obtain predicted values 2. Compute the loss of the network 3. Compute the gradient of the loss with 

regard to the network’s parameters 4. Move the parameters in the opposite direction from the 

gradient: new weights = old weights – step*gradient, thus reducing the loss slightly [137]. The steps 

1-4 are repeated until a further decrease in the loss cannot be obtained. The backpropagation 

algorithm applies the chain rule to compute the gradient values. It starts with the final loss value, and 

iterates backward from last to first layer, computing the gradient one layer at a time. 

 

Figure 1.15 A schematic representation of the architecture of a deep neural network consisting of an input layer,
multiple hidden layers and an output layer. The input is passed through the first hidden layer, and a weighted 
sum is passed through an activation function before it is down-propagated to the next layer. When training, the
output is compared to the true value, and the weights are adjusted by back-propagation. The figure to the right
depicts one node of the neural network, where a weighted sum of the values of the nodes in the proceeding layer
is passed through an activation function (in the yellow box).  
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Table 1.3 Activation and loss functions for different types of problems. This table is reproduced from [137]. 

Problem type Last-layer activation Loss function 

Binary classification Sigmoid Binary cross-entropy 

Multiclass, single-labeled classification Softmax Categorical cross-entropy 

Multiclass, multilabel classification Sigmoid Binary cross-entropy 

Regression to arbitrary values None Mean-squared error (MSE) 

Regression to values between 0 and 1 Sigmoid MSE or binary cross-entropy 

 

Data should be variable-wise normalized (auto-scaled) before feeding into a neural network, as it 

makes the learning of the network easier. The architecture of a neural network will depend on the 

problem at hand. There are different types of activation functions and loss functions that should be 

used depending on the problem type, as summarized in Table 1.3. In addition, the number of layers, 

the number of nodes in the each layer, and the number of epochs must be chosen. An epoch is a full 

iteration over all of the training data. If the task is to classify data into a large number of categories, 

any intermediate layer should not be smaller than the size of the final layer, to avoid information 

bottlenecks which may drop out relevant information. The model can be regularized further by adding 

dropout, weight regularization or by adding or removing variables. Dropout consist of randomly 

setting to 0 a number of outputs (governed by the dropout rate, which is the fraction of features that 

are zeroed out) of a layer during training [136]. Adding dropout will make the network more 

generalizable and reduce overfitting. Weight regularization is a way of forcing the weights of the 

network to take on only small values, thus putting a constraint on the complexity of the network, and 

is done by adding a cost associated with having large weights to the loss function. 

Although all deep neural networks have the basic structure of an artificial neuron network, several 

types of networks have evolved, enabling a wide range of potential applications, such as speech 

recognition, medical image analysis and natural language processing. Some of the most commonly 

used DL algorithms are Feed-forward Neural Networks (FFNN), Recurrent Neural Networks (RNN), 

Convolutional Neural Networks (CNN) and Probabilistic Neural Networks (PNN) [151, 152].  

A FFNN is a type of neural network where connections between nodes do not form a cycle. For making 

a prediction given a new set of input variables, these variables are passed through the hidden layers 

to the output layer, thus they are fed forward through the network. A FFNN is commonly trained using 

backpropagation and is then referred to as a multi-layer perceptron.  

CNNs are most commonly applied to analyzing or classifying images, but are also widely applied to 

natural language processing (NLP) [153].  The structure of a CNN is one input layer (typically an 2D 
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image, or a matrix of words for NLP) and one output layer, as well as multiple hidden layers [154]. The 

hidden layers in a CNN consist of a series of convolutional layers. The convolution is a sliding dot 

product, which works like a filter. Often it is a 2D matrix, of much smaller dimensions than the image 

(input layer). Initially it starts at the top left corner of the image, and the dot product of the image and 

the convolution is calculated. Then the convolutional kernel is moved to the right by one pixel, and 

the same action is performed. In this way, only important information is filtered through this 

convolutional layer. This filtering depends on the features one wants to extract and highlight. 

Following the convolutional layers, pooling is performed, which is responsible for reducing the 

dimensions of the convolved feature, thus reducing the computational power. Two common types of 

pooling are max pooling and average pooling. In both types, the convolved layer is divided into non-

overlapping squares, and the operation is performed on each of these. Max pooling returns the 

maximum value of the values in each square, while average pooling returns the average value of this 

square. The final step of the CNN is to flatten the output, which is fed into a regular NN. In this way, 

non-linear combinations of the extracted features of interest can be modelled [155]. 

1.4.5 Model selection and validation 

A central challenge in machine learning is that a model must perform well on new, previously unseen 

data, not only on the training data [156]. An optimal multivariate model is one that has a high 

prediction accuracy, but that also has the ability to generalize well to new data. Overfitting is the case 

when the model is too closely fit to the data on which it is trained. The model includes details and 

noise, making its prediction accuracy for new, unseen, data low. Underfitting is the case when the 

model is too general and the model fails to capture necessary information in the data, also resulting 

in a model with poor performance [133]. To avoid over- or underfitting, multivariate models need to 

be carefully selected and validated. The optimal way to achieve this is to divide the original data set 

into three parts: a training set, a test set and a validation set [149]. The training set is used to build an 

initial model, using a supervised learning method. The fitted model is then employed to the test set, 

where its performance is evaluated. This step includes refining of the model by tuning model 

parameters, and is the crucial step for avoiding over- and underfitting. The final model is then 

employed on the validation set, to get a correct prediction or classification accuracy. In medicine, 

however, the data sets are often too small to allow for such a procedure. 

Cross validation 

Cross validation is a model validation procedure, in which the original data set is divided into  parts, 

where each part is in turn hold out in the model building and is referred to as a test set. The remaining 1 parts of the original data set together make up the training set, and are used for model building 

[133]. Thus, every part of the original data set gets to be in a test set exactly once and in a training set 
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1 times. The overall model performance is then an average of the performance of the  models. 

Cross validation can also be used to determine optimal parameters for a multivariate model, when 

applied on the training set. 

A double CV procedure can be employed when the number of observations is large enough. In double 

CV, an inner loop, in which parameter tuning is performed, is nested in an outer loop for prediction 

performance assessment [157]. The outer loop makes its assessment using a test set, which has been 

completely left out during the model tuning, thus giving a more accurate estimate of the prediction 

performance, as illustrated in Figure 1.17. 

Permutation testing 

Permutation testing can be employed to verify the statistical significance of a multivariate model.  The 

idea behind permutation testing is to test if a given classification model is better than random. 

Suppose we have a data matrix , with observations from each individual in one row, a corresponding 

response vector , and a multivariate prediction model with classification error . In permutation 

testing, the original class labels ( ) of the samples in a data set ( ) are shuffled among the individuals 

[158]. In the permuted data set, the original class labels are thus assigned to the individuals in a 

random order. On this permuted data set, a new multivariate model is fit in the exact same way as 

previously, and the classification error  is calculated. This procedure is repeated  times, where the 

number of permutations should be set to at least 1000. The proportion of classifications equal to or 

better than the original classification are used to calculate the p-value assessing the statistical 

significance of the original model: 

=  ( ), 

Figure 1.16 Schematic representation of a double cross-validation procedure. The inner loop consists of a K-fold 
CV, for parameter tuning. The model giving the best performance is chosen and tested on a test set to assess the
predictive power of the final model, in the outer loop. The test set samples are unseen in the model optimization
procedure. 
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where  is the indicator function, which takes the values 1 or 0, depending on weather the condition 

in the parenthesis is true or not, respectively. A p-value less than or equal to 0.05 or 0.001 indicates a 

significant model with 95% or 99% confidence, respectively. 

Multiple testing correction 

In metabolomics, statistical tests are often performed on each metabolite in parallel. When 

performing multiple statistical tests a fraction of the tests will result in false positives, meaning that 

significant p-values will be obtained merely by chance. Increasing the number of tests increases the 

probability of obtaining false positive findings. There is a number of methods for correcting the p-

values from multiple tests, among them the Bonferroni [159, 160] and Benjamini-Hochberg 

adjustments [161]. The Bonferroni adjustment implies multiplying each p-value by the number of tests 

performed. This adjustment controls the familywise error rate, which is the probability of obtaining 

one or more false discovery. The Bonferroni adjustment is thought to be too strict for metabolomics 

studies, thus the alternative, Benjamini-Hochberg adjustment, is thus commonly used. The Benjamini-

Hochberg adjustment provides a balance between false positives and false negatives by controlling 

for the false discovery rate.  

1.4.6 Study designs 

Case-control studies are designed to measure disease occurrence and its association with an exposure 

in a retrospective manner (Figure 1.18). In a case-control study, two groups with a different outcome 

(e.g. healthy/ill, dead/alive) are drawn from a larger cohort and compared. Cases are identified and 

are given a response value = 1. Suppose we have  cases that together make up the case group. A 

control group is created, by randomly selecting a group of individuals with a different outcome than 

the cases. These are given the response value = 0. The cases can be matched to the controls on 

different levels (e.g. age or sex), if the disease is highly dependent on a variable. However, matching 

should be restricted, so that the control group is representative for a random population. Increasing 

the number of controls over the number of cases, up to a ratio of about 4 to 1, increases the statistical 

power of the analysis. Once a group of cases and controls is created, differences in conditions prior to 

the event (outcome) can be compared to identify predictive biomarkers of the disease. Case-control 

studies have several advantages: they can study rare diseases or diseases with a long latency, they are 

relatively inexpensive, existing records can be used, multiple risk factors can simultaneously be 

examined and are relatively quick to conduct. The main disadvantage of case-control studies is that it 

is susceptible to selection biases and confounding. Selection bias occurs when cases or controls are 

selected on criteria related to the exposure of interest [162]. Confounding may be present if other risk 

factors are present that were not measured. In addition, the rate of disease in exposed and unexposed 

individuals cannot be determined. 
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Cohort studies provide an alternative study design and can be either retrospective (looking into the 

past) or prospective (looking in to the future) [163].  In a retrospective cohort study subjects are 

selected from a homogeneous population, based on exposure to a specific risk factor. The outcome of 

interest (typically disease incidence rate) is compared between the exposed and unexposed group. A 

prospective cohort study is an approach that recruit and follow participants who share a common 

characteristic over a period of time. A part of the cohort will be exposed to a specific risk factor during 

the follow-up period. By measuring the outcome of interest at the end of the follow-up, the impact of 

this variable can be assessed. The disadvantage of this study design is that some diseases will require 

a long follow-up period for the event to occur, and is vulnerable to a high loss to follow-up rate. Cross-

sectional studies examine the data (exposures to risk factors and disease status) at one particular time 

point in a defined population.  

The study designs discussed above are all observational studies, which mean that the study 

participants are only observed, and with no action from the researcher. Study designs including an 

intervention are called experimental studies, of which randomized controlled trials (RCT) are the most 

commonly used. An RCT aims to reduce bias when testing the effectiveness of new treatment 

strategies by randomly allocating individuals to receive one of several interventions. One of these 

interventions is either a standard practice, placebo or no intervention at all, and individuals receiving 

this intervention make up the control group. The efficacy of the other interventions is assessed in 

comparison to the control.  
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Figure 1.17 A case-control study design. Study participants which have developed the outcome variable of
interest are identified, and a suitable control group is selected. Their past exposure to suspected risk factors is 
then compared to investigate associations between the risk factor and the outcome. 
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2 Aims of thesis 

 

The overall aim of this thesis was to use metabolic profiling to predict individual breast cancer risk, 

and to investigate treatment-induced metabolic changes in breast cancer patients undergoing 

treatment. This overall aim was accomplished by individual aims for each of the studies included in 

this thesis: 

 

1. Assess the effect of repeated freeze and thaw cycles on the NMR measured serum and urine 

metabolome to ensure the quality of metabolomics findings from samples which have been thawed 

more than once (Paper II). 

 

2. Determine the systematic metabolic effect of neoadjuvant therapy in breast cancer patients, and 

establish differences in serum and tissue metabolism between treatment responders and non-

responders (Paper I). 

 

3. Identify predictive biomarkers for individual breast cancer risk, by metabolic characterization of 

serum samples of healthy women who later developed breast cancer (Paper III). 
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3 Materials and methods 

This thesis includes three papers related to metabolomics of biofluids and tissue samples. Paper II is a 

methodological article evaluating the effects of repeated freeze and thaw cycles on NMR-measured 

lipoproteins and metabolites in serum and urine samples. Paper I is a scientific article assessing the 

serum metabolic response of breast cancer patients undergoing treatment. Paper III presents the 

predictive potential of circulating serum biomarkers for future breast cancer. Table 1.3 summarizes 

the material and methods used in Papers I-III of this thesis. 

Table 3.1 Material and methods used in Papers I-III of this thesis. 

  
Paper I Paper II Paper III 

NeoAva cohort Healthy volunteers HUNT2 biobank 

Materials 

Serum and tissue samples of 
132 women measured  
before, during and after 
treatment. 

20 serum and 20 urine 
samples from donors at the 
St. Olav’s hospital. 

Blood samples from over 
1153 patients who later 
developed breast cancer 
and a control group of equal 
size.  

Methods NMR spectroscopy NMR spectroscopy NMR spectroscopy 

Quantification Spectral integration in 
Matlab 

Absolute quantifications 

(Bruker Biospin) 

Absolute quantifications 
(Bruker) and spectral 
integration in Matlab 

Data analysis

 
PCA; PLS-DA; multilevel PLS-
DA; univariate tests 

PCA; CV; ICC; univariate 
tests PLS-DA; RF; LR; GBM; DL 

 Study cohorts 

3.1.1 NeoAva cohort

For Paper I, serum and tissue samples obtained within the Neoadjuvant Avastin in Breast Cancer 

(NeoAva) cohort were included. The NeoAva study is a multicenter randomized phase II clinical trial 

to evaluate the effect of Avastin (bevacizumab) in combination with neoadjuvant treatment regimes.  

Women with non-metastatic, large (diameter  2.5 cm), HER2 positive- breast tumors were recruited 

in the years 2008- 2012 at St. Olav University Hospital in Trondheim and Oslo University Hospital 

(Radium Hospital and Ullevål Hospital). Nonfasting serum was collected at four sampling time points: 

prior to treatment (TP1), 12 weeks into treatment (TP2), at surgery (TP3) and six weeks after surgery 

(TP4).  Tissue samples were in addition obtained at TP1-TP3, by ultrasound-guided needle biopsies 
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(TP1 and TP2) or from the surgically removed tumor (TP3). All patients had signed a written informed 

consent and the study has been approved by the Regional Ethics Committee (REK) and the Norwegian 

Medical Agency. 

Treatment protocol 

Patients in Paper I were administered neoadjuvant chemotherapy according to Norwegian guidelines, 

and were randomized to additionally receive bevacizumab. Chemotherapy consisted of four cycles of 

anthracyclines in the form of FEC100 (5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, 

cyclophosphamide 600 mg/m2) every three weeks, followed by 12 weeks of taxane-based therapy 

(weekly infusion of paclitaxel 80 mg/m2 or four cycles of docetaxel 100 mg/m2). Bevacizumab was 

administered once every three weeks (15 mg/kg) in parallel with chemotherapy for half of the 

patients. Docetaxel treatment was changed to paclitaxel for the majority of patients due to toxicity. 

For these patients, the dose of bevacizumab was changed to 10 mg/kg every two weeks. Figure 3.1 

shows the treatment regime and experimental set up of the study. 

 

Figure 3.1 Diagram showing the treatment regime and experimental set up of the NeoAva study. 

 

Prognostic measures and survival evaluation 

For Paper I, the residual cancer burden (RCB) was used as a response measure. It is a continuous index, 

combining the pathological measurement of the primary tumor with nodal metastases, thus taking 

into account the size and cellularity of the tumor, as well as number and size of lymph node 
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metastases. RCB can be divided into four classes, where class 0 is equivalent to pathological complete 

response (pCR), meaning that no cancer or lymph node metastasis is present. Due to a limited patient 

cohort, patients having an RCB class 0 or I were classified as having a good response, while patients 

having a RCB class II or III were classified as having a poor response to treatment. 

Patients deceased within 5 years after diagnosis were classified as non-survivors, whereas patients 

 

3.1.2 Freeze/Thaw cohort 

For paper II, non-fasting serum (n = 20) and spot-urine (n = 20) samples were obtained from two sets 

of anonymized healthy female and male adult donors. Blood samples were obtained from the Blood 

bank at St Olav’s Hospital (Trondheim, Norway) and urine samples were obtained from anonymized 

donors. Each serum and urine sample was divided into five aliquots before following the work flow 

illustrated in Figure 3.2.  The five aliquots of each sample were subjected to 1-5 freeze-and thaw cycles 

before NMR analysis. The need for a formal ethical approval was discussed with REK Central Norway, 

and found to be unnecessary as this was a quality control study using completely anonymized samples 

from healthy volunteers. 

3.1.3 HUNT2 biobank 

For Paper III, serum samples (n = 2306) from the second wave of the Trøndelag Health Study (The 

HUNT Study) were included. The HUNT study is a database of questionnaire data, clinical 

measurements and biological samples from inhabitants in the Northern part of Trøndelag collected 

over four waves, from 1984 onwards. HUNT2 was the second wave and data was collected in the years 

Figure 3.2 Study design for evaluating the effect of freeze and thaw cycles on samples in Paper II. 
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1995-1997. All participants at age 20 or older donated a blood sample. For this paper, serum samples 

were collected through a nested case-control design, from healthy female participants. By matching 

the data from HUNT2 with the Cancer Registry of Norway, all female participants which later 

developed breast cancer were identified and chosen as cases for this study. For each case, an age-

matched (using intervals of 5 years) control was selected at random. The controls remained breast-

cancer free until data collection in 2018. All participants of the HUNT study have signed a written 

informed consent, and the study has been approved by the REK.  

 NMR protocol 

3.2.1 Sample preparation 

All serum samples were stored at -80 °C until NMR analysis. Thawing took place at 4°C (Paper I) or at 

room temperature (Paper II and III), samples were then turned upside down a couple of times to 

remove the freezing gradient. Equal amounts (150 L) of serum and buffer (D20 with 0.075 mM 

Na2HPO4, 5 mM NaN3, 3.5 mM trimethylsilylpropanoic acid (TSP), pH 7.4) were mixed and transferred 

to 3 mm NMR tubes for analysis.  

Urine samples were stored at -80 °C until NMR analysis. Urine samples were thawed at room 

temperature. Thawed samples were centrifuged at 12121 g for 5 minutes at 4°C. 540 L of supernatant 

was mixed with 60 L buffer (1.5 mM KH2PO4 in D20, 0.1% TSP, pH 7.4). Urine and buffer mixtures 

were transferred to 5 mm NMR tubes.  

Spectral acquisition from tissue samples was completed prior to the start of work described in this 

thesis [164]. In short, biopsies were snap-frozen after collection and stored at -80 °C. Sample 

preparation took place on a dedicated work station ensuring that the samples were kept frozen during 

the preparation. Approximately 4 mg of tissue were cut to fit into 30 

24.29 mM sodium formate in D2O. Each insert was set into a MAS zirconium rotor with a diameter of 

4 mm. 

3.2.2 Spectral acquisition 

All NMR analyses of biofluids performed locally at NTNU were carried out on a Bruker Avance III 

spectrometer operating at 600 MHz (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a 

5 mm QCI CryoProbe. Sample handling and data acquisition were automatically performed using 

SampleJet sample changer and Icon-NMR on Topspin 3.5 (Bruker BioSpin). For serum and urine 

samples, NMR spectra were recorded using a one-dimensional nuclear overhauser effect spectroscopy 

pulse sequence (noesygppr1d), using 96k data points and 30 ppm spectral width, and two-dimensional 

JRES spectra (jresqpprqf). For serum samples, Carr Purcell Meiboom Gill (cpmgpr1d) spectra with 
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water presaturation were acquired at a temperature of 37 °C in addition. To aid in peak annotation, 

2D HSQC and HMBC were recorded from selected samples. 

HR MAS MR spectra were acquired from the tissue samples on a Bruker Avance Avance III 

spectrometer (Bruker Biospin GmbH, Germany) equipped with a 1H/13C MAS probe. For all samples, 

one-dimensional Carr Purcell Meiboom Gill (cpmgpr1) spectra with presaturation were acquired at a 

temperature of 5 °C to minimize tissue degradation. 

