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Seasonality in pain, sleep and mental distress in patients with chronic 

musculoskeletal pain at latitude 69° N 

Seasonality is evident in several aspects of human health and behaviour, whereas 

seasonality in chronic pain is less well studied. We examined seasonal variation 

in pain severity and pain dissemination, as well as in pain-associated conditions, 

such as sleep impairment, sleep timing, mental distress, fatigue and physical 

activity. We also examined if any of these associated conditions moderated the 

seasonality in pain. This prospective study was conducted in the sub-arctic 

municipality of Tromsø, Norway (69º North) on a sample of patients with chronic 

musculoskeletal pain (N = 56). Data were collected with self-report 

questionnaires and objective actigraphy measures (7 days) twice: winter and 

summer. Mixed linear regression models were fitted. A modest seasonality effect 

was observed in pain severity (highest in summer), but not in pain dissemination. 

Seasonality with increased physical activity and delayed sleep timing in the 

summer was also present. The remaining pain-associated self-report or objective 

measures indicated no seasonality. The season-pain association was not 

significantly moderated by any of the pain-associated conditions. Previous 

studies on healthy individuals residing in polar areas have suggested an opposite 

seasonal effect with delay of the sleep-wake rhythm in winter. Our results based 

on a clinical sample thus represent a novel finding that needs to be examined 

further with regard to seasonal circadian entrainment and alignment in pain 

populations. These results may have clinical value for the treatment of patients 

with musculoskeletal pain as seasonality may require seasonal adjustments of 

pain treatment strategies. 

 Keywords: Seasonality, Musculoskeletal Pain, Sleep Quality, Chronotype, 

Mental Distress, Fatigue, Actigraphy 
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Introduction 

Seasonality is a ubiquitous source of circannual fluctuations in environmental 

conditions. It gathers momentum at more extreme latitudes and drives evolutionary 

adaptation, and influences various aspects of existence, including human behavior, 

wellbeing and health. For example, mortality in general, morbidity and mortality from 

cardiovascular and lung diseases, as well as prevalence of metabolic syndrome seem 

most prevalent during winter (Johnston and Sears 2006; Kamezaki et al. 2010; Marti-

Soler et al. 2014). Sleep behavior also varies with season as sleep problems and delayed 

sleep timing increase during the dark winter period at high latitudes (Johnsen et al. 

2012; Johnsen et al. 2013; Friborg et al. 2014). Although there is limited support for a 

seasonal ebb and flow in depressed mood in the general population (Johnsen et al. 2012; 

Friborg et al. 2014; Overland et al. 2019), patients with major depression or bipolar 

disorder seem to be more susceptible to depression episodes during winter (Geoffroy et 

al. 2014). 

Chronic musculoskeletal pain is a substantial health problem afflicting about one 

in three of the general population (Bergman et al. 2001). A diagnosis of chronic primary 

musculoskeletal pain subsumes local, regional or widespread musculoskeletal pain 

persisting beyond 3 months, which is not better accounted for by any other disease 

(Nicholas et al. 2019). Clinical experience by ourselves and colleagues at the local 

university hospital, as well as accounts from Canada (Owen 1995) suggest an increased 

negative impact of chronic pain during the winter months, among patients dwelling at a 

high latitude. If present, such variation may motivate seasonal adjustments of pain 

regimen in these areas. However, research on seasonality in chronic pain is hitherto 

limited.  
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In the studies by Moldofsky (1994) and Hawley et al. (2001), patients with 

fibromyalgia and rheumatic disease respectively reported worse pain, sleep, energy and 

mood during winter on a self-report seasonal pattern questionnaire. However, studies 

applying repeated pain assessments across seasons show incongruent results with one 

study in myofascial facial pain reporting increased pain ratings in the dark months 

(Gallagher et al. 1995), whereas others report slightly increased pain in summer in 

rheumatic disease (Hawley and Wolfe 1994; Hawley et al. 2001; Iikuni et al. 2007). 

These studies were performed at moderate latitudes (New York 40°N, Kansas 39°N and 

Tokyo 35°N), which may contribute to attenuate seasonal fluctuations.  

Pain conditions co-occur with depression, fatigue and sleep disturbances (Bair et 

al. 2003; Fishbain et al. 2004; Alfoldi et al. 2014). Seasonal variations in these 

conditions may therefore prompt corresponding variations in pain experience. Several 

studies in miscellaneous pain conditions, indicate winter-exacerbation in fatigue but not 

mood (Hawley and Wolfe 1994; Hardt and Gerbershagen 1999; Feldthusen et al. 2016), 

whereas one study reports more non-specific psychological distress in winter (Gallagher 

et al. 1995). Prospectively designed studies examining seasonal variations in subjective 

and objective sleep measures, in patients with primary musculoskeletal pain, which was 

the impetus for this study, are however lacking.  

