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Abstract

This paper develops a fundamental price model for continuous intraday electricity
markets of 15-minute contracts. A unique data set of intradaily updated forecasts
of renewable power generation is analyzed. We use a threshold regression model to
examine how 15-minute intraday trading depends on the slope of the merit order
curve. Our estimation results reveal strong evidence of mean reversion in the price
formation mechanism of 15-minute contracts. Additionally, prices of neighboring
contracts exhibit strong explanatory power and a positive impact on prices of a
given contract. We observe an asymmetric effect of renewable forecast changes on
intraday prices depending on the merit-order-curve slope. In general, renewable
forecasts have a higher explanatory power at noon than in the morning and evening,
but price information is the main driver of 15-minute intraday trading.
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1 Introduction
In recent years, the expansion of renewable energy sources has been forged ahead massively
across the globe with a direct impact on electricity markets. As electricity generation from
renewable energy sources cannot be predicted reliably in the long-term, that is, days, weeks
or months ahead, the future of electricity trading is foreseen in short-term electricity markets.
Energy supply companies thus face the challenge of moving towards automatic trading, which
requires the identification of trading strategies based on local demand and supply patterns as
well as cross-border energy flows. The German market constitutes a pioneer among European
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electricity markets. Not only is the German market the largest electricity market in Europe in
terms of total trading volume (European Energy Exchange AG, 2016a), but also novel develop-
ments and innovations (new contracts, reduction of lead time) are traditionally introduced on
the German market first. In Germany the most short-term electricity market is the continuous
intraday market, where hourly and 15-minute contracts can be traded until 30 minutes before
the delivery of electricity begins. Intraday electricity markets are designed according to the
needs of energy supply companies to balance forecast errors of renewable power generation.
This paper investigates four research questions: (i) Which fundamental factors drive the

continuous intraday trading of 15-minute contracts? (ii) How do forecast changes of renewable
power generation affect the intraday trading of 15-minute contracts? (iii) Can we identify
different regimes on the intraday market where the price formation process behaves differently?
(iv) How does intraday trading depend on the time of day?
Like on any financial market, there is a natural desire for pricing models of the fundamental

securities. To build as realistic models as possible, we require ex-ante information on the un-
derlying price drivers. More market-specifically, and in light of the design of intraday electricity
markets, forecast errors of renewable power production have to be taken into account. Kiesel
and Paraschiv (2017) deliver the first and only work fulfilling these prerequisites. Our article
builds upon their work and develops a fundamental price model for continuous intraday markets
of 15-minute contracts.
Our main modeling assumption is that the price formation process on the intraday electricity

market depends on the slope of the merit order curve. Figure 1 illustrates a merit order curve
with and without the infeed from renewable energy sources (RES). The merit order curve is a
non-linear and convex function of the marginal costs of power plants depending on the generation
capacity. Equivalently, since the marginal costs of the last running power plant needed to cover
demand set the final electricity price, the merit order curve may be interpreted as a function of
the electricity price depending on the electricity demand, too.
Let us consider the merit order curve without renewable power infeed (blue solid). When

there is low demand, only relatively cheap power generation technologies such as lignite-fired
power plants are needed, whereas if demand is high, more expensive technologies such as gas-
fired power plants might be required to satisfy demand. As exhibited in Figure 1, if demand is
low, the slope of the merit order curve is relatively small and we call the market to be in a flat
merit-order regime; however, if demand is high, the merit-order-curve slope is comparatively
large and the market is said to be in a steep merit-order regime.
Let us turn towards the merit order curve with renewable power infeed (green dash-dotted).

Since renewable energy sources have zero marginal costs, their infeed shifts the entire merit
order curve to the right. As a consequence, if demand is low (flat regime), the electricity price
decreases by a small amount ∆Pf ; however, if demand is high (steep regime), the electricity
price decreases as well but by a much larger amount ∆Ps > ∆Pf . We take into account this
asymmetric effect of renewable power infeed on electricity prices in our fundamental model by
incorporating the slope of the merit order curve.
To model the merit order curve, two approaches have been proposed in the academic liter-

