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Abstract. Skin cancer is a major public health problem, with millions
newly diagnosed cases each year. Melanoma is the deadliest form of skin
cancer, responsible for the most over 6500 deaths each year in the US,
and the rates have been rising rapidly over years. Because of this, a lot of
research is being done in automated image-based systems for skin lesion
classification. In our paper we propose an automated melanoma and seb-
orrheic keratosis recognition system, which is based on pre-trained deep
network combined with structural features. We compare using differ-
ent pre-trained deep networks, analyze the impact of using patient data
in our approach, and evaluate our system performance with different
datasets. Our results shown us that patient data has impact on charac-
teristic curve metric value with around 2-6% and different algorithm in
final classification layer has impact with around 1-4%.

Keywords: Deep Networks · CNN · Handcrafted features · Skin Lesion
Classification and Segmentation · Image Processing.

1 Introduction

Malignant melanoma are among the most rapidly increasing types of cancer
in the world with a considerable mortality rate. The American Cancer Society
predicted more than 100.350 melanoma cases in 2020, of which more than 6.850
persons are expected to lose their lives [1]. However, early detection of melanoma
leads to a cure rate of over 90% in low risk melanoma patients, and the use of
dermoscopy images [6] plays an important role in this process. Dermoscopy im-
ages are mainly used to evaluate pigmented skin lesions in order to distinguish
malignant skin lesions from benign ones such as melanocytic nevus and sebor-
rhoeic keratosis. However, due to the visual similarity of different skin lesions,
melanoma diagnosis using human vision alone can be subjective and inaccu-
rate even among experienced dermatologists. Lesions’ varying size, shape and
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fuzzy boundaries, different skin colors, presence of different artifacts including
hair and bubbles are some of the reasons that make the detection process more
challenging.

In this paper, we propose two architectures using two different categories of
features extracted from images of skin lesions, namely handcrafted and deep fea-
tures. We compare the performance of these two kinds of features separately and
also consider a combined use of these features to provide a single classification
decision for melanoma diagnosis.

The remaining paper is organized as follows. In Section 2 a survey of state-
of-the-art on melanoma classification is presented. Section 3 describes the theory
behind the proposed method including deep networks and dermoscopic features.
The experimental results of the proposed method on melanoma classification
and a comparative study are presented in Section 4. Finally, the discussion and
conclusion remarks are given in Section 5.

2 Related works

The success of melanoma detection task highly depends on the features extracted
from the lesion. There are different clinical approaches that are commonly used
to extract diagnostic features from dermoscopy images such as ABCD(E) rule,
pattern analysis, seven-point checklist and Menzies method [36]. The ABCD(E)
rule is based on asymmetry, border, colour, diameter, and evolution (or eleva-
tion) features [34]. The pattern analysis approach facilitates melanoma diag-
nosis by determining the presence of specific patterns visible in dermoscopic
images. The features employed in pattern analysis approach refer both to the
chromatic characteristics and to the shape and/or texture of the lesion. These
include Atypical Pigment Network, Blue-whitish Veil, Atypical Vascular Pat-
tern, Irregular Streaks, Irregular Pigmentation, Irregular Dots/Globules, and
Regression Structures [19]. The seven-point checklist provides a simplification
of the standard pattern analysis and compared to ABCD(E), allows less ex-
perienced observers to achieve higher diagnostic accuracy values. The Menzies
approach facilitates to identify the colour patterns and asymmetry within the
lesion. Computational methods based on the Menzies’ criteria have been pro-
posed to analyze the presence of six basic colour classes (white, red, light brown,
dark brown, blue–grey, and black) for dermoscopic images [33].

The features used in automated dermoscopy image analysis mostly have been
inspired by the clinical methods which have been mentioned above. Table 1 shows
a distribution of feature categories known as hand-crafted features commonly
employed in the literature. We categorize these features in four main classes in-
cluding structural (shape), geometrical (spatial), chromatic (colour) and texture
features. The interested reader is referred to [33] for detailed classification.