The current study was conducted in the city of Tromsø, situated above the Polar 

circle (Norway, 69º North). Here, the sun does not rise above the horizon between  

November 27th- January 15th, and does not set between May 21st- July 22nd. These 

extreme light conditions are likely to affect circadian regulation, and possibly sleep 

behavior and psychological factors, as light is the most important external cue (or 

Zeitgeber) for circadian entrainment (Arendt 2012). Studies of the general population in 

Tromsø report delay of sleep phase, increased sleep problems and fatigue in winter 
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(Husby and Lingjaerde 1990; Johnsen et al. 2012; Johnsen et al. 2013; Friborg et al. 

2014). Depressed mood and fatigue may additionally act as moderators by 

strengthening these seasonal variations (Friborg et al. 2014). Sleep delay in the winter 

may thus also be expected among pain patients, but it is unknown whether such delay 

will affect the pain experience.  

Reduced physical activity during the winter season is common in general and 

likely due to cold temperature and lack of sunlight (Cepeda et al. 2018; Schepps et al. 

2018). Leading an active lifestyle has been related to more efficient experimental pain 

inhibition and to reduced pain reports in the general population (Landmark et al. 2013; 

Naugle et al. 2017). Less pain in the more active summer period could therefore be 

expected. 

Seasonal variations in light exposure and climate may influence pain conditions 

directly, as well as indirectly through variations in mood, fatigue, physical activity or 

sleep disturbance. As seasonal adjustment of multidisciplinary rehabilitation may 

benefit chronic pain patients, the current study examined seasonal variation in pain and 

in factors that might influence pain. Confinement to primary musculoskeletal pain was 

preferred to avoid confounding by any seasonality in comorbid underlying diseases. The 

first objective was to estimate seasonal variation in pain severity and dissemination with 

the hypothesis that patients with chronic musculoskeletal pain experience increased pain 

in winter as compared to summer. The second objective was to estimate seasonal 

variation in the pain-associated conditions sleep, mental distress, fatigue and physical 

activity and whether such variations affect seasonal variation in pain. We hypothesized 

that such seasonality exists and modifies the season-pain relation.  
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Materials and Method  

Study sample  

Patients residing in the municipality of Tromsø and attending the Rehabilitation or the 

Pain outpatient clinic at the University Hospital of North Norway (UNN) were invited 

by mail. Inclusion criteria were age 18-65 years and diagnosed with musculoskeletal 

pain (ICD-10 diagnoses in Table 1) within the last 18 months. Exclusion criteria: a) 

major comorbid medical conditions (cancer, inflammatory-, symptomatic heart or lung-, 

metabolic- or endocrine disease), neurologic conditions, psychiatric illness or drug 

abuse, b) a sleep disorder diagnosis other than insomnia, c) pregnancy, or d) 

participation in ongoing intervention studies.   

Design and procedures 

The prospective design included two repeated study periods per participant, during mid-

summer and during mid-winter. Potential sequence effects were controlled for by 

counterbalancing the enrollment sequence with approximately half of the participants 

starting during summer, and the other half starting during winter. The counter-balancing 

was non-randomized as the participants were enrolled consecutively for practical 

reasons. The dates; duration of daylight; and median temperature during data collection 

periods were: June 6th to July 28th 2016; 22-24 hours; 8°C, November 3rd 2016 to 

February 13th 2017; 0-7 hours; -1°C and May 2nd to  July 20th 2017; 19-24 hours; 

10°C. (Lilje et al. 2019, 4-27; MET Norway 2020). Each study period comprised self-

report data and one week of continuous actigraphy recording with a concurrent sleep 

log. The first visit was scheduled at UNN, where subjects received detailed written and 

oral information, completed questionnaires, and had the actigraphy device attached. 

Participants returned after 7 days for delivery of the actigraphy device and sleep logs. 
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They were encouraged to conduct their daily life as usual during the study period with 

regard to sleep schedule, habitual medication and daily activities. A few participants 

(nurses) working shift schedules, i.e., 2-4 consecutive night shifts followed by a longer 

period of day and evening shifts, participated during their day-evening shift schedule.  

Measurements 

Demographics: In addition to age and sex, the dichotomized variables educational level 

(high school vs higher education), marital status (single vs married/partner), 

employment (non-employed vs part or full-time employed), and perceived financial 

situation (good vs medium/bad) were registered. Type of social benefit was registered 

when applicable. 

Brief Pain Inventory (BPI): The pain severity subscale of the validated 

Norwegian version of the Brief Pain Inventory short form was applied (Cleeland 1991). 

