
MDM: The GPU Memory Divergence Model
Lu Wang† Magnus Jahre‡ Almutaz Adileho∗ Lieven Eeckhout†

†Ghent University, Belgium — {luluwang.wang, lieven.eeckhout}@ugent.be
‡Norwegian University of Science and Technology — magnus.jahre@ntnu.no

oHuawei, Toga Networks — almutaz.adileh@huawei.com

Abstract—Analytical models enable architects to carry out
early-stage design space exploration several orders of magnitude
faster than cycle-accurate simulation by capturing first-order
performance phenomena with a set of mathematical equations.
However, this speed advantage is void if the conclusions obtained
through the model are misleading due to model inaccuracies.
Therefore, a practical analytical model needs to be sufficiently
accurate to capture key performance trends across a broad range
of applications and architectural configurations.

In this work, we focus on analytically modeling the perfor-
mance of emerging memory-divergent GPU-compute applications
which are common in domains such as machine learning and data
analytics. The poor spatial locality of these applications leads to
frequent L1 cache blocking due to the application issuing signifi-
cantly more concurrent cache misses than the cache can support,
which cripples the GPU’s ability to use Thread-Level Parallelism
(TLP) to hide memory latencies. We propose the GPU Memory
Divergence Model (MDM) which faithfully captures the key
performance characteristics of memory-divergent applications,
including memory request batching and excessive NoC/DRAM
queueing delays. We validate MDM against detailed simulation
and real hardware, and report substantial improvements in
(1) scope: the ability to model prevalent memory-divergent
applications in addition to non-memory divergent applications;
(2) practicality: 6.1× faster by computing model inputs using
binary instrumentation as opposed to functional simulation; and
(3) accuracy: 13.9% average prediction error versus 162% for
the state-of-the-art GPUMech model.

I. INTRODUCTION

GPUs are the de facto standard platform for executing
performance-critical applications. Their highly parallel exe-
cution model and high-performance memory system make
GPUs a popular choice for emerging machine learning [17],
[20], [27] and data analytics [3], [4] workloads. Several
contemporary GPU applications differ from traditional GPU-
compute workloads as they put a much larger strain on
the memory system. More specifically, they are memory-
intensive and memory-divergent. These applications typically
have strided or data-dependent access patterns which cause the
accesses of the concurrently executing threads to be divergent
as loads from different threads access different cache lines. We
refer to this application class as Memory Divergent (MD), in
contrast to the more well-understood Non-Memory Divergent
(NMD) applications.
Analytical GPU Performance Modeling. Analyzing and
optimizing GPU architecture for the broad diversity of modern-
day GPU-compute applications is challenging. Simulation is

∗This work was performed while at Ghent University.

arguably the most commonly used evaluation tool as it enables
detailed, even cycle-accurate, analysis. However, simulation is
excruciatingly slow and parameter sweeps commonly require
thousands of CPU hours. An alternative approach is modeling,
which captures the key performance-related behavior of the
architecture in a set of mathematical equations, which is much
faster to evaluate than simulation.

Modeling can be broadly classified in machine-learning (ML)
based modeling versus analytical modeling. ML-based mod-
eling [9], [36] requires offline training to infer or learn a
performance model. A major limitation of ML-based modeling
is that a large number (typically thousands) of training examples
are needed to infer a performance model. These training
examples are obtained through detailed simulation, which leads
to a substantial one-time cost. Moreover, extracting insight from
an ML-based performance model is not always straightforward.
Analytical modeling [1], [14], [15], [31], [34], [38] derives
a performance model from fundamentally understanding the
underlying architecture and hence provide deep insight, i.e., the
model is a white box, and the one-time cost is small once the
model has been developed. The latter is extremely important
when exploring large design spaces. Typically, the analytical
model is used to quickly identify an interesting region in the
design space which is then studied in more detail using accurate
but time-consuming simulation. It is hence more important that
the analytical model captures key performance trends than that
it minimizes absolute error.

This work advances the state-of-the-art in analytical GPU
performance modeling by expanding its scope, improving its
practicality, and enhancing its accuracy. GPUMech [15] is the
state-of-art analytical performance model for GPUs, however,
it is highly inaccurate for memory-divergent applications, and
in addition, it is impractical as it relies on functional simulation
to collect the model inputs. We propose the MDM performance
model which is highly accurate across the broad spectrum of
MD and NMD-applications, and in addition is practical by
relying on binary instrumentation for collecting model inputs.
Before diving into the specific contributions of this work, we
first point out the prevalence of memory-divergent applications.

Memory-Divergent Applications are Prevalent. We use
Nvidia’s Visual Profiler [30] on an Nvidia GTX 1080 GPU
to categorize all benchmarks in the Rodinia [5], Parboil [32],
Polybench [11], Tango [20], LonestarGPU [3], and Mars [13]
benchmark suites (see Table I). We define an application as

Magnus Jahre
Copyright 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

TABLE I: MD-applications across widely used GPU benchmark
suites. MD-applications are common.

Suite Ref. #MD-app. #NMD-app. Sum

Rodinia [5] 4 12 16
Tango [20] 2 6 8
LonestarGPU [3] 4 2 6
Polybench [11] 4 8 12
Mars [13] 6 0 6
Parboil [32] 1 7 8

Sum 21 35 56

memory-divergent if it features more than 10 Divergent loads
Per Kilo Instructions (DPKI). Note that this classification is
not particularly sensitive to the DPKI threshold: most NMD-
applications have a DPKI at, or close to, 0 (maximum 3)
while the average DPKI for the MD-applications is around
64 (minimum is 10). DPKI is an architecture-independent
metric and identifies the applications where memory divergence
significantly affects performance since it captures both memory
intensity and degree of memory divergence in a single number.
Overall, we find that 38% (i.e., 21 out of 56) of the benchmarks
are memory divergent (i.e., have DPKI larger than 10). Given
the prevalence of MD applications, it is clear that analytical
models must capture their key performance-related behavior.

Memory divergence is challenging to model analytically
and existing models are highly inaccurate: in particular,
GPUMech [15] incurs an average performance error of 298%
for a broad set of MD-applications, even though GPUMech
is accurate for NMD-applications. The key problem is that
prior work does not model the performance impact of Miss
Status Holding Registers (MSHRs) [22], nor does it accurately
account for Network-on-Chip (NoC) and DRAM queueing
delays. More specifically, concurrent cache requests in an MD-
application (mostly) map to different L1 cache blocks which
causes the L1 cache to run out of MSHRs. This cripples
the ability of the GPU’s Streaming Multiprocessors (SMs) to
hide memory access latency through Thread-Level Parallelism
(TLP), i.e., the SMs can no longer execute independent warps
because the cache cannot accept further accesses until one of
the current misses resolves. Furthermore, memory divergence
incurs a flood of memory requests that severely congest the
NoC and DRAM subsystems, which in turn leads to long
queueing delays.

Paper Contributions. In this work, we propose the Memory
Divergence Model (MDM), the first analytical performance
model for GPUs that accurately predicts performance for MD-
applications. MDM builds upon two key insights. First, L1
cache blocking causes the memory requests of concurrently
executing warps to be processed in batches. The reason is
that MD-applications have more concurrent misses than there
are MSHRs, and the cache can maximally service as many
concurrent misses as there are MSHRs. More specifically, a
cache with N MSHRs will process M requests in roughly M/N
batches because it will block after the first N misses. Second,
MD-applications saturate the NoC and the memory system
which means that a memory request is queued behind all

other concurrent requests. Because TLP-based latency hiding
breaks down for MD-applications, the SMs are exposed to the
complete memory access latency.

MDM faithfully models both MSHR batching and NoC/-
DRAM queueing delays, which reduces performance prediction
error by 16.5× on average compared to the state-of-the-
art GPUMech [15] for MD-applications. At the same time,
MDM is equally accurate as GPUMech for NMD-applications.
Across a set of MD and NMD-applications, we report an
average prediction error of 13.9% for MDM compared to
detailed simulation (versus 162% for GPUMech). Moreover,
we demonstrate high accuracy across a broad design space
in which we vary the number of MSHRs, NoC and DRAM
bandwidth, as well as SM count. Furthermore, we validate
MDM against real hardware, using binary instrumentation to
collect the model inputs as opposed to functional simulation as
done in prior work. Thereby, we improve both model evaluation
speed (by 6.1×) and accuracy (average prediction error of 40%
for MDM versus 164% for GPUMech).

