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A B S T R A C T

It is essential for a safe and cost-efficient marine operation to improve the knowledge about the
real-time onboard vessel conditions. This paper proposes a novel algorithm for simultaneous
tuning of important vessel seakeeping model parameters and sea state characteristics based
on onboard vessel motion measurements and available wave data. The proposed algorithm is
fundamentally based on the unscented transformation and inspired by the scaled unscented
Kalman filter, which is very computationally efficient for large dimensional and nonlinear
problems. The algorithm is demonstrated by case studies based on numerical simulations,
considering realistic sensor noises and wave data uncertainties. Both long-crested and short-
crested wave conditions are considered in the case studies. The system state of the proposed
tuning framework consists of a vessel state vector and a sea state vector. The tuning results
reasonably approach the true values of the considered uncertain vessel parameters and sea state
characteristics, with reduced uncertainties. The quantification of the system state uncertainties
helps to close a critical gap towards achieving reliability-based marine operations.

1. Introduction

For marine operations, operational limit diagrams are normally provided in operating reports or operation manual booklets.
Normally, there are many variables that influence these diagrams, such as vessel heading, loading condition, vessel speed, water
depth, wave condition, and operation phase, so that dimension reduction must be considered as a compromise with readability.
As a result, conservatism is typically increased. By means of IT tools and increased onboard communicating and computing
capacity, real-time and interactively updated operational limit diagrams can be available without sacrificing useful information
and knowledge.

It is also well recognized that the vessel operational conditions (defined by vessel inertia distribution, damping, forward speed,
and the encountered weather and water depth conditions) are always subject to uncertainties [1], and those uncertain parameters
can significantly influence the resulting vessel motion estimation [1–3]. A successful onboard decision support system (ODSS) for
operation optimization and risk avoidance normally requires accurate real-time vessel motion prediction. For decades, there has been
a strong research interest in relation to wave-induced vessel motion prediction in real time. Without wave prediction, one is still able
to predict vessel motions by extrapolation of the recorded motion time series based on various approaches. Li et al. [4] qualitatively
compared different typical predictive models within the machine learning domain. In general, the applicable predictive models
for nonlinear time series involving machine learning could (1) be too computationally expensive to use online (e.g., support vector
machine [5], fuzzy logic, and decision tree methods); (2) require highly customized modeling (e.g., wavelet neural network [6]); (3)

∗ Corresponding author at: Department of Marine Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
E-mail address: xu.han@ntnu.no (X. Han).
951-8339/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.marstruc.2021.102998
Received 23 October 2020; Received in revised form 16 January 2021; Accepted 8 March 2021

http://www.elsevier.com/locate/marstruc
http://www.elsevier.com/locate/marstruc
mailto:xu.han@ntnu.no
https://doi.org/10.1016/j.marstruc.2021.102998
https://doi.org/10.1016/j.marstruc.2021.102998
http://creativecommons.org/licenses/by/4.0/


Marine Structures 78 (2021) 102998X. Han et al.
Nomenclature

%𝛥𝜎2𝐴 The variance reduction for parameter 𝐴 due to tuning. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
𝛼 Scaling factor for the UKF model
�̄�𝑗 The mean value of the filtered sensor signal �̂�𝑗 (𝑡)
𝛽 Hyperparameter in the UKF model in order to partially account for higher order statistical properties
𝛽44 Ratio between the additional roll damping and the critical roll damping
𝛽𝑊 𝑝 The prevailing wave direction for short-crested waves
𝛽𝑊 Wave direction w.r.t. vessel coordinate system
�̄� 𝑘 The state covariance matrix for �̄�𝑘
�̄�𝑘 The predicted system state for the 𝑘th update
𝝓
𝑘,𝑖 The vessel state for the sigma point 𝑘,𝑖

𝜽
𝑘,𝑖 The sea state for the sigma point 𝑘,𝑖

𝑘,𝑖 The 𝑖th sigma point for the system state 𝒙𝑘, i.e., the 𝑖th column of 𝑘
𝑘 The sigma points for the system state 𝒙𝑘
𝑘 The predicted measurement vector estimated based on all sigma points
𝝓𝑘 The vessel state after the 𝑘th update
𝜽′𝑘 The acquired sea state information for the 𝑘th update
𝜽𝑘 The sea state after the 𝑘th update
𝑲 Kalman gain
𝑷𝑤
𝑘 The covariance matrix for 𝒙𝑤𝑘

𝑷 ′
𝜽𝑘

The prior uncertainty of 𝜽′𝑘
𝑷 𝑘 The system state covariance matrix for 𝒙𝑘
𝑷 𝝓𝑘 The covariance matrix for 𝝓𝑘
𝑷 𝜽𝑘 The covariance matrix for 𝜽𝑘
𝑷 𝒙𝒛𝑘 The cross covariance matrix for the system state in state space and measurement space at 𝑘th

measurement update step
𝑷 𝒛𝑘 The covariance matrix for the system state in measurement space at 𝑘th measurement update step
𝑸 Process uncertainty covariance matrix
𝑹 Measurement uncertainty covariance matrix
𝒗 Process disturbance
𝒙𝑤𝑘 The system state after weather update step for the 𝑘th sea state
𝒙𝑘 The system state after the 𝑘th update
𝒚𝑘 The residual at 𝑘th measurement update step
𝒁𝑘,𝑖 The predicted measurement vector at 𝑘,𝑖, built based on all sensor signals 𝑥𝑗 (𝑡), for 𝑗 = 1, 2,… , 𝐽
𝒛𝑘 The acquired measurements at the 𝑘th update step (i.e., the standard deviations of sensor signals)
𝛥�̂� The error between the true and the tuned values for parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
𝜂3, ̇𝜂3, 𝜂3 Heave displacement, velocity, acceleration
�̂�𝐴 The standard deviation of the tuned parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
�̂�𝑗 The standard deviation of the filtered signal �̂�𝑗 (𝑡)
�̂� The tuned value of parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
�̂�𝑗 (𝑡) The filtered time series for sensor signal 𝑥𝑗 (𝑡)
𝜅 Hyperparameter in the UKF model
𝜔 Wave frequency
𝜎𝐴 The standard deviation of the acquired parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
𝐴 The acquired value of parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
𝜓 Phase angle between the wave elevation and the vessel response in the RAO
𝜎2𝑁 Variance of signal noise
𝜎𝐴 The standard deviation of the random variable 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , 𝛽44, XCG, etc.
𝜎𝑗,𝑖 The predicted measurement (response standard deviation) corresponding to the sensor measurement

𝑥𝑗 (𝑡) based on the sigma point 𝑘,𝑖
𝜏 Initial seed for case simulations

and lack of physical reasoning. Despite the complexity and computational cost, purely machine learning based predictive models such
as neural network in general do not outperform compared with other classical prediction methods such as autoregressive models
and minor component analysis [7]. Nielsen et al. [8] proposed a ship motion prediction algorithm based on the autocorrelation
2
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𝜀𝐴 The error between the true and the acquired values for parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc. 𝜀𝐴 = 𝛥𝐴
𝜑 Random phase angle for wave components
𝐴∗ The true value of parameter 𝐴. 𝐴 can be 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , etc.
𝑓𝑙𝑝 Lowpass filter cutoff frequency [Hz]
𝐻𝑗 (𝜔, 𝛽𝑊 |𝑘,𝑖) The RAO corresponding to the system state 𝑘,𝑖 and the sensor signal 𝑥𝑗 (𝑡)
𝐻𝑠 Significant wave height
𝐽 The total number of sensor measurements for one sea state
𝑗 Sensor ID, the 𝑗th sensor measurement, representing different quantities (displacement, velocity,

acceleration) and locations
𝑘 The sea state number
𝑁 The dimension of the system state
𝑛𝑠 Spreading parameter for short-crested waves
𝑁𝑡 Number of time steps for the sensor signals
𝑁𝛽𝑊 Number of discrete directions for each spectrum
𝑁𝜔 Number of discrete frequencies for each 1D spectrum
𝑆∗
𝑋𝑗𝑋𝑗

(𝜔) The true vessel motion spectrum for sensor 𝑗

𝑆𝜁𝜁 (𝜔, 𝛽𝑊 |𝜽
𝑘,𝑖) The single-sided wave spectrum corresponding to the sea state 𝜽

𝑘,𝑖
𝑆𝜁𝜁

(

𝜔, 𝛽𝑊
)

Single-sided wave spectrum
𝑆𝑗,𝑖(𝜔) The estimated vessel motion spectrum based on the sigma point 𝜽

𝑘,𝑖 corresponding to the signal 𝑥𝑗 (𝑥)
𝑇𝑝 Wave spectral peak period
𝑤𝑐𝑖 The weight factor for state mean calculation at the 𝑖th sigma point, 𝑖 = 0, 1, 2,… , 2𝑁
𝑤𝑚𝑖 The weight factor for state covariance calculation at the 𝑖th sigma point, 𝑖 = 0, 1, 2,… , 2𝑁
𝑥𝑗 (𝑡) The original signal for the 𝑗th sensor measurement for a certain sea state
DP Dynamic positioning
ODSS Onboard decision support system
OSV Offshore supply vessel
PM Pierson–Moskowitz spectrum
RAO Response amplitude operator
SNR Signal-to-noise ratio
UKF Unscented Kalman filter
WMO World Meteorological Organization
XCG Longitudinal coordinate of vessel center of gravity

function of the measured motion time series. Due to the highly random nature of the encountered waves, it is challenging to ensure
the time series extrapolation quality. The algorithms mentioned above reported reliable predictions of wave-induced vessel motions
from a few seconds up to less than a minute ahead.