Participants estimated their worst, least and average pain during the last week, as well 

as their current pain. Each of the four items were rated on an 11-point numeric rating 

scale (from 0, no pain, to 10, worst imaginable pain). We calculated a mean score of 

these four items as a measure of pain severity. The questionnaire also entailed a 

modified version of the BPI body-map identifying 25 specified body regions. The 

number of indicated body-regions was used as a measure of pain dissemination. 

Hopkins Symptom Checklist 25 (HSCL 25): The HSCL 25 is a self-report 

inventory designed to screen for symptoms of depression and anxiety, indicating mental 

distress the last 14 days (Derogatis et al. 1974). The 25 items are rated on a 4-point 

Likert scale (from 1-not at all to 4-very much), from which a global average score is 

calculated (range: 1-4).  
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Chalder Fatigue Scale: The Chalder Fatigue scale covers physical (eight items) 

and mental (three items) fatigue. The presence of each symptom during the last month is 

graded on a 4-point Likert scale (1-less than usual, 2-not more than usual, 3-more than 

usual, 4-much more than usual) (Chalder et al. 1993). The present study used the 

combined score of mental and physical fatigue. 

Insomnia Severity Index (ISI): The insomnia severity index (ISI) includes seven 

items assessing problems with sleep onset, maintenance and early morning awakening, 

as well as daytime functioning, sleep satisfaction and worrying about sleep during the 

previous 14 days (Morin 1993). Items are rated on a five-point Likert scale (0–4), with 

higher scores indicating worse insomnia (total range 0- 28). ISI is a recommended 

research measure of insomnia symptoms (Buysse et al. 2006).  

Pittsburg Sleep Quality Index (PSQI): The PSQI comprises 19 items probing 

sleep quality and disturbance during the previous month across seven components: 1) 

subjective sleep quality, 2) sleep latency 3) sleep duration 4) habitual sleep efficiency 5) 

sleep disturbance, 6) sleep medication and 7) daytime dysfunction. Each component 

receives a score of 0-3 based on a scoring algorithm, yielding a global score with a 

range of 0-21 (higher scores indicate more disturbed sleep), (Buysse et al. 1989). The 

PSQI is a recommended research measure of global sleep symptoms (Buysse et al. 

2006). 

Actigraphy: The validated Actiwatch Spectrum Plus device was used to register 

sleep pattern and mean daytime activity levels (Kahawage et al. 2020). Post-processing 

of the raw actigraphy data was conducted in the Actiware version 6.0.9 software (both 

Phillips Respironics, Inc., Murrysville, PA). The Actiwatch was worn on the non-

dominant wrist, only to be removed shortly during shower or if required at work (e.g. 

due to hygiene or safety considerations). Off-wrist periods were excluded from 
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analyses. The participants were instructed to register time of first sleep attempt and final 

morning awakening by pushing an event button. Rest intervals were scored manually by 

a trained research assistant (psychology student) supervised by a specialist in clinical 

neurophysiology (first author). Both were blinded to participant identity. A significant 

sustained reduction or increase in activity defined the start and end of a rest period, 

respectively. If activity- transitions were inconclusive, the event marker, and sleep log 

information were additionally consulted. The sleep interval was scored within the rest 

interval by the automated Actiware algorithm, with specification of 30 sec epochs and 

medium sensitivity (40 activity counts/ epoch) for wake detection. The algorithm 

requires 10 minutes of inactivity at the start and end of the sleep interval to define sleep 

onset and offset, respectively. The variables total sleep time (TST, duration of sleep 

within the sleep interval), sleep onset latency (SOL, time between onset of rest interval 

and onset of sleep interval), wake after sleep onset (WASO, time awake after initial 

sleep onset) and sleep efficiency (SE, proportion of the rest interval scored as sleep), 

were averaged for the recorded week. The midpoint of sleep �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
2

� 

was calculated separately for weekdays and weekends as a measure of sleep timing. To 

adjust for any sleep deficit accumulation during weekdays, a sleep corrected midpoint 

of sleep on weekends (MSFsc) was also calculated (Roenneberg et al. 2004). The 

tendency to delayed sleep timing during weekends, the social jet lag (SJL), was 

calculated as the absolute difference between midsleep on weekends and workdays, 

which was additionally corrected for sleep debt accrual (SJLsc) as outlined by 

Jankowski (2017).  

Additionally, the actigraphy-measured mean activity level (mean activity count 

per minute) during wake time was applied as a measure of general activity levels. This 

approach has previously been applied in studies of group differences and seasonal 
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variation in physical activity (Korszun et al. 2002; Brychta et al. 2016). White light 

exposure during wake periods (mean lux per minute) was also registered by the 

actigraph. 