To demonstrate the utility of MDM, we perform four case
studies. First, we use MDM and GPUMech to explore the
performance impact of changing the number of SMs and
DRAM bandwidth for an NMD versus MD-workload. Overall,
MDM predicts the same performance trends as simulation,
while GPUMech erroneously predicts that providing more SMs
and DRAM bandwidth significantly improves performance for
the MD-workload. In a second case study, we demonstrate
that the general-purpose MDM is equally accurate as the
special-purpose CRISP model [24], in contrast to GPUMech,
for predicting the performance impact of DVFS — CRISP
is a dedicated model which relies on yet-to-be-implemented
hardware performance counters, in contrast to the general-
purpose MDM model. Third, we validate that MD-applications
indeed suffer from MSHR batching and NoC/DRAM queueing
and that MDM accurately captures these performance effects.
Finally, we demonstrate that MDM is equally accurate for the
aggressive streaming L1 cache [6], [21].

In summary, we make the following contributions:

• We identify the key architectural mechanisms that deter-
mine the performance of memory-divergent GPU applica-
tions. Poor spatial locality leads to widespread L1 cache
blocking due to lack of MSHRs, which results in cache
misses being processed in batches and the SMs being
unable to leverage TLP to hide memory access latency
and NoC/DRAM queueing delays.

• We propose the Memory Divergence Model (MDM),
which faithfully models the batching behavior and NoC/-
DRAM queueing delays observed in MD-applications.
MDM significantly improves performance prediction ac-
curacy compared to GPUMech: we report an average
prediction error of 13.9% for MDM versus 162% for
GPUMech when compared to detailed simulation.

• We validate MDM against real hardware, showing substan-
tially higher accuracy than GPUMech (40% versus 164%
prediction error), while in addition being 6.1× faster by

Cache
Simulation

Architectural Parameters

GPU
Compute

Application

Representative
Warp Selection

Trace
Collection

Miss rates

Intervals

Loads and
stores

Warp
profiles

Clock frequency,
#SMs, cache sizes,
bandwidths, etc.

Architecture-independent
(One-time cost)

Architecture-dependent
(Recurring cost)

Traces are collected with instrumen-
tation or functional simulation

��

�

Memory
Divergence

Model
(MDM)

Predicted
Performance

(IPC)

�

Fig. 1: MDM-based performance prediction.

collecting model inputs through binary instrumentation as
opposed to functional simulation.

II. MDM OVERVIEW

MDM is based on interval modeling [10], [18], which is an
established approach for analytical CPU performance modeling.
The key observations are that an application will have a certain
steady-state performance in the absence of miss events (e.g.,
data cache misses), and that miss events are independent of each
other. Therefore, performance can be predicted by estimating
steady-state performance and subtracting the performance loss
due to each miss event. Interval modeling was originally
proposed for single-threaded CPU workloads, and applying
it to GPUs is not straightforward due to their highly parallel
execution model [15].

Figure 1 provides a high-level overview of the MDM
performance model. The first task is to collect instruction
traces which can be accomplished through instrumentation
on real hardware or through functional simulation (see 1).
Traces are architecture-independent and therefore only need to
be gathered once for each benchmark, i.e., trace collection
is a one-time cost. Instrumentation on real hardware is
significantly faster than functional simulation.1 Furthermore,
binary instrumentation provides traces of native hardware
instructions while functional simulation captures instructions
at the intermediate PTX representation [25] (which may be
inaccurate [12]). For these reasons, instrumentation on real
hardware is generally preferable. An important exception is
when validating the performance model across design spaces,
which can only be done through simulation — real hardware
enables evaluating a single design point only, and moreover,
the difference in instruction abstraction level introduces error.

We next use the instruction trace to create interval profiles for
all warps in the application (see 2). Huang et al. [15] observe
that the execution behaviors of the warps of a GPU-compute
application are sufficiently similar so that a single representative
warp can be used as input to the performance model. Following
this observation, we select a representative warp based on its
architecture-independent characteristics such as instruction mix
and inter-instruction dependencies. Our analysis confirms that
this approach is equally accurate for both MD- and NMD-
applications — since memory divergence primarily affects the
latency of the miss events.

1We extend the dynamic instrumentation tool NVBit [33] to capture per-warp
instruction and memory address traces; see Section IV for details regarding
our experimental setup.

TABLE II: Evaluation time as a function of design space size
for detailed simulation and MDM. MDM is orders of magnitude
faster than detailed simulation for large design spaces.

Architectural Detailed MDM
Configurations Simulation One-Time Cost Recurrent Cost

1 9.8 days 3.6 hours 2 minutes
10 3.3 months 3.6 hours 20 minutes

100 2.7 years 3.6 hours 3.3 hours
1000 27 years 3.6 hours 1.4 days

In contrast to trace collection and representative warp
selection which incurs a one-time cost per application, the next
steps depend on both the application and the architecture, and
hence need to be run once for each architecture-application
pair; this is a recurring cost which is proportional to the
number of architecture configurations to be explored. We first
run the load and store instruction traces through a cache
simulator to obtain the miss rates for all caches (see 3).
We consider all warps in the cache model as the accesses
of concurrently executed warps significantly affect miss rates
(both constructively and destructively). Finally, we provide the
intervals and the miss rates to our MDM performance model to
predict overall application performance (IPC) for a particular
architecture configuration (see 4).

MDM dramatically reduces evaluation time compared to
simulation and makes exploring large GPU design spaces
practical, i.e., hours or few days for MDM versus months or
years for simulation. Table II explores MDM model evaluation
time compared to simulation as a function of the number
of architectural configurations in the design space. For each
architectural configuration, we evaluate all our 17 benchmarks
on a system with an Intel Xeon CPU and an NVIDIA GeForce
GTX 1080 (see Section IV). The key take-away is that MDM-
based evaluation is orders of magnitude faster than detailed
simulation. More specifically, MDM speeds up evaluation by
65× when only considering a single configuration — less than
4 hours versus almost ten days — which then grows to 6371×
when evaluating 1000 configurations — less than two days
versus many years. Exploiting parallelism in a server farm
speeds up simulation and MDM equally. The root cause of
MDM’s speed and scalability is that the recurring costs (i.e.,
steps 3 and 4 in Figure 1) are small compared to the one-
time costs (i.e., steps 1 and 2), and MDM’s one-time cost
is much smaller compared to simulation.

III. MODELING MEMORY DIVERGENCE

We now describe how MDM captures the key performance-
related behavior of MD-kernels. We first analyze the key
performance characteristics of MD-applications (Section III-A),
and we then use interval analysis to examine how this impacts
performance (Section III-B). The observations that come out
of this analysis then lead to the derivation of the MDM
performance model (Section III-C).

Listing 1: Example kernel with strided access pattern.
1 int ix = blockIdx.x*blockDim.x+threadIdx.x;
2 __shared__ output[blockDim.x][N];
3 for (i=0; i<N; i++){
4 int index = GS*ix+i; // Compute index
5 float t = input[index]; // Load value
6 output[ix][i] = t*t;
7 }

Ca
ch

e
lin

es i

i+1

i+2

Grid Stride (GS) = 1 Grid Stride (GS) = 32
128 bytes

4 bytes

...W1:T1 W1:T2 W1:T32

...W2:T1 W2:T2 W2:T32

...W3:T1 W3:T2 W3:T32

...W1:T1

...W1:T2

...W1:T3

Non-Memory-Divergent (NMD) Memory-Divergent (MD)

Fig. 2: Cache behavior for the example kernel in Listing 1.