3.2.3 Spectral preprocessing and metabolite quantification 

For Paper I, preprocessing of the tissue NMR spectra had been completed prior to the work described 

in this thesis, and the details have been described by Euceda et al, 2017 [164]. In short, spectra were 

baseline corrected, peak aligned using the icoshift algorithm and normalized by probabilistic quotient 

normalization (PQN) [120] after the removal of lipid signals. Quantified metabolites were normalized 

by PQN. For serum NMR spectra, the free induction decays (FIDs) were Fourier-transformed to 128 K 

real data points after modification by an exponential line broadening factor of 0.3 Hz. Spectral data 

was further preprocessed in Matlab R2017b (The Mathworks, Inc. Natick, USA) [165]. The left peak of 

the alanine doublet at 1.47 ppm was used as a chemical shift reference, and the region of interest was 

defined to be between 0.2 and 9.2 ppm, excluding the water region (4.3-5.0 ppm). Baseline correction 

by asymmetric least squares (AsLS) was attempted, but did not show an improvement, thus 

uncorrected baseline was used for further analysis. The spectra were peak aligned using the icoshift 

algorithm [117] and normalized by mean normalization. Metabolite peaks were identified using the 

human metabolome database, published literature and an in-house overview over previously assigned 

spectral peaks in serum based on 2D HSQC acquisitions, and the STOSCY algorithm [166]. 

Quantification was performed by integrating fixed spectral regions corresponding to each peak. For 

metabolites with more than one identifiable peak, the mean value of the multiple peaks were 

calculated and used for further analysis.  In total, 29 distinct peaks were quantified (27 metabolites 

and two lipid signals). 

For Paper II, 32 scans were recorded and the free induction decays (FIDs) were Fourier-transformed 

to 128k real data points after modification by an exponential line broadening factor of 0.3 Hz. Serum 

and urine metabolite concentrations were automatically quantified using Bruker B.I. Quant-PSTM, and 

Bruker B.I. Quant-URTM methods, respectively. These methods are based on algorithms developed for 

fitting predefined proton signals [167]. In total, 26 serum and 50 urine metabolite concentrations were 

quantified. Serum lipoproteins were quantified using the commercial Bruker IVDr Lipoprotein Subclass 

Analysis (B.I.LISATM) method from Bruker BioSpin. This method yields 112 quantitative lipoprotein 

parameters: the concentrations of lipids [cholesterol (CH), free cholesterol (FC), triglycerides (TG), and 
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phospholipids (PL)] in serum, and in four main lipoprotein classes: VLDL, IDL, LDL, and HDL, as well as 

 

apolipoproteins (Apo-A1, Apo-A2, and Apo-B) in serum and two main classes (HDL and LDL) and 10 

The model also returns 12 calculated parameters, 

including ratios of LDL-CH/HDL-CH and Apo-B/Apo-A1, and 10 particle numbers (particle numbers of 

 The density range of lipoprotein subfractions is continuous, 

and the subfractions referred to in this thesis are in accordance with the subfractions, with the 

corresponding density ranges, as defined in protocols from Bruker BioSpin: LDL1: 1.019-1.031 kg/L, 

LDL2: 1.031-1.034 kg/L, LDL3: 1.034-1.037 kg/L, LDL4:  1.037-1.040 kg/L, LDL5:  1.040-1.044 kg/L, and 

LDL6:  1.044-1.063 kg/L.  HDL1: 1.063-1.100 kg/L, HDL2:  1.100-1.112 kg/L, HDL3:  1.112-1.125 kg/L, 

and HDL4: 1.125-1.210 kg/L. 

For Paper I, measurements of lipoprotein parameters and methods for absolute quantification were 

not available, thus relative metabolite concentrations were used. Newly developed software for 

absolute metabolite quantification by Bruker enabled the use of absolute metabolite and lipoprotein 

concentrations for Paper II. For Paper III, absolute metabolite concentrations were used, by combining 

automatic quantification using the Bruker developed software in addition to our own in-house routine 

for quantification for metabolites. 

Approximately half of the samples for Paper III were analyzed at MR Core facility, NTNU, while the 

second half was shipped to Bruker BioSpin GmbH, Germany, for analyses.  In order to achieve absolute 

metabolite concentrations, raw CPMG spectra were imported into Matlab, and areas under the 

spectral regions corresponding to distinct metabolites were integrated. These integrals were 

corrected for the number of protons giving rise to the signals, and were adjusted for T2 relaxation 

times.  

To obtain T2 relaxation times, we performed experiments on three separate serum samples, and 

modelled the exponential decay for each signal separately, based on the area under the signal. The 

details of the cpmg sequences are: D20 = 0.0003 and VClist = [2; 4; 8; 16; 50; 100; 200; 350; 500; 650; 

800; 1000; 2000; 4000; 6000; 10000]. The exponential decay was modelled using a two-component 

exponential function, yielding a separate component for the decay of the lipid signals and the 

metabolite decay.  To obtain a better fit of the exponential function to the data, which tended to 

overestimate the decay, every second point at the beginning of the decay (points 2, 8, 50, 200, 500 

and 800 of the VClist variable) was left out when fitting the line, giving more weight to the smaller 

value closer to zero. The T2 values varied across these three samples, due to their slightly different 

metabolic compositions. Therefore, the signal (spectral integral) was corrected based on the mean 

value of the T2 values of the three serum samples. 
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Signals arising from the same metabolite were thereafter averaged, giving a total of 28 quantified 

metabolites. The concentration of glucose was set equal to the automatically quantified glucose 

concentration (Bruker B.I. Quant-PSTM) and the remaining metabolite concentrations were scaled 

accordingly using the same factor, thus giving absolute metabolite concentrations. The analyses of 

lipoprotein parameters was performed as described for Paper II, after correcting for the signal arising 

from the contamination, as described in detail in Chapter 4 of this thesis. 

3.2.4 Quality control samples 

For Paper II and III, quality control (QC) samples were prepared and run in parallel with serum and 

urine samples of interest. These QC samples were prepared by pooled serum or urine samples of 

anonymous donors.  The main purpose of the QC samples was to assess the reproducibility of the 

NMR method, and to be able to detect an instrument malfunction as soon as possible. 

For Paper II, the QC samples were in addition used to compare the variability associated with preparing 

and running an identical sample several times, with the variability of the FTC samples. For Paper III, 

the QC samples were used to evaluate batch differences of metabolite concentrations between 

samples run in our local lab and those which were shipped to and analyzed in Germany. 

 Data analysis 

3.3.1 Imputation of missing data

For Paper II, metabolite concentrations below a threshold for quantification, the limit of detection 

(LOD), were not reported, thus the automatically quantified metabolite data had missing values. 

Metabolites with concentrations > 0 for more than 30% of serum or urine samples were classified as 

quantifiable, while the rest were excluded from the analysis. For the included metabolites, zero values 

were replaced by half of the lowest detected value of the corresponding metabolite. 

3.3.2 Univariate data analysis

For Papers I and II, due to non-normality of the serum metabolites, the nonparametric Wilcoxon-

signed-rank test was used to test the significance of the changes in serum metabolite levels between 

the different sampling points. P-values were adjusted using the Benjamini-Hochberg procedure to 

correct for multiple comparisons. Statistical significance was considered for adjusted p-values  0.05. 

The univariate tests were performed in R 3.5.0 (R Foundation for Statistical Computing) [168]. 

For Paper II, the coefficients of variation and intra-class correlations were calculated to assess the 

degree of variation within samples subjected to multiple freeze-and-thaw cycles, from individual 

patients. These analyses were performed in R. 



3   MATERIALS AND METHODS 
 

50 
 

In Paper III Student t-tests were performed to compare the baseline characteristics for the study 

cohort, i.e. to assess if there are variables which at baseline were significantly different between the 

cases and controls. These tests were performed in R. 

3.3.3 Multilevel and multivariate analysis 

For Paper I and II, PCA was used to explore naturally occurring groupings. The number of PCs was 

selected using residual explained variance plots. PCAs were performed in Matlab 2017b [165] using 

the PLS Toolbox 8.6.2 (Eigenvector Research Inc., U.S.A.) [169].  

For Paper I, PLS-DA was employed to build classification models for different clinical variables. The 

models were fitted and validated using 10-fold cross-validation, repeated 20 times. The optimal 

number of LVs was chosen to be the number of LVs corresponding to the first minima in the cross-

validated classification errors. Furthermore, permutation testing (with 1000 repetitions) was 

employed to verify the statistical significance of the PLS-DA models.  

Multilevel PLS-DA was performed in Paper I, to assess the treatment effect on the serum metabolome, 

after the removal of the between-patient variation. These analyses were performed in Matlab 2017b 

using the PLS Toolbox 8.6.2. 

For Paper III, multiple machine learning methods were employed. PLS-DA was performed in Matlab 

2020 using the PLS Toolbox 8.6.2. Further, RF, GBM and LR was performed in R 4.0.0 using the 

randomForest v4.6-14 [144], gbm v2.1.8 [170] and the stats v3.6.2 [168] packages, respectively. For 

LR, also glmnet was used for the adaptive lasso procedure [171]. For DL, Python 3.8 was used, making 

use of the Keras library [172] and numpy [173], pandas [174, 175] and scikit-learn [176] packages. 
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4 Summary of papers and additional results 

 Paper I 

Assessing treatment response and prognosis by serum and tissue metabolomics in breast cancer 

patients.  

Julia Debik, Leslie R. Euceda, Steinar Lundgren, Olav Engebraaten, Øystein Garred, Elin Borgen, Hedda 

von der Lippe Gythfeldt, Tone F. Bathen and Guro F. Giskeødegård

Journal of Proteome Research: 2019 Oct 4; 18(10):3649-3660. doi: 10.1021/acs.jproteome.9b00316 

Patients with locally advanced breast cancer have a worse prognosis compared to patients with 

localized tumors and require neoadjuvant treatment before surgery. The aim of this study was to 

characterize the systemic metabolic effect of neoadjuvant chemotherapy in patients with large 

primary breast cancers and to relate these changes to treatment response and long-term survival.  

This study included 132 patients with large primary breast tumors randomized to receive neoadjuvant 

chemotherapy with or without the addition of the antiangiogenic drug Bevacizumab. Tumor biopsies 

and serum were collected before and during treatment and, serum additionally 6 weeks after surgery. 

Samples were analyzed by nuclear magnetic resonance spectroscopy (NMR).  

Correlation analysis showed low correlations between metabolites measured in cancer tissue and 

serum. Multilevel partial least squares discriminant analysis (PLS-DA) showed clear changes in serum 

metabolite levels during treatment (p-  changes in lipid levels. 

PLS-DA revealed metabolic differences between tissue samples from survivors and nonsurvivors 

collected 12 weeks into treatment with an accuracy of 72% (p-value = 0.005); however, this was not 

evident in serum samples.  

Our results demonstrate a potential clinical application for serum-metabolomics for patient 

monitoring during and after treatment, and indicate potential for tissue NMR spectroscopy for 

predicting patient survival. 
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Figure 4.1 Graphical abstract. This figure summarizes the study design of the NeoAva study and data analysis. 
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 Paper II 

Effect of repeated freeze-thaw cycles on NMR measured lipoproteins and metabolites in biofluids.  

Feng Wang*, Julia Debik*, Trygve Andreassen, Leslie R. Euceda, Tonje H. Haukaas, Claire Cannet, 

Hartmut Schäfer, Tone F. Bathen#, Guro F. Giskeødegård#; *shared first authorship; #shared last 

authorship 

Journal of Proteome Research: 2019 Oct 4; 18(10): 3681-3688. doi: 10.1021/acs.jproteome.9b00343 

Metabolic profiling of biofluids by Nuclear Magnetic Resonance (NMR) spectroscopy serves as an 

important tool in disease characterization, and its accuracy largely depends on the quality of samples. 

We aimed to explore possible effects of repeated freeze-thaw cycles (FTCs) on concentrations of 

lipoprotein parameters in serum and metabolite concentrations in serum and urine samples. After 

one to five FTCs, serum and urine samples (n=20) were analyzed by NMR spectroscopy and 112 

lipoprotein parameters, 20 serum and 35 urine metabolites were quantified by a commercial 

analytical platform. 

Principal component analysis showed no systematic changes related to FTCs, and samples from the 

same donor were closely clustered, showing a higher between-subject variation than within-subject 

variation. The coefficients of variation were small (medians of 4.3%, 11.0% and 4.9% for lipoprotein 

parameters and serum and urine metabolites, respectively). Minor, but significant accumulated 

freeze-thaw effects were observed for 32 lipoprotein parameters and one serum metabolite (acetic 

acid) when comparing FTC1 to further FTCs. Remaining lipoprotein and metabolite concentrations 

showed no significant change. 

In conclusion, five FTCs did not significantly alter the concentrations of urine metabolites and 

introduced only minor changes to serum lipoprotein parameters and metabolites evaluated by the 

NMR-based platform. 
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Figure 4.2 NMR spectra of serum and urine samples. Serum (top) and urine (bottom) spectra from two 
representative donors, colored in orange and blue, respectively. All five spectra, one from each FTC are plotted.
For the serum spectra, the area in focus shows part of the spectral region where the lipoprotein signals appear. 
The spectral positions of the –CH2- and –CH3 signals reflect the lipoprotein particle size. The area in focus for the
urine spectra shows signals from hippurate as an example. 
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 Paper III 

Serum metabolic profiling for assessment of breast cancer risk in women participating in the HUNT2 

study. 

Julia Debik, Hartmut Schaefer, Trygve Andreassen, Feng Wang, Fang Fang, Claire Cannet, Manfred 

Spraul, Tone F. Bathen, Guro F. Giskeødegård 

Background 

Breast cancer is the most common cancer in women worldwide and early diagnosis is of vital 

importance. The aim of the present study was to investigate if serum metabolic profiles of healthy 

women could contribute to predict the risk of developing breast cancer in the future and to gain a 

better understanding of the etiology of the disease.  

Methods 

A nested case-control study within the Trøndelag Health Study (HUNT study) was performed, including 

1153 participants diagnosed with breast cancer after inclusion into HUNT and 1153 age-matched 

controls. Using nuclear magnetic resonance spectroscopy (NMR), 28 metabolites and 112 lipoprotein 

subfractions were quantified from pre-diagnostic serum samples.  

Results 

Logistic regression identified significant associations between multiple circulating molecules and a 

future breast cancer 0-22 years after serum collection. However, multivariate prediction models could 

not accurately distinguish between breast cancer cases and controls. 

Conclusions 

There were significant positive associations between triglycerides in VLDLs, free cholesterol and Apo-

A2 in HDLs, acetate, and valine with long-term breast cancer risk, while there were significant inverse 

associations between total amount of Apo-A1, free and esterified cholesterol in VLDLs, phospholipids 

in HDLs and glycine with long-term breast cancer risk.  
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 Additional results related to Paper I  

Paper I gives insight into the serum metabolic changes during neoadjuvant treatment of breast cancer 

patients, based on a cohort of 132 patients and four sampling time points. Most of the results 

published in this paper are based on PLS-DA models. Attempts were made to increase the prediction 

accuracies for the models in Paper I, by applying RFs instead of PLS-DA. 

The results of the RFs for predicting the same outcomes as the ones presented in Paper I are 

summarized in Table 4.1. Details about the implementation of the PLS-DA models can be found in the 

published article. For RFs, the number of trees (ntree) was set to 500 to ensure that the error has 

reached its minimum, while the optimal number of variables tried at each split (mtry) in the trees was 

found by comparing the out-of-bag error rate for all possibilities of mtry from 1 to 29 (the number of 

metabolites). The out-of-bag error rate is calculated by averaging the error of the predictions of left-

out samples from each bag (bootstrapped data) and is equivalent to cross validation. The sensitivity 

and specificity of the RF classifiers were calculated in a similar way, based on the predictions of the 

left-out samples from each bag. The model metrics are averaged over 20 repetitions of model fitting 

and evaluation. The PLS-DA analysis were performed in Matlab 2017b [165] using the PLS toolbox 

[169], while RFs were performed in R 3.5.0 [168] using the randomForest package [144]. 

Table 4.1 Summary of prediction models, comparing the performance of PLS-DA models and RFs. The accuracies 
are averages over 20 cross-validated classification errors. 

   PLS-DA RF 

  
N  (class1 / 

class2) 

Sens./Spec. 

(%) 
Accuracy 

Sens./Spec. 

(%) 
Accuracy 

Bev. Treat / 

Chemo treat. 

only 

TP2 89 (46 / 43) 58 / 70 64 % 62 / 63 63 % 

TP3 93 (46 / 47) 60 / 57 59 % 50 / 52 51 % 

TP4 86 (44 / 42) 67 / 47 57 % 55 / 54 52 %

RCB class 0+I 

/ 

RCB class 

II+III 

TP1 89 (30 / 59) 27 / 44 36 % 22 / 64 60 % 

TP2 89 (28 / 61) 33 / 63 48 % NaN / 68  67 % 

TP3 93 (31 / 62) 58 / 57 58 % 37 / 67 62 % 

TP4 86 (28 / 60) 65 / 73 69 % 0 / 69 65 % 

5 year 

survival 

TP1 89 (81 / 8) 5 / 70 37 % 91 / NaN 91 % 

TP2 89 (81 / 8) 48 / 81 64 % 91 / NaN 90 % 

TP3 93 (85 / 8) 43 / 79 61 % 92 / NaN 91 % 

TP4 86 (79 / 7) 23 / 73 48 % 92 /NaN 92 % 
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 Contamination problem related to Paper III  

For paper III, 2306 serum samples from HUNT2 study were analyzed. The spectral acquisition revealed 

a contamination present in all of these samples, which interfered with one of the lipid signals. This 

lipid signal arises from methyl (-CH3) groups at approximately 0.88 ppm, mainly from triglycerides and 

esterified cholesterol within the lipoprotein particles. From this lipid signal detailed information about 

lipoprotein subfractions is extracted through the B.I.LISATM. Figure 4.3 shows the raw spectra of the 

first 1200 HUNT samples, in the area in which this contamination peak appears.  

Because of this contamination, lipoprotein subfractions as reported during spectral acquisition of the 

serum samples, could not be used directly. Exclusion of these variables during data analysis is 

associated with a reduction of 112 variables, which are valuable for giving a precise picture of the lipid 

metabolism.  

 

 

Figure 4.3 Raw spectra from approximately 1200 serum samples from the HUNT2 cohort, and 20 QC samples run 
in parallel (in red), in the region where the lipid peak arising from –CH3 appears in the spectra. The peak at 
approximately 0.88 ppm comes from neopentyl glycol and interferes with the signal from the lipid. The QC 
samples have no such peak. 
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Through 2D experiments (Figure 4.4) we were able to identify that the peak was arising from the 

compound neopentyl glycol. Both HSQC and HMBC experiments showed crosspeaks at 0.85 / 23 and 

3.38 / 71 ppm (1H/13C), indicating that protons at 0.85 and 3.38 ppm are coupled to carbons at 23 and 

71 ppm through both one-bond and multiple bonds. This points to a highly symmetric molecule like 

neopentyl glycol. Further evidence were found through high agreement with calculated chemical 

shifts (ChemDraw, Alfasoft). Effort was made to find out the source of this contamination, however 

without luck. We believe the contamination is either from the blood collection tubes or from the tubes 

in which the blood has been stored. Identification of the compound corresponding to the 

contamination peak made it possible to perform spiking experiments, where known amounts of the 

contaminant were added to clean serum samples (from anonymous blood donors at the St.Olav’s 

University hospital).  

The results of the spiking experiment showed that, although the peak arising from neopentyl glycol 

consistently appears in the same position at the ppm scale, the majority of the quantified lipoprotein 

subfractions quantified by B.I.LISATM were largely affected. The subfractions associated with the low 

density lipoproteins were mostly affected, with a high overestimation of the particle numbers. 

However, as these lipoprotein subfractions are not calculated independently from one another, for 

example overestimated values for the subfractions L1CH, L2CH and L3CH resulted in underestimates 

of L4CH, L5CH and L6CH. In addition, the shape of the lipid signals varies across individuals, and thus 

the contamination affects different lipoprotein variables for different lipid profiles, making the 

correction for the contamination peak not straight forward. This is shown in Figure 4.5, where clean 

(in blue) and spiked spectra (in red) are shown for four of the donors. 

Figure 4.4 Results from 2D NMR experiments, verifying that the contamination comes from the compound
neopentyl glycol, verified by comparing to the molecular structure of the compound. HMBC: Heteronuclear
multiple-bond correlation spectroscopy; HSQC: Heteronuclear single-quantum correlation spectroscopy. 
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We proceeded with an experiment, where three aliquots of a clean serum sample were spiked with 

different concentrations of neopentyl glycol, while one remained clean, to investigate if there is a 

linear trend relating the concentration of neopentyl glycol to the lipoprotein variables. This 

experiment showed us that the lipoprotein variables were differently affected by increasing the 

concentration. As some of the variables indeed showed a linear trend with increased concentration, 

other variables did not increase further after reaching a maximum or minimum value. Figure 4.6 shows 

the results, where the different concentrations of the lipoprotein subfractions associated with LDL 

from the four samples with different concentrations of neopentyl glycol are shown.  
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Figure 4.5 Results from the spike-in experiment, for four different donors, comparing a clean serum sample, with
a serum sample spiked by a 0.2 nM concentration of neopentyl glycol, in the region with the lipid peak arising 
from –CH3. 
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As collaborators in the project, Bruker Biospin assisted with developing a routine to model the peak 

arising from the contamination and subtract it from the raw spectra. The processed raw spectra was 

then used to re-calculate the concentrations of the lipoprotein subfractions using B.I.LISATM protocols. 