Statistical procedure 

The IBM SPSS 25 was used for all analyses. Independent Student`s t-test and chi-

square tests were applied to assess the adequacy of the counter-balancing design. Linear 

mixed regression models with a random intercept parameter were fit to take care of the 

dependency in the repeated data. Type III F-tests were applied. The effect of season on 

pain severity, pain dissemination, mental distress, fatigue, sleep quality and insomnia, 

as well as actigraphy measures of sleep continuity, sleep timing, physical activity and 

light exposure, were assessed as crude (Model 1) and adjusted (Model 2) effects. 

Covariates in Model 2 were sequence of enrolment, age, sex, education, employment, 

perceived financial status and marital status. In a third model, we examined if the 

primary association between season and pain was further adjusted and moderated by the 

self-report (ISI, HSCL, CFS, PSQI), and the actigraphy measures (SOL, SE, TST, 

midsleep weekdays and activity). To reduce number of covariates and moderator tests 

and due to substantial correlations between these variables, a principal component 

analysis was conducted. Optimal linear combinations of scores were saved as three 

component scores (using the regression method), which were subsequently added to 

Model 2 as additional covariates (Model 3). Subsequently each component score was 

tested separately as  moderator variables of the season - pain relationship 

(season*C1/C2/C3). Cohens d for repeated measurements were calculated based on the 

difference in the estimated marginal means (EMM) divided by their observed pooled 

standard deviation. Residual scores were saved and inspected for non-normality and 
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heteroscedasticity.  

Ethical approval 

The study was approved by the Regional Committee for Medical and Health Research 

Ethics, Office North (reference number 2015/2473). Written informed consent was 

obtained from all participants, and the study conforms to ethical standards of this 

journal (Portaluppi et al. 2010). 

Results 

Sample characteristics 

A total of 401 patients were invited to participate, of whom 91 responded. Based on 

exclusion criteria, 28 patients were excluded and seven patients either moved or 

withdrew. The final sample consisted of 56 patients, of whom 31 were enrolled during 

summer 2016 (follow-up during winter 2016/2017) and 25 during winter 2016/2017 

(follow-up during summer 2017). Three participants from the summer-enrollment did 

not attend the follow up. The distribution of ICD-10 diagnoses at their most recent visit 

at the respective departments at UNN are shown in Table 1. Relatively more females 

enrolled during summer than winter whereas other demographic variables did not differ 

between the enrollment groups (Table 2). Among the 42 employed participants, three 

additionally reported receiving full social security benefit, four received part benefit and 

seven received benefit of uncertain coverage. Among the 14 unemployed participants, 

eight received sickness leave compensation and six received disability pension. 

Seasonal variations 

Seasonal differences for pain severity and pain dissemination are presented in Table 4. 



12 
 

Seasonality was evident for pain severity with less pain in winter compared to summer, 

whereas there was no season effect for pain dissemination. Adjusting for 

sociodemographic variables (age, sex, education, employment, perceived financial 

status and marital status) or sequence of enrollment (Model 2) did not alter the 

estimated marginal means (EMM).  

Seasonal differences in questionnaire and actigraphy data are presented in Table 

3. As expected, light exposure, as a marker of season itself, was relatively lower during 

winter. No seasonal variations were observed in any of the self-report measures of 

insomnia, sleep quality, mental distress or fatigue, or the objective measures of sleep 

continuity (SOL, SE, WASO) or sleep duration. Significant seasonal effect with lower 

levels of physical activity during winter compared to summer were noticed. 

Additionally, there was a significant delay in sleep timing on weekdays and a non-

significant tendency towards weekend delay in summer compared to winter. Social jet 

lag (SJL, later sleep timing at weekends compared to weekdays) of more than 1 hour, 

which was somewhat smaller for the adjusted SJLsc, was noticed both during summer 

and winter. The adjustment for sociodemographics, or sequence of enrollment did not 

notably change the EMM of any of the self-report or objective variables. 

In the final regression analysis (Model 3, Table 4), we examined if the 

questionnaire- and actigraphy-based component scores modified the season-pain 

association. From PCA we extracted three components C1-3 with an eigenvalue > 1. 

Self-report instruments (ISI, PSQI, HSCL, CFS) loaded on C1, actigraphy sleep 

continuity measures (SOL, SE) loaded on C2, and midsleep weekdays loaded on 

component C3. TST loaded on both C2 and C3, whereas activity loaded on C2 and 

weakly on C1. There was a significant main effect solely of C1 on pain severity 

(p<.001) and pain dissemination (p<.05). None of the interaction terms was significant. 
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Hence, the additional variables adjusted for in Model 3 did not significantly modify the 

seasonal variation in the pain measures, and the interaction terms were not kept in the 

final model. 