A. Key Performance Characteristics

The basic unit of a GPU-compute application is a thread.
Threads are organized into Thread Blocks (TBs), and the
threads in a TB can execute sequentially or concurrently and
communicate with each other. The threads are dynamically
grouped into warps by the warp scheduler, and each warp
executes the same instructions on different data elements. GPUs
execute the instructions of all threads within a warp in lock-
step across the cores of a Streaming Multiprocessor (SM). For
loads, this means that each thread issues a load for a single data
element. The per-thread requests within a warp are aggregated
to cache requests by the coalescer. On a cache hit, the cache
line is retrieved and provided to the SM’s compute cores. On
a miss, one or more MSHRs is allocated and a corresponding
number of memory requests are sent to the lower levels of the
memory hierarchy. If a warp cannot complete (e.g., due to an
LLC miss), the warp scheduler will try to execute other warps
to hide latencies (possibly from other TBs). The instructions
within a warp are executed in program order, and the SM
stalls when the pending instructions of all available warps are
blocked.

Listing 1 shows a simple GPU kernel that we use to
illustrate the key performance characteristics of MD and NMD
applications. The example kernel squares the contents of an
array and reorganizes it into a matrix. At runtime, each thread
executes the instructions of the kernel on a subset of the
application’s data. The exact data elements are determined
by the thread’s position within the thread grid (line 1). For
each iteration of the loop, the kernel computes the array index
(line 4), loads the matrix value (line 5), and finally squares
the value and writes it back to memory (line 6). The access
pattern strides are determined by the constant Grid Stride (GS).
In the following, we assume 32 threads per warp, 128-byte
L1 cache lines, 4-byte floats, as well as that the input array is
cache-aligned and much larger than the L1 cache. We use the
notation W1:T1 to refer to thread 1 within warp 1.

0

500

1000

1500

2000

2500

3000

3500

HS
BT

BP

FDTD

SRAD
RAY

2D
CONV

ST
CFD

BFS
PVR

SPMV
PVC

IIX

KMEANS
AN

RN

L1
 m

is
s

br
ea

kd
ow

n
(c

yc
le

s)

NMD-applications MD-applications

MSHR delay LLC access latency DRAM access latency
NoC queue delay DRAM queue delay

Fig. 3: L1 miss latency breakdown for selected GPU compute
applications. Delays due to insufficient MSHRs as well as
queuing delays in the NoC and DRAM subsystem significantly
affect the overall memory access latency of MD-applications,
while NMD-applications are hardly affected.

We now configure this example kernel as MD versus NMD
by changing the GS parameter, which yields us two key
observations regarding the performance characteristics of MD-
versus NMD-workloads. We will later build upon these two
observations when formulating the MDM model.

Observation #1: MD-kernels exhibit poor spatial locality
which leads to widespread cache blocking due to lack of
available MSHRs. Figure 2 illustrates this observation. When
GS equals 1, the loads of each warp go to the same cache
line, and the coalescer is able to combine these loads into a
single cache request per warp. If GS equals 32, the kernel
becomes memory-divergent because the memory accesses of
each thread within the warp go to different L1 cache lines,
and the coalescer can no longer combine the threads’ cache
requests. The poor spatial locality of MD-applications puts
immense pressure on the L1 cache MSHRs which therefore
become the predominant architectural bottleneck.

Figure 3 breaks down the L1 miss latency into the memory
system units where the latency is incurred (see Section IV
for details regarding our simulation methodology). We define
MSHR delay as the number of cycles it takes from when a
memory request is generated until its L1 miss is issued, and the
NoC (DRAM) queuing latency is the number of cycles from
a request entering a queue until it leaves. Only LLC misses
enter a DRAM queue. Unsurprisingly perhaps, the overall
memory latency is higher for MD-applications than for NMD-
applications. Figure 3 shows that MD-applications spend a lot
of time waiting for MSHRs to become available.

Observation #2: The poor spatial locality and high
memory intensity of MD-applications causes widespread
congestion in the NoC or DRAM subsystem. Figure 3
shows that MD-applications typically have much larger NoC or
DRAM queuing delays than NMD-applications. To explain this
behavior, we revisit Figure 2. When GS equals one, all words
within the cache line are required by the SMs. Conversely,
only a single word per cache line is required when GS equals
32. Put differently, the cache has to fetch 128 bytes to obtain
the 4 bytes that are requested. This results in the NoC and
DRAM being flooded with memory requests which in turn
causes significant queueing delays.

The memory requests of all warps and threads can be executed in parallel

Memory Accesses MSHR Utilization

MSHR �

MSHR �

MSHR � A

Block address Target(s)

W�B

W�C

W�W� Load

W� Load

W� Load

T�

A�

B�

C�

T�

A�

B�

C�

T�

A�

B�

C�

T�

A�

B�

C�

T�

A�

B�

C�

T�

A�

B�

C�

(a) MSHR utilization for an NMD-application.

NMD-interval: SM reach TLP limit

SM

MSHRs

W�

W�

W�

Blocked

W� W� W� W� W� W�

A

B

C

A

B

C

Blocked

Stalled Stalled W� ...

...

W�

A

(b) NMD-application execution example.

Only sufficient MSHRs to serve T�, T�, and T�. Remaining threads and warps stall.

W� Load

W� Load

W� Load

T�

A�

G�

M�

T�

B�

H�

N�

T�

C�

I�

O�

T�

D�

J�

P�

T�

E�

K�

Q�

T�

F�

L�

R�St
al

le
d

Memory Accesses MSHR Utilization

MSHR �

MSHR �

MSHR � A

Block address Target(s)

W�B

W�C

W�

(c) MSHR utilization for a MD-application.

MD-interval: MSHRs become the key performance bottleneck

SM

MSHRs

W�

W�

W�

W� W� W�

Blocked
A
C

D

H

StalledStalled

Batch #� Batch #�
...

N

Stalled
...

...

BlockedBlocked

Request being serviced

Request queued

(d) MD-application execution example.

Fig. 4: Example explaining why MSHR utilization results in significantly different performance-related behavior for NMD and
MD-applications. MD-applications puts immense pressure on the L1 cache MSHRs and thereby severely limit the GPU’s ability
to use TLP to hide memory latencies.

B. Interval Analysis

It is clear from the above analysis that an accurate perfor-
mance model should model both the impact of MSHR blocking
and NoC/DRAM congestion. We first describe how these
phenomena affect performance through interval analysis before
describing the model in great detail in the next section. We do
so using our example kernel, see Figure 4, while considering a
single interval (i.e., a couple compute instructions followed by a
long-latency load). Further, we assume 3 L1 cache MSHRs and
that the warp scheduler can only consider 3 concurrent warps.
Otherwise, the assumptions are the same as in Section III-A,
including the assumption that all requests miss in the L1 cache.

A cache can sustain as many misses to different cache lines
as there are MSHRs [22]. Each MSHR entry also tracks the
destination (e.g., warp) for each request, and this parameter
(commonly called the number of targets) determines the number
of misses to the same cache line that the MSHR entry can
sustain [16]. If the cache runs out of MSHRs (or targets), it can
no longer accept memory requests until an MSHR (or target)
becomes available. A blocked cache quickly causes the SM to
stall because load instructions cannot execute.

The example NMD-kernel (i.e., GS equals 1) uses the
MSHRs efficiently since the coalescer combines the loads of the
threads within a warp into a single cache request. Therefore,
Figure 4a shows that each warp occupies a single MSHR.
Figure 4b shows execution behavior over time for the SM and
the MSHRs as well as the cache requests of each warp. The
SM first executes W1 which stalls when its threads reach the
load instruction. To hide memory latency, the warp scheduler
decides to execute W2. This enables W2’s threads to calculate
their addresses and issue their respective loads. The scheduler
continues in a similar manner with W3. At this point, all
concurrent warps available to the scheduler are stalled on loads,
causing the SM to stall. The L1 cache also blocks because all

its MSHRs are occupied, but this does not affect TLP since
the SM has reached its TLP limit. Further, the performance
impact of the stall is limited because execution resumes when
W1’s memory request returns.