To evaluate the accuracy of the concentrations calculated from the processed spectra, this algorithm 

was tested on our spiked samples, and compared with the corresponding clean samples. The fit of the 

modelled peak varied across donors, see Figure 4.7 for examples of a good (4.7A) and a poor fit (4.7B). 

Looking at the percentage differences between lipoprotein concentrations calculated from the clean 

spectra and the processed contaminated spectra, it was apparent that some of the variables were not 

reliable. Based on the spike-in experiment, which included 10 donors, 3 of the variables had a 

percentage difference exceeding +/- 10% for 9 of the donors. 4 of the variables had a percentage 

difference exceeding +/- 10% for 8 of the donors, 4 variables for 7 of the donors, and 7 variables for 6 

and 5 of the donors. As there are no clean HUNT2 samples to compare with, the exclusion of some 

variables from the data analysis in this project has been done on the basis of the spiking experiment.  
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Figure 4.6 Concentrations of different lipoprotein subfractions associated with LDL from four different aliquots 
from the same donor spiked with different concentrations of neopentyl glycol (0, 0.2 mM, 0.1 mM and 0.3 mM). 



4.5    Contamination problem related to Paper III 
 

61 
 

 

Figure 4.7 Results from the algorithm that models the peaks arising from the contamination and removes it from 
the raw spectra, when tested on the spike-in samples. The green line shows the spectra of the clean sample, the 
red line shows the spectra of the corresponding sample, with added neopentyl glycol, and the blue line shows the 
processed spectra, where the peaks arising from the contamination have been modelled and removed. The top 
panel (A) shows an example of a good fit, and thus small differences between the clean and the processed 
spectra. The bottom panel (B) shows an example of a poor fit, where there is more discrepancy between the clean 
and the processed spectra. 1) and 2) show the two regions of the spectra where signals from neopentyl glycol 
appear. 

Table 4.2 Results of the algorithm that models the peaks arising from the contamination and removes it from the 
raw NMR spectra, tested on the samples from the spike-in experiment. 

Variable 

Total no. of donors 
with concentration 
exceeding a 
percentage change of 
+/- 10 % 

Variable 

Total no. of donors 
with concentration 
exceeding a 
percentage change of 
+/- 10 % 

Variable 

Total no. of donors 
with concentration 
exceeding a 
percentage change of 
+/- 10 % 

TPTG 0 IDPL 2 L5TG 9

TPCH 0 LDPL 0 L6TG 4 

LDCH 0 HDPL 0 L1CH 6 

HDCH 0 HDA1 1 L2CH 8 

TPA1 1 HDA2 1 L3CH 5 

TPA2 1 VLAB 0 L4CH 6 

TPAB 0 IDAB 3 L5CH 4 

LDHD 0 LDAB 0 L6CH 2 
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ABA1 1 V1TG 1 L1FC 6 

TBPN 0 V2TG 0 L2FC 9 

VLPN 0 V3TG 2 L3FC 1 

IDPN 3 V4TG 1 L4FC 7 

LDPN 0 V5TG 0 L5FC 3 

L1PN 6 V1CH 3 L6FC 2 

L2PN 8 V2CH 2 L1PL 6 

L3PN 4 V3CH 5 L2PL 8 

L4PN 7 V4CH 3 L3PL 3 

L5PN 4 V5CH 2 L4PL 7 

L6PN 2 V1FC 2 L5PL 4 

VLTG 1 V2FC 5 L6PL 2 

IDTG 1 V3FC 3 L1AB 6 

LDTG 3 V4FC 4 L2AB 8 

HDTG 1 V5FC 5 L3AB 4 

VLCH 1 V1PL 3 L4AB 7 

IDCH 5 V2PL 0 L5AB 4 

VLFC 0 V3PL 3 L6AB 2 

IDFC 3 V4PL 2 H1TG 3 

LDFC 0 V5PL 2 H2TG 1 

HDFC 0 L1TG 2 H1CH 4 

VLPL 0 L2TG 5 H2CH 2 

H3TG 1 L3TG 1 H3CH 1 

H4TG 3 L4TG 9 H4CH 1 

H1FC 1 H2PL 1 H3A1 1 

H2FC 2 H3PL 1 H4A1 1 

H3FC 1 H4PL 1 H1A2 2 

H4FC 1 H1A1 6 H2A2 2 

H1PL 5 H2A1 0 H3A2 0 
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5 Discussion 

The work in this thesis describes metabolic characterization of breast cancer. The main objective was 

to investigate the potential of metabolic profiling for treatment monitoring during breast cancer 

treatment and for early risk stratification of a future breast cancer. This thesis also evaluated the 

metabolic effects of sample handling prior to NMR experiments of biofluids, specifically the effect of 

repeated freeze and thaw cycles on quantified concentrations of metabolites and lipoprotein particles. 

In Paper I, the metabolic effects from neoadjuvant treatment in patients diagnosed with locally 

advanced breast cancer were examined. Survivors and non-survivors were successfully discriminated 

based on the NMR spectra from tissue samples, while clear serum metabolic changes were observed 

in patients undergoing treatment. Also the type of treatment could be discriminated based on the 

serum metabolic profiles. This paper showed the complementary nature of studying the tissue and 

serum metabolomes. 

In Paper II, the metabolic effects of sample handling, with a focus on the effects of repeated freezing 

and thaw cycles on the concentrations of metabolites in serum and urine, and lipoprotein particles in 

serum, were evaluated. We found that up to five freeze and thaw cycles did not induce systematic 

changes in the concentrations measured by NMR. However, minor, but significant accumulated 

freeze-thaw effects were observed for 32 lipoprotein parameters and acetic acid in serum, when 

comparing one freeze and thaw cycle to further cycles. This paper constitutes an important basis for 

Paper III, in which the sample material was from the HUNT2 biobank. Samples stored in biobanks often 

undergo several freeze and thaw cycles, and it was hypothesized that several freeze and thaw cycles 

may influence the sample composition due to chemical degradation processes. 

Paper III included a large collection of serum samples from healthy participants in the HUNT2 biobank, 

of which half later developed breast cancer, while the second half remained breast cancer free during 

the follow-up period. The aim of this paper was to investigate associations between metabolites and 

lipoproteins in serum with breast cancer risk. This paper revealed several significant associations, 

however, these were not strong enough to be used for predicting a future breast cancer case.  

 Potential clinical applications of metabolomics findings 

Metabolomics is the final level of the omics cascade, and metabolites are downstream products of the 

proceeding levels. Detailed information on many thousands of metabolites have been described in 

metabolome databases [177, 178] and metabolomics has in the recent years gained interest as a 

promising tool for disease detection and characterization, as it has the ability to detect subtle 

differences in metabolism. Biological findings in Paper I are related to treatment response among a 
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specific group of breast cancer patients, while biological findings in Paper III are related to the very 

early disease development. Paper I included small-molecular metabolites quantified in tumor and 

serum samples, while Paper III included serum levels of both metabolites and lipoprotein parameters. 

5.1.1 Tissue versus biofluids 

As described previously, there are mainly two commonly used analytical platforms for metabolomics 

studies, NMR and MS, of which NMR has the advantages of being less labor-intensive and more 

reproducible, and in that aspect more promising for clinical applications. Tissue metabolic profiles 

provide a detailed picture of the biological processes inside the tumor and have been found to be 

correlated with cancer-specific variables [179-181]. In comparison to tissue metabolomics, the 

metabolic profile of a biofluid reflects the metabolic state of the entire organism. Blood circulates 

through the whole body, and is responsible for delivering nutrients to all organs and tissues. Urine is 

a by-product of metabolism, containing compounds that have been excreted, and flows through from 

the kidneys to the bladder. Metabolomics of biofluids are minimally-invasive, and thus appealing for 

use in clinical applications. As illustrated in Figure 5.1, NMR metabolic profiling of biofluids may be 

applied along the entire cancer timeline; for risk stratification of healthy individuals, for diagnosis, for 

diseases subtyping leading to treatment stratification, for monitoring treatment response and also for 

detecting a disease relapse. Serum and urine metabolism is influenced by several endogenous 

processes as well as environmental and lifestyle factors [67, 182-184], including the circadian rhythm 

[185]. Because of this high variability, identification of robust biomarkers is more challenging, and 

effort should be made to minimize variation not related to the biological trait of interest. 

 

 

Figure 5.1 NMR metabolic profiling of biofluids has a wide range of applications, from risk assessment to 
detecting a disease relapse. 

The main objective of this thesis was to perform metabolic characterization of breast cancer for 

improved management of breast cancer. Paper I focused on tissue and serum metabolic changes 

during neoadjuvant treatment of locally advanced breast cancer patients, while Paper III investigated 

the associations between circulating metabolites and lipoprotein parameters with a long-term breast 

cancer risk.  As the work in Paper I was a continuation of a previously published work, NMR analyzes 
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of tissue samples had been completed before the work on this thesis began. Thus, although this thesis 

includes metabolomics analyses of tissue, metabolomics of biofluids has been the main focus. 

In Paper I we had a unique opportunity to compare treatment response of breast cancer patients 

undergoing treatment in the tumor tissue and serum metabolome. In this paper, also the correlations 

of metabolites from tissue biopsies and serum samples from the same patients were evaluated. The 

correlations were also calculated for each medium alone. The results showed that there is little 

correlation between serum and tissue metabolic profiles. For example, tumors are often characterized 

by a high lactate production, however this study showed a lack of correlation between tissue and 

serum lactate levels. Thus, despite possible leakage of metabolites from the tumor into the 

bloodstream, tumor specific metabolites will in general be masked by the overall high variation of the 

serum metabolome. 

5.1.2 Treatment response 

Paper I focused on treatment-induced serum and tissue metabolic changes in breast cancer patients, 

and included up to four sampling time points (prior to treatment, during treatment, and post-

treatment (serum only)). This study was quite unique due to its longitudinal study design and the 

availability of two types of biological samples; tumor tissue and serum. In this paper, changes in the 

tissue metabolic profiles as an effect of chemotherapy were observed, which could be linked to patient 

survival (classification accuracy for separating survivors and non-survivors = 72%). For the same 

patient cohort, based on the tissue metabolic profiles, patients with a pathological minimal residual 

disease could be successfully discriminated from pathological non-responders from samples taken 

after treatment completion (accuracy = 77%) [186]. Patients with a pathological minimal residual 

disease showed elevated levels of glucose, compared to pathological non-responders, indicating a 

decline in the consumption of glucose in the former group. Similarly, decreased levels of 

glycerophosphocholine, phosphoscholine and choline was found comparing these groups. These 

metabolites are involved in the metabolism of phosphatidylcholine, which is a phospholipid highly 

abundant in eukaryote cell membranes. Also in other studies, tissue metabolic profiles have shown 

promise for clinical application prior to and during breast cancer treatment for treatment 

stratification. For example, tissue metabolic profiles have shown to have predictive value for 

determining the ER status of breast cancer patients [179], and for discriminating between triple 

negative and triple positive breast cancers [180]. However, in Paper I, patients receiving different 

treatment regimens (chemotherapy combined with Bevacizumab versus chemotherapy only) could 

not be discriminated at any time points based on tissue metabolic profiles. In contrast, they were 

successfully discriminated by serum metabolic profiles obtained at the early stage of treatment 

(accuracy = 64 %), which again demonstrates the complementary nature of these two biological 
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matrices. The group of patients treated with Bevacizumab had higher serum levels of leucine, 

acetoacetate and tri-hydroxybutyrate, and lower levels of formate, compared to patients treated with 

chemotherapy only. Interestingly, tissue metabolic profiles revealed a significant interaction between 

time and bevacizumab for glutathione [186]. This finding indicates that bevacizumab might play a 

redox destabilizing role in cancer cells, inducing oxidative stress to promote apoptosis.  

From serum metabolic profiles taken after completed treatment, the residual cancer burden could be 

predicted with an accuracy of 69 %. Moreover, serum metabolic changes during treatment revealed 

increased levels of circulating lipids during treatment. This is an important finding, pinpointing the 

increased risk of cardiovascular diseases for breast cancer survivors [187-189]. Similar treatment-

induced increases in lipid levels were observed in a different patient cohort, for breast cancer patients 

undergoing adjuvant treatment [96]. For the same patient cohort as examined in Paper I, by combing 

serum metabolites with inflammation related markers (measured 12 weeks into treatment, TP2), a 

set of 10 molecules were found to be associated with treatment response [190]. Analyses were 

performed by applying a Lasso logistic regression model, and serum metabolites included in the lasso 

were leucine, creatinine, proline-betaine and dimethyl-sulfone. The serum metabolic profiles alone of 

samples taken at TP2, could however not successfully discriminate patients with a good (RCB class 0 

or I) or poor (RCB class II or III) response.  

5.1.3 Assessing biomarkers for future development of breast cancer 

Paper III presents one of the largest prospective analyses of serum metabolic profiles and breast 

cancer risk to date [105, 107, 191], and associations between several lipoprotein parameters and 

metabolites and long-term risk of breast cancer were identified. Significant positive associations 

between triglycerides in VLDLs, free cholesterol and Apo-A2 in HDLs, acetate, and valine with long-

term breast cancer risk were found, and inverse associations between total amount of Apo-A1, free 

and esterified cholesterol in VLDLs, phospholipids in HDLs and glycine and long-term breast cancer 

risk. This study partially confirmed previous findings, linking an increased breast cancer risk with an 

increased risk of cardiovascular diseases [192], but provided a more detailed picture of the lipidomic 

profile. For example, we revealed additional biological insight into the relationship between HDL 

metabolism and breast cancer risk, by showing that the esterified cholesterol, which is within the 

lipoprotein, and the free cholesterol in the micellar membrane of the lipoprotein have opposite 

associations with breast cancer risk [100]. Most similar prospective studies on breast cancer risk have 

been performed based on metabolic profiles obtained by mass spectrometry [105, 108, 184, 191], 

which makes the comparison of significant findings across studies difficult due to a different panel of 

metabolites being measured. However, in this study we were able to confirm some of the findings 

reported by Lécuyer et al., such as positive associations between valine, which has been suggested as 
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a marker for poor cardiovascular health, and breast cancer risk, in addition to positive associations of 

creatinine. The association of creatinine was however conflicting to results presented by Bro et al., 

which observed an inverse association between a NMR signal corresponding to a spectral overlap of 

creatine and creatinine and short-term breast cancer risk [106]. Our study also found inverse 

associations between the non-essential amino-acid glycine and breast cancer risk. This metabolite is 

involved in a wide range of metabolic pathways, and circulating levels of glycine have previously been 

associated with cardiovascular diseases (CVD) [193], insulin resistance [194], metabolic syndrome 

[195] and type 2 diabetes [193, 196]. Glycine has also a key role in rapid cancer cell proliferation [197] 

and differential expression of enzymes associated with serine/glycine metabolism differ across breast 

cancer subtypes [198]. Glycine levels in Paper I remained relatively stable during treatment, with a 

significant decrease after treatment completion, possibly indicating a negative side-effect of 

treatment. A more systematic study comparing the etiologies of CVD, diabetes and breast cancer 

would be very interesting. 

The large sample size and long follow-up period together with the availability of numerous lifestyle 

factors allow for further stratified analysis of the HUNT2 cohort for assessment of breast cancer risk 

in future investigations. Also, if the associations found are merely mediators of already known risk 

factors (such as alcohol intake or overweight) should be investigated, by performing analyses 

corrected for known breast cancer risk factors. Further work should also include analyzes on more 

homogenous subgroups of individuals, stratified on breast cancer specific variables (e.g. ER status), to 

investigate how associations differ among the different breast cancer subtypes. Other studies have 

shown that there exists a heterogeneity in the serum metabolic profile by breast cancer subtype [199, 

200]. Analyzes stratified on pre- or post-menopausal status or the use of hormone therapy should also 

be performed, as these variables are likely to influence the associations of metabolites with breast 

cancer risk [105, 200]. 

Paper III includes pre-diagnostic serum metabolic profiles, while Paper I includes serum metabolic 

profiles of women prior to, during and after treatment. The presence of linear trends in the 

development of breast cancer could be investigated by comparing the serum metabolic profiles of 

individuals which later developed breast cancer included in Paper III with serum metabolic profiles of 

newly diagnosed breast cancer patients (samples at TP1 in Paper I). Paper I however includes relative 

serum metabolic concentrations, while Paper II and III include absolute serum metabolic 

concentrations, making direct comparison of the values challenging.   



5   DISCUSSION 
 

68 
 

5.1.4 Recent developments in serum metabolomics 

Major obstacles for the translation of metabolic findings to clinical application have been the lack of 

standardization and relatively small patient cohorts, resulting in a large heterogeneity in reported 

metabolites which have been found significant in cancer research [201]. This makes findings across 

studies difficult to compare. 

Several commercial actors for automatic metabolic quantification have been established, such as 

Metabolon (https://www.metabolon.com/) and Nightingale (https://nightingalehealth.com/) for MS 

and NMR metabolomics, respectively. These platforms are convenient for large-scale metabolomics 

studies, allowing for comparing metabolic profiles of thousands of individuals. Studies with impressive 

cohort sizes have already been performed utilizing the Nightingale platform, where significant 

metabolic risk factors have been described [202-204]. Similar to the B.I.LISATM lipoprotein subclass 

analysis developed by Bruker BioSpin, Nightingale provide information on the lipid composition of 

serum samples, however their method is based on electrophoresis, while the algorithms developed 

by Bruker BioSpin are based on ultracentrifugation, making comparison of results challenging. The 

downside of such commercial actors is however that the researcher is left with little control over the 

sampling handling and data acquisition. These companies receive biological samples and return 

metabolic concentrations, but generally not the raw data, which is a big disadvantage. Importantly, 

the platform used in the current thesis (Bruker BioSpin’s quantification methods) allow for automatic 

metabolite and lipoprotein parameter quantification, returning the raw NMR spectra in addition. 

Section 5.2 of this thesis illustrates some of the challenges that might be present during metabolomics 

analyses, such as the presence of a contamination or variability associated with algorithms for 

automatic quantification. In addition, several challenges common in MR based metabolomics analyses 

were also present in the current work, such as NMR spectra with poor shim and varying success of 

water suppression. How to handle missing data due to metabolic concentrations below the limits of 

detection may also be important for correct interpretation of data analysis. These large platforms have 

so far been reluctant to sharing exact procedures for handling these problems. During the recent years 

there has also been improvements for automatic spectral preprocessing and metabolite quantification 

(Chenomx, B.I.QUANT-PS2TM, BATMAN [122], Mnova [205]), which is necessary for large-scale 

metabolomics studies. 

 Metabolite and lipoprotein quantification and reliability 

5.2.1 Absolute versus relative metabolite quantification 

For Paper I, there was no procedure available for absolute metabolite quantification. In addition, 

spectra were run using an older protocol, which has not been developed for lipoprotein parameter 
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quantification. For the quantification of metabolites and lipoprotein parameters in Paper II, we used 

commercially available analytical platforms developed by Bruker BioSpin: B.I.LISATM, Bruker B.I. Quant-

PSTM and Bruker B.I.Quant-URTM for lipoprotein parameters, serum and urine metabolites, respectively 

[167].  In Paper II we observed that the procedure for automatic metabolite quantifications in serum 

is associated with a high variability in the concentrations, as the CVs for the serum metabolites of the 

QC samples were high, compared to the CVs of the lipoprotein parameters and urine metabolites. We 

therefore decided to quantify serum metabolites manually for Paper III, however making use of the 

absolute concentrations of glucose obtained by B.I. Quant-PSTM in order to convert spectral integrals 

to absolute concentrations. 

Metabolites in Paper I were quantified manually, by importing raw NMR spectra into Matlab, and 

integrating the area under each peak, after necessary preprocessing. Mean normalization was then 

applied to the spectra prior to metabolite integration, which provided relative metabolic 

concentrations. The disadvantage of relative metabolite concentrations is that metabolic findings 

across studies are more difficult to compare. Also, even though the metabolic response of different 

groups can be compared, it is difficult to say something about the magnitude of these differences. As 

mentioned in Section 5.1.4 one of the main challenges of metabolomics is that there is no standardized 

pipeline to guide researchers trough sample handling, spectral acquisition, preprocessing and to 

quantification. Different approaches of preprocessing are commonly used. Moreover, different sets 

of metabolites may be detected by different analytical platforms [206]. Non-standardized analytical 

procedure hinders the translation of metabolic results to clinical practice [109]. Different types of 

normalization emphasize different metabolites [207] and in Paper I we saw how the inclusion or 

exclusion of different spectral regions (in specific the broad lipid peaks, which make up a substantial 

part of the spectra and have a high between-individual variation) influences the results, and thus the 

biological interpretation. Absolute metabolic concentrations allow for easier comparisons between 

studies, and possibly also across different analytical platforms and pinpoints why absolute 

concentrations are preferable over relative concentrations. We therefore strived to obtain absolute 

concentrations for Papers II and Papers III.  