Discussion 

In this study of seasonal variation in musculoskeletal pain in Tromsø, pain intensity was 

modestly lower during winter than summer, whereas pain dissemination did not display 

any seasonal variations. Concurrently there was a delay of sleep timing by about half an 

hour on weekdays in summer compared to winter. No seasonal variation was observed 

in any other objective or subjective sleep measures, mental distress or fatigue. 

Pain 

We found that pain intensity was modestly lower during winter than summer; however, 

the clinical importance of less than half a point change on the BPI is questionable. This 

effect of season on pain intensity was not related to subjective or objective measures of 

sleep, mental distress, fatigue or physical activity.  

Increased pain rating in summer compared to winter, and late spring compared 

to late autumn has previously been observed in rheumatoid arthritis, osteoarthritis and 

fibromyalgia (Hawley and Wolfe 1994; Hawley et al. 2001; Iikuni et al. 2007). In these 

studies, current pain was assessed by VAS scale repeatedly during the year. The season 

effect was modest and the clinical importance was questioned by the authors (Hawley et 

al. 2001; Iikuni et al. 2007). On the other hand, one previous study found increased pain 

in winter in myofascial facial pain patients (Gallagher et al. 1995). Participants in this 

latter study reported their worst pain during the last month on four different pain 

instruments combined into a composite score. Such a composite score may reflect 
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broader aspects of the pain experience than the ratings applied in the current and the 

previously mentioned studies, which may underlie this apparently opposing finding. 

In Hawley’s study (2001), in addition to repeated rating of current symptoms, 

patients, at one occasion, self-reported their annual symptom patterns by month of the 

year. By this approach, a more pronounced seasonality emerged, where pain displayed a 

bimodal pattern with a smaller peak in summer months and a larger peak in winter 

months. This finding suggests that patients have a sense of seasonality, which may give 

rise the common assumption that pain patients are more troubled by their pain condition 

in winter. The authors discuss the possibility of attribution and somatization underlying 

the apparent discrepancy between this approach and the repeated pain ratings (Hawley 

et al. 2001). Indeed, Meyers and Young (2015) demonstrated the moderating effect of 

illness attitudes on the association between fatigue (which commonly increases in 

winter) and psychological symptoms such that persons with higher negative appraisal 

also experienced increased psychological symptoms as a response to fatigue. They 

propose this as a possible mechanism for seasonal variation in psychological symptoms. 

However, the potential involvement of similar implicit illness attitudes in seasonality of 

other symptoms, including pain, remain to be tested empirically.  

Physical activity 

The lifestyle in Tromsø includes more outdoors leisure activities during summer and 

more indoor socializing during winter, as the actigraphy recordings in our study indicate 

with increased average activity in summer. Although physical activity has been related 

to pain inhibition and reduced pain reports in the general population (Landmark et al. 

2013; Naugle et al. 2017), we did not observe less pain in the more active summer 

period in the current study. On the contrary, pain increased rather than decreased in the 
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more active summer period, however the daily activity measure did not modify the 

seasonality in pain.  

One may speculate whether musculoskeletal pain may be perceived as more 

debilitating during summer when increased activity is anticipated and reports of 

splendid outdoors adventures and vacations are repeatedly conveyed in media and social 

media. Vice versa, there may be an acceptance of symptoms during winter, due to lower 

anticipations of physical activities and higher appreciation of indoors tranquil activities 

and socializing. This is a hypothesis that future studies may address more specifically.  

Psychological factors 

Seasonal variations in symptoms of anxiety, depression and fatigue may be 

hypothesized as a link between season and pain since these factors are associated with 

pain (Hawley et al. 2001; Bair et al. 2003; Fishbain et al. 2004). However, in the current 

study there was no seasonal variation in mental distress or fatigue. Although patients 

with major depression disorder may be more vulnerable to depressive episodes during 

winter, our observations corroborate previous studies in the general population and 

among pain patients, which have found minor to nonexistent seasonal variation in mood 

(Hawley and Wolfe 1994; Hardt and Gerbershagen 1999; Oyane et al. 2005; Friborg et 

al. 2012; Johnsen et al. 2012; Friborg et al. 2014; Geoffroy et al. 2014; Overland et al. 

2019). On the other hand, the literature suggest increased fatigue in winter (Friborg et 

al. 2012; Friborg et al. 2014; Feldthusen et al. 2016), but this was not observed among 

pain patients in the present study. Of note, in the current study a potential seasonal 

variation in fatigue and mental distress with increased symptoms in winter may have 

been masked by the decreased pain in winter compared to summer.  
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Seasonality in psychological well-being may be of a more multifaceted character 

than is usually assessed in specific questionnaires or selected items in research studies, 

as Gallagher et al. (1995) found increased non-specific psychological distress in winter. 