Recently, Convolutional Neural Networks (CNNs) have shown an impressive
performance in image classification tasks. Different features detected at the dif-
ferent convolutional layers enable the network to handle large variations in the
dataset which may result in higher diagnostic accuracy and sensitivity in classi-
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Table 1. Hand-crafted categorizes in automated melanoma classification

Feature structural geometric chromatic textural

Sadeghi et al [35]
√ √ √ √

Møllersen et al [31] Divergence-based

Ballerini et al [7] RGB, HSV, CIE GCM

Tomas et al [26] [25] LBP and RSurf

Codella et al [14] Edge Histogram Color Histogram MSLBP

Ma et al [24]
√ √ √

Barata et al [10]
√ √

Garnavi et al [19]
√ √

Zhou et al [44] Fourier transfor-
mation

Damian et al [16] Fourier trans-
form amplituden

asymmetry,
circularity

color distribution

fication. In comparison with fully connected networks, CNNs have much fewer
connections and parameters and hence they are easier to train. They build the
property of translation invariance of image statistics by replicating the same
neurons. They model the low-level features of images locally by enabling the
local connectivities, and make the high-level features of image coarser as they
are in nature [40] using repeated pooling/sub-sampling layers.

In 2014, Simonyan et al [37] investigated the effect of depth component in
CNNs by introducing VGG network which achieved 7.3% error rate in ILSVRC
(ImageNet Large Scale Visual Recognition) competition. This network is char-
acterized by its simplicity which has increased the depth of network by adding
more convolutional layers. In comparison to the previous networks, VGG (with
16 or 19 layers) models more non-linearity and has less parameters by employing
small convolutional filters (3*3) in each layer. Szegedy et al [40] presented two
different concepts in CNNs including a new level of organization in the form of
the ”Inception module” and increased network depth. They proposed a deeper
network (22-layer) with computational efficiency in the case of the GoogLeNet.

However, there was another challenge by increasing the depth of network; it
has been depicted that adding extra layers beyond the certain layers does not
help obtain promising results and may results in higher training and validation
errors. In 2015, He et al [20] presented a new architecture called Deep Residual
Network (ResNet) which won ILSVRC 2015 with an incredible error rate of
3.57%. ResNet consists of a number of residual blocks with each block comprising
of several convolution layers, batch normalization layers and ReLU layers. The
residual block enables to bypass a few convolution layers at a time [41].

Most of these architectures (VGGNet, GoogLeNet, ResNet) are available as
the pre-trained models initially trained on approximately one million natural
images from the ImageNet dataset [17]. Such networks are widely employed for
melanoma detection. Codella et al [13] used a pre-trained CNNs named Caffe to
extract the features for skin image classification and proved that deep features
outperform traditional hand-crafted features. Majtner et al [27] used AlexNet as
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pre-trained deep network for features extraction and proved that deep feature
has potential on image classification. Devassy et al [29] replaced the complex
handcrafted features with standard and deep feature, extracted from ResNet.
This combination outperformed state of the art results. Zhao et al [43] showed
that CNN has a great ability for localizing the objects. They proposed a tech-
nique called Class Activation Mapping (CAM) by using global average pooling
(GAP) in CNNs. A class activation map for a particular category indicates the
discriminative image regions used by the CNN to identify the category.

Despite all these algorithms, there is still room for automated algorithm
that shows reasonable results. This motivate us to develop a new approach that
combines pre-trained deep networks and structural features to detect skin lesions.

3 Methodology

We proposed a structure that combines state-of-the-art developments of deep
neural networks and machine learning techniques to automated analysis of mela-
noma images. The main pipeline of our proposed framework for melanoma clas-
sification is depicted in Fig 1. Similar to most common approaches employed
in computational systems for skin lesion diagnosis, it includes six main steps 1)
Preprocessing, 2) Data Augmentation 3) Segmentation 4) Feature Extraction 5)
Feature Selection and 6) Classification. In the following, more details for each
step are presented.

Input Image Pre-processing

Lesion
Segmentation

Handcrafted
Feature

Extraction

Feature
Selection

Data Aug-
mentation

Deep Feature
Extraction

Classification

Patient
Related Data

M vs NM

Nevus vs SK

Decision

Fig. 1. Pipeline of automated melanoma image classification

3.1 Preprocessing

Dermoscopy images are often obtained with different imaging devices under
varying acquisition conditions. Changes in the illumination of image acquisi-
tion devices adversely affect the color of images and reduce the performance of
diagnostic systems. Hence, it is a crucial task to normalize the color and illumi-
nance balance of images by applying color constancy methods. Different research
groups have proposed color normalization strategies to deal with dermoscopy im-
ages. Gray world, Max RGB, Shades of Gray and General Gray World methods
are among these methods that are fast, easy to implement and require the tuning
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of few parameters [8]. In this study, we applied the Shades of Gray method. In-
terested readers is referred to [12] for a detailed description of different methods.