Figure 4c shows the MSHR utilization for the example MD-
kernel (i.e., GS equals 32). In this case, the cache misses of
threads T1, T2, and T3 in warp W1 occupy all available
MSHRs, and Figure 4d shows that the widespread cache
blocking makes TLP-based latency hiding ineffective. More
specifically, all forward progress in program execution occurs in
response to memory requests completing. Therefore, switching
to other warps does not help since their load requests cannot
enter the memory system as long as the cache is blocked. This
phenomenon occurs when the number of concurrent memory
requests exceeds the number of L1 MSHRs. It thus depends on
the application’s memory access intensity and its access pattern,
and its relationship with the number of MSHRs provided by the
architecture. In other words, the application’s characteristics and
its interactions with the underlying architecture determines to
what extent a kernel’s memory divergence affects performance.

C. The Memory Divergence Model (MDM)

The above analysis illustrates that an accurate performance
model for MD-applications needs to model the architectural
effects of MSHR blocking (Observation #1)2, and in addition
needs to capture the effects of NoC and DRAM congestion
(Observation #2). We now explain how our MDM model
captures these observations.

The starting point of MDM is the number of cycles it takes
for an SM to execute the instructions of interval i within

2Aggressive L1 cache designs such as the streaming cache [6], [21] have
sufficient MSHRs to avoid MSHR-induced blocking. In this case, blocking
occurs when the SM’s NoC queue is full, and the size of this queue should
replace the #MSHRs in the equations.

the representative warp without contention (i.e., Ci). We then
add the predicted MSHR-related stall cycles (i.e., SMSHR

i) and
the predicted stall cycles due to queueing in the NoC and
DRAM subsystems (i.e., SNoC

i and SDRAM
i) to Ci to predict the

number of cycles an SM would use to execute interval i with
contention (i.e., Si). We can obtain per-interval IPC predictions
by dividing the number of instructions in the interval by the
number of cycles we predict that it will take to execute them
(i.e., IPCi = #Instructionsi/[Ci +Si]).

We predict the IPC of the entire warp by dividing the
total number of instructions executed by the warp across all
intervals with the total number of cycles required to execute
all intervals. Then, we multiply by the number of warps
concurrently executed on an SM (i.e., W) to predict IPCSM:

IPCSM =W × ∑
#Intervals
i=0 #Instructionsi

∑
#Intervals
i=0 Ci +SMSHR

i +SNoC
i +SDRAM

i
. (1)

We obtain IPC for the entire GPU by multiplying with the
number of SMs (i.e., IPC = #SMs× IPCSM). MDM obtains Ci
similarly to GPUMech [15] while we provide new approaches
for predicting SMSHR

i , SNoC
i and SDRAM

i . If the application
consists of multiple kernels, we first obtain the instruction
count and total cycles for each kernel. Then, we divide the
sum of instruction counts across all kernels by the sum of cycles
across all kernels to predict application IPC. The following
sections explain how MDM predicts the stall cycles Si per
interval; we omit the subscript i in the below discussion to
simplify the formulation.

MDM classifies each interval within the application’s repre-
sentative warp as an MD or an NMD-interval. More specifically,
memory divergence occurs when the number of concurrent
read misses exceeds the number of L1 cache MSHRs:

MRead×W > #MSHRs. (2)

In other words, Equation 2 is true if the application has the
ability to make the MSHRs the key performance bottleneck
within the current interval.

1) MDM’s batching model: We now further analyze the
performance of the MD and NMD-kernels in Figure 4. To
keep the analysis simple, we assume a constant NoC transfer
latency and that all requests enter the same NoC queue and
hit in the LLC. Note that these assumptions only apply to the
example; MDM models the highly parallel memory system of
contemporary GPUs.

For the NMD-kernel in Figure 4b, there are sufficient MSHRs
for the SM to issue the memory requests of all three warps
concurrently and reach the TLP limit. For the MD-kernel in
Figure 4d on the other hand, divergence results in only the
three first requests of W1 being issued before the cache blocks.
As each request completes, an MSHR becomes available and a
new request is issued. For instance, the completion of request
A enables issuing request D. The poor MSHR utilization of
the memory-divergent warp results in it issuing its requests
in batches, and that each batch contains as many requests as
there are MSHRs. More specifically, the requests of W1 are

serviced over two batches since there are six memory requests
and three MSHRs. W1 cannot execute its next instruction until
the memory requests of all threads have completed (threads
are executed in lockstep).

We now explain how MDM models batching behavior. We
first predict the average number of concurrent L1 misses M:

M = min(MRead×W,#MSHRs)+MWrite×W. (3)

Read misses allocate MSHR entries and are therefore bounded
by the number of L1 MSHRs. In other words, the application
will either issue (1) the number of read misses in the
representative warp times the number of concurrently executed
warps; or, (2) as many read misses as there are MSHRs. Since
the L1 caches in our GPU models are write-through and
no-allocate, write misses effectively bypass the L1 and are
independent of the number of MSHRs.

To estimate the length of the batches, we start by determining
the memory latency in the absence of contention:

LNoContention = LMinLLC +LLCMissRate×LMinDRAM. (4)

Here, LMinLLC is the round-trip latency of an LLC hit without
NoC contention. The round-trip latency through the DRAM
system is LMinDRAM (again, assuming no contention), but only
LLC misses incur this latency. We then combine LNoContention

with the average stall cycles due to queueing in the NoC
and DRAM subsystems (we will derive SNoC and SDRAM in
Section III-C2):

SMem = LNoContention +SNoC +SDRAM. (5)

SMem is the predicted stall cycles due to L1 misses —
considering both NoC and DRAM contention. We then use
SMem to predict the SM stall cycles due to MSHR contention:

SMSHR =

{
(dMRead×W

#MSHRs e−1)×SMem, if MD-interval
0, otherwise.

(6)

For MD-intervals, Equation 6 computes the number of
batches needed to issue the memory requests of all warps
by dividing the total number of read misses by the number
of MSHRs. The latency of the final batch is covered by the
queueing model (see Section III-C2), so we need to subtract
one from this quantity to avoid adding this latency twice. Then,
we multiply by SMem to obtain the combined SM stall cycles
of these batches. NMD-applications are by definition able to
issue requests of all warps in a single batch. Therefore, we set
SMSHR to zero for NMD-intervals.

2) MDM’s memory contention model: We now return to
the example in Figure 4. Here, both the NMD- and MD-
interval saturate the memory system (see Figure 4b and 4d,
respectively), and this results in each request waiting for
all requests that were pending at the time it issued. More
specifically, both kernels sustain three memory requests in-flight
since the SM can consider three warps concurrently (NMD-
kernel) and there are three MSHRs (MD-kernel). Therefore,
each request has to wait for two other requests.

The relationship between SM stall cycles and memory
latency is complex due to the highly parallel execution model
of GPUs. To account for this overlap in NMD-applications,
we heuristically assume that the SM stalls for half of the
memory queueing latency. The half-latency heuristic works
well because the SM hides latencies by exploiting TLP. The
case where the memory latency is fully hidden is detected by
the interval model. Conversely, the highly parallel execution
model of GPUs means that a significant part of the latency is
typically hidden. Therefore, assuming that the SM stalls for
half of the latency is reasonable since this is the mid-point
between the extremes (i.e., perfect versus no latency hiding).
For MD-applications, the SM is not able to use TLP to hide
memory latency due to a lack of MSHRs, and the application
is exposed to the complete memory queueing latency.

We now describe how MDM formalizes the above intuition.
In a real GPU, memory contention occurs because the memory
requests of all SMs queue up in the NoC and DRAM, and the
NoC and DRAM use a certain number of cycles to service each
request. More specifically, the NoC service latency LNoCService

is a function of the cache block size, the clock frequency f
and the NoC bandwidth BNoC:

LNoCService = f × BlockSize
BNoC . (7)

The DRAM service latency can be computed in a similar way.
However, only the LLC misses access DRAM:

LDRAMService = f ×LLCMissRatio× BlockSize
BDRAM . (8)

We obtain the LLC miss ratio from the interval profile and
adjust the service latencies to account for parallelism in the
memory system. More specifically, we divide the average
service latency by n to model an n-channel system.

We now use the service latency to predict the SM stall cycles
caused by queueing latencies. The average queueing latency is
determined by the average number of in-flight requests M times
the average service latency. M is determined by application
behavior, and we use Equation 3 to predict it. The service
latency is an architectural parameter which means that we
can use the same model for both NoC and DRAM stalls by
providing LNoCService (LDRAMService) as input to compute SNoC

(SDRAM):

SNoC =

{
#SMs×M×LNoCService, if MD and NoC saturated
0.5×#SMs×M×LNoCService, otherwise.