We observed in Paper II that the reproducibility of the automatically quantified serum metabolites 

was limited due to the protocol for automatic quantification. This was also evident in Paper III (the 

median CV (calculated from the QC samples) for all samples combined was CVC = 55.4 %, and only 

alanine, isoleucine, valine, lactate and pyruvate had a CV < 15 %) and motivated us to performed 

manual quantification to obtain as low CVs as possible. Quantification was performed in the cpmg 

spectra as suppression of lipids and macromolecules makes detection of the metabolite peaks easier. 

Cmpg spectra are however affected by T2 relaxation, thus when all metabolites were identified and 
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quantified, they were adjusted by the T2 relaxation times. T2 values were estimated based on three 

separate serum samples. These T2 values varied across these three samples, which had slightly 

different metabolic compositions. The variation was in specific high for small peaks or peaks lying close 

to a lipid signal and this variation demonstrates a need for performing a more systematic study of how 

the T2 values are affected by factors such as the amount of lipid in the serum. For the metabolites for 

which the T2 values had a high variation (proline-betaine, lysine, ornithine, citrate, acetoacetate, 3-

hydroxybutyrate, glutamate, ethanol, isoleucine and dimethyl-glutarate), there is a higher uncertainty 

in the exact metabolic concentrations in Paper III. In order to get absolute metabolite concentrations, 

the concentrations of glucose were set equal to the absolutely quantified concentrations of glucose 

by B.I.Quant-PS (as this metabolite had the lowest coefficient of variation, CVC = 8.37 % for all samples 

combined, while CVT = 2.55 %, CVG = 2.92% calculated from samples in the two labs separately, where 

all CVs are calculated from the QC samples), while the remaining metabolites were scaled accordingly 

by the same factor. The concentrations quantified manually had lower CVs than automatically 

quantified concentrations (median CVC = 9.95 % of which 23 had a CV < 15 %), thus we were able to 

substantially reduce variability caused by the quantification protocol. This reduction in the variation 

resulted in CVs smaller than those reported in Paper II, where the protocol for absolute metabolite 

quantification was employed, and for which the median CV was 11.0%.  

Absolute quantification is a big step towards standardization and better tools for automated 

metabolite quantification are necessary. Moreover, data management according to the FAIR 

principles (findable, accessible, interoperable and reusable) [208] and multicenter studies where the 

same protocol is used are essential for validation of biomarkers and for further advances in this field. 

5.2.2 Reproducibility of NMR 

In metabolomics studies there is variability associated with each step from sample acquisition to 

measuring metabolic concentrations. Metabolic profiles, when measured by NMR, have a high 

reproducibility [209]. However, sample handling and storage prior to analyses may influence the 

metabolic composition of the biological medium [210, 211]. A proportion of variability will always be 

associated with lab work, such as slight variations in the proportions between the biological medium 

of interest and buffer, due to pipetting. There is also some variability associated with the NMR 

acquisition, due to differences in for example shim and the success of water suppression. As stated by 

Dunn et al. the use of QC samples provide the ability to perform signal correction in order to reduce 

analytical variation and to quantitatively determine analytical precision [212]. 

In Paper II and III we ran QC samples in parallel with the samples of interest. In Paper II these were 

used to compare the variability due to repeated freeze and thaw cycles with variability from other 
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sources. For Paper III, by mixing serum from 10 healthy donors we were able to prepare a set of QC 

samples large enough to be run throughout the whole project period, and on average one QC sample 

was run together with 60 serum samples. The QC samples in Paper III turned out to be particularly 

useful for comparing the metabolic levels of samples run at the two different labs. Another advantage 

of QC samples was that the reproducibility of specific metabolites and lipoprotein parameters could 

be assessed. The method for quantifying lipoprotein parameters was released in 2016 [213] and has 

previously shown robust results [167], reflected in overall low CVs. The software for automatic 

quantification of serum metabolites was however newly released [214], and CVs were in general 

higher indicating a lower reproducibility for some of the serum metabolites, such as trimethylamine-

N-oxide and acetoacetic acid.  

Studies for which a long follow-up period is desired, will always require sample material that has been 

stored for a long time. Paper III was based on serum samples from the HUNT2 biobank, which have 

been collected in the years 1994-5 and have been used for several research project throughout the 

years. It is therefore likely that the samples have undergone multiple freeze and thaw cycles due to 

aliquoting [215]. Research on how this might affect the metabolic composition of biological samples, 

when measured by NMR, was limited, thus we performed a study evaluating this effect. In this study 

we found no systematic changes related to repeated freeze and thaw cycles in neither serum nor 

urine. Minor, but significant accumulated effects were however observed for one serum metabolite 

(acetic acid), and 32 lipoprotein parameters in serum. Paper II thus justified the use of biobank 

samples for Paper III. From the significantly associated metabolites with BC risk found in Paper III, 

none were affected by multiple freeze and thaw cycles, making them reliable biomarkers, while for 

the lipoprotein parameters, V3FC, VLCH, V2FC, V4CH and H1A2 had some accumulated effects, with 

slight increases in their concentrations. This should however not influence the associations with breast 

cancer in paper III, as all samples have been stored in the HUNT2 biobank for the same amount of 

time, where they have been treated similarly, and all samples have been thawed only once after 

sample retrieval for this project. Nevertheless, this adds extra variability to the data which may mask 

significant findings.  

In Paper III we also detected a contamination of neopentyl glycol in the samples. The degree of success 

of the method developed by Bruker BioSpin for correction of this contamination signal varied across 

samples, inducing extra variability in the data of this project. All such additional variability makes the 

discovery of biomarkers more challenging as they may contribute to mask the biological information 

of main interest.  
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5.2.3 Batch effect observed in Paper III 

Samples that made up the basis for the analysis in Paper III were analyzed at two different labs: locally 

at NTNU, Trondheim and at Bruker BioSpin in Germany. As previously described, QC samples from the 

same serum mix were analyzed at the lab in Trondheim and in Germany, allowing us to investigate the 

presence of a batch effect. A study performed by Jiménez et al. reported excellent reproducibility for 

lipoprotein parameters and small molecular weight metabolites, when analyzed at 11 different 

spectrometers, distributed across four different geographical locations [167]. In their study, nine 600 

MHz Bruker Avance III HD spectrometers and two 600 MHz Bruker Avance III spectrometers were used 

for NMR acquisition. Even though the two labs analyzing samples for paper III followed the same 

protocol for sample handling, there were apparent differences in the metabolic profiles across the 

two sites. Only five serum metabolites had CVs < 15 %, when calculated using QC samples analyzed at 

the two labs, but when calculated separately for each lab, the median was CVT = 21.6 % and CVG = 56.4 

%, and 14 and 6 metabolites had CV < 15 % from the Trondheim and Germany batches, respectively. 

Effort has been made to understand what caused this batch effect, however no certain explanation 

has been found. Some of our hypothesis for this batch effect include pipetting procedures and 

different pipettes. Differences in the shim may also influence the B.I.Quant models, which are based 

on the lineshapes of the metabolite signals. Also, NMR analyses were carried out on a Bruker Avance 

III HD Ultrashield Plus 600 MHz spectrometer equipped with a 5 mm TCI probe in Trondheim, while at 

the lab in Germany they were carried out on an Avance-IVDr spectrometer. Even though the 

equipment at both labs has been calibrated for use of the same protocol, it is possible that the 

difference in the type of probe used is the origin of the batch effect [216].  

The presence of a batch effect was clearly evident when the concentrations of the QC samples were 

plotted alone, showing variability around two different concentrations. Interestingly, the batch effect 

was not systematic, meaning that concentrations from samples analyzed at one lab were not 

consistently lower or higher than from the lab, which rules out that the batch effect is due to 

systematic variation from pipetting or the types of pipettes. Figure 5.2 shows the raw concentrations 

of a number of lipoprotein parameters colored by the lab at which they were analyzed, together with 

the corresponding concentrations of QC samples. In this figure the concentrations of L6PN are clearly 

higher for samples analyzed in Trondheim compared to the ones in Germany, while the opposite is 

true for L3PN. Figure 5.3 shows PCA scores plots, for the first three PCs when applied to the 

concentrations of the lipoprotein parameters, clearly showing a batch effect.  

As mentioned earlier, in an attempt to decrease the batch effect and the CVs of the serum metabolites, 

NMR spectra were imported into Matlab for manual quantification. The batch effect was also 

observed on the raw NMR spectra, thus quantification had to be performed on the two batches 
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separately. In particular, there was a difference in signal intensity and metabolite peaks experienced 

shifts at the spectral ppm scale which were not systematic (not in the same direction for the different 

metabolites). As described in Section 5.2.1, we were able to lower the CVs in Paper III substantially by 

quantifying manually. The resulting CVs were smaller than those reported in the multicenter study 

mentioned previously, in which CVs < 15 % are reported for 20 out of 24 detected metabolites [167]. 

These values have however been calculated using the mean concentration from each lab, while 

looking at all samples combined, the reported average CV is 40%, which is substantially higher than 

what we were able to obtain in Paper III. The panel of serum metabolites differs slightly across the 

studies mentioned in this section, of which the majority is overlapping. 

Furthermore, since the automatically quantified metabolites had a batch effect, and we used the 

automatically quantified values of glucose to convert spectral integrals to absolute concentrations, 

the batch effect was necessarily propagated on the metabolite concentrations obtained by manual 

quantification. As the batch effect was not systematic, correcting for it could cause unwanted 

alterations in the metabolic profiles. For that reason, we decided not to correct for the batch effect, 

so that the naturally occurring composition of metabolites and lipoprotein parameters in the serum 

samples would not be altered. Lab was however included as a fixed effect in the LR models. Figure 5.4 

(left) shows a PCA score plot of absolute metabolic concentrations, after a thorough manual 

quantification in Matlab, where points are colored according to the lab at which they have been 

analyzed, clearly visualizing a batch effect. Figure 5.4 (right) shows the PC1 loadings for each variables, 

showing that in specific dimethyl-glutarate, leucine, valine and lysine cause this effect. This is in good 

correspondence with the CV values for these metabolites, which were small when calculated 

separately for the two labs, but larger when combined, and are: for dimethyl-glutarate CVT = 6.2%, 

CVG = 6.2%, while combined CVC = 14.3 %; leucine: CVT = 2.9 %, CVG = 3.6 % & CVC = 11.5%; valine: CVT 

= 2.4 %, CVG = 2.9 % & CVC = 8.5 %; lysine: CVT = 2.4 %, CVG = 2.9 % & CVC = 4.6 %.  
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Figure 5.2 A selection of lipoprotein parameters from the HUNT2 cohort. Navy: samples analyzed in Trondheim; 
Turquoise: samples analyzed in Germany; Yellow: QC samples analyzed in Trondheim; Red: QC samples analyzed
in Germany. 
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Figure 5.3 PCA plots of the lipoprotein parameters of samples in the HUNT2 cohort, colored according to the lab 
at which they have been analyzed. Left: scores on PC1 and PC2; Right: scores on PC2 and PC3. The batch-effect 
on the serum metabolic profiles is seen as a shift in the PC3 scores. Navy: Samples analyzed in Trondheim; 
Turquoise: samples analyzed in Germany; Yellow: QC samples run in Trondheim; Red: QC samples run in 
Germany. 

  

Figure 5.4 Scores on PC1 and PC2 when performing PCA on the serum metabolic profiles of samples in the HUNT2 
cohort, colored according to the lab at which they have been analyzed. Left: scores on PC1 and PC2; Navy: 
Samples analyzed in Trondheim; Turquoise: samples analyzed in Germany; Yellow: QC samples run in Trondheim; 
Red: QC samples run in Germany; 1: formate; 2: creatine; 3: lactate; 4: glycine; 5: methanol; 6: dimethyl-sulfone; 
7: ornithine; 8: methionine; 9: glutamine; 10: citrate; 11: acetate; 12: acetoacetate; 13: glutamate; 14: pyruvate; 
15: alanine; 16: ethanol; 17: isoleucine; 18: 2-methylglutarate; 19: leucine; 20: phenylalanine; 21: glucose; 22: 
tyrosine; 23: creatinine; 24: valine; 25: proline-betaine; 26: histidine; 27; lysine; 28: 3-hydroxybutyrate. 
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 Data analysis 

For examining disease characteristics in a metabolomics study, multivariate analysis methods are 

frequently applied, largely due to the nature of the chemical signals [217]. The main advantage of 

these methods is their ability to identify patterns of several metabolites simultaneously. Especially 

PLS-DA is commonly used for creating discriminatory models [218, 219] and PCA for identifying groups 

in data. This is because the data often contains few samples compared to the number of variables and 

because these methods are able to overcome the multicolinearity problem. These methods utilize the 

correlation structure of the data to extract the principal components [138] and project the 

multivariate data onto a lower-dimensional space, and were used extensively in this thesis (PCA was 

used in all papers, while PLS-DA was used in Papers I and III).  

5.3.1 Analyses of repeated measurements 

In Paper I we had repeated measurements from individuals undergoing treatment, thus Paper I 

included the use of paired multivariate data analysis, taking advantage of the multilevel structure of 

the data. As the serum metabolome is highly dynamic, variability across different individuals is high. 

This was also shown in Paper II, where samples from the same donors were clustered closely together 

in the PCA plot, and the distance to the samples from different donors was much longer. In multilevel 

analyses the total variation is split into the within- and between- sample variation, and the net 

differences pre and post treatment is used as input for the discriminant model. An enhancement of 

the variation resulting from the treatment is obtained [220]. This approach was beneficial, and the 

number of correctly classified samples increased to 90%, compared to the regular PLS-DA approach 

which gave an accuracy of 76%, when discriminating between the serum metabolic profiles of breast 

cancer patients at different time points of treatment as shown in Table 5.1. 

 

Table 5.1 Prediction accuracies for discriminating between serum metabolic profiles at the different sampling 
points in the NeoAva study (Paper I), when applying multilevel PLS-DA and ordinary PLS-DA. 

 PLS-DA Multilevel PLS-DA 

TP1 vs TP2 76 % 90 % 

TP2 vs TP3 61 % 77 % 

TP3 vs TP4 70 % 87 % 
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Also linear mixed models would provide useful information about any univariate trends in the 

metabolic changes over the multiple time points in Paper I. This was attempted, but due to high 

deviations from normality the models experienced poor fits. This was also the case after logarithmic 

transformation of the data, thus LMMs were left out from the paper, and the trends in metabolite 

concentrations were instead assessed based on median percentage changes between the different 

time points. LMM was however employed in Paper II to calculate the intra-class correlation 

coefficients, as it calculates the between cluster (here subject) variance and the total variance. 

Calculating the ICCs allowed us to investigate the proportion of the overall variation explained by 

clustering. The ICCs were generally high, showing a good reproducibility of the NMR analyzes, in 

accordance with what we observed in the PCA. In this study we also observed that sometimes 

variables which had a low CV, thus showing a good reproducibility, also had a low ICC value, or vice 

versa, which was at first surprising. After investigating this issue, we found that this was the case when 

the metabolite levels were close to the limit of detection. The CV is calculated by dividing the standard 

deviation by the mean, thus very small mean values will give high CVs. Also, the CVs were calculated 

based on five samples, thus increasing the sample size would provide more accurate estimates. 

Paper II consisted of a relatively small data set, where serum and urine samples from 20 donors were 

compared over several freeze and thaw cycles. Because the variability of the variables was of main 

concern, PCA was chosen for answering the research question. It is a dimension reduction technique 

which allows for observing naturally occurring clusters on a lower-dimensional space, thus it allowed 

us to evaluate the clustering of the samples colored by the corresponding donor. PCA was also very 

useful for the exploratory analysis in Paper III. By plotting the raw concentrations of metabolites and 

lipoprotein parameters from samples analyzed in Trondheim and Germany in the same figure, and 

also including the concentrations of the QC samples, batch effects were detected as previously 

discussed. PCA allowed us to evaluate the combined impact of these differences on the whole 

metabolic profiles.  

In Paper II, for univariate testing the Wilcoxon signed-rank test was chosen as the metabolic 

concentrations did not follow a normal distribution. The student’s t test could probably have been 

used instead, as it quite robust to deviations from normality [221], and is more powerful than the non-

parametric Wilcoxon test for small samples [222], however we chose to use Wilcoxon as that is more 

accepted. The p-values were adjusted for multiple testing using the Benjamini-Hochberg procedure, 

due to the high number of comparisons, and to minimize the probability of incidental findings. 

Correcting for multiple testing in metabolomics studies, in cases when the number of variables is much 

higher than the number of samples, may often reduce most of the p-values below a significance 
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threshold. Multivariate methods allow for looking at the variables together, thus allowing to identify 

patterns which are easily seen when through univariate testing. 

5.3.2 Use of machine learning in metabolomics 

We wanted to investigate if there may be other machine learning approaches (and in specific deep 

learning approaches) which could achieve a better performance than PLS-DA, inspired by several other 

studies [179, 223, 224]. A study comparing the predictive performance of a wide range of machine 

learning approaches on publically available metabolomics data sets showed that support vector 

machines (SVMs) with a radial kernel basis function and artificial neural networks often showed a 

better performance than PLS-DA, although the differences in performance were small [223]. Another 

study showed the superiority of a DL model when predicting the ER status from metabolic profiles of 

breast cancer tissue [179] compared to other ML algorithms. 

An effort was made to try to increase the prediction accuracies for the models in Paper I by applying 

RFs instead of PLS-DA. DL methods are in general dependent on enough training data to reach a good 

performance [225] and thus the application of DL for this cohort was not attempted due to the limited 

sample size. The problem encountered with RF in this study was that it performed poorly on highly 

imbalanced data. Imbalanced data means that there is a large imbalance between the number of 

observations (here patients) in different classes (e.g. survivor, non-survivor). The prediction accuracy 

was in these cases very high, but only because almost all new prediction were assigned the majority 

class, resulting in a very high number of false positives or false negatives, as seen in Table 4.1. This 

underpins the importance of looking at sensitivity (true positives/(true positives + false negatives)) 

and specificity (true negatives/(true negatives + false positives)) in addition to overall accuracy. The 

imbalanced classification results is a direct result of how a tree, which is the basic unit of a RF, is 

constructed. A training set consisting of different number of representatives from either class may 

result in a classifier that is biased towards the majority group. As each tree in a RF is built on a bag 

(bootstrapped sample of the original data), each tree will in average be biased in the same direction 

and magnitude by class imbalance. As this is a common problem for binary classifiers, several 

techniques exist for reducing the class imbalance, such as under-sampling of the majority class or over-

sampling of the small class [226]. Alternatively, the way in which the accuracy of the model is 

calculated can be modified [227]. However, since the RF classifiers showed a very similar performance 

on the data as the PLS-DA, in cases where class imbalance was not an issue, we chose to present the 

results of PLS-DA in Paper III.  

In Paper III, we found multiple metabolites and lipoprotein parameters significantly associated with a 

long-term risk of developing breast cancer. The discriminative ability of these associations were 
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however modest. The data material consisted of both a high number of samples and variables, which 

provided a unique opportunity to test the performance of different machine learning approaches for 

data analysis. The ML models tested included RF, GBM, PLS-DA and a neural network. However, 

although several variables had significant odds ratios, the metabolic information contained in the 

serum samples of healthy females was not capable of predicting a future breast cancer case. This is 

probably due to a high heterogeneity of the study population and needs to be investigated in further 

work on this cohort. By taking advantage of the lifestyle and cancer-specific variables, we can select 

more homogeneous subgroups of the full cohort. This will reduce the variability which is not linked to 

the outcome of interest, and thus might increase predictive performance.  

The ML models in Paper III were assessed by a double cross validation routine, where the data was 

split into an 80/20 training and test set. Inside the training set was a separate cross-validation loop for 

tuning the model parameters, and the performance of the optimal model was tested on the test set. 

This made it possible to calculate the performance metrics prediction accuracy and AUC score, and 

also the standard deviation of the metrics. Based on the AUC score, the RF classifier showed the overall 

best performance, with a mean AUC score of 0.543, while based on the prediction accuracy, PLS-DA 

models showed the best performance with a mean accuracy of 51.6%. A permutation test, based on 

1000 random permutations, on the PLS-DA model for predicting breast cancer within 15 years of 

follow up, gave a p-value of 0.082, showing that this model is significant at a 0.1 significance level. The 

PLS-DA models for predicting breast cancer within 5 years and 10 years were however not significant 

(p-values = 0.144 and 0.480 for 5 and 10 years, respectively). Shrinking the follow-up window did not 

affect the mean model performances, however an increase in the standard deviation of the metrics 

was observed indicating less robust models. In terms of the robustness of the ML algorithms, the DNN 

model had slightly higher standard deviation of the performance metrics, in particular for predicting 

a short-term BC risk. This could indicate that the model had insufficient training data to reach stability. 