ature. The first approach models the merit order curve from the supply side via generation
capacities and marginal costs of power plants. While generation capacities are given by market
transparency data, one has to specify a model for the marginal costs of power plants. Pape
et al. (2016) model the marginal costs as a function of fuel prices, CO2 emission allowances
prices, emission intensities per fuel type, power plant heat rates, and other variable costs. As
marginal costs depend on a wide variety of factors, this approach is highly complex and subject
to strong modeling assumptions. The second approach models the merit order curve from the
demand side via electricity loads, or load forecasts, and electricity prices as proposed by Burger
et al. (2004); He et al. (2013). While electricity load is an indicator of total electricity demand,
electricity prices are determined by the marginal costs of the price-setting power plant (marginal
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Figure 1: Merit order curve without (blue solid) and with (green dash-dotted) infeed from re-
newable energy sources (RES) indicating a flat and steep merit-order regime (red)
with electricity price changes ∆Pf and ∆Ps, respectively.

power plant). As data for both electricity loads and prices exist, this approach does not rely on
modeling assumptions. Therefore we follow the demand-side approach.
The continuous intraday electricity market of 15-minute contracts has only recently come

into focus of scientific research. To the best of our knowledge, only three studies exist hitherto.
Kiesel and Paraschiv (2017) provide the first econometric analysis and fundamental model for
15-minute intraday prices. They model both deviations between day-ahead and last intraday
prices as well as continuous intraday prices in a threshold regression context. They provide
evidence that 15-minute prices react asymmetrically to intradaily updated renewable forecast
errors depending on the proportion of expected demand covered by conventional energy sources.
Märkle-Huß et al. (2018) study how the introduction of 15-minute contracts has affected the
day-ahead and intraday market of hourly contracts. They find that prices of hourly contracts
decreased and trading volumes increased. Kath and Ziel (2018) present the first forecasting
study of 15-minute prices using an elastic net regression model. They conclude that prices in
the intraday auction are much easier to forecast than prices in the continuous trading.
This article extends the existing literature along a number of dimensions: First, we explore

a novel and unique data set of high-frequency transaction data and linked fundamental supply
and demand data. Intradaily updated forecasts of renewable power generation (solar, wind)
constitute the heart of our data collection. These are the same real-time renewable forecasts as
available to traders on the intraday market. As such this is the most extensive data set used
in the empirical literature to study the price formation process on intraday electricity markets.
Hence our data set allows for a more realistic model specification than proposed in previous
research.
Second, we suggest the first fundamental price model for 15-minute contracts that incorpo-

rates the slope of the merit order curve. This is a substantial improvement over Kiesel and
Paraschiv (2017) as electricity prices react asymmetrically to renewable forecast changes de-
pending on the merit-order-curve slope: If the merit order is steep, electricity prices change
more severely in the wake of renewable forecast errors than if the merit order is flat. Moreover,
our fundamental model solely involves ex-ante market knowledge.
Third, and to the best of our knowledge, this is the first work studying the influence of

neighboring 15-minute contracts on the price dynamics of a given contract. This is motivated
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by the fact that adjacent contracts are driven by similar market information.
This paper is organized as follows: In Section 2 we lay out our data set and perform an

empirical analysis of intraday transaction data of 15-minute contracts. In Section 3 we present
the existing fundamental model by Kiesel and Paraschiv (2017) and our extended version of the
model as well as the threshold regression. In Section 4 we calibrate the fundamental models to
market data and discuss our estimation results. We offer our conclusions in Section 5.

2 Stylized facts of the intraday market
In this section we lay out our data set and empirically analyze transaction prices and trading
volumes of 15-minute contracts.

2.1 Data
We investigate high-frequency trade and linked fundamental data of all 96 15-minute contracts
traded on the German continuous intraday power market at EPEX SPOT SE. Our observation
period spans from January 1 to December 31, 2015. The trade data of 15-minute contracts
involve transaction prices and trading volumes from the continuous intraday trading session
with a 1-minute time resolution and are provided by European Energy Exchange AG (2016c).
The continuous trading session for 15-minute contract opens daily at 4 PM and ends 45 and
30 minutes before delivery begins, respectively1. Furthermore, we use market clearing prices
of 15-minute contracts traded in the German 15-minute intraday auction at EPEX SPOT SE,
which takes place daily at 3 PM, provided by European Energy Exchange AG (2016b). The
auction data may also be obtained via the R package emarketcrawlR by Wagner (2018).