(9)
Equation 9 formalizes the key observations of the above
example. For NMD-intervals, the SM hides queueing latencies
with TLP, and we assume that the SM stalls for half of the
queueing latency. The half-latency heuristic works well for
NMD-intervals because it is the mid-way point between the
extremes of perfect latency hiding and no latency hiding. We
know that these extremes do not occur in NMD-intervals
because (1) the fully-hidden case is detected by the interval
model of the representative warp, and (2) latency-hiding only
completely breaks down in MD-intervals.

TABLE III: Simulator configuration.

Parameter Value

Clock frequency 1.4 GHz
Number of SMs 28
No. warps per SM 64
Warp size 32 threads
No. threads per SM 2048
Warp scheduling policy GTO scheduling
SIMT width 32
L1 cache per SM 48 KB, 6-way, LRU, 128 MSHRs
Shared LLC 3 MB total, 24×128 KB banks

8-way, LRU, 128 MSHRs, 120 cycles
NoC bandwidth 1050 GB/s
DRAM 480 GB/s, 220 cycles

24 memory controllers

TABLE IV: Benchmarks.

Benchmark Source #Knl Abbr. Type

Hotspot Rodinia 1 HS NMD
B+trees Rodinia 2 BT NMD
Back Propagation Rodinia 2 BP NMD
FDTD3d SDK 1 FDTD NMD
Srad Rodinia 2 SRAD NMD
Ray tracing GPGPUsim 1 RAY NMD
2D Convolution Polybench 1 2DCONV NMD
Stencil Parboil 1 ST NMD

CFD solver Rodinia 10 CFD MD
Breadth-first search Rodinia 24 BFS MD
PageView Rank MARS 258 PVR MD
PageView Count MARS 358 PVC MD
Inverted Index MARS 158 IIX MD
Sparse matrix mult. Parboil 1 SPMV MD
Kmeans clustering Rodinia 1 KMEANS MD
AlexNet Tango 22 AN MD
ResNet Tango 222 RN MD

We have already established that a kernel issues more
concurrent misses than there are L1 cache MSHRs in an MD-
interval (see Equation 2). For this behavior to disable TLP-
based latency-hiding, the NoC must saturate. More specifically,
the predicted NoC queue latency must be larger than the
minimum round-trip DRAM access latency:

LNoCService×M×#SM > LMinLLC +LMinDRAM. (10)

If the NoC queue does not saturate, memory requests that hit
in the LLC will be serviced quickly. This unblocks the L1
cache and enables the SM to issue a new memory instruction.
Without NoC saturation, this occurs frequently enough for
TLP-based latency-hiding to work also for MD-applications.
Interestingly, detecting NoC saturation also enables MDM to
model the streaming L1 cache [6], [21] (e.g., used in NVIDIA’s
Volta architecture) which has sufficient MSHRs to avoid L1
cache blocking. In this case, batching behavior occurs because
only a finite number of requests can be buffered in the queues
of the NoC at any given time and detecting NoC saturation is
sufficient to identify MD-intervals.

IV. EXPERIMENTAL SETUP

Simulation Setup. We use GPGPU-sim 3.2 [2], a cycle-
accurate GPU simulator, to evaluate MDM’s prediction ac-
curacy. We choose the same baseline GPU architecture con-

TABLE V: Evaluated performance models.

Scheme Memory/NoC Model MSHR Model

GPUMech GPUMech GPUMech
GPUMech+ GPUMech with NoC GPUMech w/ queue

MDM-Queue MDM (Section III-C2) GPUMech w/ queue
MDM-MSHR GPUMech with NoC MDM (Section III-C1)

MDM MDM (Section III-C2) MDM (Section III-C1)

figuration as in [15] for fair comparison against GPUMech,
while scaling the number of SMs, NoC bandwidth and DRAM
bandwidth to match a GPU architecture that is similar to
Nvidia’s Pascal GPU [29], see Table III.
Workloads. We select 17 applications: 8 NMD-applications
and 9 MD-applications, from the main GPU benchmark suites,
including Rodinia [5], SDK [26], Polybench [11], Parboil [32],
MARS [13] and Tango [20] (see Table IV for details). We
simulate the benchmarks to completion with the (largest) default
input set. The inputs for AlexNet and ResNet [19] are pre-
trained models from ImageNet [8].
Real Hardware Setup. We extend the NVBit [33] binary
instrumentation framework to capture per-warp memory address
and dynamic instruction traces. We collect our traces on an
NVIDIA GeForce GTX 1080 [28] with caching of global data
enabled, and we determine undisclosed parameters such as
NoC bandwidth using microbenchmarks.
Performance Models. The original GPUMech proposal in-
cludes a DRAM queueing model which assumes that each
request waits for half the total number of requests on average.
However, GPUMech does not model NoC queueing delay, nor
does it account for the DRAM and NoC queueing delays when
estimating the MSHR stall latencies. We enhance GPUMech
minimally and call it GPUMech+: it models the NoC queueing
delay similarly to its DRAM queueing model, and also accounts
for the NoC and DRAM queueing delays when estimating the
MSHR waiting time. MDM-Queue improves upon GPUMech+
by using MDM’s NoC and DRAM queue model. MDM-
MSHR improves upon GPUMech+ by using MDM’s MSHR
batching model. MDM is our final model and includes both
the NoC and DRAM queue model from Section III-C2 and
the MSHR batching model from Section III-C1 (see Table V).
This breakdown enables us to independently evaluate MDM’s
queue model and MSHR model.

V. SIMULATION RESULTS

We first evaluate MDM’s prediction accuracy for our
baseline configuration through simulation, and consider real
hardware validation in the next section (simulation enables us
to demonstrate MDM’s accuracy across a broad design space).

A. Model Accuracy

We evaluate MDM’s accuracy by comparing the model’s
prediction against detailed cycle-accurate simulation with the
absolute relative prediction error as our metric:

Error =
∣∣∣∣ IPCmodel− IPCsimulation

IPCsimulation

∣∣∣∣ (11)

IPCsimulation is obtained through cycle-accurate simulation, and
IPCmodel is obtained through modeling. Ideally, a model should
have low absolute error, but in many cases it can be sufficient to
accurately track relative performance trends across the design
space (see Section V-B).

Figure 5 reports prediction error for the NMD and the MD-
applications for our baseline configuration. GPUMech is largely
inaccurate, especially for the MD-applications with an average
prediction error around 298% and as high as 750%. MDM
improves prediction accuracy by 16.5× compared to GPUMech
for the MD-applications: MDM reduces the prediction error to
18% on average, and at most 50%. Similar prediction accuracy
is achieved by GPUMech and MDM for the NMD-applications
(average prediction error around 9%). On average across all
benchmarks, MDM achieves a prediction error of 13.9% versus
162% for GPUMech.

The alternative performance models, GPUMech+, MDM-
Queue and MDM-MSHR shed light on the relative importance
of the different MDM model components. Although GPUMech+
improves accuracy significantly compared to GPUMech, it
still incurs a high average prediction error of 131% for
the MD-benchmarks. This shows that minorly modifying
GPUMech is insufficient and that MD-applications need a
fundamentally new modeling approach. MDM-Queue improves
upon GPUMech+ by applying the saturation model described
in Section III-C2 to memory-divergent intervals, thereby
reducing the average prediction error to 63%. Similarly, MDM-
MSHR improves upon GPUMech+ by applying the batching
model of Section III-C1 to memory-divergent intervals which
reduces the average prediction error to 60.3%. Neither MDM-
Queue nor MDM-MSHR are able to accurately predict MD-
benchmark performance in isolation, indicating that modeling
both queueing effects and MSHR behavior is critical to achieve
high accuracy.