Across all models and the two types of performance metrics, the standard deviations were in the rage 

0.035-0.055, when excluding the standard deviation of the accuracy for the DNN model for short-term 

risk prediction. The GBM models had an overall lowest standard deviation in measuring the accuracy, 

while RFs had the lowest standard deviation in estimating the AUC score.  

As mentioned earlier, data analysis in metabolomics studies is dominated by partial least squares 

methods, which project data into latent variables. DL has seldom been applied in metabolomics 

studies for many reasons: lack of community acceptance, limited sizes of data sets and limitations in 

computational powers [218]. In the recent years, these issues have become smaller [152, 153, 228]. 

DL has become much more accessible [229] and has shown promise for metabolomics data, even for 

limited data sizes [179, 230, 231]. DL is more commonly accepted in many research fields, the 
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computational powers have increased and the trend is increasing study cohorts. The however main 

disadvantage of DL is that these models do not return variable contributions to the model, and thus 

information about the underlying biology is lost. PLS based methods on the other hand are easily 

interpretable, and return loadings or VIP scores which link metabolite abundance to the outcome. The 

rationale for applying a wide range of ML algorithms on the cohort in Paper III was the size of the data 

and was driven largely by a personal interest in data analysis. If one of the ML models, which is a more 

“black-box” in nature (e.g. the RF, GBM or DNN) would yield a good prediction model, it would be 

difficult to gain a deeper biological understanding of the formation of cancer based solely on the 

model. However, it would reveal the presence of a predictive potential in the data set, and other 

models could be used to investigate which variables were important for making a correct prediction. 

Also, by applying a range of ML methods, variables important across the models could be compared, 

thus the models could both reveal robust biomarkers and also give complementary biological 

information. A data set with stronger biological correlations with the outcome variable would be more 

appropriate for comparing the model performances.  

For the data set in Paper III, a non-targeted approach, where the whole NMR spectra are used as 

inputs to a DL model might give better predictions, as the variability associated with spectra 

preprocessing and metabolite quantification is avoided. This could be accomplished by retraining an 

existing DL model developed for image classification through transfer learning. 

5.3.3 Statistical inference 

In paper III, fitting the logistic regression model on the whole data caused problems due to the highly 

multi-collinear nature of the variables, in specific the lipoprotein parameters. For this data set, for 

pairs of variables with a correlation exceeding approximately 0.98, the model overestimated these 

parameters and forced them to cancel each other out. This is due to the nature of estimation by least 

squares: when two strongly correlated variables are included in the model, overestimation of one of 

the parameters is accompanied by underestimation of the other parameter [232]. This resulted in 

odds ratios which were highly implausible. For that reason, groups of highly correlated variables were 

in turn left out from the analyses, and the models were compared for the different subsets of 

variables. This approach resulted in more stable models with more reasonable results. To find a best 

subset of variables associated with an increased risk of breast cancer, the best subset selection 

procedure would be unfeasible due to the high number of model comparisons (because of a high 

number of variables). Therefore, both forward and backward stepwise selection procedures were 

tried. Backward selection resulted in a high number of variables included in the model, while forward 

selection resulted in a more modest number of variables. Because stepwise selection procedures are 

not optimal for highly correlated variables, also regularization by Lasso was attempted. It however 



 5.3    Data analysis 
 

81 
 

turned out that also Lasso performed badly shrinking almost all variables to zero.  This is probably due 

to the high correlations among the variables [135]. To overcome this, an adjusted lasso approach was 

employed instead [233]. This approach gives the best subset of variables that together show the best 

prediction performance, but which are not necessarily statistically significant on their own. As the 

predictive performance was evaluated using the ML approaches, the aim of the logistic regression 

analyses were more statistical inference, and for that reason the discussion in Paper III was mostly 

based on the results from the forward stepwise subset selection. 

There were some discrepancy in which variables were considered important for breast cancer risk 

assessment depending on the procedure for selecting an optimal subset of variables in the LR models. 

These discrepancies may reflect different biological mechanisms related to short- and long-term 

breast cancer risk, but may also be related to 1) differences in sample sizes 2) highly correlated 

variables and 3) the difference in the natures of subset selection procedures. Performing stratified 

analyses, where the follow-up time was reduced, resulted in a lower number of samples while the 

number of variables was kept unchanged. It is recommended that LR models should have 10 

observations for one variable, for the smallest of the two outcome groups [222], a condition which 

was not satisfied in the analyses stratified on years until diagnosis. The high correlation of the variables 

affects the stepwise selection procedure. Even though the variables with highest correlations were 

split into different subsets in the LR models, the lipoprotein parameters in specific are highly 

mulitcollinear. Thus a variable selected in the stepwise selection procedure in one model, could easily 

be substituted by another variable, without altering the model performance. This might also be the 

reason that there is a variability in which variables have been selected by the stepwise procedure for 

models with a different follow-up window.  

Figure 5.5 shows a Venn diagram, illustrating the number of overlapping variables chosen for the 

stratified analyses. Three variables had a significant association with breast cancer for all follow-up 

periods. Moreover, variables selected by the stepwise procedure and the variables selected by the 

adaptive lasso were not always overlapping. This reflects the different nature of these two procedures, 

where the former has a focus of statistical inference, while the later focus on prediction accuracy. 

Also, for selecting the optimal penalty and weights in the adaptive lasso, a 10-fold cross validation has 

been implemented, which necessarily will result in some variability in terms of selected variables. The 

biomarkers (metabolites and lipoprotein parameters) significantly associated with breast cancer risk 

in Paper III, although not being strong enough for predicting a future breast cancer case, can be 

considered robust findings as they were identified despite the variation in the data not related to the 

outcome of interest. 
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Figure 5.5 A Venn diagram showing overlapping variables which were significantly associated with a future 
breast cancer in Paper III, in LR models stratified on the length of the follow-up period. 
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6 Concluding remarks and future perspectives 

This thesis illustrates the potential of metabolomics for a more personalized management of breast 

cancer patients, with a wide spectrum of clinical applications: from risk assessment, through diagnosis, 

disease subtyping and thus treatment stratification, treatment monitoring and to detection of relapse.  

The reproducibility of NMR for metabolic profiling has been investigated in this thesis. Paper II has 

evaluated the effect of multiple freeze and thaw cycles on the concentrations serum and urine 

metabolites, and lipoprotein parameters in serum. This study showed an overall good reproducibility 

of the metabolites and lipoproteins, but with minor, though significant, accumulated effects for some 

of the lipoprotein parameters. 

This thesis has also illustrated the complementary nature of tissue metabolomics, which focuses on 

the biological processes within the cancerous tissue, and serum metabolomics, which reflects the 

current state of the whole body. Paper I showed that treatment response of locally advanced breast 

cancer patients could be predicted from tissue metabolic profiles. Also treatment-induced serum 

metabolic changes were evaluated, and in specific, treatment-induced increases in the amount of 

lipids in the serum was observed. This side-effect of treatment has been observed also in other studies, 

and is likely linked with a higher risk of cardiovascular events for breast cancer survivors.  

Paper III investigated associations of circulating metabolites and lipoprotein parameters for a long-

term risk of developing breast cancer. The work carried out in this paper provides a better biological 

understanding of the etiology of breast cancer, and has shown some similarities with the etiology of 

cardiovascular diseases. In specific, significant positive associations between triglycerides in VLDLs, 

free cholesterol and Apo-A2 in HDLs, acetate, and valine and a long-term breast cancer risk have been 

revealed. Similarly, inverse associations between total amount of Apo-A1, free and esterified 

cholesterol in VLDLs, phospholipids in HDLs and glycine with long-term breast cancer risk were found.  

The use of serum metabolomics for risk assessment for breast cancer needs further investigations. 

Analyzes on more homogeneous subcohorts (e.g. stratified on breast cancer specific variables, or use 

of hormone therapy) of the HUNT2 cohort might reveal additional insight into the etiology of breast 

cancer. The large sample size and long follow-up period together with the availability of numerous 

lifestyle factors allow for future stratified analysis. Further studies should also be performed to 

investigate if the associations found in Paper III are merely mediators of already known risk factors, 

such as alcohol intake or overweight. Moreover, using the whole NMR spectra as inputs instead of 

metabolite concentrations (hence minimizing the variability associated with spectra preprocessing 

and metabolite quantification) to a DL model developed for image classification, might give a model 
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with a better predictive performance. Relating serum metabolic profiles with lifestyle factors, and 

comparing with other diseases, such as cardiovascular diseases and diabetes, the influence of lifestyle 

and diet on the disease development should be exploited further.  

This thesis has also demonstrated the recent developments in metabolomics: from relative to absolute 

metabolic concentrations, and a trend towards larger patient cohorts, with the advantages that 

follow. The lack of standardization in this field still makes comparison of metabolic findings across 

different studies difficult, and hinders the translation of findings to a clinical practice. An increased 

focus on standardization at all stages in metabolomics research, better tools for automated 

metabolite quantification, good systems for open publishing, data sharing (of raw data) and 

multicenter studies are important for the further advances in this field.  
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ABSTRACT: Patients with locally advanced breast cancer
have a worse prognosis compared to patients with localized
tumors and require neoadjuvant treatment before surgery. The
aim of this study was to characterize the systemic metabolic
effect of neoadjuvant chemotherapy in patients with large
primary breast cancers and to relate these changes to
treatment response and long-term survival. This study
included 132 patients with large primary breast tumors
randomized to receive neoadjuvant chemotherapy with or
without the addition of the antiangiogenic drug Bevacizumab.
Tumor biopsies and serum were collected before and during
treatment and, serum additionally 6 weeks after surgery.
Samples were analyzed by nuclear magnetic resonance
spectroscopy (NMR). Correlation analysis showed low correlations between metabolites measured in cancer tissue and
serum. Multilevel partial least squares discriminant analysis (PLS-DA) showed clear changes in serum metabolite levels during
treatment (p-values ≤ 0.001), including unfavorable changes in lipid levels. PLS-DA revealed metabolic differences between
tissue samples from survivors and nonsurvivors collected 12 weeks into treatment with an accuracy of 72% (p-value = 0.005);
however, this was not evident in serum samples. Our results demonstrate a potential clinical application for serum-
metabolomics for patient monitoring during and after treatment, and indicate potential for tissue NMR spectroscopy for
predicting patient survival.

KEYWORDS: metabolomics, breast cancer, serum, tissue, NMR, response, survival

■ INTRODUCTION

Breast cancer (BC) is the most frequent cancer type in women
in Norway. Compared to cancer-free women of the same age,
five-year survival of BC patients is 90% in Norway, but ranges
from 28 to 100%, depending on the stage of the disease at the
beginning of treatment.1 It is however challenging to accurately
predict outcome for individual patients, as there is high
diversity in prognosis and response to treatment. This is due to
the heterogeneous biology of the disease, resulting in patients
with similar histology, clinical diagnosis, and stage of disease
having a different prognosis.2,3 BC is often divided into five
genetic intrinsic subtypes, however, many studies have shown
that there are many subgroups within these groups.4−6 One
type of treatment will thus not be beneficial for all patients and

stratification of patients followed by application of targeted
therapy may improve the overall long-term outcome of BC
patients.
Locally advanced BC (LABC) patients, that is patients with

large tumors or extension to lymph nodes, constitute 10−15%
of diagnosed patients with a higher risk of future metastasis.7

Neoadjuvant chemotherapy (NAC) is administered routinely
in LABC patients. This treatment was initially developed to
reduce the size of inoperable tumors prior to surgery and for
eradication of potential micrometastasis, but is now also a tool
to enable breast-conserving surgery.8,9

Received: May 15, 2019
Published: September 4, 2019

Article

pubs.acs.org/jprCite This: J. Proteome Res. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.jproteome.9b00316
J. Proteome Res. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

N
O

R
W

EG
IA

N
 U

N
IV

 S
C

IE
N

C
E 

&
 T

EC
H

N
O

LO
G

Y
 o

n 
Se

pt
em

be
r 1

8,
 2

01
9 

at
 1

1:
23

:0
7 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



Angiogenesis, the formation of new blood vessels from
existing vasculature, has an essential role for supplying
nutrients and oxygen to rapidly growing tumors.10 This
process can be therapeutically targeted by antiangiogenetic
treatment.11 Bevacizumab has the ability to inhibit the
proangiogenetic vascular endothelial growth factor.12

Because of improvements in treatment together with earlier
diagnosis, mortality due to BC has decreased during the last
years.1 However, despite intensive treatment regimes, a great
proportion of LABC patients will develop metastatic
disease.13,14 Additionally, treatment may induce unwanted
long-term side effects, such as fatigue, increased risk of
cardiovascular diseases (CVDs), and cardiotoxicity.15−19

Characterizing the systemic effect of cancer treatment may
further enhance our understanding of unwanted side-effects
and potentially identify mechanisms to prevent late effects.
Metabolomics is a rapidly growing field in medical research

and makes it possible to look at the contents of a biological
matrix at the molecular level. Metabolites are downstream
biochemical products in the omics cascade, and altered
metabolism has been defined as a hallmark of cancer.11

Following a minimal sample preparation, a wide range of
metabolites can be detected within a short amount of time
using nuclear magnetic resonance (NMR) spectroscopy.20

NMR metabolomics has already shown potential in strat-
ification of BC patients with respect to treatment response and
long-term survival.21,22 Most studies so far have focused on
metabolomics of invasive tissue biopsies.3,21−24 Metabolomics
of biofluids is minimally invasive and repeated sampling is
simple. A recent review concludes that many studies have
shown impressive associations between biofluid metabolomics
and cancer progression, suggesting that NMR metabolomics
can be used to provide information with prognostic or
predictive value.25

The NeoAva study is a phase II randomized clinical trial
assessing the effect of antiangiogenesis treatment by
bevacizumab in combination with standard NAC. We have
previously shown that metabolic profiling of tumor tissue by
magnetic resonance spectroscopy has a potential in predicting
treatment response in this cohort.21 Furthermore, both clinical
and gene expression response was shown to differ between
patients receiving combination therapy with bevacizumab and
chemotherapy alone, and circulating cytokine profiles were
found to correlate with different immune cell types at the
tumor site.26−28

In this study, we performed metabolic profiling of serum
samples from patients in the NeoAva study. The main aim was
to characterize systemic metabolic effects of NAC in BC
patients and to relate these changes to treatment response and
long-term survival. Additionally, the metabolic information in
serum and tissue samples from the same patients were
compared, allowing for a better understanding of the difference
in their metabolic information.

■ MATERIALS AND METHODS

Patient and Tumor Characteristics

Details of the inclusion criteria are fully described elsewhere.21

In brief, 132 women of age ≥ 18 years with large (≥2.5 cm),
non-metastatic, human epidermal growth factor receptor 2
(HER 2) negative tumors were recruited in the period
November 2008−July 2012 in Norway. The study was
approved for all centers involved by the Regional Ethics

Committee (approval number S-08354a) and the Norwegian
Medical Agency and an informed written consent was obtained
from all patients. All patients included in this study received
NAC in the form of FEC100 (5-fluorouracil 600 mg/m2,
epirubicine 100 mg/m2, and cyclophosphamide 600 mg/m2)
followed by taxane-based therapy for 12 weeks, whereas they
were randomized to receive bevacizumab or not. Tissue
samples were obtained by ultrasound-guided needle biopsies
prior to treatment (TP1) and 12 weeks into treatment (TP2),
whereas surgical biopsies were obtained from the surgically
removed tumor (TP3). Nonfasting serum was sampled at TP1,
TP2, and TP3, in addition to 6 weeks after surgery (TP4). See
Figure S1 for a graphical representation of the study design.
The study cohort for further analyses has been restricted to
contain subjects with full clinical data and available sample
material from at least one sampling time point, giving N = 118
subjects. In total, 357 serum samples and 270 tissue samples
were analyzed. Details on the patient and tumor characteristics
are summarized in Table 1, whereas sample availability,
including survival data, for each time point is illustrated in
Figure S2.

Prognostic Measures and Survival Evaluation

Residual cancer burden (RCB) is a measurement of patient
response to NAC. It is a continuous index, which combines
pathologic measurements of the primary tumor (size and
cellularity) and nodal metastases (number and size).29 RCB
can be divided into four classes, where class 0 is equivalent to

Table 1. Patient Cohort and Tumor Characteristicsa

survivors ≥ 5 years non-survivors

N 105 13
Age (years)

mean (range) 49.3 (25−70) 45.7 (31−55)
Treatment

Bev + chemo 53 7
chemo only 52 6

RCB Class
0 19 1
I 13 1
II 58 8
III 15 3

ER Status
positive 90 10
negative 15 3

PgR Status
positive 62 6
negative 43 7

Histology
ductal 84 11
lobular 19 1
other 2 1

Metastasis during follow-up
yes 5 13
no 100 0

aSample availability varied for each time point, giving a slightly
different number of survivors and nonsurvivors used in the prediction
models. Details on sample availability are illustrated in Figure S2.
Survivors are patients alive 5 years after treatment start; Bev + chemo:
bevacizumab-treated in addition to NAC; chemo only: chemotherapy
only, no bevacizumab; RCB: residual cancer burden; ER: estrogen
receptor; PgR: progesterone receptor.
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pathologic complete response (pCR), meaning that no cancer
cells are present after treatment.
Patients deceased within 5 years after diagnosis were

classified as nonsurvivors, whereas patients surviving ≥5
years were classified as survivors.

NMR Experiments and Data Preprocessing

Analysis and Preprocessing of Serum Samples. NMR
spectra were obtained on a Bruker AVANCE III Ultrashield

Plus spectrometer operating at 600 MHz (Bruker BioSpin
GmbH, Rheinstetten, Germany) equipped with a 5 mm QCI
CryoProbe. The serum samples were thawed at 4 °C prior to
the analysis. The serum (150 μL) was gently mixed with 150
μL of buffer (D2O with 0.075 mM Na2HPO4, 5 mM NaN3, 3.5
mM TSP, pH 7.4). The samples were analyzed in 3 mm NMR
tubes. Data acquisition and sample handling was fully
automated using a SampleJet with Icon-NMR on TopSpin

Figure 1. Significant Pearson-correlations between metabolites in serum (blue) and tissue (red) samples. (A) Whole data set; (B) after removal of
lipid peaks from serum data and a second normalization. Color intensity and circle sizes are proportional to the correlation coefficients. Red and
blue circles indicate negative and positive correlations, respectively. Only patients with both serum and tissue samples available (TP1, TP2, and
TP3) have been included in this analysis.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00316
J. Proteome Res. XXXX, XXX, XXX−XXX

C



3.1 (Bruker BioSpin). Carr−Purcell−Meiboom−Gill (CPMG)
spectra with water presaturation were acquired at a temper-
ature of 37 °C. The spectra were Fourier transformed to 128 K
after 0.3 Hz exponential line broadening.
The spectral data were transferred to MATLAB R2017b for

preprocessing.30 The left peak of the alanine doublet at 1.47
ppm was used as a chemical shift reference. Three spectra were
removed from the analysis due to poor water suppression after
visual inspection. Spectral peaks were aligned to the peaks of
the spectrum with the highest correlation to the other spectra
using the function icoshift.31 The water region (4.3−5.0 ppm)
was removed, and the spectral area between 0.2 and 9.2 ppm
was used for further analysis. The NMR signals were assigned
to metabolites both using the human metabolome database,
published literature, and an in-house overview over previously
assigned spectral peaks in serum based on 2D HSQC
acquisitions, and the STOCSY algorithm.32 The spectra were
mean-normalized prior to quantification. Quantification was
performed by integrating the region under each peak, giving
the relative amounts of metabolites in each sample. If a
metabolite had more than one identifiable peak, the mean
value of the multiple peaks were calculated and used for further
analysis. Signals from ethanol at 1.17 ppm were removed,
resulting in 29 distinct peaks (27 metabolites and two lipid
signals, see Table S1). The lipid signals arise from the methyl
(−CH3) groups at 0.85 ppm (lipid1) and methylene
(−CH2−) groups at 1.57 ppm (lipid2), mainly from
triglycerides and esterified cholesterol within the lipoprotein
particles.33 A representative spectrum with annotated metab-
olite peaks is shown in Figure S3.
As evidenced by very high negative correlations (see Figure

1A) between the serum metabolites and lipid peaks, including
the lipids in the analyses overshadowed changes in the low-
molecular weight serum metabolites. We therefore removed
the lipid peaks and normalized the metabolites a second time
prior to statistical analyses.
Analysis and Preprocessing of Tissue Samples. A total

of 270 tissue samples were analyzed by high resolution magic
angle spinning (MAS) NMR. Details of NMR experiments,
preprocessing, and quantification of the tissue samples have
been described previously.21 In brief, tissue samples (mean
weight: 4.1 mg) were analyzed at 5 °C on a Bruker AVANCE
DRX600 spectrometer equipped with a 1H/13C MAS rotor. A
spin-echo one dimensional experiment with presaturation
(cpmgpr1d, Bruker BioSpin, Germany) was recorded for all
samples, with effective echo time of 77 ms, a spectral width of
20 ppm (−5 to 15 ppm), and 256 scans. Spectra were baseline
corrected, peak aligned using the icoshift algorithm,31 and
normalized by probabilistic quotient normalization (PQN)34

after removal of lipid residuals. Quantified metabolites were
normalized by PQN.