3.2 Segmentation

First, automatic border detection is performed to separate the lesion from the
background skin. To do this job we applied deep Residual U-Net [42]. The main
benefits from this model are: residual units ease training of deep networks and
this model allow us to design a deep network with fewer parameters however
and better performance [42]. To train this network we applied 2000 pairs of
lesion-mask and for validation we applied 200 pairs lesion-mask. Those pairs
lesion-mask are provided from ISIC 2017 challenge [15].

3.3 Data Augmentation

It is well known that data augmentation notably improves the performance of
deep neural networks. Particularly if the amount of training data is limited,
augmentation would improve the robustness of the model [23]. There are different
kinds of geometrical transformations that can be applied on the images before
providing them as input to the CNN to generate new versions of the images such
as applying random transformations: cropping, flipping, etc. In the following, the
process of data augmentation employed in this study has been described:

1. Considering four rotation angles (45, 90, 135 and 180), we generate four
rotated images per original image.

2. Finding the largest inner rectangle, we crop each image to ensure that all
pixels belong to the original image.

3. Finally, we perform square crops to resize each image of 224*224, since the
CNN network requires square input images.

Considering the orientation changes and crops preformed, we generate eight
versions of each image which, then will be provided to the trained network [18].

3.4 Feature Extraction

The performance of automated approaches for skin lesion detection greatly de-
pends on the choice of meaningful descriptive features derived from the dermo-
scopic images. In this study, we have considered three types of features which are
useful in automated skin lesion detection for improving the overall classification
performance.

Deep Features As our first attempt for feature extraction, we employed a
model based on the VGG network. According to the CNN models and based on
our observations in the experiments using VGG and VGG-Deep, we employed
ResNet as the next learning architecture to extract the deep features. Our CNNs
were fine-tuned with the training samples from the initially pre-trained model to
perform classification on the ILSVRC 2015 data [20]. In the last layer of ResNet,
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there are 2048 features related to high-level concepts of the input image which
are ready to be fed to the classification layer.

Handcrafted Features Feature extraction aims to represent a set of de-
scriptors to separate each image into different classes by feeding them to the
classifier. As mentioned is previous section, in order to extract the deep fea-
tures, all the images need to be resized to a fixed size of 224×224 pixels. As a
result, some important features related to the size and shape of object might be
eliminated. To address this problem, some valuable features called handcrafted
features have been extracted and added to previous deep features to strengthen
our feature set. Once the image has been segmented into the object and back-
ground as stated in Section 3.2, the important handcrafted features must be
extracted from the object. Three main categories of handcrafted features have
been employed in this study including shape features, color features, and texture
features.
Shape features: Shape features provide important information about the lesion
that can be deterministic for lesion’s classification [39]. To shape feature we used
lesion’s mask, provided as output from lesion segmentation step in Fig. 1.
Color features: Color feature descriptors delineate the colour distribution of im-
ages. In order to quantify the color features, statistics features over the chan-
nels of different color spaces were calculated where the color spaces consist of
RGB, HSV, and L*a*b*. The most used descriptors are mean, standard devia-
tion, skewness, kurtosis, and median. Texture features: Texture features provide
important information about the spatial disposition of the grey levels and the
relationship with their neighbourhoods. For texture feature we have applied the
following methods: SURF [11], SIFT [22], ORB [3], and LBP [32].

Patient Related Data Dermatologists do not base their diagnosis solely
on the analysis of the skin lesion. Patient-related context is also of relevance in
making a diagnosis. There are a lot of factors that may affect the final decision
such as age, gender, skin type, personal disease history and part of body [4].

3.5 Feature Selection

Feature selection is an important preprocessing step in many machine-learning
tasks. The purpose is to reduce the dimensionality of the feature space by elim-
inating redundant, irrelevant or noisy features. From the classification perspec-
tive, there are numerous potential benefits associated with feature selection: (i)
reduced feature extraction time and storage requirements, (ii) reduced classifier
complexity, (iii) increased prediction accuracy, (iv) reduced training and testing
times, and (v) enhanced data understanding and visualization. To do this step
we have employed PCA[5], as feature selector, and select 250 features.