Non-specific psychological distress was described as a measure covering diverse 

emotional and cognitive symptoms collectively termed demoralization. The finding may 

indicate that seasonal psychological variations are of a diverse, non-specific character. 

However, the study did not test whether demoralization was associated with the 

corresponding pain increase which was observed in winter.  

Sleep 

In the current study, there was no seasonality in objective or subjective measures of 

sleep quantity, quality or insomnia. Little is known about seasonality of sleep quality 

and insomnia in pain patients, but previous studies in the general population report 

somewhat diverging results. Most studies did not find seasonality in sleep duration 

(Oyane et al. 2008; Sivertsen et al. 2011; Friborg et al. 2012; Johnsen et al. 2012; 

Friborg et al. 2014; Brychta et al. 2016). While some studies from northern Norway 

found support for increased subjective sleep problems in winter (Husby and Lingjaerde 

1990; Friborg et al. 2012; Johnsen et al. 2012; Friborg et al. 2014), other studies from 

Norway and Japan did not (Oyane et al. 2008; Sivertsen et al. 2011; Itani et al. 2016). 

Methodological differences in study design and operationalization of sleep disturbance/ 

insomnia may underlie some of these differences. Insomnia-symptoms in winter have 

been related to the concurrently observed delayed sleep phase in northern Norway, as 

sleep initiation problems under certain conditions may be an overlapping symptom 

(Hansen et al. 1987). Among the pain patients in our study, we did not find such delay 

in sleep phase in winter, which may contribute to the lack of seasonality in sleep 
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problems in our study. 

In the current study, sleep timing was delayed during summer rather than winter, 

which is an opposite seasonal effect than previously observed in the general population 

in The Tromsø Study (Johnsen et al. 2013). The midpoint of sleep on free days (MSFsc) 

in our study was thus 5:15 h and 4:56 h compared to 3:55 and 04:08h in summer and 

winter respectively, in The Tromsø Study. However, in the current study the seasonal 

effect was significant only on weekdays, with approximately 30 minutes delay in 

summer, whereas in The Tromsø Study there was no season effect during weekdays.  

Lack of the entraining effect of morning light presumably drives the phase-delay 

during winter in healthy and general population samples residing in regions with 

moderate and extreme seasonal light variation (Arendt 2012; Johnsen et al. 2013; 

Friborg et al. 2014; Hashizaki et al. 2018). The delay may be further amplified by 

mental distress (Friborg et al. 2014). We are not aware of previous studies probing this 

seasonal phenomenon in patients with chronic pain, and the observed delay of sleep 

schedule in summer rather than winter is somewhat puzzling.  

In Tromsø, there is sunlight around the clock during the summer months. One 

may speculate that persons with chronic pain may be exposed to bright light in advance 

of their diurnal lowest core body temperature, nadir, due to late bedtime, nightly 

awakenings or early morning awakening. Such sleep patterns may be a consequence of 

the pain condition itself, concurrent insomnia, or an intrinsic late chronotype. Given that  

light exposure prior to nadir has a delaying effect on the sleep wake rhythm, this may 

potentially have contributed to the summer phase delay observed in our study.   

In the current study sleep timing was later than in The Tromsø Study, at both 

seasons. Our sample is slightly younger with more females than the population study, 

which may contribute to the observed delay, since sleep phase tends to advance with 
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higher age, more among males than females (Fischer et al. 2017). Accordingly, a study 

among young students in Tromsø reported MSFsc between 05:05 (autumn) and 05:37 

(winter) (Friborg et al. 2014). Yet differences in demography do not seem likely to 

completely account for the delay in sleep schedule in our sample. 

Mode of measurement differentiates the studies from Tromsø, since the 

population study applied the self-report Munich chronotype questionnaire (MCQ) that 

may introduce memory biases regarding habitual sleep times for work- and free days. 

Validation of MCQ with actigraphy have shown similar estimated MSFsc when 

recorded during the same week (Santisteban et al. 2018). The student study applied 

sleep diaries. In the current study, the objective actigraphy-data are used, and weekends 

were assumed as free days. This approach does not take into account that some 

participants may have had free days during the week, and oppositely may have had 

work scheduled during weekends. Anyhow, using objective recordings is an advantage 

since sleep misperception is common among poor sleepers (Harvey and Tang 2012).  