Alternatively, the wave-induced vessel motion can be predicted by seakeeping analysis based on wave forecast and predefined
essel conditions, without taking advantage of historical motion records. Seakeeping analysis has been commonly applied for design
f floaters and floater-involved marine operations [9]. Usually transfer functions between vessel motions and wave elevations from
eakeeping analysis can be linearized [10] and applied for real-time motion prediction. The corresponding prediction capacity is
imited by the accuracy of the wave forecast and the applied linear transfer functions, i.e., response amplitude operators (RAOs).
n recent decades, research about ODSS has been mainly focused on improving vessel motion prediction by improving the wave
rediction for the near future by: (1) processing of coherent wave radar signals [11,12]; (2) using non-coherent wave radar signals
ombined with ship motion measurements [13–15]; (3) applying ‘‘ship as a wave buoy’’ analogy [16,17] assuming stationary sea
tates and predicting the future sea state by extrapolation; (4) or improving the accuracy of the wave analysis model [18–20].

Although seldom addressed, it is equally important to quantify and reduce the uncertainties associated with vessel seakeeping
odel parameters for a risk-based ODSS [1]. Practically, the uncertainties of vessel parameters for marine operations can be reduced

y (1) careful design and organization of marine operation activities; (2) directly using available vessel condition monitoring systems
uch as the ballasting system and draft measurement. However, important vessel parameters related to inertia distribution and
amping are challenging to measure directly and still expected to be subject to significant uncertainties. Identification of these
mportant vessel hydrodynamic parameters has been mainly studied for maneuvering [21–23] and dynamic positioning (DP) [24]
cenarios, where the responses at wave frequencies are considered as a disturbance or simply ignored. The estimated hydrodynamic
oefficients such as added mass and damping may be questionable to apply for future wave conditions. Compared with tuning DP
nd maneuvering models, seakeeping model tuning is even more challenging because it must explicitly consider the highly variable
ave loads.
3
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Han et al. [25] proposed a promising online algorithm to improve the knowledge about the important vessel parameters and
uantify the uncertainties, based on onboard vessel motion measurements and wave information (in terms of wave spectrum). The
lgorithm is based on discrete Bayesian inference and the tuned parameters can improve the accuracy of the RAOs to be applied for
uture sea states. Roll motion is subject to high nonlinearity due to the significant influence from nonlinear roll damping sources
uch as eddy making and bilge keel induced damping [26]. Such damping terms are defined as ‘‘additional’’ damping, differing
rom the damping derived from the linear potential theory. However in practice, such additional roll damping is usually linearized
t each sea state by e.g., stochastic linearization [27] so that the roll motion transfer function can represent a linear behavior. As
consequence, the additional roll damping becomes sea state dependent. Han et al. [28] proposed two procedures for tuning and

redicting such sea state dependent parameters together with other vessel parameters.
However, the algorithm of vessel seakeeping model tuning is still at an early developing stage with many identified challenges

owards industrial applications. The acquired wave information can never be exact. Precise knowledge about the wave spectrum
as assumed in the previous research [25,28]. The feasibility of the previously proposed tuning algorithms with Bayesian inference

echnique have been demonstrated, by considering up to 4 uncertain vessel parameters. In reality, more uncertain parameters should
e included in the tuning model, e.g., vessel heading and speed, wave spectrum related parameters such as 𝐻𝑠 (significant wave

height), 𝑇𝑝 (wave spectral peak period), 𝛽𝑊 (wave direction), directional spreading, and many other hydrodynamic parameters. As
a consequence, the previously developed methodology faces a common challenge with respect to the curse of dimensionality [29].
This makes the discrete Bayesian inference based model tuning approach time-consuming, computationally expensive, and hence
unrealistic for practical applications within such an extended system framework.

To solve the curse of dimensionality, this paper proposes a novel and much more efficient algorithm to tune the vessel seakeeping
model parameters by applying a second-order statistical inference algorithm based on the mean and variance of the variables. The
newly proposed algorithm also considers the uncertainties from waves and can even reduce these uncertainties through the proposed
tuning procedure. The paper is organized as follows. The uncertainties from wave information are discussed in Section 2. Then the
new tuning algorithm is described in Section 3. The proposed algorithm is demonstrated numerically by case studies. The basis of
the considered seakeeping model, generation of synthetic sensor signals, and the base case inputs are described in Section 4. The
results of the base case and associated sensitivity studies are presented in Section 5. Finally, Section 6 summarizes the main findings
from the present study and gives suggestions for future work.

2. Wave data and the associated uncertainties

Wave field data can be collected through forecast, hindcast, visual observation, or instrumental measurements, among which
the measurements by instruments such as wave buoys, shipborne wave recorders, satellite altimeters, and onboard radars may be
subject to minimum error. Practically, any type of wave data can be valuable for tuning of the seakeeping model parameters.

Nowadays wave forecast and hindcast mostly use the third-generation wave models, e.g., WAM, accounting for the nonlinear
interaction between wave components [30]. The uncertainty of wave forecast may be well quantified by the spread of the wave
ensemble prediction [31,32]. The wave forecast could be biased, especially in sheltered or coastal areas. Natskår et al. [33] compared
the wave data between forecast and hindcast. Biased 𝐻𝑠 was observed in the forecast data.

The comparison study by Orimolade et al. [34] indicates that (1) the wave forecast uncertainty also depends on the location to
be forecasted; (2) and the instrumental error of the MIROS microwave radar onboard the Heidrun platform may be generally higher
than the wave buoy measurements used for Barents Sea. Comparisons between summer and winter seas [34] may suggest that the
wave information obtained by wave radar measurements performed in a more stable way across mild and harsh seas, even with
relatively large measuring errors. The measurement errors by wave buoys are much smaller at moderate seas but can be significantly
increased at harsh environmental conditions. Hagen et al. [35] also argued that breaking waves or slamming acting on a wave buoy
may lead to overestimation of wave heights, while underestimation may occur for severe seas due to the buoy being drawn through
the wave crest, or for large surface current.

To assure a globally aligned measurement quality, the World Meteorological Organization (WMO) has published recommenda-
tions and requirements for instrument performance [36]. The specified measurement uncertainties corresponds to a 95% probability
level, i.e., two standard deviations (2𝜎) for a Gaussian distribution. The measurements should, where possible, record the sea state
characteristics (e.g., 𝐻𝑠, 𝑇𝑝, and 𝛽𝑊 ) for wind sea and swell, separately.

Please note that the specified uncertainties of the WaMoSII system and the WAM results are only based on the available indicative
accuracy information [1,37]. It is assumed that the accuracy approximately corresponds to a 95% confidence level. The term
‘‘accuracy’’ is less preferred compared with ‘‘uncertainty’’ [36] because ‘‘accuracy’’ can be determined only when the true value
is perfectly known. Natskår et al. [33] reported even higher uncertainties on the forecast 𝑇𝑝, in comparison with hindcast wave
ata.

The freely accessible ERA5 datasets [38] and toolbox provide comprehensive opportunities of reanalyzing wave data both in
erms of the expectation and the uncertainty assessment, based on the Integrated Forecasting System (IFS) Cy41r2 which combines

AM forecast and available observations. However, it is worth noting that ERA5 mostly considers random errors in terms of
nsemble spread [32] but not systematic errors. The uncertainties of the ERA5 datasets are highly dependent on the amount and
uality of available observations, resolution, location, and season. The wave analysis results and their uncertainty assessment may
e biased, due to the potential systematic errors, e.g., in the cases of tropical and extra-tropical cyclones. By benefiting from the
evelopment of the wave model [30], data assimilation [39], and observation handling [40], the uncertainties of the ocean wave
4
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Table 1
Operational measurement uncertainties (2𝜎) [36].

Variable 𝐻𝑠 𝑇𝑝 𝛽𝑊
WMO requireda 0.5 m for 𝐻𝑠 ≤ 5 m;

10% for 𝐻𝑠 > 5 m
0.5 s 10◦

WMO achievableb 0.5 m for 𝐻𝑠 ≤ 5 m;
10% for 𝐻𝑠 > 5 m

0.5 s 20◦

Typical moored buoy 0.2 m or 10% 1.0 s 10◦

WaMoSII radar [1,37] 0.5 m or 10% 0.5 s 2◦

Wave model (WAM) [1] 0.5 m or 15% 10% 15◦

a ‘‘WMO required’’ corresponds to the recommended requirements about the measurement
uncertainty for general operational use [36].
b ‘‘WMO achievable’’ corresponds to the realistic measurement uncertainty that the sensor can be
achieved in normal operational practice [36].

Table 2
Applied uncertainties of the measured sea state characteristics.

Variable Standard deviation Unit

𝐻𝑠 10% m
𝑇𝑝 0.5 s
𝛽𝑊 5 ◦

The wave information used in the state estimation model should include uncertainties from instrumental sensors, sampling
ariability (e.g., due to discrete measured data with limited duration for a relatively large recording interval), temporal and spatial
ariability (i.e., using the imperfectly synchronized measurement data from another location), and inaccurate description of waves
aused by e.g., the selection of wave models and probability distribution models. However, in reality the mentioned uncertainties
re very challenging to quantify and estimate independently. The reported uncertainties from sampling variability and temporal
nd spatial variability by Bitner-Gregersen and Hagen [41] are well within the WMO required measurement accuracy. Therefore,
t is rational to consider that the specified measurement uncertainties in Table 1 have included the sampling, temporal, and spatial
ariability to some degree. Due to the sampling variation, the Joint Committee on Structural Safety suggests longer wave recording
ength (even with less accuracy) for each recording interval rather than too short wave records within each interval (even with high
ccuracy) [35].