B. Sensitivity Analyses

The prediction accuracy numbers reported in the previous
section considered the baseline GPU configuration. Although it
strengthens our confidence to know that MDM is accurate in a
specific design point, a computer architect typically cares more
about the accuracy of a performance model across a design
space. This section evaluates this aspect by varying various
important configuration parameters including NoC bandwidth,
DRAM bandwidth, number of MSHR entries, and SM count.
We focus on the MD-applications in this section because model
accuracy for MDM is similar to GPUMech for the NMD-
applications as previously shown for the baseline configuration
— we observe similar results across the design space (not shown
here because of space constraints).
NoC Bandwidth. Figure 6 reports model accuracy as we vary
NoC bandwidth. GPUMech does not model NoC bandwidth
and is hence highly sensitive to this parameter. At low NoC
bandwidth, the NoC is a critical performance bottleneck, and
GPUMech shows the highest performance prediction error. For
GPUs with high NoC bandwidth, the NoC does not impact
performance as significantly, which leads to a relatively low

0%

200%

400%

600%

800%

HS
BT

BP

FDTD

SRAD
RAY

2D
CONV

ST
CFD

BFS

SPMV
PVR

PVC
IIX

KMEANS
AN

RN

AVG-N
MD

AVG-M
D

AVG-A
LL

 R
el

. I
PC

 p
re

di
ct

io
n

er
ro

r

NMD-applications MD-applications

GPUMech GPUMech+ MDM-Queue MDM-MSHR MDM

Fig. 5: IPC prediction error for our NMD and MD-benchmarks under different performance models. MDM significantly reduces
the prediction error for the MD-applications.

0%

200%

400%

600%

800%

525 1050 2100 4200 8400

Es
tim

at
io

n
er

ro
r

NoC bandwidth (GB/s)

GPUMech GPUMech+ MDM-Queue MDM-MSHR MDM

Fig. 6: Prediction error as a function of NoC bandwidth for
the MD-applications.

0%

100%

200%

300%

400%

177 320 480 720 980

Es
tim

at
io

n
er

ro
r

DRAM bandwidth (GB/s)

GPUMech GPUMech+ MDM-Queue MDM-MSHR MDM

Fig. 7: Prediction error as a function of DRAM bandwidth for
the MD-applications.

prediction error for GPUMech. GPUMech+ incorporates a
basic NoC model which is improved upon by MDM-Queue.
As a result, GPUMech+ and MDM-Queue are less sensitive
to constrained NoC bandwidth configurations, yielding lower
prediction errors. However, none of these models capture the
impact of MSHRs. MDM-MSHR improves accuracy, especially
at larger NoC bandwidths, where performance is less bound by
NoC bandwidth. MDM significantly improves model accuracy
at smaller NoC bandwidths, because it accounts for the impact
MSHRs have on NoC bandwidth pressure. Overall, MDM is
accurate across the range of NoC bandwidths.

DRAM Bandwidth. Figure 7 reports model accuracy across
DRAM bandwidth configurations. GPUMech’s prediction error
increases with DRAM bandwidth: increasing DRAM bandwidth
puts increased pressure on NoC bandwidth, which GPUMech
does not model. GPUMech+ models the NoC queueing delay
and the corresponding L1 miss stall cycles, which significantly
decreases the prediction error. MDM-Queue and MDM-MSHR
further improve accuracy through improved queueing and
MSHR models, respectively. However, prediction error still
increases with DRAM bandwidth. MDM counters this trend
by synergistically modeling saturation and batching behavior.

0%

100%

200%

300%

400%

32 64 128 256

Es
tim

at
io

n
er

ro
r

MSHR entries

GPUMech GPUMech+ MDM-Queue MDM-MSHR MDM

Fig. 8: Prediction error as a function of the number of MSHR
entries for the MD-applications.

0%
100%
200%
300%
400%
500%

15 20 28 60 80

Es
tim

at
io

n
er

ro
r

SM count

GPUMech GPUMech+ MDM-Queue MDM-MSHR MDM

Fig. 9: Prediction error as a function of SM count for the
MD-applications.

MSHR Entries. Figure 8 shows model accuracy sensitivity
to the number of MSHRs. GPUMech’s prediction accuracy
deteriorates with increasing MSHR entries ranging from 98%
(32 MSHRs) to 317% (256 MSHRs). More MSHR entries leads
to an increase in NoC and DRAM queuing delays because
the system has to process more in-flight memory requests.
GPUMech+ incorporates NoC and DRAM queueing delays
when calculating the MSHR waiting time, which decreases the
prediction error. However, the error is still high for a large
number of MSHRs (e.g., 124% for 128 MSHRs and 133% for
256 MSHRs). MDM-Queue and MDM-MSHR significantly
decrease the prediction error compared to GPUMech+ by
using MDM’s NoC/DRAM queue model and MSHR model,
respectively. MDM achieves the highest accuracy of all models
across the range of MSHRs.

SM Count. Figure 9 reports prediction error as a function of
SM count. In general, increasing the number of SMs increases
NoC and DRAM contention, leading to longer L1 miss stall
cycles. GPUMech significantly underestimates the L1 miss stall
cycles, which leads to prediction errors ranging from 124%
(15 SMs) to 450% (80 SMs); the increase in prediction error is
a direct result of increased queueing delays which GPUMech

0%
200%
400%
600%
800%

1000%
1200%

BFS
CFD

SPMV
PVC

PVR
IIX

KMEANS
AN

RN
AVG

R
el

. I
PC

 e
rro

r
GPUMech (func sim) GPUMech (instr) MDM (instr)

Fig. 10: Hardware validation: relative IPC prediction error
for GPUMech and MDM compared to real hardware. MDM
achieves high prediction accuracy compared to real hardware
with an average prediction error of 40% compared to 164%
for GPUMech (using binary instrumentation).

does not model. In contrast, GPUMech+ (partially) accounts for
NoC and DRAM queuing delays which significantly decreases
the prediction error. MDM-Queue and MDM-MSHR further
improve accuracy by modeling memory saturation and batching
behavior. By combining both model enhancements, MDM
reduces the prediction error to less than 26% on average
compared to detailed simulation across the different SM counts.

VI. REAL HARDWARE RESULTS

We now move to real-hardware validation. As mentioned
in Section II, the model’s input can be collected using either
binary instrumentation on real hardware or through functional
simulation. Because architectural simulation in GPGPUsim also
operates at the PTX level, we used functional simulation in
the previous section, for both MDM and GPUMech. Note that
functional simulation is done at the intermediate PTX instruc-
tion level, and that GPUMech collects traces through functional
simulation. In this work, we novelly collect traces using binary
instrumentation, which is a better alternative, both in terms of
accuracy and modeling speed, when comparing against real
hardware which executes native-hardware instructions. We now
evaluate modeling speed and accuracy.
Modeling Speed. Overall model evaluation time consists of
trace collection, representative warp selection, cache simulation
and computing the model’s equations, as previously described
in Section II. Collecting traces using functional simulation takes
up around 84% of the total model evaluation time. Because
binary instrumentation using NVBit is around 612× faster than
functional simulation using GPGPUsim to collect traces, we
achieve an overall model evaluation speedup of 6.1× through
binary instrumentation.
Accuracy. Figure 10 validates MDM’s (and GPUMech’s)
model accuracy against real hardware. We consider binary
instrumentation for MDM and both instrumentation and func-
tional simulation for GPUMech. There are two key observations
to take away from this result. First, binary instrumentation
improves the accuracy of GPUMech considerably compared to
functional simulation, i.e., the average prediction error reduces
from 260% to 164%. The reason is that profiling happens
at the native instruction level using instrumentation instead

0
0.4
0.8
1.2
1.6

2
2.4

28 60 80 28 60 80 28 60 80

DRAM bandwidth

N
or

m
al

iz
ed

 IP
C

SM count

Simulation MDM GPUMech

480GB/s
720GB/s
980GB/s

Fig. 11: Normalized performance for BT as a function of SM
count and DRAM bandwidth. We normalize to the simulation
results at 28 SMs and 480 GB/s DRAM bandwidth. Both
GPUMech and MDM capture the performance trend.