Statistical Analysis

Multivariate Analyses. All variables were auto-scaled
prior to multivariate analyses. Principal component analysis35

(PCA) was performed on the quantified serum metabolites as a
first step in the exploratory analysis.
Partial least squares discriminant analyses (PLS-DA) were

employed to fit classification models for different clinical
variables.36 PLS-DA models were fitted and validated using 10-
fold cross-validation, which was repeated 20 times. The
optimal number of latent variables (LVs) was chosen to be
the number of LVs corresponding to the first minima in the

cross-validated classification error. Averaged sensitivities and
specificities of the 20 iterations are reported. To verify the
statistical significance of the models, permutation testing was
employed, where the original class labels were shuffled among
the individuals.37 New models were fit to these permuted data
sets and the classification error was calculated. The proportion
of classifications equal to or better than the original
classification was used to calculate the p-values. The
permutations were repeated 1000 times and p-values ≤ 0.05
were considered significant. For the PLS-DA plots, the y-
variance was condensed into the first LV through orthogonal
projection to latent structures in cases where the optimal
model had more than one LV. This orthogonalization does not
improve the model accuracy, but rather the model
interpretation, as the predictive from nonpredictive variation
is separated.36

Metabolomics data is complex and many factors (such as
age, disease state, and genetics) influence the metabolic profile
of a biological sample, thus the variations between samples of
different individuals are often higher than the variations within
the samples of one individual. Variations, as a result of the
treatment effect, can be overshadowed by the between-subject
variations. The total effect is thus undetectable if the main
focus is the average effect. Multilevel PLS-DA is an extension
of PLS-DA and consists of two steps.38 First, the variation
between individuals is separated from the variation within the
samples. Second, PLS-DA analysis is performed on the within-
subject variation. This is an effective tool for longitudinal data,
where there are two or more multivariate measurements per
subject. As the multilevel PLS-DA models contain multiple
measurements for each patient, 10% of the patients were left
out during each iteration, which was repeated 20 times.
PCA, PLS-DA, and multilevel PLS-DA analyses were carried

out in MATLAB R2017b using the PLS Toolbox 8.6.2.39 The
loading plots of the orthogonalized PLS-DA and multilevel
PLS-DA analyses were colored according to the variable (here
metabolite) importance in projection score (VIP score). The
VIP score is a measure of how important each variable was for
creating the discrimination model. It is calculated as a weighted
sum of squares of the PLS loadings, where the weights are
based on the amount of y-variance explained in each
dimension.40 A metabolite with a VIP score larger than or
equal to 1 was considered to be important in the
discrimination model.

Univariate Data Analysis. Because of non-normality of
the serum metabolites, the nonparametric Wilcoxon-signed-
rank test was used to test the significance of the changes in
serum metabolite levels between time points.41 p-values were
adjusted using the Benjamini−Hochberg procedure and
significance was considered for q-values ≤ 0.05.42

In this study, both serum and tumor samples from the same
BC patients were analyzed, enabling us to investigate how
much of the tissue-metabolic profile is reflected in the serum
metabolome. To investigate this, Pearson-correlations between
all quantified metabolites in the serum and tissue samples were
calculated. p-values for significance were adjusted for multiple
comparisons using the Benjamini−Hochberg procedure, and
significance was considered for q-values ≤ 0.05. The
calculations and graphical representations of the correlation
were performed in the R software environment using the
corrplot package.43,44

Statistical analyses of serum metabolites were performed on
quantified metabolites. For tissue samples, multivariate
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analyses were performed on the whole NMR spectra as in
Euceda et al.,21 whereas correlation analysis was performed
using quantified metabolite levels.

■ RESULTS

Correlation Analysis of Serum and Tissue Metabolic
Profiles

Availability of both tissue biopsies and serum samples from the
same BC patients enabled to investigate how much of the
tumor metabolism is reflected in the serum. The majority of
the correlations between the serum metabolites were high
(Figure 1A). The low-molecular weight serum metabolites had
a highly negative correlation with the lipid peaks, whereas they
were positively correlated with each other. There were fewer
high correlations between tissue metabolites. However, tissue
levels of taurine and glucose, and glutamate and lactate were
highly correlated (ϱ = 0.903 and 0.714, respectively; q-values <
0.001). This figure also shows that correlations between serum
and tissue metabolites, although some were significant, were
low (0.005 ≤ |ϱ| ≤ 0.269; q-values ≤ 0.05). Serum lactate was
not correlated with tissue lactate (ϱ = 0.061, q-value = 0.835).
In addition, choline stands out from the other tissue
metabolites, with low but significant correlations with the
majority of the serum metabolites (0.074 ≤ |ϱ| ≤ 0.269). To
emphasize correlations between the low-molecular weight
metabolites, the analyses were repeated with the lipid peaks
removed. Figure 1B shows correlation analyses of serum and
tissue metabolic profiles after the removal of lipid peaks in
serum data and a second normalization. The correlations in
serum metabolites are then highly affected in both magnitude
and direction.
Effect of NAC on Serum Metabolic Profiles

PCA analyses of serum metabolites did not show any clear
trend or grouping of the patients with respect to the time point
at which the samples were obtained (Figure S4). However, by
employing multilevel PLS-DA and thus removing the between-
subject variation in the data, significant changes in the serum
metabolic profiles between each time point during the
treatment were revealed. Table 2 summarizes the fit of the

multilevel PLS-DA models on serum data without lipid peaks
included. PLS-DA results for separating TP1 and TP2 with and
without including the lipids are shown in Figure 2. First, when
the lipid peaks are included in the multilevel analyses, it is clear
that the amount of lipids in serum increase during treatment
(Figure 2A). The same is evident throughout the treatment

period as seen in Figure S5, which shows multilevel analysis
comparing TP1 with TP4, when lipids are included. Removal
of lipid peaks to emphasize changes within the metabolic
profile did not have a significant influence on the prediction
accuracy of the models. Further results are derived from the
serum metabolic data without including the lipid peaks.
Scores and loading plots of the multilevel PLS-DA models

separating different time points are displayed in Figure S6,
where the loadings are colored according to the VIP scores.
The most important metabolites in discriminating between
serum metabolic profiles at TP1 and TP2 are creatinine (↓),
creatine (↓), isoleucine (↑), ornithine (↓), and histidine (↑)
(Figure 2B), where the arrow shows the direction of the
change with the treatment course. For discriminating TP2
from TP3, creatine (↑), valine (↑), dimethyl glutarate (↓), and
pyruvate (↓) are of highest importance. Finally, for
discriminating between serum metabolic profiles at TP4 and
TP3, valine (↑), glycine (↓), dimethyl glutarate (↑), and
methionine (↑) are the most important metabolites.
The median percentage change of each metabolite level

between the different time points is displayed in Table 3, with
corresponding q-values to assess statistical significance. Most
significant changes occur between TP1 and TP2; however, the
metabolic profiles change significantly throughout the treat-
ment period. Only two metabolites exhibited significant
changes across all sampling time points during the treatment
course: dimethyl glutarate (↑↓↑) and acetate (↓↑↑).

Effect of Bevacizumab on Serum Metabolic Profiles

We further examined if the serum metabolites are affected by
treatment with the drug bevacizumab in addition to chemo-
therapy. A significant discrimination model for separating
patients receiving and not receiving bevacizumab was obtained
at TP2, but not at later time points (accuracy = 64%; p-value =
0.014, Figure 3A and Table 4), even though the administration
of bevacizumab was continued until TP3. The most important
metabolites in the discrimination model for TP2 are higher
levels of leucine, acetoacetate, and tri-hydroxybutyrate and
lower levels of formate (VIP scores 1.76, 1.59, 1.56, and 1.47,
respectively) for the group of patients treated with
Bevacizumab compared to patients treated with chemotherapy
only.

Serum Metabolic Differences between Responders and
Nonresponders of Neoadjuvant Treatment

PLS-DA classification models were fitted to the serum
metabolites for each time point separately to examine if
there were metabolic differences between patients with a good
or poor response to treatment. The model results are
summarized in Table 4. Patients with a good response (RCB
0 or I) could be significantly discriminated from patients with a
poor response (RCB II or III) at TP4 with an accuracy of 69%
(p-value = 0.001, Figure 3B). The most important metabolites
in the discrimination were citrate, phenylalanine, and histidine
(VIP scores 2.25, 1.75, and 1.53, respectively), with higher
levels of citrate and lower of the latter in RCB II or III
compared to RCB 0 or I patients.

Predicting Survival from Serum and Tissue Metabolic
Profiles

Discrimination models were fitted to assess if there is
predictive power in the serum and tissue metabolites to
predict long-term outcome. Results of the analyses show that
the serum metabolites have no predictive power for 5 year

Table 2. Summary of Multilevel PLS-DA Applied on Serum
Metabolites after the Removal of Lipid Peaks and a Second
Normalizationa

no. of
LV’s

class accuracy
(%) sensitivity/specificity (%) p-value

TP1 vs
TP2

4 90 90/90 <0.001

TP2 vs
TP3

2 77 77/77 <0.001

TP3 vs
TP4

4 87 87/87 <0.001

aSensitivities and specificities are averaged on 20 repetitions of 10-
fold cross validation. The reported p-values are based on permutation
testing, with 1000 random permutations of the original class labels.
LV: latent variable.
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survival (Table 4). Similar models were employed on the tissue
metabolic profiles at the different time points and showed that
tissue metabolic profiles at TP2 have a predictive potential for
discriminating survivors from nonsurvivors, with a prediction
accuracy of 72% (p-value = 0.005). Scores and loading plots for
the corresponding PLS-DA model at TP2 are displayed in
Figure 4.

■ DISCUSSION

In this study, we show that the NMR-based metabolic profile
of serum from BC patients undergoing NAC changes
significantly throughout treatment. Furthermore, we show
that 5-year survival can be predicted from metabolic profiles in
tissue, but not serum. Significant associations between serum
metabolic profiles and response to treatment, in addition to
changes in the serum metabolic profiles in patients receiving
bevacizumab, were detected.
Several factors affect the serum metabolome, such as diet,

age, body mass index (BMI), drug use, and diurnal
variations.45−47 The serum metabolome will contain metabolic
signals from both the tumor itself and the host organism, both
affected by treatment. Some studies have investigated the
difference in the serum metabolic profiles of women with BC
compared to healthy controls, showing that presence of the
tumor has an evident effect on the serum metabolome,48−52

whereas only few have looked into treatment-induced

changes.53,54 A previous study revealed baseline levels of
formate and acetate as potential predictive biomarkers of
treatment response in metastatic BC patients, linking these
changes to the accelerated proliferation of aggressive BC
cells.55 In this study, we describe significant serum metabolic
changes in response to treatment at all time points, showing
that BC treatment has an effect on the overall metabolism.
Particularly lipid levels in serum increased throughout the
treatment course (Figures 2A and S5). These results are in
agreement with a previous study where we describe serum
metabolic changes from adjuvant BC treatment, where
unfavorable changes in the lipoprotein profiles were observed
during treatment.56 Altered lipid metabolism may predispose
for weight gain, increased risk of CVD, and a worse overall
health and quality of life. Increased lipid levels in serum post
treatment have additionally been observed and associated with
an increased risk of disease recurrence.57

The most evident effect of BC treatment on the serum
metabolome occurred during the first weeks of treatment (TP1
to 2) and from surgery to 6 weeks follow-up (TP3 to 4). When
comparing samples acquired before treatment onset and 12
weeks into treatment, 11 of the 27 metabolites changed
significantly, mainly to decreased levels. Comparing the first
weeks of treatment revealed decreased histidine, creatine,
creatinine, and ornithine levels and increased isoleucine, to be
of highest importance (Figure 2B). Serum levels of isoleucine
were previously shown to be upregulated in metastatic

Figure 2. Scores and loadings plots from the multilevel PLS-DA analyses for discriminating between the serum metabolic profiles at TP2 from TP1.
(A) Analysis including lipid peaks. (B) Analysis after excluding lipid peaks and a second normalization. Orthogonalized loadings colored according
to VIP scores. LV: latent variable. 1: leucine; 2: valine; 3: isoleucine; 4: dimethyl glutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9:
acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate; 14: methionine; 15: creatine; 16: creatinine; 17: ornithine; 18: proline-
betaine; 19: dimethyl sulfone; 20: glucose; 21: methanol; 22: glycine; 23: lactate; 24: tyrosine; 25: phenylalanine; 26: histidine; 27: formate; 28:
lipid1; 29: lipid2.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00316
J. Proteome Res. XXXX, XXX, XXX−XXX

F



compared to early BC50,58 and higher isoleucine has also been
associated with pCR.54 Thus, the predictive value of changes in
isoleucine levels should be further investigated. Creatinine is a
breakdown product of phosphocreatine in muscles and is
usually produced at a constant rate by the body; it is thus
plausible that the observed increase is induced by treatment.
Creatine, creatinine, and ornithine are amino acids closely
linked together through the arginine and proline metabolism
pathway, through which glutamate is synthetized from arginine
and proline.
Twelve weeks into treatment, increased levels of valine and

creatine, and decreased levels of dimethyl glutarate, lysine, and
pyruvate were observed, compared to 6 weeks into treatment.
Similarly, increased levels of valine and creatine during BC
treatment, compared to baseline levels, were observed in a
longitudinal study with HER-2 positive BC patients in the
trastuzumab and everolimus treatment arm.53 Increased valine
levels have also been shown to be important in discriminating
BC patients from healthy controls (post-treatment).49 Pyruvate
is a key intermediate in several metabolic pathways throughout
the cell, including gluconeogenesis and the Krebs cycle; lower
pyruvate levels therefore possibly reflect an increased energy
metabolism due to the treatment.
Patients switched from FEC treatment to taxane-based

therapy 12 weeks into the treatment (TP2), followed by no
further treatment, other than surgery, between the last two

sampling points (TP3 to 4). It appears that the serum
metabolism tends to return to its pretreatment state in this
period; valine, acetate, creatine, ornithine, and histidine, all
experienced a decrease at the beginning of treatment, followed
by an increase after surgery. Glycine levels remained relatively
constant throughout treatment, but decreased significantly
after treatment. Low levels of circulating glycine have
previously been associated with metabolic syndrome; this
decrease may thus indicate a negative side-effect of the
treatment.59

Five year survival was predicted with an accuracy of 72% at
TP2. Nonsurvivors had higher lactate and glycine levels
compared to survivors at TP2, which is in accordance with
previous studies in similar patient cohorts.22,23 Elevated lactate
and glycine levels have also been associated with lower survival
rates in ER-positive BC patients receiving surgery as primary
treatment.60 Furthermore, lactate has been associated with
poor prognosis in other cancers and is a generally accepted
marker for tumor aggressiveness, as high levels of lactate have
been correlated to low survival rates, high incidence of distant
metastasis, and recurrence.61,62 Increased lactate production
and rapid glucose consumption are known characteristics of
the Warburg effect, which can be observed in most cancer
cells.63 Glycine has been linked to cancer-induced metabolic
reprogramming, and glycine consumption and expression of
the mitochondrial glycine biosynthetic pathway have been

Table 3. Median Percentage Changes in the Serum Metabolite Levels During Treatmenta

aOnly patients with samples available at each of the two time points were included when calculating the percentage changes. q-values show p-values
obtained from Wilcoxon-signed-rank test, adjusted for multiple comparisons. Significant changes are marked in bold.
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identified to be strongly correlated with the rates of
proliferation across cancer cells.64

The RCB response measure represents an independent
prognostic factor of distant relapse-free survival (DRFS) in
multivariate Cox regression analyses of cancer patients.29 RCB
0 and I are associated with good prognosis, whereas RCB II

and III are associated with poor prognosis. Based on serum
metabolic profiles, we could not predict patient response to
treatment before or during treatment. However, patients with a
good prognosis could be discriminated from patients with a
poor prognosis 6 weeks after treatment completion (TP4) with
an accuracy of 69% (p-value = 0.001). RCB II or III patients

Figure 3. Scores and loading plots of the PLS-DA models for serum metabolic profiles. (A) Bevacizumab-treated vs Chemotherapy only at TP2.
(B) RCB 0 or I vs RCB II or III at TP4. Orthogonalized loadings colored according to the VIP scores. 1: leucine; 2: valine; 3: isoleucine; 4:
dimethyl glutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate;
14: methionine; 15: creatine; 16: creatinine; 17: ornithine; 18: proline-betaine; 19: dimethyl sulfone; 20: glucose; 21: methanol; 22: glycine; 23:
lactate; 24: tyrosine; 25: phenylalanine; 26: histidine; 27: formate.

Table 4. Summary of PLS-DA Classification Models Fitted to the Serum and Tissue Metabolic Profiles at Different Time
Pointsa

discriminated classes time point n class accuracy (%) sensitivity/specificity (%) permutation p-value

serum

Bev-treat./chemo treat. only TP2 89 64 58/70 0.0140
TP3 93 59 60/57 0.0870
TP4 86 57 67/47 0.0960

RCB class 0 + I/RCB class II + III TP1 89 36 27/44 0.9580
TP2 89 48 33/63 0.6500
TP3 93 58 58/57 0.1700
TP4 86 69 65/73 0.0010

5 year survival TP1 89 37 5/70 0.7700
TP2 89 64 48/81 0.2570
TP3 93 61 43/79 0.1780
TP4 86 48 23/73 0.5620

tissue
5 year survival TP1 105 58 30/86 0.2190

TP2 78 72 55/90 0.0050
TP3 87 57 26/88 0.2210

aSensitivities and specificities are averaged on 20 repetitions of 10-fold cross validation. The reported p-values are based on permutation testing,
with 1000 random permutations of the original class labels. Significant classification models are marked in bold. n: number of samples included in
model.
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had higher serum levels of citrate and lower levels of
phenylalanine and histidine. Significantly higher serum levels
of citrate and lower levels of phenylalanine and histidine have
been observed in metabolic profiles of metastatic compared to
early BC implying that they play a role in the formation of
metastasis.58

Patients receiving bevacizumab were significantly discrimi-
nated from those treated only with chemotherapy 12 weeks
into treatment (TP2). Discriminating metabolites were lower
levels of leucine, acetoacetate, and tri-hydroxybutyrate and
higher levels of formate in patients receiving bevacizumab. A
previous study has linked the rate of β-hydroxybutyrate and
acetoacetate in blood to mitochondrial activity.65 The effect of
bevacizumab on the serum metabolome of BC patients has, to
our knowledge, not been described previously. A study on
metastatic renal cell carcinoma identified changes in glucose,
N-acetyl glycoproteins, lipids, and lipoproteins as an effect of
treatment, relating these to known side effects of the drugs
bevacizumab and temsirolimus.66 Our previous study on tissue
metabolites from the same patient cohort21 showed weak
associations between bevacizumab and tissue metabolic
profiles.
An advantage of this study cohort is that both tissue biopsies

and serum samples were available from the same patients,
allowing for a comparison of metabolic information.
Importantly, the metabolic information from these two types
of biological samples is different, with some significant, but low
correlations (Figure 1B). This explains why we could predict
patient survival from tissue, but not serum metabolites.
Although tumors are often characterized by high lactate
production, there was no correlation between tissue and serum
lactate levels. A study linking tumor information in early BC
patients with plasma metabolites showed an inverse correlation
between plasma lactate levels and the tumor size.67 In general,
despite possible leakage of metabolites from the cancer tissue
into the bloodstream of the host organism, the overall serum
metabolism has larger variation that may mask these tumor-
derived metabolites; thus, metabolites which have been
associated with treatment response when analyzing tumor
tissue are not necessarily relevant in the context of serum
metabolomics.
Multivariate analysis, taking advantage of the multilevel

structure of the data focusing on the within-subject variations
resulted in models with high classification accuracy for

characterizing the serum metabolic changes from treatment.
Our study also pinpoints that awareness regarding the effect of
normalization procedures is necessary, given the different
results observed with the exclusion of lipid signals prior to a
second normalization of the serum metabolic profiles.
Although different normalization strategies did not affect the
quality of the multivariate models per se, making their
robustness evident, variables important for the classifications
were affected, making comparisons of potential biomarkers
across studies challenging.