Based on the discussion above, the considered uncertainties of sea state characteristics are summarized in Table 2, assuming that
he sea state information is from measurements or hindcast. A sensitivity case considering larger uncertainties was also carried out,
ee Section 5.4.

The long-term distribution of 𝑇𝑝 is normally modeled as conditional upon 𝐻𝑠 with a log-normal distribution [42]. However, the
short-term distribution of 𝑇𝑝 with a prior knowledge with respect to 𝐻𝑠 and 𝑇𝑝 from measurements, hindcast, or forecast can be
reasonably approximated as being Gaussian distributed, i.e., 𝑃 (𝑇𝑝|𝐻𝑠, 𝑇 𝑝) ∼  (𝑇 𝑝, 𝜎

2
𝑇𝑝
), where 𝐻𝑠 and 𝑇 𝑝 represent the prior, and

𝜎2𝑇𝑝 represents the uncertainties (variance) of the prior 𝑇 𝑝.

. Formulation of algorithm

Real applications of vessel seakeeping model tuning must consider many uncertain sea state characteristics as described in
ection 2, as well as a large number of uncertain vessel parameters. Consequently, the curse of dimensionality from the previously
roposed discrete Bayesian inference approach [25] must be overcome for practical applications. The most common practice is
o approximate the joint probability distribution of the random variables by taking account of their properties related to the first
wo orders, i.e., the mean vector and the covariance matrix, and assuming the variables are multivariate Gaussian distributed.
he Kalman filter and its extended forms are the most popular algorithms updating the assumed Gaussian distributed state based
n measurements. Tuning of vessel seakeeping parameters is a multi-dimensional, multi-modal and nonlinear problem [25]. As
hown later, it is difficult to express the measurement function from the system state (including vessel parameters and sea state
haracteristics) to the measurement (i.e., the standard deviation of vessel motion) in an algebraic format. Comparing the performance
mong the popular nonlinear Kalman filters [43–47], the unscented Kalman filter (UKF) [46] is found to be relatively feasible for
he seakeeping model tuning problem, with respect to estimation accuracy, implementation convenience, numerical robustness, and
omputational expense. UKF is formulated based on the unscented transformation [48] directly through nonlinear functions.

The proposed tuning algorithm is then based on the UKF model, consisting of four steps: weather update, sigma-point and
eight calculation, system propagation, and measurement update. Different from the typical UKF models which update the state of

he dynamic system for each time instant, the proposed UKF model updates the system state for each sea state, assuming that the
ystem state is approximately stationary during each sea state. The tuning procedure is illustrated in Fig. 1. Details are described in
he following sections.
5
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Fig. 1. The process of tuning vessel parameters and sea state characteristics together with quantification of uncertainties.

3.1. Weather update

The system state 𝒙𝑘 at the sea state indexed by 𝑘 consists of a vessel state 𝝓𝑘 including uncertain vessel parameters and a sea
state 𝜽𝑘 including uncertain sea state characteristics such as 𝐻𝑠, 𝑇𝑝, and 𝛽𝑊 . The subscript 𝑘 indicates the corresponding parameter
that has been tuned for 𝑘 sea states. Wave conditions can be considered stationary within a sea state. Normally a stationary sea
state can last from 20 min up to 3 h, depending on the location. 𝝓𝑘 and 𝜽𝑘 are approximately constant within that sea state. For the
next sea state with the acquired wave information 𝜽′𝑘+1 and its uncertainty 𝑷 ′

𝜽𝑘+1
, the system state should be updated accordingly.

This step is referred to as weather update:

𝒙𝑤𝑘+1 =
[

𝝓𝑘
𝜽′𝑘+1

]

(1a)

𝑷𝑤
𝑘+1 =

[

𝑷 𝝓𝑘 𝟎
𝟎 𝑷 ′

𝜽𝑘+1

]

(1b)

where the superscript 𝑤 means the corresponding variable after the weather update step. Compared with the state after the 𝑘th
update i.e., 𝒙𝑘 and 𝑷 𝑘, the sub-variables 𝜽𝑘 and 𝑷 𝜽𝑘 have been replaced by 𝜽′𝑘+1 and 𝑷 ′

𝜽𝑘+1
respectively. In addition, the off-diagonal

sub-matrices 𝑷 and 𝑷 are replaced by zeros.
6
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3.2. Calculation of sigma points and weight factors

The sigma points 𝑘+1 in the state space are calculated by [43]

𝑘+1,0 = 𝒙𝑤𝑘+1 (2a)

𝑘+1,𝑖 =

⎧

⎪

⎨

⎪

⎩

𝒙𝑤𝑘+1 +
[√

(𝑁 + 𝜆)𝑷𝑤
𝑘+1

]

𝑖
for 𝑖 = 1, 2,… , 𝑁

𝒙𝑤𝑘+1 −
[√

(𝑁 + 𝜆)𝑷𝑤
𝑘+1

]

𝑖−𝑁
for 𝑖 = 𝑁 + 1,… , 2𝑁

(2b)

𝑘+1 = [𝑘+1,0 𝑘+1,1 ⋯ 𝑘+1,2𝑁 ] (2c)

where
[√

(𝑁 + 𝜆)𝑷𝑤
𝑘+1

]

𝑖
means the 𝑖th column (or row) of the matrix square root of (𝑁 + 𝜆)𝑷𝑤

𝑘+1. 𝑁 is the dimension of the system
tate vector. 𝑘+1 has a size of 𝑁 × (2𝑁 + 1). Each sigma point 𝑘+1,𝑖 (𝑖 ∈ {0, 1,… , 2𝑁}) is a deterministically selected state vector,

and it can be written as

𝑘+1,𝑖 =

[

𝝓
𝑘+1,𝑖

𝜽
𝑘+1,𝑖

]

(3)

here 𝝓
𝑘+1,𝑖 and 𝜽

𝑘+1,𝑖 are the corresponding vessel state and sea state at the sigma point 𝑘+1,𝑖. Coefficient 𝜆 in Eq. (2) is calculated
by [43]:

𝜆 = 𝛼2(𝑁 + 𝜅) −𝑁 (4)

where 𝛼 is the so-called scaling factor, and the parameter 𝜅 can have any value as long as 𝑁 +𝜅 ≠ 0, and is normally set to be 3−𝑁
or 0.

The weight factors corresponding to the calculated sigma points are independent of updating step 𝑘 and can be calculated by [43]:

𝑤𝑚0 = 𝜆
𝜆 +𝑁

(5a)

𝑤𝑐0 =
𝜆

𝜆 +𝑁
+ 1 − 𝛼2 + 𝛽 (5b)

𝑤𝑐𝑖 = 𝑤𝑚𝑖 = 1
2(𝜆 +𝑁)

(5c)

here 𝑖 = 1, 2,… , 2𝑁 . 𝑤𝑚 are the weight factors for the state mean calculation while 𝑤𝑐 are the weight factors for the state covariance
matrix calculation. 𝛽 is introduced in the scaled UKF by Julier [46] to partially include the higher order statistical information,
and 𝛽 = 2 for Gaussian distributed variables. To ensure a positive semi-definite covariance matrix, all the weight factors 𝑤𝑐𝑖 for
𝑖 = 0, 1,… , 2𝑁 should be non-negative [46]. Consequently, it requires (1) 𝜅 > −𝑁 ; (2) and approximately 𝛼 >

√

𝑁
4(𝑁+𝜅) assuming a

elatively small 𝛼 value. The criterion (2) is practically difficult to achieve because the UKF normally performs better with a very
mall 𝛼 value such as 0.01 [46]. Julier et al. [49] proposed a modified formulation for covariance calculation in order to guarantee
positive semi-definite covariance matrix.

.3. System propagation

The vessel state and the sea state are assumed approximately stationary during an update. Therefore, the system propagation
an be formulated as

�̄�𝑘+1 = 𝒙𝑤𝑘+1 + 𝒗 (6a)

�̄� 𝑘+1 = 𝑷𝑤
𝑘+1 +𝑸 (6b)

here �̄�𝑘+1 is the predicted state, �̄� 𝑘+1 is the predicted state covariance. 𝒗 is a 𝑁 × 1 vector representing the process disturbance,
nd is assumed to be multivariate Gaussian processes, i.e., 𝒗 ∼  (𝟎,𝑸) where 𝑸 is the process uncertainty covariance matrix.