0
1
2
3
4
5
6

28 60 80 28 60 80 28 60 80
DRAM bandwidth N

or
m

al
iz

ed
 IP

C

SM count

Simulation MDM GPUMech

480GB/s
720GB/s
980GB/s

Fig. 12: Normalized performance for CFD as a function of SM
count and DRAM bandwidth. All results are normalized to the
simulation results at 28 SMs and 480 GB/s DRAM bandwidth.
GPUMech not only leads to high prediction errors, it also
over-predicts the performance speedup with more SMs and
memory bandwidth, in contrast to MDM.

of the intermediate PTX level using functional simulation.
In spite of the improved accuracy, GPUMech still lacks
high accuracy compared to real hardware. Second, MDM
significantly improves the prediction accuracy compared to
real hardware with an average prediction error of 40%. Not
only is MDM accurate compared to simulation as reported
in the previous section, MDM is also shown to be accurate
compared to real hardware.

VII. CASE STUDIES

We now consider four case studies to illustrate the usefulness
of the MDM performance model.
Design Space Exploration. The most obvious use case for the
MDM model is to drive design space exploration experiments
to speed up the design cycle. Note we are not arguing to replace
detailed cycle-accurate simulation. Instead, we are advocating
to use the MDM model as a complement to speed up design
space exploration, i.e., a computer architect could use MDM
to quickly explore the design space and identify a region of
interest which can then be further analyzed in more detail
through cycle-accurate simulation.

Figures 11 and 12 report performance results for a typical
design space exploration study in which we characterize
performance as a function of SM count (X axis) and DRAM
bandwidth (Y axis) for a representative NMD-application (BT)
and MD-application (CFD), respectively. Performance numbers
are reported for simulation, GPUMech and MDM; all results are
normalized to simulation with 28 SMs and 480 GB/s memory

bandwidth. GPUMech and MDM capture the trend well for BT,
the NMD-application. However, for CFD, the MD-application,
GPUMech grossly overestimates performance as a function of
both SM count and DRAM bandwidth. MDM shows that the
performance improvements obtained by increasing SM count
and/or DRAM bandwidth is small, which simulation confirms.
GPUMech on the other hand suggests that there are significant
performance gains to be obtained by increasing the number of
SMs and DRAM bandwidth, which is a misleading conclusion.
This reinforces that an accurate performance model such as
MDM is needed to accurately predict performance trends for
memory-divergent workloads.

Dynamic Voltage and Frequency Scaling (DVFS). DVFS is
a widely used technique to improve energy efficiency [23].
Reducing the operating voltage and frequency dramatically
decreases power consumption (i.e., dynamic power consump-
tion decreases cubically with voltage and frequency) while
only linearly decreasing performance. Moreover, memory-
bound applications might observe only a slight performance
degradation. Hence, DVFS can offer significant energy savings
while incurring a (relatively) small loss in performance.

CRISP [24] is an online DVFS performance model for
GPUs that predicts performance at a lower clock frequency
based on statistics measured using special-purpose hardware
performance counters at a nominal frequency. Based on the
statistics measured at nominal frequency, CRISP then predicts
how stall cycles scale when lowering clock frequency. Note
that CRISP is a special-purpose model, i.e., it can only be
used to predict the performance impact of DVFS. MDM and
GPUMech on the other hand are general-purpose models that
can be used to predict performance across a broader design
space in which we change SM count, NoC/DRAM bandwidth,
etc., as previously shown.

The difference in scope between MDM and CRISP is
important because the modeling problem for a special-purpose
model is much simpler than for a general-purpose model.
A special-purpose model such as CRISP measures the stall
component at the nominal frequency and then predicts how this
component scales at a lower frequency. In contrast, a general-
purpose model needs to predict the various stall components
at the nominal frequency and at the target frequencies to
then predict how performance scales with clock frequency.
Predicting how a stall component scales with frequency is much
easier than predicting the absolute value of the stall component
at different frequencies. In this sense, it is to be expected
that CRISP is more accurate than MDM (and GPUMech) for
predicting DVFS scaling trends.

Figure 13 reports the error for predicting the execution time
at 1.4 GHz compared to 2 GHz. For MDM and GPUMech, this
means we predict performance at both frequency points and
then compute the performance difference. For CRISP, we first
run at 2 GHz and then predict performance at 1.4 GHz. CRISP
is the most accurate model (average prediction error of 3.7%),
closely followed by MDM (average prediction error of 4.6%);
GPUMech on the other hand leads to much higher inaccuracy

0%

10%

20%

30%

40%

CFD
BFS

SPMV
PVR

PVC
IIX

KMEANS
AN

RN
AVG

Pr
ed

ic
tio

n
er

ro
r

GPUMech MDM CRISP

Fig. 13: Error when predicting the relative performance
difference at 1.4 GHz versus 2 GHz for the MD-applications
for GPUMech, CRISP and MDM. The general-purpose MDM
model achieves similar accuracy as the special-purpose CRISP.

0%
20%
40%
60%
80%

100%

0.75X 1X 1.5X 2X 0.75X 1X 1.5X 2X 0.75X 1X 1.5X 2X

N
or

m
al

iz
ed

 C
PI

Bandwidth

 Simulation MDM GPUMech

Base MSHR Queue Simulation_CPI

Fig. 14: Normalized CPI as a function of NoC/DRAM
bandwidth for the memory-divergent BFS benchmark. MDM
accurately captures MSHR batching and NoC/DRAM queueing
delays, in contrast to GPUMech.

(average prediction error of 28%) because it underestimates
the memory stall component. We find that CRISP’s relatively
high error for AN is due to CRISP assuming memory access
time (in seconds) being constant whereas in reality it increases
because of reduced overlapping with computation at lower
clock frequency. Overall, we conclude that the general-purpose
MDM model is only slightly more inaccurate than the special-
purpose CRISP model for predicting the performance impact
of DVFS.
Validating the Observations. In our third case study, we
validate the observations that underpin the MDM model.
Figure 14 reports CPI for BFS while varying NoC and DRAM
bandwidth relative to our baseline configuration for simulation.
Again, we observe that MDM accurately predicts performance
compared to simulation, in contrast to GPUMech. Moreover,
we note that the CPI component breakdown for MDM shows
that MD-application performance is indeed sensitive to MSHR
blocking (Observation #1) and NoC/DRAM queueing delay
(Observation #2). GPUMech models some DRAM queueing
effects, but it lacks an MSHR batching model as well as an
accurate NoC/DRAM queueing model.
Modeling a Streaming L1 Cache. In our final case study,
we show that MDM is able to model the streaming L1 cache
used in the Volta GPU [6], [21]. MDM performs equally well
as for the conventional L1 caches and improves prediction
accuracy by 8.66× compared to GPUMech (see Figure 15).
The streaming cache is interesting because it adds a large
number of MSHRs to each L1 cache (4096 MSHRs in this
case study) and adopts an on-fill line allocation policy. This

0%
100%
200%
300%
400%
500%

CFD
BFS

PVR

SPMV
PVC

IIX

KMEANS
AN

RN
AVG

Pr
ed

ic
tio

n
er

ro
r

GPUMech MDM

Fig. 15: Relative IPC prediction error with a streaming L1 cache.
MDM improves accuracy compared to GPUMech because it
models batching behavior caused by NoC saturation.

practically removes L1 blocking, but batching behavior still
occurs because the queues in the NoC can only buffer a finite
number of concurrent requests.