Chronotype has been linked to overall mortality and adverse health outcomes 

including musculoskeletal disorders (Knutson and von Schantz 2018). Evening types 

seem to report more general and work-related musculoskeletal complaints (Merikanto et 

al. 2014; Zhang et al. 2018) and fibromyalgia patients with evening chronotype have 

higher pain scores and general symptom load (Kantermann et al. 2012). In 

corroboration an experimental study of 31 healthy male students indicates evening types 

to be more sensitive to heat pain (Jankowski 2013). Thus, there seem to be emerging 

evidence for an association between chronotype and musculoskeletal pain. In the 

current study, we did not inquire about morning/ evening preferences, and the general 

delay among patients compared to the general population could be explained either by 

chronotype differences or by their pain condition. Further studies on chronotype and 
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seasonal fluctuations of circadian rhythm by additional indicators, such as cortisol, 

melatonin, core body temperature and genetic polymorphisms in pain patients could 

provide important information about the role of chronotype, circadian entrainment and 

misalignment in pain conditions. Yet, the main objective of this study was to investigate 

seasonal variations in pain, and since this is a paired study, chronotype as a presumed 

stable trait is unlikely to explain the observed seasonality in pain severity.  

Limitations 

There are several limitations to the current study. The final sample consisted of 56 of 

the invited 401 patients. Patient privacy regulations prohibited access to any 

information concerning the non-consenting patients. However, information from 

comparable patient groups suggest that our sample has similar age, levels of mental 

distress and cohabitation, but somewhat lower pain severity, higher education, larger 

female ratio, and higher employment rate (Anke and Granan 2017). We did not include 

other somatic patient groups, and we can accordingly not assess if the observed seasonal 

patterns are specific for the CMP population. We did not include a healthy control 

group because our main objective was to study seasonality in pain and pain-related 

conditions such as sleep and psychological factors. However, future studies would 

benefit from including a control group in order to compare the effects of seasonality on 

pain- related conditions directly between healthy subjects and pain patients. The 

relatively low sample size may have limited the study power, however most of the non-

significant findings display low effect sizes, thus the risk of Type 2 error is less likely. 

Limited assessment of pain interference was included, thus missing information on how 

pain is perceived to affect physical, psychological and social aspects of life at different 

seasons. Such information could potentially have contributed to understanding the 
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finding of increased pain in summer. Physical activity was solely included as a daily 

average measure. By this approach, we did observe a seasonal variation in activity 

levels, yet it may be less sensitive than for example peak activity levels or 

differentiating time spent in sedentary, moderate and vigorous activity in detecting 

associations with pain (Kop et al. 2005). Lastly, current vacation during data collection 

is a possible confounder for the observed summer delay, which we did not control for. 

However, the preserved social jet lag (later sleep timing at weekends compared to 

workdays) in summer indicates continued work routines.  

Conclusion  

There is a paucity of studies on seasonal variations of symptoms in patients with 

chronic pain. In this longitudinal study, we observed an unexpected modest increase in 

pain severity in summer compared to winter. This seasonal variation in pain was not 

related to mental distress, fatigue, sleep complaints or objective sleep measures. As the 

current findings correspond less well with clinical experience, this issue needs to be 

examined further, possibly also by adding a qualitative study arm connected with a 

quantitatively designed study presumably replicating the present findings. Contrary to 

findings in the general population, we also observed a sleep delay in the summer, with 

the largest effect on weekdays (~half an hour). This observation suggests that attention 

should be paid to seasonal changes in sleep-wake patterns in patients with 

musculoskeletal pain. Hence, this study may spark future research that may provide new 

knowledge on seasonal variations in sleep wake cycles among these patients. The 

potential benefit of managing sleep delay in summer should also be further explored.  
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Table 1. Distribution of ICD-10 diagnoses 

 n 
M54.2 Cervicalgia 12 
M54.5 Low back pain 11 
M54.6 Pain in thoracic spine 1 
M54.8 Other dorsalgia 2 
M54.9 Dorsalgia, unspecified 11 
M79.1 Myalgia 10 
M79.6 Pain in limb 3 
M79.7 Fibromyalgia 6 

 

 

 



Table 2. Demographic characteristics according to season of enrollment 

 Summer enrollment 
n= 31 

Winter enrollment 
n=25 

p 

Age, M (SD) 40.3 (10.6) 43.5 (11.1) ns 
Female n (%) 27 (87.1) 15 (60.0) 0.03 
Married/ partner, n (%) 18 (58.1) 17 (68.0) ns 
Higher education, n (%) 23 (74.2) 12 (48.0) ns 
Employment, n (%) 23 (74.2) 19 (76.0) ns 
Perceived financial 
situation (good), n (%) 

9 (29.0) 7 (28.0) ns 

 
 



Table 3. Seasonal differences (estimated marginal means) in self-report and actigraphy measures 