.4. Measurement update

Firstly, the acquired vessel motion signals 𝑥𝑗 (𝑡) shall be filtered to remove the low-frequency components, bias, and high-
requency noises, in order to keep only the response energy within the wave frequency domain. 𝑗 = 1, 2,… , 𝐽 , where 𝐽 = 9 in
he case studies, is the number of available sensor measurements for one sea state. The filtered signal is denoted by �̂�𝑗 (𝑡) for each
easured quantity, e.g., displacement, velocity, or acceleration of the heave or roll motions. The standard deviations of the filtered

essel motion signals at different locations and quantities (i.e., displacement, velocity, and acceleration) are considered to constitute
he measurement space, denoted by 𝒛𝑘+1 ∈ R𝐽 . 𝒛𝑘+1 is calculated by:

𝒛𝑘+1 =

⎡

⎢

⎢

⎢

⎢

�̂�1
�̂�2
⋮

⎤

⎥

⎥

⎥

⎥

(7a)
7

⎣

�̂�𝐽 ⎦
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�̂�𝑗 =

√

√

√

√

∑𝑁𝑡
𝑡=1

(

�̂�𝑗 (𝑡) − �̄�𝑗
)2

(

𝑁𝑡 − 1
) (7b)

�̄�𝑗 =
∑𝑁𝑡
𝑡=1 �̂�𝑗 (𝑡)
𝑁𝑡

(7c)

here 𝑁𝑡 is the total number of time steps for the sensor measurement 𝑥𝑗 (𝑡), and �̄�𝑗 is the mean value of the filtered signal �̂�𝑗 (𝑡).
Transferring the states (i.e., sigma points) from the state space to the measurement space involves highly nonlinear functions, and

he functions depend on the states as well. The transferred states in the measurement space is called ‘‘the predicted measurements’’.
or a specific sensor signal 𝑥𝑗 (𝑡) (𝑗 ∈ {1, 2,… , 𝐽}), the corresponding predicted measurement (i.e., the standard deviation) can be
alculated at each selected sigma point by Eq. (8) assuming long-crested waves.

𝑆𝑗,𝑖(𝜔) = |𝐻𝑗 (𝜔, 𝛽𝑊 |𝑘+1,𝑖)|
2𝑆𝜁𝜁 (𝜔, 𝛽𝑊 |𝜽

𝑘+1,𝑖) (8a)

𝜎𝑗,𝑖 =

√

√

√

√

𝑁𝜔
∑

𝑛=1
𝑆𝑗,𝑖

(

𝜔𝑛
)

⋅ 𝛥𝜔𝑛 (8b)

here 𝐻𝑗 (𝜔, 𝛽𝑊 |𝑘+1,𝑖) is the linear transfer function (i.e., RAO) between wave elevation and the vessel motion of interest
orresponding to 𝑥𝑗 (𝑡), which depends on the state sigma point 𝑘+1,𝑖 and the location and quantity 𝑗. 𝑆𝜁𝜁 (𝜔, 𝛽𝑊 |𝜽

𝑘+1,𝑖) is the
ingle-sided wave spectrum, 𝑆𝑗,𝑖 is the corresponding response spectrum, its standard deviation 𝜎𝑗,𝑖 is the predicted measurement
or the measured quantity 𝑗 at sigma point 𝑘+1,𝑖, 𝑁𝜔 is the number of discrete frequencies of the response spectrum, and 𝛥𝜔𝑛 is

the frequency interval for 𝜔𝑛. 𝛥𝜔𝑛 may be different for different discrete frequencies 𝜔𝑛. For cases considering long-crested waves,
241 discrete frequencies were applied.

When a 2D wave or a short-crested wave is considered, Eq. (8) will consequently become:

𝑆𝑗,𝑖(𝜔) =
∑

𝛽𝑊

|𝐻𝑗 (𝜔, 𝛽𝑊 |𝑘+1,𝑖)|
2𝑆𝜁𝜁 (𝜔, 𝛽𝑊 |𝜽

𝑘+1,𝑖)𝛥𝛽𝑊 (9a)

𝜎𝑗,𝑖 =

√

√

√

√

𝑁𝜔
∑

𝑛=1
𝑆𝑗,𝑖

(

𝜔𝑛
)

⋅ 𝛥𝜔𝑛 (9b)

here 𝛥𝛽𝑊 is the wave direction interval and 𝛥𝛽𝑊 = 2◦ was applied. Evenly distributed frequencies (𝑁𝜔 = 400) at each discrete
direction between periods of 3 s and 40 s were applied in the sensitivity study for short-crested waves when calculating the predicted
measurements 𝜎𝑗,𝑖.

The predicted measurement 𝒁𝑘+1,𝑖 based on the sigma point 𝑘+1,𝑖 for 𝑗 = 1, 2,… , 𝐽 can be written as

𝒁𝑘+1,𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎1,𝑖
𝜎2,𝑖
⋮
𝜎𝐽 ,𝑖

⎤

⎥

⎥

⎥

⎥

⎦

(10)

Accordingly, the measurement update step can be formulated as

𝑘+1 =
2𝑁
∑

𝑖=0
𝑤𝑚𝑖 𝒁𝑘+1,𝑖 (11a)

𝒚𝑘+1 = 𝒛𝑘+1 −𝑘+1 (11b)

𝑷 𝒛𝑘+1 =
2𝑁
∑

𝑖=0
𝑤𝑐𝑖 (𝒁𝑘+1,𝑖 −𝑘+1)(𝒁𝑘+1,𝑖 −𝑘+1)⊤ +𝑹𝑘+1 (11c)

𝑷 𝒙𝒛𝑘+1 =
2𝑁
∑

𝑖=0
𝑤𝑐𝑖 (𝑘+1,𝑖 − �̄�𝑘+1)(𝒁𝑘+1,𝑖 −𝑘+1)⊤ (11d)

𝑲 = 𝑷 𝒙𝒛𝑘+1𝑷
−1
𝒛𝑘+1

(11e)

𝒙𝑘+1 = �̄�𝑘+1 +𝑲𝒚𝑘+1 (11f)

𝑷 𝑘+1 = �̄� 𝑘+1 −𝑲𝑷 𝒛𝑘+1𝑲
⊤ (11g)

where 𝑘+1 ∈ R𝐽 is the predicted measurement vector based on the sigma points 𝑘+1, 𝒚𝑘+1 is the residual between the predicted
measurement 𝑘+1 and the acquired measurement 𝒛𝑘+1. 𝑹𝑘+1 represents the measurement noise and the uncertainties of the

easurement functions as shown in Eq. (8). 𝑹𝑘+1 can be sensor and sea state dependent. 𝑷 𝒛𝑘+1 ∈ R𝐽×𝐽 is the covariance matrix of
the sigma points in measurement space, 𝑷 𝒙𝒛𝑘+1 ∈ R𝑁×𝐽 is the cross covariance of the state and the measurement. 𝑲 is known as
the Kalman gain which is used for updating the state and its covariance matrix. The updated state and its covariance for step 𝑘+ 1
are denoted by 𝒙𝑘+1 and 𝑷 𝑘+1 respectively.

Accordingly, a complete loop is described for recursively tuning of the uncertain vessel parameters and the sea state character-
8

istics, and reducing their uncertainties.
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Fig. 2. The reference coordinate system and the locations of the virtual sensors measuring vessel motions.

Table 3
Description of sensor measurements.

Sensor ID Location Signal/measurements

Displacement_A A 𝜂3 (𝑡) at location A
Displacement_B B 𝜂3 (𝑡) at location B
Displacement_C C 𝜂3 (𝑡) at location C
Velocity_A A �̇�3 (𝑡) at location A
Velocity_B B �̇�3 (𝑡) at location B
Velocity_C C �̇�3 (𝑡) at location C
Acceleration_A A �̈�3 (𝑡) at location A
Acceleration_B B �̈�3 (𝑡) at location B
Acceleration_C C �̈�3 (𝑡) at location C

𝜂3 (𝑡): time series of heave displacement;
�̇�3 (𝑡): time series of heave velocity;
�̈�3 (𝑡): time series of heave acceleration.

4. Basis of case studies

The algorithm is demonstrated by case studies based on a typical offshore supply vessel (OSV) where the wave information and
vessel motion measurements are numerically simulated with addition of white noise. It is assumed that the wave-induced vessel
motion in the wave frequency range can be well estimated by the linear transfer functions (i.e., RAOs) and the wave spectrum
in the frequency domain, for moderate seas. The RAOs were generated by application of DNV GL advanced seakeeping analysis
software Wasim [50].

4.1. Scope of the base case

Earlier research [2] suggests that multiple vessel motion sensors at different locations providing signals of displacements,
velocities, and accelerations can help to identify the correct uncertain vessel parameters and tune towards their true values.
Therefore, the case studies considered virtual sensors at three different locations onboard (i.e., locations A, B, and C) as illustrated
in Fig. 2 and summarized in Table 3, measuring the corresponding heave displacements, velocities, and accelerations. The vessel
coordinate system is also illustrated in Fig. 2. The origin is at the stern of the keel elevation. The positive 𝑋-axis points towards
the bow, the positive Y-axis points towards the port, and the positive 𝑍-axis points vertically upwards. The wave direction 𝛽𝑊 , also
shown in Fig. 2, follows the same coordinate system, in a positive going-to convention, where for example, 𝛽𝑊 = 180◦ corresponds
to a head sea condition.

Zero vessel forward speed was considered for simplicity to avoid the 3-to -1 mapping problem for following seas [51]. However,
the proposed algorithm and framework is so flexible that vessel forward speed can definitely be included in the vessel state 𝝓.
Earlier studies [2,25] show that the interesting vessel motions listed in Table 3 are sensitive to the linearized additional roll damping
coefficient 𝛽44 and the longitudinal center of gravity XCG. In reality, application of a multi-peak wave spectrum consisting of both
wind sea and swell components might be needed. However, single peak long-crested Pierson–Moskowitz (PM) wave spectra [42] as
shown in Eq. (12) are assumed for simplification.

𝑆𝜁𝜁 (𝜔) =
5 𝐻2

𝑠𝜔
4
𝑝𝜔

−5 exp

(

−5
(

𝜔
)−4

)

(12)
9

16 4 𝜔𝑝
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Fig. 3. Process of generating virtual sensor signal 𝑥𝑗 (𝑡) for sensor 𝑗.

where 𝜔𝑝 is the sea state peak frequency. The error due to the uncertain wave spectral shape may be included in the measurement
noise covariance matrix 𝑹.