VIII. RELATED WORK

Analytical GPU Performance Modeling. Several analytical
models have been proposed to predict performance and
identify performance bottlenecks. Unfortunately, none of these
prior works targets memory-divergent applications. Hong and
Kim [14] propose a model that estimates performance based
on the number of concurrent memory requests and the con-
current computations done while one warp waits for memory.
Baghsorkhi et al. [1] concurrently proposed a work-flow graph
(WFG) based analytical model to predict performance. WFG
is an extension to control-flow graph analysis in which nodes
represent instructions while arcs represent various latencies.
Sim et al. [31] build a performance analysis framework that
identifies performance bottlenecks for GPUs by extending the
Hong and Kim model. Similarly, Zhang and Owens [38] use a
microbenchmark-based approach to model the performance of
the instruction pipeline, shared memory and global memory of
a GPU. In general, all these models, as well as the state-of-
the-art GPUMech [15], make several simplifying assumptions
regarding the GPU’s cache hierarchy. Not modeling MSHR
batching and inaccurately modeling NoC/DRAM bandwidth
queueing delays leads to significant prediction errors for MD-
applications, as reported in this paper. Volkov [34] studies
GPU performance using synthetic benchmarks and confirms
that several of these recently-proposed GPU models do not
accurately capture the effects of memory bandwidth, non-
coalesced accesses, and memory-intensive applications.
ML-Based GPU Performance Modeling. A separate line of
research exploits machine learning (ML) for GPU performance
modeling. These techniques are black-box approaches that do
not reveal the impact of GPU components on performance nor
help identify performance bottlenecks. Their effectiveness for
design space exploration requires extensive training involving
a wide range of applications and hardware configurations.
Wu et al. [36] build GPU performance and power models
by using numerous runs on several hardware configurations,
and by feeding relevant performance counter measurements
to the trained model for power and performance prediction.
Poise [9] is a technique to balance the conflicting effects of
increased TLP and memory system congestion due to high TLP
in GPUs. Poise trains a machine learning model offline on a

set of benchmarks to learn the best warp scheduling decisions.
At runtime, a prediction model selects the warp scheduling
decision for unseen applications using the trained performance
model.
Special-Purpose Models. Several runtime optimization tech-
niques rely on special-purpose models, in contrast to MDM
which is a general-purpose model suitable for broad design
space exploration. For example, CRISP [24] predicts the
performance impact of varying the operating frequency for
GPUs. It accounts for artifacts that affect GPU performance
more than CPUs (thus ignored in CPU frequency scaling
work), such as store-related stalls and the high overlap between
compute and memory operations. Dai et al. [7] propose a model
to estimate the impact of cache misses and resource congestion
as a function of the number of thread blocks. They use these
models to devise mechanisms to bypass the cache to improve
performance.
Simulation-Based Approaches. Detailed GPU architecture
simulation is time-consuming and researchers have proposed
novel approaches for speeding up simulation. Wang et al. [35]
propose a modeling approach that relies on source code
profiling to extract warp execution behavior and an execution
trace. They feed this information to a fast high-abstraction
trace-based simulator for performance estimation. Yu et al. [37]
propose a framework for generating small synthetic workloads
that are representative for long-running GPU workloads. In
contrast, MDM is an analytical model and is therefore much
faster than a simulator-based approach.

IX. CONCLUSION

We have now presented the GPU Memory Divergence
Model (MDM) which accurately models the key performance-
related behavior of emerging MD-applications while retaining
high accuracy for NMD-applications. MDM faithfully models
that the poor spatial locality and high memory intensity of
MD-applications leads to frequent L1 cache blocking which
cripples the ability of the SMs to use TLP to hide memory
latencies. MDM achieves high accuracy compared to detailed
simulation (13.9% average prediction error versus 162% for
the state-of-the-art GPUMech model) and on real hardware
(40% prediction error versus 164%) for our MD-applications.
We further demonstrate MDM’s usefulness for driving design
space exploration, DVFS scaling and analyzing performance
bottlenecks. Overall, MDM significantly advances the state-of-
the-art in analytical GPU performance modeling in terms of
scope, practicality and accuracy.

X. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is supported through the European Research
Council (ERC) Advanced Grant agreement No. 741097 and
Research Foundation Flanders (FWO) grants No. G.0434.16N
and G.0144.17N. Lu Wang is supported through a CSC
scholarship and UGent-BOF co-funding. Magnus Jahre is
supported by the Research Council of Norway (Grant no.
286596).

REFERENCES

[1] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
ACM Sigplan Notices, vol. 45, no. 5, pp. 105–114, 2010.

[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Proceedings of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2009, pp. 163–174.

[3] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Proceedings of the International Symposium on
Workload Characterization (IISWC), 2012, pp. 141–151.

[4] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasub-
ramonia, “Managing DRAM latency divergence in irregular GPGPU
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2014,
pp. 128–139.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54.

[6] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and
programmability,” IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

[7] H. Dai, C. Li, H. Zhou, S. Gupta, C. Kartsaklis, and M. Mantor, “A
model-driven approach to warp/thread-block level GPU cache bypassing,”
in Proceedings of the Design Automation Conference (DAC), 2016, pp.
1–6.

[8] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[9] S. Dublish, V. Nagarajan, and N. Topham, “Poise: Balancing thread-level
parallelism and memory system performance in GPUs using machine
learning,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 492–505.

[10] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM
Transactions on Computer Systems, vol. 27, no. 2, pp. 1–37, 2009.

[11] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes,” in Innovative
Parallel Computing (InPar), 2012, pp. 1–10.

[12] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of analyzing GPUs at the intermediate language level,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2018, pp. 608–619.

[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
A MapReduce framework on graphics processors,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008, pp. 260–269.

[14] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” in Proceedings of
the Annual International Symposium on Computer Architecture (ISCA),
2009, pp. 152–163.

[15] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “GPUMech:
GPU performance modeling technique based on interval analysis,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2014, pp. 268–279.

[16] M. Jahre and L. Natvig, “A high performance adaptive miss handling
architecture for chip multiprocessors,” Transactions on High-Performance
Embedded Architectures and Compilers IV, vol. 6760, 2011.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the International Conference
on Multimedia (ICMM), 2014, pp. 675–678.

[18] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), 2004, pp. 338–349.

[19] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde, and
H. Jeon, “Detailed characterization of deep neural networks on gpus and
fpgas,” in Proceedings of the Workshop on General Purpose Processing
Using GPUs (GPGPU), 2019, p. 12–21.

[20] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde, and
H. Jeon, “Tango: A deep neural network benchmark suite for various
accelerators,” CoRR, vol. abs/1901.04987, 2019. [Online]. Available:
http://arxiv.org/abs/1901.04987

[21] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An extensible simulation framework for validated GPU modeling,”
in Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[22] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), 1981, pp. 81–87.

[23] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage re-
duction technique for digital systems,” in Proceedings of the International
Conference on Solid-State Circuits (ISSCC), 1990, pp. 238–239.

[24] R. Nath and D. Tullsen, “The CRISP performance model for dynamic
voltage and frequency scaling in a GPGPU,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), 2015, pp. 281–
293.

[25] CUDA parallel thread execution ISA. NVIDIA Corp. [Online]. Available:
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[26] CUDA SDK code samples. NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/cuda-downloads

[27] GPU Accelerated Libraries for Computing. NVIDIA Corp. [Online].
Available: https://developer.nvidia.com/gpu-accelerated-libraries.

[28] NVIDIA GeForce GTX1080. NVIDIA Corp. [Online]. Available:
https://developer.nvidia.com/introducing-nvidia-geforce-gtx-1080

[29] NVIDIA GP100 Pascal Architecture. NVIDIA Corp. [Online]. Available:
https://www.nvidia.com/object/pascal-architecture-whitepaper.html

[30] Profiler user’s guide. NVIDIA Corp. [Online]. Available: https:
//docs.nvidia.com/cuda/profiler-users-guide/index.html

[31] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis
framework for identifying potential benefits in GPGPU applications,”
in Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2012, p. 11–22.

[32] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” University
of Illinois, Tech. Rep., 2012.

[33] O. Villa, M. Stephenson, D. W. Nellans, and S. W. Keckler, “NVBit:
A dynamic binary instrumentation framework for NVIDIA GPUs,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2019, pp. 372–383.

[34] V. Volkov, “Understanding latency hiding on GPUs,” Ph.D. dissertation,
EECS Department, University of California, Berkeley, 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-143.html

[35] X. Wang, K. Huang, A. Knoll, and X. Qian, “A hybrid framework
for fast and accurate GPU performance estimation through source-level
analysis and trace-based simulation,” in Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 506–518.

[36] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning,”
in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 564–576.

[37] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C. Xu, and
J. Wu, “GPGPU-MiniBench: Accelerating GPGPU micro-architecture
simulation,” IEEE Transactions on Computers, vol. 64, no. 11, pp. 3153–
3166, 2015.

[38] Y. Zhang and J. D. Owens, “A quantitative performance analysis model
for GPU architectures,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), 2011, pp. 382–393.