■ CONCLUSIONS
By metabolic profiling of serum sampled before, during, and
after neoadjuvant treatment in BC patients, we have revealed
significant metabolic changes in serum as a response to
treatment. This gives an insight into how the body is affected
by treatment, and provides a possible tool for understanding
negative side-effects of treatment. Serum metabolomics
therefore has a potential for longitudinal patient-monitoring
during and after BC treatment.
Tissue metabolic profiles during treatment were significantly

correlated to five-year survival, whereas no such information
was apparent in the serum metabolic profiles. Importantly, we
demonstrate low correlations between serum and tissue
metabolites, emphasizing the complementary nature of the
metabolic information in these biological matrices.
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Figure S1. Diagram showing the treatment regime and experimental set up of the study. 
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Figure S2. Sample availability of serum and tissue samples at the distinct sampling time points (TP’s) 
in this study. Figures A, B, C, and D correspond to time points TP1, TP2, TP3, and TP4, respectively. For 
serum and tissue samples, a darker color denotes the number of survivors, while a lighter color 
denotes the number of non-survivors. 
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Table S1. Details on quantification of serum metabolites 

 Metabolite Chemical shift (peak multiplicity) 
1 Leucine 0.95 (tr) 
2 Valine 0.98 (d) 1.02 (d) 3.60 (d) 
3 Isoleucine 1.00 (d) 
4 2-methylglutarate 1.06 (d) 
5 3-hydroxybutyrate 1.19 (d) 2.30 (q) 2.40 (q) 
6 Alanine 1.47 (d) 
7 Lysine 1.77 (m) 3.03 (right d) 
8 Acetate 1.91 (s) 
9 Acetoacetate 2.27 (s) 

10 Glutamate 2.35 (d) 
11 Pyruvate 2.36 (s) 
12 Glutamine 2.45 (m) 
13 Citrate 2.68 (right d) 
14 Methionine 2.63 (right d) 
15 Creatine 3.03 (s) 3.92 (s) 
16 Creatinine 3.04 (s) 4.05 (s) 
17 Ornithine 3.06 (d) 
18 Proline betaine 3.1(s) 3.29 (s) 
19 Dimethylsulfone 3.15 (s) 
20 Glucose 3.25 (t) 3.42 (m) 3.36 (m) 3.49(m) 3.34 (q) 3.72 (m) 3.84 (m) 3.90 (q) 5.25 (d) 
21 Methanol 3.36 (s) 
22 Glycine 3.55 (s) 
23 Lactate 4.12 (q) 
24 Tyrosine 6.90 (d) 7.20 (d) 
25 Phenylalanine 7.34 (d) 7.38 (t) 7.43 (t)  
26 Histidine 7.05 (s) 7.78 (d) 
27 Formate 8.46 (s) 
28 Lipid 1 0.85 (br) 
29 Lipid 2 1.57 (br) 
* Ethanol 1.17 (d) 

Quantified metabolites and their placement on the ppm scale. ppm: parts per million; br: broad 
peak; s: singlet; d: doublet; dd: double doublet; t: triplet; q: quartet; m: multiplet; *: removed from 
analyses. 
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Figure S3: A representative spectrum with annotated metabolite peaks. 1: leucine; 2: valine; 3: 
isoleucine; 4: dimethylglutarate; 5: tri-hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: 
acetoacetate; 10: glutamate; 11: pyruvate; 12: glutamine; 13: citrate; 14: methionine; 15: creatine; 
16: creatinine; 17: ornithine; 18: proline-betaine; 19: dimethylsulfone; 20: glucose; 21: methanol; 22: 
glycine; 23: lactate; 24: tyrosine; 25: phenylalanine; 26: histidine; 27: formate; 28: lipid1; 29: lipid2. 
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Figure S4. Scores plot for the PCA analysis of the serum metabolites. Each point corresponds to a 
sample colored according to the time point at which it was collected.  
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Figure S5. Scores (left) and loading plots (right) of multilevel PLS-DA analyses on serum metabolites 
comparing TP1 and TP4, with lipid peaks. Accuracy = 77%; p-value < 0.001. LV: latent variable. Loadings 
colored according to the VIP scores. 1: leucine; 2: valine; 3: isoleucine; 4: dimethylglutarate; 5: tri-
hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: acetoacetate; 10: glutamate; 11: pyruvate; 12: 
glutamine; 13: citrate; 14: methionine; 15: creatine; 16: creatinine; 17: ornithine; 18: proline-betaine; 
19: dimethylsulfone; 20: glucose; 21: methanol; 22: glycine; 23: lactate; 24: tyrosine; 25: 
phenylalanine; 26: histidine; 27: formate; 28: lipid1; 29: lipid2. 
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Figure S6. Scores (left) and loading plots (right) of multilevel PLS-DA analyses on serum metabolites. 
LV: latent variable. Top: TP2 vs TP1; Middle: TP3 vs TP2; Bottom: TP4 vs TP3. Loadings colored 
according to the VIP scores. 1: leucine; 2: valine; 3: isoleucine; 4: dimethylglutarate; 5: tri-
hydroxybutyrate; 6: alanine; 7: lysine; 8: acetate; 9: acetoacetate; 10: glutamate; 11: pyruvate; 12: 
glutamine; 13: citrate; 14: methionine; 15: creatine; 16: creatinine; 17: ornithine; 18: proline-betaine; 
19: dimethylsulfone; 20: glucose; 21: methanol; 22: glycine; 23: lactate; 24: tyrosine; 25: 
phenylalanine; 26: histidine; 27: formate 
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ABSTRACT: Metabolic profiling of biofluids by nuclear
magnetic resonance (NMR) spectroscopy serves as an
important tool in disease characterization, and its accuracy
largely depends on the quality of samples. We aimed to
explore possible effects of repeated freeze−thaw cycles
(FTCs) on concentrations of lipoprotein parameters in
serum and metabolite concentrations in serum and urine
samples. After one to five FTCs, serum and urine samples (n=
20) were analyzed by NMR spectroscopy, and 112 lipoprotein
parameters, 20 serum metabolites, and 35 urine metabolites
were quantified by a commercial analytical platform. Principal
component analysis showed no systematic changes related to
FTCs, and samples from the same donor were closely
clustered, showing a higher between-subject variation than within-subject variation. The coefficients of variation were small
(medians of 4.3%, 11.0%, and 4.9% for lipoprotein parameters and serum and urine metabolites, respectively). Minor, but
significant accumulated freeze−thaw effects were observed for 32 lipoprotein parameters and one serum metabolite (acetic
acid) when comparing FTC1 to further FTCs. Remaining lipoprotein and metabolite concentrations showed no significant
change. In conclusion, five FTCs did not significantly alter the concentrations of urine metabolites and introduced only minor
changes to serum lipoprotein parameters and metabolites evaluated by the NMR-based platform.

KEYWORDS: NMR analysis, freeze−thaw cycle, quantification, metabolite, lipoprotein parameter

■ INTRODUCTION

Metabolomics has become an important tool in medical
research and involves analytical approaches with the capability
to detect a wide range of metabolites in biofluids and tissues.1

One of the main analytical approaches for metabolic
characterization is proton nuclear magnetic resonance
(NMR) spectroscopy. NMR spectroscopy is high-throughput,
has high reproducibility, and requires minor sample prepara-
tion, thus having a great potential in human population
studies.2,3

The quality and reproducibility of NMR analysis can be
affected by the sample quality, which is influenced by factors
resulting from preanalytical processes, including sample
collection, storage, and preparation.4−6 For example, chemical
degradation processes, such as oxidation and decomposition of
chemically unstable compounds, can severely influence sample
composition. Biobanks are organized to collect, store, and
distribute samples of human tissues and biofluids for a variety

of clinical research purposes.4 Blood plasma, serum, and urine
are commonly available biofluids in biobanks and are usually
stored in −80 °C freezers or in liquid nitrogen tanks (−196
°C) prior to analysis. Standard operating procedures for
preanalytical handling of blood and urine samples for biobank
metabolomic studies have been published.6,7 Samples are
recommended to be analyzed right after collection or to be
stored at −80 °C (blood samples) or in liquid nitrogen/liquid
nitrogen vapor (urine samples) until further analysis.7 In
practice, however, avoiding repeated thawing and refreezing of
aliquots of biobank samples can be challenging.
Based on multivariate analysis of serum NMR spectra, a

previous study showed that one freeze−thaw cycle (FTC)
caused relatively small differences in the contents of lipids,
alanine, glucose, and lactate.8 Other studies have reported that
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serum or plasma composition was altered by multiple
FTCs.9,10 However, these studies included a small number of
subjects and did not report quantitative concentrations. While
high reproducibility of NMR-measured urine samples from rats
was observed for up to eight FTCs,11 no corresponding data
are available from human urine samples.
Lipoproteins consisting of lipids and apolipoproteins are

important constituents of lipid fractions, and their functions
are to transfer water-insoluble lipids within the bloodstream.
They have been identified as the primary drivers of
atherosclerotic processes for several decades. However, recent
data have suggested that, compared to lipoprotein particle
numbers, measuring the total amount of cholesterol (CH) in
each major lipoprotein fraction has less predictive power for
cardiovascular risk in patients with metabolic disorders such as
obesity and diabetes mellitus.12,13 Improved characterization of
lipoprotein subclass composition may help not only to
understand the pathophysiology of atherosclerosis and diabetic
dyslipidemia, but also to develop and monitor novel diet and
drug therapies.14 In addition, several epidemiological studies
have indicated possible correlations between cholesterol and
lipoprotein levels and risks for several cancers (such as breast
cancer and prostate cancer).15−17

Ultracentrifugation-based lipoprotein quantification is time-
consuming and labor-intensive, and NMR spectroscopy serves
as an alternative rapid method for quantifying lipoproteins
from plasma and serum samples. NMR spectroscopy allows for
the measurement of lipoprotein subclasses, giving their lipid
and apolipoprotein concentrations, as well as particle numbers
and sizes.18−20 A recently released commercial lipoprotein
subclass analysis, based on an NMR-based metabolomics
platform, can simultaneously quantify 112 lipoprotein
parameters and 26 low-molecular-weight metabolites in
blood.21 In addition, an NMR-based quantification method
for 50 urine metabolites has been established. While a previous
study explored the effect of multiple FTC on lipoprotein
particle numbers,22 the effects of FTCs on NMR-measured
concentrations of lipids and apolipoproteins in lipoprotein
subclasses have not yet been reported.
In this study, we investigated the effect of repeated FTCs

prior to NMR analysis on concentrations of serum lipoprotein
parameters and metabolite concentrations in serum and urine
samples. The aim was to gain insight into the extent that FTCs
can affect the composition of these biological samples so as to
avoid misinterpretation of findings arising from sample
handling.

■ EXPERIMENTAL SECTION

Sample Collection and Experimental Design

Nonfasting serum and spot-urine samples were obtained from
two sets of 20 anonymized healthy female and male adult
donors. Blood samples were collected into serum tubes with no
additives from the Blood bank, St. Olavs University Hospital,
and left to coagulate for approximately 1 h before
centrifugation (3000 rpm, 10 min). Urine samples were
refrigerated (4 °C) after collection and were transferred to
aliquots within 3 h. Each serum and urine sample was divided
into five aliquots on ice and stored at −80 °C. The five aliquots
of each sample were subjected to one to five FTCs before
NMR analyses. For each FTC, serum and urine samples were
thawed at room temperature for approximately 1 and 2 h,
respectively, and refrozen at −80 °C for approximately 24 h.

After the FTCs, the samples were stored in −80 °C until NMR
analysis. The study was approved by the data protection officer
at The Norwegian University of Science and Technology
(NTNU). According to communication with the Regional
Committee for Medical and Health Research Ethics in Central
Norway, this quality control study using completely anony-
mized samples from healthy volunteers could be performed
without formal ethical approval.

NMR Analysis and Data Preprocessing

After thawing at room temperature, 150 μL of serum was
mixed with 150 μL of buffer [D2O with 0.075 mM Na2HPO4,
5 mM NaN3, 3.5 mM trimethylsilylpropanoic acid (TSP), pH
7.4]. Thawed urine samples were centrifuged at 12 121g at 4
°C for 5 min, and 540 μL of supernatant was mixed with 60 μL
of buffer (pH 7.4, 1.5 mM KH2PO4 in D2O, 0.1% TSP). Serum
and urine mixtures were transferred to 3 and 5 mm NMR
tubes, respectively. To assess the reproducibility of the NMR
method and to compare with the variability of the FTC
samples, four sets of quality control (QC) samples were
prepared from pooled serum or urine samples: serum QC set 1
and set 2 (QC1 and QC2) and urine QC1 and QC2. Each set
of QC consisted of five samples. NMR analysis was carried out
on a Bruker Avance III Ultrashield Plus 600 MHz spectrometer
(Bruker BioSpin GmbH, Rheinstetten, Germany) equipped
with a 5 mm QCI Cryoprobe. Sample handling and data
acquisition were automatically performed using SampleJet
sample changer and Icon-NMR on Topspin 3.5 (Bruker
BioSpin). NMR spectra were recorded using a one-dimen-
sional nuclear Overhauser effect spectroscopy pulse sequence
(noesygppr1d), with irradiation (25 Hz) on the water
resonance during relaxation delay (4 s) and mixing time (10
ms). The urine spectra were recorded at 300 K, with 64k data
points and 20 ppm spectral width. The serum spectra were
recorded at 310 K using 96k data points and 30 ppm spectral
width. For both biofluids, 32 scans were recorded and the free
induction decays were Fourier-transformed after 0.3 Hz line
broadening to 128k real data points. For urine, two-
dimensional JRES spectra (jresgpprqf) were also recorded,
using two scans, water presaturation (25 Hz) during relaxation
delay (2 s), 8k direct and 40 indirect data points with 10 026.7
and 78 Hz spectral width, respectively, and 12 820.51 μs delay
incrementation.

Lipoprotein Parameter Analysis and Metabolite
Quantification

Lipoprotein parameter analysis was automatically performed
using the commercial Bruker IVDr Lipoprotein Subclass
Analysis (B.I.LISATM) method from Bruker BioSpin.21 This
method provides the concentrations of lipids [cholesterol
(CH), free cholesterol (FC), triglycerides (TG), and
phospholipids (PL)] in serum, and in four main lipoprotein
classes: very low-, intermediate-, low-, and high-density
lipoproteins (VLDL, IDL, LDL, and HDL, respectively) as
well as 15 subclasses (VLDL 1−5, LDL 1−6, and HDL 1−4).
Simultaneously, it quantifies the concentrations of apolipopro-
teins (Apo-A1, Apo-A2, and Apo-B) in serum, two main
classes (HDL and LDL) and 10 subclasses (HDL 1−4 and
LDL 1−6). In addition, the model gives 12 calculated
parameters, including ratios of LDL-CH/HDL-CH and Apo-
B/Apo-A1, and 10 particle numbers (particle numbers of total
serum, VLDL, IDL, LDL, and LDL 1−6). In total, this yields
112 quantitative lipoprotein parameters (Table S1). The
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density ranges of different lipoprotein subclasses are listed in
Table S1.
A total of 26 serum and 50 urine metabolite concentrations

were automatically quantified using Bruker B.I. Quant-PSTM

and Bruker B.I.Quant-URTM methods, respectively, based on
algorithms developed for fitting predefined proton signals.21 By
automatic quantification applying limits of detection (LODs)
as threshold for quantification, concentrations were not
reported for several of the metabolites. We thus disregarded
LODs in the quantification of these samples. Metabolites with
concentrations >0 for more than 30% of serum or urine
samples were classified as quantifiable and were included in the
analysis.

Multivariate Modeling and Statistical Analysis

The effect of repeated FTCs on the serum and urine samples
was evaluated using both multivariate and univariate statistical
analyses. Zero values were replaced by half of the lowest
detected value of the corresponding metabolite or lipoprotein.
Principal component analysis (PCA)23 was carried out to
visually assess variation in the metabolic profiles within and
between donors. PCA is an unsupervised dimension reduction
technique, which makes it possible to visualize the majority of
the variance in the data, projected onto a lower-dimensional
space. Each point on the PCA scores plot represents one
sample. PCA was performed in Matlab R2017b24 using the
PLS-toolbox version 8.6.2.25

Coefficients of variation (CV) and intraclass correlations
(ICCs) were calculated to evaluate the reproducibility of
quantified lipoprotein parameters and metabolites, given
repeated FTCs.26 CVs were calculated for each lipoprotein/
metabolite parameter, across all FTCs of a donor separately, to
determine their relative extent of variation (within-donor
variation). ICCs were calculated for each lipoprotein/
metabolite parameter, across all FTCs and donors to evaluate
the reproducibility. For each lipoprotein parameter and
metabolite separately, Wilcoxon signed-rank tests were used
to test if the lipoprotein or metabolite levels between two
consecutive FTCs were significantly different. To test for
accumulated effects of FTCs, Wilcoxon signed-rank tests were
used to compare lipoprotein and metabolite levels of FTC2−5
samples with FTC1. p-values were adjusted using the
Benjamini−Hochberg procedure27 with significance consid-
ered for corrected p-values ≤ 0.05. Percentage changes were
calculated for individual lipoprotein parameters and metabo-
lites to obtain a visual representation of the changes in their
levels between the FTCs. All statistical analyses were carried
out in R.28 The nmle package29 was used for calculating the
ICCs.

■ RESULTS

Concentrations of Lipoprotein Parameters and
Metabolites in Serum and Urine Samples

Figure 1 shows the five FTC serum and urine spectra obtained
from two representative donors. Variations within the same
donor among FTCs are clearly much lower compared to the
variations across different donors. We successfully quantified
112 lipoprotein parameters and 20 serum metabolites from the
serum NMR spectra (Tables S1 and S2), and 35 urine
metabolites from the urine NMR spectra (Table S3).

Effect of Freeze−Thaw Cycles on Lipoprotein Parameter
Concentrations

The impact of repeated FTCs on concentrations of lipoprotein
parameters in serum samples was visualized by PCA (Figure
2B,C). No systematic variation due to repeated FTCs was
apparent. The score plot (Figure 2B) shows that most of the
samples with different FTCs were well grouped according to
donors, and the variations within five FTCs were lower than
those between different donors. From FTC4 to FTC5, samples
from two donors (numbers 13 and 16) had larger spread in the
PCA scores than the QCs. However, these changes were not in
the same direction, indicating that these variations are not
caused by FTCs, but rather represent variations from sample
preparation.
As shown in Figure 2A, CVs of lipoprotein parameters in

samples thawed and refrozen one to five times were comparable
to those of the QCs. Median CV for the lipoprotein parameters
were between 1.1-16.8%,ith a median of 4.3% across all
parameters. Only 4/112 lipoprotein parameters had median
CVs > 15% (IDCH, IDFC, V2FC, V4FC). The ranges of CVs
for quality control sets QC1 and QC2 were 0.0-82.5%
(median: 5.0%) and 0.6-27.9% (median: 6.0%), respectively.
ICCs of FTC samples are presented in Figure S1A. ICC was
larger than 0.8 for most of the parameters (94 of 105), giving a
mean ICC of 0.91 across all lipoprotein parameters.
Wilcoxon signed-rank tests were used to test whether the

differences in concentrations between each pair of subsequent
FTCs were significant. Most of the lipoprotein parameters did
not differ significantly between any of the consecutive FTCs
(Table S4). Five VLDL-related lipoprotein parameters had

Figure 1. NMR spectra of serum and urine samples. Serum (top) and
urine (bottom) spectra from two representative donors, colored in
orange and blue, respectively. All five spectra, one from each FTC are
plotted. For the serum spectra, the area in focus shows part of the
spectral region where the lipoprotein signals appear. The spectral
position of the −CH2− and −CH3 signals reflect the lipoprotein
particle size.43 The area in focus for the urine spectra shows signals
from hippurate as an example.
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significantly different concentrations between FTC3 and
FTC4: VLCH, VLFC, V3FC, V4CH, and V1CH (adjusted
p-values = 0.015, 0.015, 0.038, 0.031, and 0.003, respectively)
(exemplified by V4CH in Figure 2D). However, relative
changes in median concentrations for these five lipoprotein
parameters were low (range: 2.93−6.88% increase in
concentration).
Although few significant changes in the lipoprotein levels

were found between consecutive FTCs, some significant
accumulated effects of FTCs were observed (Table S4). This
is exemplified by V4FC in Figure 2D. A total of 32 lipoprotein
parameters showed accumulated effects when comparing
FTC1 to FTC5, of which significant accumulated effects
were detectable from FTC3 for 22 parameters, from FTC4 for
8 parameters, and from FTC5 for 2 parameters. This resulted
in decreased concentrations for 10 parameters and increased
concentrations for 22 parameters compared to the levels of
FTC1 samples.