As fundamental data, we include intraday wind and solar power forecasts, expected demand
and expected conventional capacity. The intraday renewable power forecasts involve intradaily
updated forecasts of wind and solar power production in Germany, which are the same real-
time renewable forecasts as available to traders on the intraday market. These forecasts are
updated every 15 minutes, where each update contains a forecast time series for the following
eight days in a 15-minute time resolution, provided by EWE TRADING GmbH (2016). As
such the intraday renewable power forecasts constitute a unique data set and, to the best of
our knowledge, have solely been analyzed by Kiesel and Paraschiv (2017). As an indicator of
expected electricity demand, we use the day-ahead total load forecast for each quarter-hour on
the following day in Germany, which is published daily at 10 AM and is provided European
Network of Transmission System Operators for Electricity Transparency Platform (2016). The
expected conventional capacity covers the expected daily average of available generation capacity
of conventional power plants on the following day in Germany, which is published daily at 10
AM and is provided by European Energy Exchange AG Transparency Platform (2016). As
conventional energy sources, we include coal, garbage, gas, lignite, oil, other, pumped-storage,
run-of-the-river, seasonal-store, uranium. A summary of the employed data may be found in
Table 8 in Appendix A.

2.2 Hourly seasonality
2.2.1 Transaction prices

Figure 2 illustrates the mean transaction price of 15-minute contracts during peak hours and
off-peak hours for summer and winter. We identify an hourly seasonality of mean transaction
prices for both peak and off-peak hours as well as for summer and winter. The hourly seasonality
exhibits a sawtooth-like shape: For the peak-hour contracts H8Q1–H13Q4, the mean price of

1EPEX SPOT SE reduced the lead time on the German continuous intraday power market for hourly and
15-minute contracts from 45 to 30 minutes before delivery on July 16, 2015 (EPEX SPOT SE, 2015).
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the first 15-minute contract within each hour is the highest and it declines until the last 15-
minute contract within that hour, which has the lowest mean price. Conversely, for contracts
H14Q1–H18Q4, the lowest mean price is present for the first 15-minute contract which increases
up to the highest mean price for the last 15-minute contract in a given hour.
The hourly seasonality pattern and its change around noon may be explained by electricity

generation from solar energy: In the first half of the day, the sun rises and less electricity from
solar energy is produced during the first quarter-hour as compared to the last quarter-hour
within each hour. If a (renewable) electricity supplier sold an hourly contract on the day-ahead
market, it has to buy electricity for the first quarter-hour on the intraday market to meet its
obligation since less electricity is produced from solar energy than it has sold (buy pressure);
thus prices increase. In the last quarter-hour, however, more solar electricity is generated than
it has sold on the day-ahead market and so it wants to sell the surplus on the intraday market
to avoid entering the balancing energy market (sell pressure); hence prices decrease. In the
second half of the day, after the sun has reached its highest level (around 2 PM in Germany),
more solar power is generated during the first than in the last quarter-hour in each hour. Thus
there is a sell pressure in the first and a buy pressure in the last quarter-hour of an hour, and
the pattern is reversed. The existence of buy and sell pressure is underpinned by the hourly
seasonality of trading volumes described in Section 2.2.2.
Similarly the sawtooth-shaped hourly seasonality of mean transaction prices is found during

off-peak hours. For contracts H20Q1–H1Q4, the mean price of the first and last quarter-hourly
contract within an hour is highest and lowest, respectively, while for contracts H4Q1–H6Q4,
this is reversed. The hourly seasonality at night stems from the design of conventional power
plants which ramp up and down.
Overall during peak hours, mean transaction prices are lower in summer than in winter apart

from a few exceptions. In the afternoon and evening hours, that is, for contracts H14Q1–H19Q4,
we find larger deviations between summer and winter mean prices than in morning and noon
hours. During off-peak hours, mean prices are fairly similar during both seasons most of the
time and only slightly lower in winter than in summer.
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Figure 2: Mean transaction price of 15-minute contracts during peak hours (left) and off-peak
hours (right) averaged over summer (red) and winter (blue).