  Model 1   Model 2  
 Summer (M CI) Winter (M CI) Cohens d Summer (M CI) Winter(M CI) Cohens d 
ISI 11.45 9.63-13.26 11.66 9.83-13.49 -0.03 ns 11.46 9.66-13.26 11.67 9.85-13.48 -0.03 ns 
PSQI 9.98 8.86-11.11 9.12 7.97-10.26 0.20 ns 9.99 8.88-11.10 9.12 7.99-10.24 0.20 ns 
HSCL 1.74 1.59-1.88 1.74 1.59-1.88 0.00 ns 1.74 1.60-1.88 1.74 1.60-1.88 0.00 ns 
Chalder 15.57 14.02-17.12 16.19 14.62-17.77 -0.10 ns 15.58 14.02-17.13 16.20 14.62-17.77 -0.10 ns 
TST, min 395.3 381.6-409.1 395.1 381.0-409.1 0.00 ns 394.8 383.7-406.0 395.2 383.8-406.7 -0.01 ns 
SOL, min 17.1 12.4-21.7 14.5 9.7-19.3 0.16 ns 17.0 12.6-21.5 14.5 9.9-19.1 0.14 ns 
SE, % 86.3 84.7-87.9 86.2 84.6-87.8 0.01 ns 86.3 84.8-87.8 86.2 84.7-87.7 0.01 ns 
WASO, min 37.6 33.2-42.0 37.2 32.7-41.7 0.02 ns 37.6 33.1-42.2 37.2 32.9-41.8 0.02 ns 
Midsleep weekdays, h:min 4:15 3:57-4:33 3:42 3:24-4:00 0.48*** 4:15 3:57-4:33 3:42 3:24-4:00 0.48*** 
Midsleep weekend, h:min 5:27 5:05-5:49 5:09 4:47-5:32 0.20ns 5:27 5:04-5:49 5:09 4:46-5:32 0.20ns 
MSFsc, h:min 5:15 4:52-5:38 4:55 4:32-5:20 0.21 ns 5:15 4:51-5:38 4:56 4:32-5:20 0.20 ns 
Social Jet Lag, min 79.9 65.2-94.7 93.7 78.4-109.1 -0.25 ns 80.1 65.5-94.7 93.7 78.6-108.8  0.24 ns 
SJLsc, min 64.2 48.9-79.6 80.8 64.8-96.7  -0.26 ns 64.5 49.0-80.0 80.5 64.4-96.6  0.25 ns 
Activity, Activity Count/min 263.6 246.0-281.2 247.1 229.2-264.9 0.26* 263.4 245.6-281.2 247.0 229.0-265.0 0.24* 
Light exposure, Lux/min 303.9 258.9-348.9 82.4 36.2-128.6 1.36 *** 303.7 257.3-350.1 83.1 35.4-130.7 1.35*** 
Note: * p<0.05, *** p<.001, CI: 95% Confidence Interval, ISI: Insomnia Severity Index, PSQI: Pittsburgh Sleep Quality Index, HSCL: 
Hopkins Symptom Checklist, TST: Total sleep time, SOL: Sleep onset latency, SE: Sleep efficiency, WASO: Wake after sleep onset, 
MSFsc: Midsleep free days sleep corrected, SJLsc: Social jet lag sleep corrected. Model 1: crude, Model 2: Adjusted for sequence of 
enrollment, age, sex, education, employment, perceived financial status and marital status 

 



Table 4. Seasonal differences (estimated marginal means) in pain severity and pain dissemination 

 Pain Severity Pain Dissemination 
 Summer (M CI) Winter (M CI) Cohens d Summer (M CI) Winter (M CI) Cohens d 
Model 1 4.38 3.99-4.76 3.95 3.55-4.34 0.28* 7.05 5.68-8.42 6.91 5.52-8.30 0.03 ns 
Model 2 4.38 4.01-4.76 3.95 3.57-4.33 0.28* 7.09 5.78-8.40 6.93 5.61-8.26 0.03 ns 
Model 3 4.39 4.05-4.73 3.95 3.60-4.29 0.29* 7.09 5.79-8.38 6.945.63-8.26 0.03 ns 

Note: Model 1: crude, Model 2: Adjusted for sequence of enrollment, age, sex, education, employment, perceived financial status and marital 
status, Model 3: Model 2 additionally adjusted for principal component score (PCA)-based component scores C1, C2 and C3. The variables 
entered into the PCA were Insomnia Severity Index, Pittsburgh Sleep Quality index, Hopkins Symptom Checklist, Chalder Fatigue Scale and the 
actigrahy measures; sleep onset latency, sleep efficiency, total sleep time, midsleep weekdays and average activity counts, which could be 
satisfactorily summarized by three component scores with eigenvalues > 1. 
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