Effect of Freeze−Thaw Cycles on Metabolite
Concentrations in Serum Samples

No systematic effects of one to five FTCs on serum metabolite
concentrations were observed as visualized by PCA (Figure
3A). With the exception of samples from donors 13 and 16, all
samples were clustered according to the corresponding donors
and the variances of samples in each donor were lower than or
of the same order of magnitude as those across different
donors. As shown in Figure 3B, median CVs of all of the 20
metabolites were between 1.7-67.2%. with a median of 11.0%
across all metabolites. 13/20 metabolites had median CV <
15%, and 18/20 metabolites had median CV < 25%. . Among
all of the 20 quantified metabolites, trimethylamine N-oxide
had the highest CV (median: 67.2%). The ranges of CVs for
QC1 and QC2 samples were 3.2-51.9% (median: 10.4%) and
4.2-79.5% (median: 11.1%), respectively. ICCs of all serum
metabolites were between 0.3 and 0.9, with a mean of 0.7
(Figure S1B). Results of PCA and ICC together show a small

Figure 2. Effects of five FTCs on concentrations of 112 lipoprotein parameters in serum samples. (A) Box plots of coefficients of variation for all
lipoprotein parameters. Median values, interquartile range, and outliers are presented. Values from quality control samples [QC1 (red) and QC2
(blue)] are shown for comparison. • represents outliers. (B) PCA scores plot. Samples from the same donor are connected by lines of different
colors. (C) Loadings of PC1 from PCA. Numbers represent each lipoprotein parameter, as shown in (A). Colors for loadings are similar to those
for corresponding coefficients of variation in (A). (D) V4CH concentrations of samples with different numbers of FTCs. Significance tested by
Wilcoxon signed-rank tests. *: adjusted p-value ≤ 0.05; **: adjusted p-value ≤ 0.01.
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overall variation in the data, indicating that this cohort of
healthy donors represents a homogeneous group.
Wilcoxon signed-rank tests showed that the concentrations

of the 20 serum metabolites did not significantly differ between
two consecutive FTCs (Table S5). The concentration of serum
acetic acid was significantly increased between FTC1 and
FTC5 (adjusted p-value = 0.01), while no significant
accumulated effects of FTCs were found for other serum
metabolites (Table S5).

Effect of Freeze−Thaw Cycles on Metabolite
Concentrations in Urine Samples

We found that one to five FTCs had no systematic effect on
the metabolite concentrations in urine samples, as shown by
PCA (Figure 3C). Samples from the same donors were
clustered and within-donor variations were lower compared to
between-donor variations. Figure 3D demonstrates that the
median CVs were between 1.3-76.1%, with a median of 4.9%
across all metabolites. 28/35 metabolites had median CV <
15%. The CVs of creatine (median: 76.1% ) were higher
compared to other metabolites. CVs of the two sets of quality
control samples varied from 0.7-223.6% (median: 3.5%)-
and from 0.4-157.6% (median: 2.4%), respectively. ICCs of all
urine metabolites were high (ICC > 0.9 for 33 of 35
metabolites) (Figure S1C).
Based on Wilcoxon signed-rank tests, no significant

differences between two consecutive FTCs on the metabolite
concentrations were found (Table S6). No accumulated effects
of FTCs on the metabolite levels were found (Table S6).

■ DISCUSSION

In this study, we examined the impact of repeated FTCs on the
absolute concentrations of lipoprotein parameters and
metabolites determined by NMR spectroscopy of human
biofluids. We found that up to five repeated FTCs induced
minimal changes in the measured concentrations of serum and
urine metabolites and lipoproteins.
NMR-based quantitative analysis has been applied widely to

evaluate the association of lipoproteins with cardiovascular
diseases, diabetic dyslipidemia, and cancer.20,30,31 To the best
of our knowledge, we are the first to report the effects of
repeated FTCs on NMR-measured concentrations of lipids
and apolipoproteins in lipoprotein subclasses. Using a
commercial analytical platform for automatic quantification
of lipoproteins and their subclasses, we found that systematic
changes of lipoprotein parameter concentrations did not
appear for up to five repeated FTCs. While the concentrations
of five VLDL-derived parameters were significantly changed
between FTC3 and FTC4, the relative changes in concen-
tration values were low. The remaining 107 lipoprotein
parameters did not change between consecutive FTCs.
However, minor, significant accumulated effects of FTCs
were observed for 32 lipoprotein parameters, occurring after
FTC3, FTC4, or FTC5. The median CV across all of the
parameters was 4.3%, showing a high reproducibility of the
experiments and little variation of samples with multiple FTCs.
Median CV for total cholesterol (TPCH), LDL cholesterol
(LDCH) and HDL cholesterol (HDCH) was 2.0%, 3.0%, and
2.1%, respectively. This is in the range of the recommendations

Figure 3. Effects of five FTCs on serum and urine metabolite concentrations. (A, C) PCA scores plots for serum (A) and urine (C) metabolites.
Samples from the same donor are connected by lines of different colors. Values from quality control samples [QC1 (red) and QC2 (blue)] are
shown for comparison. (B, D) Box plots of the coefficients of variation for serum (B) and urine (D) metabolites. Median values, interquartile
ranges, and outliers are presented.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00343
J. Proteome Res. XXXX, XXX, XXX−XXX

E



of the National Cholesterol Education Program (NCEP)
Laboratory Standardization Panel (CV < 3.0% for cholesterol,
CV < 4.0% for LDL cholesterol, and CV < 5.0% for HDL
cholesterol).32−35

Our findings are consistent with previous studies on
clinically measured cholesterol levels, showing that FTCs had
either no significant effects or only minor effects (less than day-
to-day variations) on serum or plasma LDL and HDL
concentrations.22,36,37 Conversely, compared to fresh samples,
freezing prior to lipoprotein fractionation via density gradient
ultracentrifugation was shown to cause large variations (up to
37%) in concentrations of HDL and LDL cholesterol, and
VLDL-free fatty acids in serum.38 This is in line with the
certification protocols for determining total cholesterol, HDL
and LDL cholesterol, which recommend to use fresh samples
for the reference method and to use frozen samples with
caution.32−34 However, in large cohorts such as biobank
studies, it is not feasible to analyze fresh serum; thus, our study
is limited to the comparison of lipoprotein concentrations in
frozen samples with different FTCs. Moreover, in our study,
lipoprotein particle numbers did not significantly change
(LDL, and subclasses of LDL-2-6) or slightly increased
(VLDL, IDL, and LDL-1) after multiple FTCs. Similarly, a
recent study demonstrated that three or more FTCs, when
thawing plasma samples in a cold room, caused significant, but
relatively small, changes in lipoprotein sizing (a shift of HDL
particle size from large to small, decrease in large LDL and
increase in IDL), and no changes in the proteome.22

No significant changes in urine metabolite concentrations
were observed with up to five FTCs, while only acetic acid
changed significantly within small-molecule serum metabolites.
Compared to urine metabolites, the spread of donors in the
PCA scores plot was lower for serum metabolites, possibly
reflecting high homogeneity in this cohort of healthy donors.
The coefficients of variation for some of the serum metabolites
were high. These high CVs could result from mean
concentration values close to zero, in which case CV is not
an appropriate measure of reproducibility. However, the range
of ICCs of serum metabolites was also high (from 0.3 to 0.9),
eight of which were below 0.7. This indicates a lower
reproducibility for some of the serum metabolites, such as
trimethylamine-N-oxide and acetoacetic acid.
Unlike our findings, previous NMR-based studies have

reported changes in plasma composition or relative quantita-
tive levels of metabolites by either two or multiple FTCs.8−10

Based on three subjects, Pinto et al.9 reported that the effects
of repeated freezing and thawing on plasma metabolites
appeared after four and five cycles, but not within the first
three cycles. Upon five consecutive FTCs, alterations consisted
of decreased lipids and acetone and increased choline
phospholipid, alanine, glucose, and pyruvate. Similarly,
compared to one FTC, 5 or 10 FTCs were shown to have a
visible impact on the metabolic profile of serum samples, and
the levels of several small molecular metabolites were
decreased, including choline, glycerol, methanol, ethanol, and
proline.10 Four of these mentioned metabolites were analyzed
in our study. Among them, acetone and alanine displayed
nonsignificant changes across five FTCs, and pyruvate and
ethanol were undetectable. Moreover, Teahan et al.8 detected
minor spectral differences in samples with only one additional
FTC. However, their freeze−thaw conditions are different
compared to ours and the others: they thawed and refroze
sample mixtures consisting of fresh sera and saline in NMR

tubes at −40 °C prior to NMR analysis, while we subjected
serum samples more in accordance with a biobank setting. It
cannot be ruled out that dilution with saline might change the
stability of serum. To assess possible differences in the stability
of serum and plasma metabolites, studies should be performed
to compare the effects of FTCs in serum and plasma samples
under the same experimental conditions.
The effect of FTCs has also been evaluated by mass

spectrometry-based analysis, reporting small changes in
metabolic profiles in blood samples. Up to four FTCs only
affected the plasma metabolome slightly but increased the
individual variability.39 By use of a targeted liquid chromatog-
raphy−mass spectrometry (LC−MS) approach, Breier et al.
discovered that, compared to those in fresh-frozen serum
samples, all 159 investigated metabolites, except methionine
sulfoxide, maintained stable concentrations in samples with
two FTCs.40 After three FTCs, 11 metabolites had significantly
decreased concentrations, among which are the amino acids
isoleucine, tryptophan, and valine. Similarly, Anton et al. found
quite stable metabolite concentrations with up to four FTCs
compared to fresh-frozen samples.41 Among a total of 163
measured metabolites, only five amino acids, including glycine,
methionine, phenylalanine, tryptophan, and tyrosine, had
slightly, but not significantly increased concentrations with
increased numbers of FTCs. Most metabolite concentrations
were stable in serum samples subjected to two FTCs.
We found that urine metabolite concentrations did not

significantly differ between consecutive FTCs and that no
systematic changes appeared after five FTCs. Our findings are
consistent with data reported from NMR analysis of rat urine
samples, which showed that up to five FTCs had no influence
on single metabolite concentrations or metabolomics classi-
fication approach.11 In contrast, data from metabolic profiling
of human urine samples measured by an LC−MS/MS method
showed that three FTCs, but not one or two cycles,
significantly increased concentrations of two metabolites
(propionylcarnitine and hexose), compared to samples
immediately frozen at −80 °C.42 However, these two
metabolites were not quantified in our study.

■ CONCLUSIONS
In conclusion, evaluated by using a commercially available
NMR-based platform, quantification of lipoprotein parameters
and metabolites was reproducible even with five repeated
FTCs. No significant effects on concentrations of small-
molecule metabolites in urine samples were observed. Minor
accumulated changes were observed in concentrations of 32/
112 lipoprotein parameters and 1/20 metabolites in serum
samples. Although significant, the variation was still within the
recommended NCEP guidelines for total cholesterol, LDL
cholesterol and HDL cholesterol. Taken together, our results
show that using this platform clearly allows for utilizing
samples with different FTCs for quantification of metabolites
and lipoprotein parameters in the same study.
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Figure S1. Intraclass correlation coefficients for lipoproteins (A), serum (B) and urine (C) 
metabolites. The dotted line represents the mean of ICCs across all lipoprotein parameters, all 
serum metabolites and all urine metabolites, respectively. 
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Table S1. List of measured lipoprotein parameters 

Number Lipoprotein parameter Matrix Measured (or cacluated) Analyte Unit 
1 TPTG Total Serum Triglycerides mg/dL 
2 TPCH Total Serum Cholesterol mg/dL 
3 LDCH LDL Cholesterol mg/dL 
4 HDCH HDL Cholesterol mg/dL 
5 TPA1 Total Serum Apo-A1 mg/dL 
6 TPA2 Total Serum Apo-A2 mg/dL 
7 TPAB Total Serum Apo-B mg/dL 
8 LDHD* LDL/HDL LDL-Chol/HDL-Chol -/- 
9 ABA1* Apo-B/Apo-A1 Apo-B/Apo-A1 -/- 
10 TBPN* Total Serum Particle Number nmol/L 
11 VLPN* VLDL Particle Number nmol/L 
12 IDPN* IDL Particle Number nmol/L 
13 LDPN* LDL Particle Number nmol/L 
14 L1PN* LDL-1 Particle Number nmol/L 
15 L2PN* LDL-2 Particle Number nmol/L 
16 L3PN* LDL-3 Particle Number nmol/L 
17 L4PN* LDL-4 Particle Number nmol/L 
18 L5PN* LDL-5 Particle Number nmol/L 
19 L6PN* LDL-6 Particle Number nmol/L 
20 VLTG VLDL Triglycerides mg/dL 
21 IDTG IDL Triglycerides mg/dL 
22 LDTG LDL Triglycerides mg/dL 
23 HDTG HDL Triglycerides mg/dL 
24 VLCH VLDL Cholesterol mg/dL 
25 IDCH IDL Cholesterol mg/dL 
26 VLFC VLDL Free Cholesterol mg/dL 
27 IDFC IDL Free Cholesterol mg/dL 
28 LDFC LDL Free Cholesterol mg/dL 
29 HDFC HDL Free Cholesterol mg/dL 
30 VLPL VLDL Phospholipids mg/dL 
31 IDPL IDL Phospholipids mg/dL 
32 LDPL LDL Phospholipids mg/dL 
33 HDPL HDL Phospholipids mg/dL 
34 HDA1 HDL Apo-A1 mg/dL 
35 HDA2 HDL Apo-A2 mg/dL 
36 VLAB VLDL Apo-B mg/dL 
37 IDAB IDL Apo-B mg/dL 
38 LDAB LDL Apo-B mg/dL 
39 V1TG VLDL-1 Triglycerides mg/dL 
40 V2TG VLDL-2 Triglycerides mg/dL 
41 V3TG VLDL-3 Triglycerides mg/dL 
42 V4TG VLDL-4 Triglycerides mg/dL 
43 V5TG VLDL-5 Triglycerides mg/dL 
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44 V1CH VLDL-1 Cholesterol mg/dL 
45 V2CH VLDL-2 Cholesterol mg/dL 
46 V3CH VLDL-3 Cholesterol mg/dL 
47 V4CH VLDL-4 Cholesterol mg/dL 
48 V5CH VLDL-5 Cholesterol mg/dL 
49 V1FC VLDL-1 Free Cholesterol mg/dL 
50 V2FC VLDL-2 Free Cholesterol mg/dL 
51 V3FC VLDL-3 Free Cholesterol mg/dL 
52 V4FC VLDL-4 Free Cholesterol mg/dL 
53 V5FC VLDL-5 Free Cholesterol mg/dL 
54 V1PL VLDL-1 Phospholipids mg/dL 
55 V2PL VLDL-2 Phospholipids mg/dL 
56 V3PL VLDL-3 Phospholipids mg/dL 
57 V4PL VLDL-4 Phospholipids mg/dL 
58 V5PL VLDL-5 Phospholipids mg/dL 
59 L1TG LDL-1 Triglycerides mg/dL 
60 L2TG LDL-2 Triglycerides mg/dL 
61 L3TG LDL-3 Triglycerides mg/dL 
62 L4TG LDL-4 Triglycerides mg/dL 
63 L5TG LDL-5 Triglycerides mg/dL 
64 L6TG LDL-6 Triglycerides mg/dL 
65 L1CH LDL-1 Cholesterol mg/dL 
66 L2CH LDL-2 Cholesterol mg/dL 
67 L3CH LDL-3 Cholesterol mg/dL 
68 L4CH LDL-4 Cholesterol mg/dL 
69 L5CH LDL-5 Cholesterol mg/dL 
70 L6CH LDL-6 Cholesterol mg/dL 
71 L1FC LDL-1 Free Cholesterol mg/dL 
72 L2FC LDL-2 Free Cholesterol mg/dL 
73 L3FC LDL-3 Free Cholesterol mg/dL 
74 L4FC LDL-4 Free Cholesterol mg/dL 
75 L5FC LDL-5 Free Cholesterol mg/dL 
76 L6FC LDL-6 Free Cholesterol mg/dL 
77 L1PL LDL-1 Phospholipids mg/dL 
78 L2PL LDL-2 Phospholipids mg/dL 
79 L3PL LDL-3 Phospholipids mg/dL 
80 L4PL LDL-4 Phospholipids mg/dL 
81 L5PL LDL-5 Phospholipids mg/dL 
82 L6PL LDL-6 Phospholipids mg/dL 
83 L1AB LDL-1 Apo-B mg/dL 
84 L2AB LDL-2 Apo-B mg/dL 
85 L3AB LDL-3 Apo-B mg/dL 
86 L4AB LDL-4 Apo-B mg/dL 
87 L5AB LDL-5 Apo-B mg/dL 
88 L6AB LDL-6 Apo-B mg/dL 
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89 H1TG HDL-1 Triglycerides mg/dL 
90 H2TG HDL-2 Triglycerides mg/dL 
91 H3TG HDL-3 Triglycerides mg/dL 
92 H4TG HDL-4 Triglycerides mg/dL 
93 H1CH HDL-1 Cholesterol mg/dL 
94 H2CH HDL-2 Cholesterol mg/dL 
95 H3CH HDL-3 Cholesterol mg/dL 
96 H4CH HDL-4 Cholesterol mg/dL 
97 H1FC HDL-1 Free Cholesterol mg/dL 
98 H2FC HDL-2 Free Cholesterol mg/dL 
99 H3FC HDL-3 Free Cholesterol mg/dL 
100 H4FC HDL-4 Free Cholesterol mg/dL 
101 H1PL HDL-1 Phospholipids mg/dL 
102 H2PL HDL-2 Phospholipids mg/dL 
103 H3PL HDL-3 Phospholipids mg/dL 
104 H4PL HDL-4 Phospholipids mg/dL 
105 H1A1 HDL-1 Apo-A1 mg/dL 
106 H2A1 HDL-2 Apo-A1 mg/dL 
107 H3A1 HDL-3 Apo-A1 mg/dL 
108 H4A1 HDL-4 Apo-A1 mg/dL 
109 H1A2 HDL-1 Apo-A2 mg/dL 
110 H2A2 HDL-2 Apo-A2 mg/dL 
111 H3A2 HDL-3 Apo-A2 mg/dL 
112 H4A2 HDL-4 Apo-A2 mg/dL 
Density ranges for lipoprotein main fractions: VLDL: 0.950-1.006 kg/L, IDL: 1.006-1.019 kg/L, LDL: 
1.019-1.063 kg/L and HDL: 1.063-1.210 kg/L.  
Density ranges for lipoprotein subfractions: LDL1: 1.019-1.031 kg/L, LDL2: 1.031-1.034 kg/L, LDL3: 
1.034-1.037 kg/L, LDL4: 1.037-1.040 kg/L, LDL5: 1.040-1.044 kg/L, and LDL6: 1.044-1.063 kg/L. 
HDL1: 1.063-1.100 kg/L, HDL2: 1.100-1.112 kg/L, HDL3: 1.112-1.125 kg/L, and HDL4: 1.125-1.210 
kg/L. Properties of VLDL subfractions are specified in the following reference: Lindgren FT, Jensen 
LL, Hatch FT (1972) The isolation and quantitative analysis of serum lipoproteins. In Nelson GJ (ed.) 
Blood lipids and lipoproteins: Quantitation, composition and metabolism. Wiley-Interscience, New 
York, p 181-274.  
Numbers for lipoprotein parameters are corresponding to those used in Figure 2.   
* : Calculated from the original ones. 
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Table S2. List of measured serum metabolites 
Quantified Not quantifiable 
Acetic acid Ethanol 
Pyruvic acid 3-Hydroxybutyric acid 
Acetoacetic acid Glycerol 
Formic acid Glutamic acid 
Glycine Ca-EDTA* 
D-Glucose  
Valine  
L-Isoleucine  
Leucine  
Glutamine  
Phenylalanine  
Alanine  
Acetone  
Creatinine  
Creatine  
Lactic acid  
DL-Tyrosine  
Histidine  
Trimethylamine-N-oxide  
Citric acid  
K-EDTA*   
*: Ca-EDTA and K-EDTA are not endogenous serum metabolites, and thus K-EDTA is not 
included as a quantified serum metabolite for further analysis. 
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Table S3. List of measured urine metabolites 
Quantified Not quantifiable 
Creatinine D-Galactose 
D-Lactose Myo-Inositol 
Alanine 3-Hydroxybutyric acid 
Acetic acid Methionine 
Succinic acid 1-Methylhistidine 
Citric acid Benzoic acid 
Dimethylamine 4-Aminobutyric acid 
Trimethylamine D-Mannitol 
Betaine D-Mannose 
Glycine Adenosine 
Fumaric acid Imidazole 
Formic acid D-Mandelic acid 
1-Methylnicotinamide 2-Furoylglycine 
N,N-Dimethylglycine 2-Methylsuccinic acid 
Hippuric acid 1-Methyladenosine 
Valine  
Arginine  
Trigonelline  
Pyruvic acid  
Oxaloacetic acid  
Allantoin  
Caffeine  
Inosine  
Allopurinol  
Tartaric acid  
Proline betaine  
Guanidinoacetic acid  
D-Glucose  
Lactic acid  
Taurine  
Acetone  
Acetoacetic acid  
Creatine  
Sarcosine  
2-Oxoglutaric acid   
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