For demonstration purposes, the uncertain vessel parameters 𝝓 = [𝛽44, 𝑋𝐶𝐺]⊤ as the vessel state, and the uncertain sea state
characteristics 𝜽 = [𝐻𝑠, 𝑇𝑝, 𝛽𝑊 ]⊤ as the sea state, were considered for the base case study. The selected true vessel state is 𝝓∗ =
[𝛽∗44, 𝑋𝐶𝐺

∗]⊤ = [4%, 61.4 m]⊤. Consequently, the true RAO for each virtual sensor can be determined, denoted by 𝐻∗
𝑗 (𝜔, 𝛽𝑊 ). Virtual

sensor signals are numerically simulated, as illustrated in Fig. 3. Based on the true vessel motion RAO 𝐻∗
𝑗 (𝜔, 𝛽𝑊 ) corresponding to

the sensor measurement 𝑥𝑗 (𝑡) and the true wave spectrum 𝑆∗
𝜁𝜁 (𝜔, 𝛽𝑊 ), the corresponding true vessel motion spectrum 𝑆∗

𝑋𝑗𝑋𝑗
(𝜔) can

be calculated by Eq. (13) assuming long-crested wave conditions as the base case.

𝑆∗
𝑋𝑗𝑋𝑗

(𝜔) = |𝐻∗
𝑗 (𝜔, 𝛽𝑊 )|2𝑆∗

𝜁𝜁 (𝜔, 𝛽𝑊 ) (13)

Then a vessel motion realization (i.e., 𝑥∗𝑗 (𝑡)) can be generated by:

𝑥∗𝑗 (𝑡) =
𝑁𝜔
∑

𝑛=1
𝐶𝑛(𝜔𝑛) cos(𝜔𝑛𝑡 + 𝜑𝑛 + 𝜓𝑗,𝑛) (14a)

𝐶𝑛(𝜔𝑛) =
√

2𝑆∗
𝑋𝑗𝑋𝑗

(𝜔𝑛) ⋅ 𝛥𝜔𝑛 (14b)

where 𝜔𝑛 is the discrete frequency, 𝛥𝜔𝑛 is the interval of 𝜔𝑛, and 𝑁𝜔 is the total number of discrete frequencies for 𝑆∗
𝑋𝑗𝑋𝑗

(𝜔𝑛).
𝜑𝑛 ∈ [0, 2𝜋) is a continuous and uniformly distributed random phase angle for the wave component at 𝜔𝑛, 𝜓𝑗,𝑛 ∈ [−𝜋, 𝜋) is the phase
angle between the wave elevation and the vessel response at 𝜔𝑛 corresponding to the signal 𝑥𝑗 (𝑡). For example, the complex-valued
linear transfer function 𝐻𝑗 (𝜔, 𝛽𝑊 ) equals to |𝐻𝑗 (𝜔𝑛, 𝛽𝑊 )| exp(1𝑖 × 𝜓𝑗,𝑛). 𝑆∗

𝑋𝑗𝑋𝑗
(𝜔𝑛) for periods between 3 s and 40 s was considered.

In order to sufficiently capture the spectral information at the periods of main interest and reduce the numerical integration error,
the period intervals (i.e., 𝛥𝑇𝑛) for the discrete periods from 5 s to 25 s were set to 0.125 s. For periods from 3 s to 5 s and from 25
s to 26 s, 𝛥𝑇𝑛 was set to 0.25 s; and for periods from 26 s to 40 s, 𝛥𝑇𝑛 is 0.5 s. Consequently, the frequency intervals 𝛥𝜔𝑛 applied
in Eq. (14) were unevenly distributed, thus avoiding time record repetition.

Finally, the virtual signal 𝑥𝑗 (𝑡) was generated by adding noise to each time step of 𝑥∗𝑗 (𝑡). Independent Gaussian distributed white
noise was assumed with specified signal-to-noise ratio (SNR):

𝑆𝑁𝑅 =
𝜎2𝑋𝑗
𝜎2𝑁

(15)

where 𝜎2𝑋𝑗 is the variance of the true response spectrum and 𝜎2𝑁 is the noise variance.
Each case study considered 20 randomly generated sea states. Each sea state was assumed to last for 30 min. No transition

between sea states was considered, thus assuming that each sea state is independent from the others. The values of the key parameters
for the base case study are summarized in Table 4 with respect to case simulations and in Table 5 with respect to UKF modeling.
The initial state is also summarized in Table 5.

Please note that 𝜀𝐻𝑠
, 𝜀𝑇𝑝 , and 𝜀𝛽𝑊 are the errors from the acquired wave information which are random and Gaussian distributed,

i.e.,

𝜀𝐻𝑠
= 𝜎𝐻𝑠

⋅ rand[ (0, 1)] ∼  (0, 𝜎2𝐻𝑠
) (16a)

𝜀𝑇𝑝 = 𝜎𝑇𝑝 ⋅ rand[ (0, 1)] ∼  (0, 𝜎2𝑇𝑝 ) (16b)

𝜀𝛽𝑊 = 𝜎𝛽𝑊 ⋅ rand[ (0, 1)] ∼  (0, 𝜎2𝛽𝑊 ) (16c)

where 𝜎𝐻𝑠
, 𝜎𝑇𝑝 , and 𝜎𝛽𝑊 are the standard deviations of the acquired wave information (i.e., 𝐻𝑠, 𝑇𝑝, and 𝛽𝑊 ) as indicated in Table 2,

representing their uncertainties. rand[ (0, 1)] means a randomly selected value from an unit normal distribution i.e.,  (0, 1). A
lowpass filter based on fast Fourier transform (FFT) was applied for each sensor signal to remove the signal noises as much as
10
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Table 4
Applied parameters in the base case simulation.

Parameter Value

𝐻∗
𝑠

a Uniformly distributed in [1.0, 4.0] m

𝑇 ∗
𝑝

a Uniformly distributed in [5.0, 20.0] s

𝛽∗𝑊
a Uniformly distributed in [0.0◦, 360.0◦]

𝜎𝐻𝑠
10%𝐻∗

𝑠 m
𝜎𝑇𝑝 0.5 s
𝜎𝛽𝑊 5◦

𝐻𝑠
b 𝐻∗

𝑠 + 𝜀𝐻𝑠

𝑇 𝑝b 𝑇 ∗
𝑝 + 𝜀𝑇𝑝

𝛽𝑊 b 𝛽∗𝑊 + 𝜀𝛽𝑊
Initial seed 𝜏 44
Sea state duration 1800 s
Number of sea states 20
SNR 50
𝑓𝑙𝑝 0.2 Hz

aSuperscript ∗ means the true value of the corresponding parameters. The acquired wave
information (𝐻𝑠, 𝑇 𝑝, 𝛽𝑊 ) is subject to errors (i.e., 𝜀𝐻𝑠

, 𝜀𝑇𝑝 , and 𝜀𝛽𝑊 ).
bThe overlines over the parameters means that they are the simulated acquired values which can
be different from the true values.

Table 5
Applied parameters in the base case related to UKF modeling.
Parameter Value

State 𝒙 𝒙 = [𝛽44 , 𝑋𝐶𝐺,𝐻𝑠 , 𝑇𝑝 , 𝛽𝑊 ]⊤

Initial 𝝓0 𝝓0 = [𝛽44 , 𝑋𝐶𝐺]⊤ = [7%, 59.4 m]⊤

Initial 𝑷 𝝓0
𝑷 𝝓0

= diag(0.0352 , 4.02)

𝑹 𝑹 = 2% ⋅ diag(�̂�21 ,… , �̂�2𝐽 )

𝑸 𝑸 = diag(0.0052 , 0.1, 0.052 , 0.01, 0.25)

𝛼 0.01
𝛽 2
𝜅 −2

possible. A SNR of 50 was considered. Sensitivity studies with respect to the SNR (varied from 30 to 200) showed very stable tuning
performance due to the application of a lowpass filter to remove the high-frequency noises as accurately as possible. Ideally, the
cutoff frequency 𝑓𝑙𝑝 should be sea state and vessel dependent. For simplicity, a constant cutoff frequency 𝑓𝑙𝑝 = 0.2 Hz was applied.
Please note that the initial seed 𝜏 uniquely determines the true sea states, the normalized random values of rand[ (0, 1)] (and
consequently the acquired wave information with the same parameter uncertainties), and the random phase angles 𝜑𝑛 for the time
series from the deterministic discrete frequencies. Consequently, 𝜏 uniquely determines the simulated sea states and the virtual
sensor signals in the coded program for the long-crested wave conditions. The randomly generated values of rand[ (0, 1)] for 𝜀𝐻𝑠

,
𝜀𝑇𝑝 , and 𝜀𝛽𝑊 are independent.

The measurement uncertainty covariance matrix 𝑹 is a diagonal matrix. For each sensor 𝑗, the measurement variance was set
o be 2% of the variance of the filtered sensor signal �̂�2𝑗 . Small values were used for the process uncertainty covariance matrix 𝑸,
hich represents how well the propagation model can describe the process. For the numerical simulation, a stationary condition
as fulfilled so that the proposed propagation model can very well represent the simulated conditions. However, slow-varying

haracteristics may be commonly seen in reality for the vessel and wave conditions. Therefore, the values of the 𝑸 matrix should be
ncreased to reflect this effect. Initial sensitivity studies of key parameters in the UKF model indicate that a smaller 𝛼 generally leads

to better performance. UKF with smaller 𝛼 selects the sigma points closer to each other so that the local effects are more displayed,
while UKF with larger 𝛼 tends to focus more on the global system behavior. Therefore, a smaller value of 𝛼 is preferred for highly
onlinear problems. On the other hand, a small 𝛼 easily leads to a negative weight factor 𝑤𝑐0 for large dimensional problems, and
hus cannot guarantee a positive semi-definite state covariance matrix 𝑷 . Such a challenge was not noted during the performance
f the simulations and therefore, no modification to the proposed algorithm was made.