3.6 Classification

This block aims to perform classification among three types of skin lesions.
This includes two independent binary classifications. The first classifier is used
for the categorization of dermoscopic data into (a) melanoma and (b) nevus
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and seborrheic keratosis. The second classifier uses the extracted features for
categorizing the dermoscopic images into (a) seborrheic keratosis and (b) nevus
and melanoma. We have exploited different kinds of classifiers including SVM,
Linear SVM (LSVM), RUSBoost Classifier.

4 Experimental Results

Dataset and Evaluation metrics: The proposed structure is trained on the der-
moscopic image sets provided from the International Skin Imaging Collaboration
(ISIC) 2017 Challenge “Skin Lesion Analysis towards Melanoma Detection” –
Part 3: Lesion Classification and the Seven-Point Checklist dataset [21]. The
created model is evaluated on two datasets: ISIC 2017 Test Dataset [15] and on
PH-2 Dataset [30] (patient data are not provided on this dataset).

Results: The first part of the model consisted of the VGG 16 layers up to
the last convolutional layer, but without the last max pooling layer and the
fully-connected layers. We initialized our network with the weights of a VGG 16
model pretrained on the ImageNet dataset. Also, we did the same for ResNet
model. During training, the inputs are pre-processed by zero mean unit standard
deviation normalization. We evaluate the proposed structure as follows:

1. Compare the VGG-16 network to the deeper ResNet-101.
2. Compare the performance of proposed appoaches
3. Compare the performance of different classifier as a final decision layer.
4. Attempt to use the patient data (age and sex) on classification.

The classification results are evaluated under metrics:

– Characteristic curve (ROC) - measure of how well a parameter can distin-
guish between two diagnostic groups.

– Sensitivity (SE) - the fraction of true positives that are correctly identified
– Specificity (SP) - the fraction of true negatives that are correctly identified
– Accuracy (ACC) - the number of correct predictions divided by the total

number of predictions

Experiments are made on ISIC 2017 Test Dataset, that provide us 600 images
(117 melanomas, 90 seborrhoeic-keratoses and 393 nevus) and to strengthen our
conclusions we test our approach on PH2 dataset, that provided us 200 images
(140 nevus and 60 melanomas).

To make comparison between deep networks, ResNet and VGGNet, we run
experiments on three classifiers with every possible combination between deep
features, handcrafted features (HF) and patient data (PD). Results are sum-
marized in Table 2, in columns we have features that are used with ResNet
respectively VGGNet. We can observe that the results with ResNet, as deep
feature extractor, outperforms the results with VGGNet, as feature extractor,
in every possible combination. In classifier A, ResNet as deep feature extractor,
outperform the VGGNet in every combination. Best results achieved in classifier
A from ResNet features is 67.45% and for VGGNet features is only 58.12%. In
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classifier B, also, ResNet features outperform VGGNet features in every combi-
nation. The best result archieven from ResNet features, in classifier B, is 75.65%
and from VGGNet features is 71.05%. In PH2-dataset results are more closer.
The difference between ResNet feature and VGGNet feature is approx 2%. Also,
in this dataset ResNet achieved better result than VGGNet. The best result
achieved from ResNet features is 86.25% and from VGGNet features is 84.38%.
Another thing that we can observe in Table 2, is that it is clear that patient
data increase ROC value from 1% to 2% in classifier A and from 4% to 6% in
classifier B. Also, with patient data we receive an highest Specificity in classifier
A with 64.10% and in classifier B with 84.44%. Also, from Table 2 we can clearly
observe that, In classifier A if we use only handcrafted feature the best results
that we can achieve, based on ROC metric, is 58.10%. If we use deep features,
result is improve to 64.00% and when we combine those features we improve
result to 67.45%. For classifier B when we use only handcrafted and deep feature
separately we achieve results 62.94% respectively 71.99%, but result is improve,
when we combine those features to 75.65%. In PH2 dataset we can figure out
that combination of deep and handcrafted feature increase result to 86.25%, in
comparison when we use those feature separately, 69.94% respectively 71.81%.

To find out which algorithm perform better results in our approach, we have
run experiments with three different algorithms: SVM, Linear SVM (LSVM)
and RUSBoosting. In Table 3 we have summarized the best results for each
algorithm. From results we observe that RUSBoost perform better results in
all three classifier under ROC metric. In classifier A the ROC value is 4.46%
higher than SVM and 2.26% higher than LSVM. In classifier B the ROC value
is 4.25% higher than SVM and 3.50% higher than LSVM. In PH2 dataset the
ROC value is 2% higher than SVM and 5 % higher than LSVM. In Table 4,
we have summarized the best results from our approaches and the other results,
include state of the art, to the best of our knowledge those are the only one
who did the validation on PH2 dataset. From those results, we observe that
our approach performs better than others under accuracy metric (90.00 %), and
under ROC metric (86.50%) we are the just behind state of the art (89.50 %).
Also, our approach achieve sensitivity 92.50% that outperform state of the art
with 4.50%, but our specificity is for about 3% lower than state of the art.

5 Conclusions

In this study, we did not aim to develop a new deep network, but we tried to
use the deep features extracted from available architectures. Considering the
restrictions in ISIC 2017 dataset including the limited size and the problem of
unbalanced data, we feed these features to a RUSboost classifier and we ap-
ply data augmentation. From the results discussed above, we can come to some
conclusions. First conclusion is that: combination of deep with handcrafted fea-
tures approach improve the results in comparison to approach with only deep
or handcrafted features. Second conclusion from the results is that: feature ex-
tracted from ResNet are more representative than those extracted from VGGNet.
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Table 2. Comparing ResNet vs VGGNet

ResNet VGGNet

Challenge Metric - PD HF HF+PD - PD HF HF+PD

ISIC2017 ROC 63.84% 64.00% 65.15% 67.45% 55.12% 58.08% 57.37% 58.12%

Classifica SE 76.39% 93.78% 67.90% 70.80% 93.99% 69.15% 93.37% 59.83%

tion A SP 51.28% 34.20% 62.39% 64.10% 16.24% 47.00% 21.37% 56.41%

ACC 71.50% 82.17% 66.83% 69.50% 78.83% 64.83% 79.33% 59.17%

ISIC2017 ROC 68.10% 71.99% 69.93% 75.65% 65.16% 68.79% 66.37% 71.05%

Classifica SE 91.76% 91.76% 70.98% 65.68% 92.55% 63.13% 92.74% 57.64%

tion B SP 44.44% 52.22% 68.89% 84.44% 37.78% 74.44% 40.00% 84.44%

ACC 84.67% 85.83% 70.67% 68.50% 84.33% 64.83% 84.83% 61.67%

ROC 71.81% - 86.25% - 69.38% - 84.38% -

PH2 dat SE 90.63% - 92.50% - 88.75% - 93.75% -

aset SP 53.00% - 80.00% - 50.00% - 75.00% -

ACC 83.00% - 90.00% - 81.00% - 90.00% -

Table 3. Compare the performance of different classifiers as a final decision layer

Challenge Algorithm ROC SE SP ACC

SVM 65.04% 95.03% 35.04% 83.33%

ISIC 2017 Classification A LSVM 67.24% 90.89% 43.59% 81.67%

RUSBoost 67.45% 70.80% 64.10% 69.50%

SVM 71.40% 93.92% 48.89% 87.17%

ISIC 2017 Classification B LSVM 72.15% 90.98% 53.33% 85.33%

RUSBoost 75.65% 65.68% 84.44% 68.50%

SVM 84.38% 93.75% 75.00% 90.00%

PH2 Dataset LSVM 81.56% 90.63% 72.50% 87.00%

RUSBoost 86.25% 92.50% 80.00% 90.00%

Table 4. Comparing our approach best results with others in PH2 dataset

Paper ROC SE SP ACC

Abbas [2] 89.50% 88.00% 91.00% 89.00%

Proposed 86.25% 92.50% 80.00% 90.00%

Barata [9] 86.00% 85.00% 87.00% 87.00%

Marques [28] 85.00% 94.00% 77.00% 79.00%

Situ [38] 85.00% 86.00% 85.00% 85.00%
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The results showed us that features from ResNet when they are combined with
handcrafted feature and patient data, if they are provided, achieve the best re-
sults in compare to other combinations or any combination of features from
VGGNet with handcrafted feature and patient data. Also, this combination of
features from ResNet with those handcrafted outperform state of the art, on
PH-2 dataset, in accuracy and sensitivity. Next conclusion is relevance of pa-
tient data. From the results is shown that when patient data are used results are
improved for 1 to 6 %. Also, RusBoost as a final classifier performs better results
in comparison to SVM or Linear SVM. The difference between these classifiers
varies from 1 to 4%.
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