Initial studies also indicated that it is beneficial to use a slightly larger initial covariance matrix for the vessel state, 𝑷 𝝓0
. A larger

initial 𝑷 𝝓0
will accelerate the vessel state convergent towards their true values, and 𝑷 𝝓 will approach its convergent value which
11

is independent from its initial value.
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Table 6
Range of vessel model parameters in the RAO database.
Parameters Variation range Number of values

𝛽44 [2%, 14%] 7
XCG [55.4 m, 63.4 m] 5

Table 7
Applied parameters in the base case related to UKF modeling.
Parameter Value

𝑛∗𝑠 Uniformly distributed in [2.0, 5.0]
𝑛𝑠 3.5
𝜎𝑛𝑠 1.0
State 𝒙 𝒙 = [𝛽44 , 𝑋𝐶𝐺,𝐻𝑠 , 𝑇𝑝 , 𝛽𝑊 , 𝑛𝑠]⊤

𝑸 𝑸 = diag(0.0052 , 0.1, 0.052 , 0.01, 0.25, 0.09)
𝜅 −3

4.2. Measurement functions

The measurement function as shown in Eqs. (8) and (10) varies with the calculated sigma points. Therefore, seakeeping analysis
s preferably performed for each determined sigma point as illustrated in Fig. 1. However, for simplicity, a RAO database with limited
mount of combinations of uncertain vessel parameters inherited from earlier research work [25] was used. The available discrete
alues of 𝛽44 and XCG in the RAO database are summarized in Table 6. The measurement estimation (i.e., the standard deviations

of the interesting vessel motions 𝜎𝑗 (𝛽44, 𝑋𝐶𝐺)) can be approximated by linear interpolation of neighboring values 𝜎𝑗 (𝛽′44, 𝑋𝐶𝐺
′),

𝜎𝑗 (𝛽′′44, 𝑋𝐶𝐺
′), 𝜎𝑗 (𝛽′44, 𝑋𝐶𝐺

′′), 𝜎𝑗 (𝛽′′44, 𝑋𝐶𝐺
′′) calculated based on the available RAOs in the RAO database, where 𝛽′44, 𝑋𝐶𝐺

′, 𝛽′′44,
𝑋𝐶𝐺′′ are the available values in the RAO database and 𝛽′44 < 𝛽44 < 𝛽

′′
44, 𝑋𝐶𝐺

′ < 𝑋𝐶𝐺 < 𝑋𝐶𝐺′′.
The uncertainties caused by applying linear RAOs as the system model may consist of model bias and model scatter. The model

ias is the average model error compared with the actual system, whereas the random component with respect to the model bias
efers to the model scatter [52]. The model bias may be introduced by simplifications and assumptions made in the seakeeping
oftware and the numerical model. However, zero model bias was assumed for the measurement function. The model scatter is
ccounted for by means of the measurement uncertainty covariance matrix 𝑹.

.3. Short-crested waves

Long-crested waves barely exist in the real world. Therefore, it is worth demonstrating, as a sensitivity case study, how the
hort-crested waves can be considered in the proposed tuning framework. The short-crested wave condition may be approximated
y multiplying the uni-directional PM wave spectrum with a directional spreading function 𝐷(𝛽𝑊 ) [42]:

𝑆𝜁𝜁 (𝜔, 𝛽𝑊 ) ≈ 𝑆𝜁𝜁 (𝜔)𝐷(𝛽𝑊 ) (17a)

𝐷(𝛽𝑊 ) =
𝛤 (1 + 𝑛𝑠∕2)

√

𝜋𝛤 (1∕2 + 𝑛𝑠∕2)
cos𝑛𝑠 (𝛽𝑊 − 𝛽𝑊 𝑝) (17b)

where 𝛤 is the Gamma function, 𝛽𝑊 𝑝 is the prevailing wave direction and |𝛽𝑊 − 𝛽𝑊 𝑝| ≤
𝜋
2 . 𝑛𝑠 is the spreading parameter, 2 ≤ 𝑛𝑠 ≤ 4

for wind sea, and 𝑛𝑠 > 7 for swells [42]. Consequently, the spreading parameter 𝑛𝑠 should therefore be included in the sea state
vector 𝜽. For the sensitivity study on short-crested waves, the applied key parameters that are different from the base case are
summarized in Table 7. In reality, the acquired wave information may not contain the spreading information, e.g., in terms of 𝑛𝑠
value. Therefore, the sensitivity study assumed that the estimation of 𝑛𝑠 was not acquired from wave measurements, hindcast, or
forecast. For each new sea state, 𝑛𝑠 is set to be 3.5, with a variance of 1.0.

When short-crested waves are considered, Eqs. (13) and (14) are substituted by:

𝑥∗𝑗 (𝑡) =
𝑁𝛽𝑊
∑

𝑢=1

𝑁𝜔
∑

𝑣=1
𝐶𝑢,𝑣 cos(𝜔𝑢,𝑣𝑡 + 𝜑𝑢,𝑣 + 𝜓𝑗,𝑢,𝑣) (18a)

𝐶𝑢,𝑣 =
√

2𝑆∗
𝑋𝑗𝑋𝑗

(𝜔𝑢,𝑣, 𝛽𝑊𝑢
)𝛥𝜔𝑢,𝑣𝛥𝛽𝑊 (18b)

𝑆∗
𝑋𝑗𝑋𝑗

(𝜔𝑢,𝑣, 𝛽𝑊𝑢
) = |𝐻∗

𝑗 (𝜔𝑢,𝑣, 𝛽𝑊𝑢
)|2𝑆𝜁𝜁 (𝜔𝑢,𝑣, 𝛽𝑊𝑢

) (18c)

where 𝑁𝜔 is the number of discrete frequencies 𝜔𝑢,𝑣 for each wave direction 𝛽𝑊𝑢
. The subscript of 𝜔𝑢,𝑣 indicates that the values

of discrete frequencies also depend on the wave direction. For each 𝛽𝑊𝑢
in the sensitivity study of short-crested wave conditions,

800 discrete frequencies were randomly generated, assuming that frequencies are uniformly distributed between 0.157 rad/s and
2.094 rad/s (i.e., periods between 3 s and 40 s), in order to avoid non-ergodic wave realizations [53]. Compared with long-crested
wave conditions, much more discrete frequencies were generated for each direction in order to assure a sufficiently small frequency
12
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interval at the frequency range of main interest. Consequently, 𝛥𝜔𝑢,𝑣 differs for each 𝜔𝑢,𝑣. Constant 𝛥𝛽𝑊 of 2◦ was considered.
𝜑𝑢,𝑣 ∈ [0, 2𝜋) is the random phase angle for wave component at (𝜔𝑢,𝑣, 𝛽𝑊𝑢

), 𝜓𝑗,𝑢,𝑣 ∈ [−𝜋, 𝜋) is the phase angle for the linear transfer
function 𝐻∗

𝑗 (𝜔𝑢,𝑣, 𝛽𝑊𝑢
). The power spectral density of the short-crested waves 𝑆𝜁𝜁 (𝜔𝑢,𝑣, 𝛽𝑊𝑢

) can be calculated according to Eq. (17).

5. Results

New parameters %𝛥𝜎2𝐻𝑠
, %𝛥𝜎2𝑇𝑝 , and %𝛥𝜎2𝛽𝑊 are defined in order to present the relative reduction of the variance in percentage

for the corresponding sea state characteristics.

%𝛥𝜎2𝐻𝑠
=
𝜎2𝐻𝑠

− �̂�2𝐻𝑠

𝜎2𝐻𝑠

× 100% (19a)

%𝛥𝜎2𝑇𝑝 =
𝜎2𝑇𝑝 − �̂�

2
𝑇𝑝

𝜎2𝑇𝑝
× 100% (19b)

%𝛥𝜎2𝛽𝑊 =
𝜎2𝛽𝑊 − �̂�2𝛽𝑊

𝜎2𝛽𝑊
× 100% (19c)

where 𝜎2𝐻𝑠
, 𝜎2𝑇𝑝 , and 𝜎2𝛽𝑊 represents the variance of the acquired sea state characteristics, while �̂�2𝐻𝑠

, �̂�2𝑇𝑝 , and �̂�2𝛽𝑊 indicate their
tuned values after measurement update.

𝛥𝐻𝑠, 𝛥𝑇 𝑝, and 𝛥𝛽𝑊 are also defined to represent the difference between the true and the acquired wave information, while
𝛥�̂�𝑠, 𝛥�̂�𝑝, and 𝛥𝛽𝑊 are defined to represent the difference between the true and the tuned values of the wave parameters after
measurement update stage, i.e.,

𝛥𝐻𝑠 = 𝜀𝐻𝑠
= 𝐻∗

𝑠 −𝐻𝑠 (20a)

𝛥𝑇 𝑝 = 𝜀𝑇𝑝 = 𝑇 ∗
𝑝 − 𝑇 𝑝 (20b)

𝛥𝛽𝑊 = 𝜀𝛽𝑊 = 𝛽∗𝑊 − 𝛽𝑊 (20c)

and

𝛥�̂�𝑠 = 𝐻∗
𝑠 − �̂�𝑠 (21a)

𝛥�̂�𝑝 = 𝑇 ∗
𝑝 − �̂�𝑝 (21b)

𝛥𝛽𝑊 = 𝛽∗𝑊 − 𝛽𝑊 (21c)

5.1. Base case

The randomly generated sea states according to Table 4 for the base case are summarized in Table 8 and the tuning results are
summarized in Table 9. 𝑘 indicates the sea state number. A superscript ∗ indicates the true value of the parameter, while an overline
over the parameter means the corresponding acquired (prior) information. A hat ̂ over the parameter indicates its value after the
measurement update step for the corresponding sea state 𝑘.

Fig. 4 shows the standard deviations of the filtered sensor signals (blue points) and the corresponding estimated standard
deviations of the vessel responses (i.e., the ‘‘predicted measurements’’) by transferring the system states from the state space to
the measurement space based on the unscented transformation described in Section 3.4. The difference between the acquired
and the predicted measurement is the residual 𝒚 defined in Eq. (11b). Fig. 5 illustrates how the uncertain vessel parameters 𝛽44
nd XCG vary through the simulation. The dotted green lines are the true values. The black lines are the predicted values of the
ncertain parameters after the system propagation described in Section 3.3, while the filled gray areas indicate the corresponding
5% confidence interval for the parameters, i.e., ±2𝜎 where 𝜎 is the variable standard deviation. The red lines are the updated values
fter the measurement update step described in Section 3.4, and the filled red areas indicate the corresponding 95% confidence
nterval. Fig. 5 shows a successful tuning of 𝛽44 and XCG and reduction of their uncertainties.

While the proposed algorithm managed to tune the uncertain vessel parameters, knowledge about the sea state characteristics
ere also improved simultaneously, as shown in Figs. 6 to 8. Generally, the tuning algorithm helped to reduce the overall errors and
ariance from the acquired wave information. For example, the largest error of the acquired 𝐻𝑠 (i.e., 𝛥𝐻𝑠) happened at 𝑘 = 9. The
uning algorithm managed to reduce such errors from 0.5 m to 0.2 m. Furthermore, the information variance on 𝐻𝑠 was reduced
y 58%. Even though increased errors after tuning were observed for some sea states (e.g., 𝑘 = 6, 13, 18), it only happened when
he error from the acquired information was already relatively small. In addition, such increased errors did not prevent the system
rom significantly reducing the uncertainty (variance). In comparison, error reduction with respect to 𝑇𝑝 and 𝛽𝑊 may not be that
ramatic, because the influence of 𝑇𝑝 and 𝛽𝑊 on the vessel motions is not as monotonous and simple as that of 𝐻𝑠. Please note that
rror reduction is different from uncertainty reduction. There is a significant possibility that for a certain parameter (e.g., 𝐻𝑠) the
13

rror increases while its variance reduces.
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Fig. 4. The acquired (after signal filtering) and predicted measurements for the base case from the 9 virtual sensors described in Table 3 for the 20 sea states,
base case 𝜏 = 44.

Fig. 5. The results of tuning 𝛽44 and XCG for the base case 𝜏 = 44. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
14
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Table 8
The true and the acquired sea state characteristics for the base case.
𝑘 𝐻∗

𝑠 𝑇 ∗
𝑝 𝛽∗𝑊 𝐻𝑠 𝑇 𝑝 𝛽𝑊

1 3.5 14.6 256.0 3.3 15.3 257.9
2 1.3 7.1 26.1 1.1 7.1 22.1
3 3.2 11.9 317.7 3.5 12.2 323.5
4 2.1 18.1 261.4 1.7 18.0 261.5
5 2.1 8.9 300.0 2.2 9.1 290.5
6 2.8 15.0 255.7 2.8 14.1 251.4
7 2.2 17.9 251.1 2.3 18.0 250.8
8 2.2 7.2 334.8 2.4 6.9 341.0
9 2.5 13.4 317.4 3.0 14.1 314.7
10 3.1 7.4 34.2 3.6 7.8 32.5
11 3.9 7.6 164.3 4.3 7.5 156.6
12 2.4 6.6 177.4 2.7 6.2 183.5
13 2.3 8.0 39.2 2.3 7.6 27.9
14 1.3 11.8 55.3 1.4 12.1 56.4
15 1.7 16.9 354.3 1.6 16.6 354.1
16 3.9 19.9 97.8 4.0 20.7 99.2
17 3.8 17.1 323.0 4.3 16.5 326.0
18 3.6 10.7 59.1 3.6 10.3 64.3
19 2.9 12.7 47.6 2.9 12.2 47.7
20 1.6 5.9 114.2 1.5 5.2 105.5

Table 9
Tuning results for base case.

𝑘 �̂�𝑠 �̂�𝑝 𝛽𝑊 %𝛥𝜎2𝐻𝑠
%𝛥𝜎2𝑇𝑝 %𝛥𝜎2𝛽𝑊 𝛽44 X̂CG �̂�2𝛽44 �̂�2𝑋𝐶𝐺

1 3.7 15.1 258.0 67% 7% 16% 0.045 59.53 1.02E−03 15.87
2 1.2 7.3 22.6 18% 65% 8% 0.048 62.86 6.88E−04 6.94
3 3.4 12.1 322.4 51% 18% 37% 0.043 62.80 4.84E−04 4.21
4 2.0 17.9 261.8 69% 5% 10% 0.036 62.80 4.15E−04 4.25
5 2.0 9.0 297.1 54% 20% 67% 0.040 62.97 1.03E−04 3.94
6 2.7 14.2 252.4 57% 8% 35% 0.040 62.89 1.28E−04 3.95
7 2.2 18.1 250.5 67% 10% 27% 0.041 62.82 1.42E−04 3.98
8 2.3 7.1 338.2 31% 59% 43% 0.039 61.85 1.64E−04 2.83
9 2.7 14.0 317.8 58% 18% 55% 0.039 61.37 1.31E−04 2.38
10 3.4 7.5 29.8 34% 64% 33% 0.039 60.86 5.41E−05 1.60
11 4.1 7.3 159.4 41% 62% 31% 0.041 60.77 6.61E−05 1.45
12 2.7 6.2 182.2 20% 76% 22% 0.041 60.82 9.11E−05 1.46
13 2.5 8.4 30.7 40% 68% 8% 0.038 60.86 1.08E−04 1.33
14 1.3 12.0 55.6 47% 15% 34% 0.039 61.01 5.94E−05 1.30
15 1.6 16.6 354.1 72% 10% 2% 0.039 61.02 8.44E−05 1.35
16 4.0 20.6 98.8 72% 6% 23% 0.039 61.03 7.28E−05 1.45
17 3.9 16.6 326.6 69% 14% 42% 0.038 60.90 9.29E−05 1.44
18 3.6 10.3 61.5 59% 22% 58% 0.039 61.02 4.59E−05 1.37
19 2.9 12.3 47.7 61% 16% 40% 0.039 60.92 5.29E−05 1.33
20 1.6 5.5 109.1 11% 74% 39% 0.039 60.70 7.78E−05 1.39

The base case took approximately 120 s to run on the available laptop (CPU Intel(R) TM i7-8650U @ 1.90 GHz, 32 GB memory),
rom generating signals for the first sea state to updating the state vector for the last sea state, meaning that tuning of 5 parameters
or each sea state approximately needs 6 s (including virtual sensor signal generation time). As an indicative comparison, Han et al.
25] reported that tuning of 4 parameters for one sea state approximately needs 90 s, running on the same laptop. Extraordinary
mprovement of computational efficiency is therefore demonstrated.

.2. Seed variation

Simulations with different initial seed (𝜏) values other than 44 were performed. Generally, very stable tuning of 𝛽44 has been
bserved across all initial seeds. However, a convergent tuning result for XCG may not be observed after 20 sea states for some
nitial seed values, e.g., as shown in Fig. 9 with a value of 𝜏 = 16. Earlier vessel parametric sensitivity studies [2] documented that
he sensitivity of XCG on the vessel response varies with wave headings and wave periods, and the influence of XCG to the vessel
esponse is generally less than the additional roll damping coefficient 𝛽44. Therefore, a less accurately tuned XCG can be rational.

In general, tuning performance is very stable. Divergent tuning results have not been observed. However, less stable tuning may
ccur when insignificant vessel response is expected, e.g., at sea states with very small wave spectral peak periods. Consequently,
15

he tuning can be very sensitive to the quality of signal filtering.
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Fig. 6. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝐻𝑠, for the base case 𝜏 = 44.

Fig. 7. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝑇𝑝, for the base case 𝜏 = 44.

5.3. Short-crested waves

As described in Section 4.3, a sensitivity case study was performed, considering short-crested wave conditions. The applied
parameters that are different from Tables 4 and 5 are summarized in Table 7.

As shown in Fig. 10, tuning of uncertain vessel parameters was slightly influenced due to the introduced additional uncertainty
from the wave spreading parameter 𝑛𝑠. The tuning of 𝐻𝑠 and 𝑇𝑝 (Figs. 11 and 12) are much less influenced by the introduced wave
spreading and the uncertain 𝑛𝑠. Including uncertainty of wave spreading 𝑛𝑠 can significantly influence the tuning of wave direction
𝛽 , in terms of both the tuned expected value and the variance reduction. Comparing between Figs. 13 and 8, significantly reduced
16
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Fig. 8. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝛽𝑊 , for the base case 𝜏 = 44.

Fig. 9. The results of tuning 𝛽44 and XCG for the case with 𝜏 = 16.

%𝛥𝜎2𝛽𝑊 are generally observed, indicating less confidence improvement of the prevailing wave direction when considering short-
crested waves with the uncertain spreading parameter. In addition, information on 𝑛𝑠 itself was not significantly improved as shown
in Fig. 14. Negative %𝛥𝜎2𝑛𝑠 indicates the increased uncertainty on spreading parameter after tuning.

5.4. Sensitivity of wave information uncertainty

Uncertainties of the vessel state and the sea state are interacting in the proposed algorithm. An increasingly confident vessel
seakeeping model can help improving the wave information, while more accurate wave information will help reducing the
17
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Fig. 10. The results of tuning 𝛽44 and XCG for the sensitivity study with respect to short-crested waves with 𝜏 = 44.

Fig. 11. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝐻𝑠, for the sensitivity study with respect to short-crested
waves with 𝜏 = 44.

uncertainties of the vessel state. The base case assumed that the wave information can be acquired from measurements or hindcast,
with a reasonably low uncertainty. However, such wave information may be delayed for several hours or up to some days. Therefore,
it is interesting to test the algorithmic performance if the acquired wave information is subject to larger uncertainties when such
wave measurements or hindcast data are not available. The alternative wave information source may come from forecast, visual
observation, etc. Compared with the uncertainties of the WAM model in Table 1, much larger uncertainty of wave information was
therefore considered in the sensitivity study, as shown in Table 10.

The same initial seed as for the base case was applied. Therefore, the same true sea states as shown in Table 8 were applied.
The acquired sea states were consequently different from the base case, but the errors from the true sea states were proportional to
18
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Fig. 12. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝑇𝑝, for the sensitivity study with respect to short-crested
waves with 𝜏 = 44.

Fig. 13. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝛽𝑊 , for the sensitivity study with respect to short-crested
waves with 𝜏 = 44.

Table 10
Applied uncertainties of sea state characteristics in the sensitivity study with respect to wave
information uncertainty.
Parameter Standard deviation

𝜎𝐻𝑠
20%𝐻∗

𝑠 m
𝜎𝑇𝑝 10%𝑇 ∗

𝑝 s
𝜎𝛽𝑊 15◦
19
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Fig. 14. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝑛𝑠, for the sensitivity study with respect to short-crested
waves with 𝜏 = 44.

the corresponding errors in the base case. For example, the ratio of 𝜀𝐻𝑠
values between the base case and this sensitivity study was

equal to the ratio of 𝜎𝐻𝑠
values between the base case and this sensitivity study.

Figs. 15 to 18 illustrate the tuning results of the vessel parameters and sea state characteristics based on larger wave information
uncertainty. Fig. 15 shows a successful tuning of 𝛽44. Whereas, convergent but slightly deviated tuning of XCG was observed when
considering larger wave uncertainties. Compared with Fig. 5, the convergent XCG variance is larger when wave information is
subject to larger variance, as shown in Fig. 15. Compared with the base case (e.g., at 𝑘 = 2), the tuning of vessel state becomes
smoother because of a relatively small Kalman gain in this sensitivity case. This means that the tuning algorithm rationally identifies
larger uncertainty in the predicted measurements due to the specified larger wave information uncertainty. Consequently, the system
reasonably focused more on improving the accuracy of the acquired wave information, as shown in Figs. 16 to 18. Significantly
improved 𝐻𝑠, 𝑇𝑝, and 𝛽𝑊 were observed compared with the base case. Much larger %𝛥𝜎2𝐻𝑠

, %𝛥𝜎2𝑇𝑝 , and %𝛥𝜎2𝛽𝑊 are shown in
Figs. 16 to 18 compared with Figs. 6 to 8 in the base case.

6. Conclusions and future work

A computationally cheap and efficient algorithm for tuning of uncertain vessel seakeeping model parameters and important
characteristics of wave information has been proposed. The algorithm is founded on the so-called unscented transformation and
the corresponding scaled unscented Kalman filter, which can efficiently handle large dimensional problems and take the system
nonlinearity into account. Its performance has been demonstrated by numerically simulated case studies based on an OSV. The
benefit of including sea state characteristics in the system state vector is that the uncertainties of wave information can also be
reduced through the process. The proposed method continuously improves the simultaneous knowledge about the vessel state and
the sea state information based on the onboard vessel motion measurements and the acquired wave data. Reasonable tuning results
can still be achieved even with higher wave information uncertainties as described in Section 5.4. In reality, wave information can
be improved before the tuning procedure by fusion of wave data from multiple resources, such as from wave forecast, hindcast,
onboard wave radar, visual observation, and nearby wave buoy measurements [33].

The algorithm contains several important parameters to tune, such as 𝛼, 𝑸, 𝑹, and the initial 𝑷 matrices. Experience suggests to
apply a small 𝛼 value (e.g., 0.1 or 0.01) for a better algorithmic performance. Normally, vessel heading and forward speed can vary
slowly or be subjected to disturbance within a sea state. The process uncertainty 𝑸 should reflect how well the assumption about
stationarity holds true in reality. Moreover, the vessel heading, forward speed, and inertia distribution can be frequently shifted
depending on the operation scenarios (e.g., transportation, docking, and lifting). For such scenarios, control parameters should be
introduced in the system propagation model. The measurement uncertainty 𝑹 should in reality account for the possibly biased,
non-Gaussian signal errors. It is also very important to filter the signal at the measurement update step in order to keep the vessel
motion signals only in the wave frequency domain. It can be beneficial to initiate the vessel state covariance as being considerably
larger than expected. Too small initial vessel state covariance indicates overconfidence in relation to the uncertain vessel parameters,
leading to a too small Kalman gain 𝑲 and thus slowing down the tuning towards convergence.
20
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Fig. 15. The results of tuning 𝛽44 and XCG for the sensitivity study by using increasingly uncertain wave information with 𝜏 = 44.

Fig. 16. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝐻𝑠, for the sensitivity study by using increasingly
uncertain wave information with 𝜏 = 44.

The proposed algorithm is so flexible that the system state can basically include any uncertain parameters in relation to modeling
of the linear potential theory based vessel seakeaping and description of sea state. A case study considering short-crested wave
conditions with uncertain spreading parameter was also performed. As expected, the introduced uncertain spreading parameter 𝑛𝑠
mainly affects the tuning of the wave direction related parameters such as 𝛽𝑊 . 𝑛𝑠 has very limited influence on tuning of the other
sea state characteristics and vessel parameters simply because the wave direction related parameters influence the vessel motion
measurements (i.e., the measurement space) differently from the other parameters.

In reality, a 2D wave spectrum with specified uncertainties in relation to each frequency component for each direction could be
considered. The wave information uncertainties may be unbiased in the long term, whereas, these errors could be biased in the short
21
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Fig. 17. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝑇𝑝, for the sensitivity study by using increasingly
uncertain wave information with 𝜏 = 44.

Fig. 18. Illustration of the errors before and after the tuning, and the variance reduction after tuning of 𝛽𝑊 , for the sensitivity study by using increasingly
uncertain wave information with 𝜏 = 44.

term. This may therefore lead to divergent tuning results. The tuning model should, to a certain degree, tolerate those uncertainties,
which might be challenging.

In reality, several other uncertain parameters should be considered including the vessel forward speed. Consequently, handling
the response spectrum based on the encountered frequencies may become a challenge due to the well-known 3-to-1 mapping issue
for following seas. The surface current, acting on the vessel as an additional ‘‘vessel speed’’, could also influence many important
hydrodynamic coefficients such as damping and added mass. The measurements of surface current suffer from large uncertainties
partly due to the influence from surface waves, the types and set-ups of instruments, and variation of the instrument quality for
measuring current speed [35,54].
22
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The vessel parameters related to inertia distribution and even geometry are time-variant in the long term. The real system should
e able to detect the possible change of e.g., the vessel loading condition, and adaptively adjust the state accordingly. For example,
his could be triggered when any of the updated vessel parameters is outside of its ±3𝜎 range.

So far, a constant value of the additional roll damping coefficient 𝛽44 for all sea states has been considered in the proposed UKF
ased tuning algorithm and the case studies. However, in reality 𝛽44 is sea state dependent. Han et al. [28] proposed an algorithm
or tuning and prediction of sea state dependent roll damping, by application of discrete Bayesian inference with a surrogate model
f roll damping. However, the procedure for the tuning of sea state dependent parameters is not straight forward for the proposed
KF based tuning algorithm. Tuning and predicting sea state dependent vessel parameters together with other uncertain parameters

or the proposed UKF model considering uncertain wave information should be addressed in the future. Furthermore, the proposed
lgorithm should be validated by scaled tests and on-site measurement data.

It is also worth mentioning that the proposed UKF based tuning is an online algorithm. Since the vessel condition (in terms of
essel geometry, inertia distribution, etc.) typically does not change for a considerable period of time (e.g., few hours or days), the
uned vessel parameters and the corresponding vessel motion RAOs can therefore be applied to improve the prediction accuracy of
essel motions for real-time applications. However, vessel loading conditions can vary continuously and significantly during many
ritical marine operations, such as heavy lift and pipe laying. Consequently, the tuned vessel parameters based on available data
efore such operations may not be suitable to apply directly. Future research should consider how to tune and predict the vessel
arameters, and consequently improve the prediction accuracy of critical responses during such non-stationary operations.
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