2.2.2 Trading volumes

Figure 3 shows the total trading volume of 15-minute contracts during peak hours and off-peak
hours averaged over the year. We only present the yearly average of total trading volumes as
the distinction between summer and winter does not provide additional information. Similar
to transaction prices, we observe an hourly seasonality of total trading volumes for both peak
and off-peak hours. The hourly seasonality of trading volumes has a U-shape: Larger total
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trading volumes are found for the first and last 15-minute contract within each hour of the
day, while the second and third 15-minute contract in an hour always exhibit lower trading
volumes. More specifically, the last 15-minute contract entails the largest trading volume, while
the second 15-minute contract involves the lowest trading volume in an hour. The U-shaped
hourly seasonality supports our hypothesis of buy and sell pressure for the marketing of solar
power in the first and last quarter-hour during peak hours, respectively.
15-minute contracts during off-peak hours are generally associated with less trading volume

than peak-hour contracts. Total trading volumes are particularly low for contracts H0Q1–
H5Q4. However, the U-shaped hourly seasonality of trading volumes is persistent during off-
peak hours. The hourly seasonality at night results from balancing out the ramp-up and -down
of conventional power plants.
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Figure 3: Total trading volume of 15-minute contracts during peak hours (left) and off-peak
hours (right) averaged over the year.

2.3 Liquidity evolution
Figure 4 displays the temporal evolution of liquidity of 15-minute contracts over the trading
session towards gate closure. As measures for liquidity, we use the number of trades and total
trading volume aggregated over all 15-minute contracts and all trading sessions. Due to low
liquidity far from gate closure, we focus on the last three trading hours prior to gate closure.
We note that EPEX SPOT SE reduced the lead time on the German continuous intraday
power market for hourly and 15-minute contracts from 45 to 30 minutes before delivery on July
16, 2015 (EPEX SPOT SE, 2015)2. Thus to avoid effects due to the shift of lead time, we
synchronize our trade time series with respect to gate closure by shifting the trade time stamps
of 15-minute contracts maturing before July 16, 2015 by 15 minutes.
The number of trades increases from 952 three hours to gate closure to 3,054 one hour to

gate closure. Subsequently the number of trades rises further and more than doubles to 7,080
half an hour to gate closure. 15 minutes to gate closure, the number of trades jumps to 16,593
while 13 minutes before gate closure it reaches a local maximum of 28,378. The surge of trading
activity around 15 minutes to gate closure may be associated with the fact that a given contract
becomes the front 15-minute contract. The maximum value of 30,512 trades is observed one
minute to gate closure.
The total trading volume increases from 12 GW to 48 GW between three and one hour to

gate closure. Thereafter trading volume almost triples to 135 GW half an hour to gate closure.
15 and 13 minutes before gate closure, total trading volume raises to 261 GW and 314 GW,
respectively, which coincides with becoming the front 15-minute contract. A comparison with

2On June 14, 2017, the lead time within the four German control zones was locally further reduced to 5 minutes
before delivery (EPEX SPOT SE, 2017).
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the number of trades at these points in time in Figure 4 reveals that indeed a vast number
of transactions are executed but with comparatively low trading volumes. The total trading
volume peaks at 960 GW one minute to gate closure.
Thus we observe that liquidity of 15-minute contracts rises severely within the last trading

hour prior to gate closure: On average, roughly 68% of the number of transactions are executed
and roughly 74% of the total trading volume is transferred. The reason why the majority of
trading takes place close to gate closure is that forecasts of fundamentals, particularly renewable
power forecasts, become more and more precise regarding the delivery period of a given 15-
minute contract. Hence it is desirable to trade as closest to delivery begin as possible.
We identify a small but distinct rise in liquidity every 15 minutes. This is particularly pro-

nounced for the number of trades but present for the total trading volume, too. Consequently,
an increased amount of transactions with relatively little trading volume is conducted peri-
odically. We argue that the 15-minute periodicity in liquidity originates from newly arriving
renewable forecast updates. As described in Section 2.1, renewable forecasts are updated in 15-
minute intervals. New forecasts will not have changed much after 15 minutes and thus traders
only make minor adjustments to their positions by trading little volume. Moreover, we observe
that trading activity increases at isolated points in time and dies out immediately until the
next increase. Therefore we conclude that renewable forecast updates are reflected in prices of
15-minute contracts within one trading minute.
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Figure 4: Time evolution of the number of trades (left) and total trading volume (right) through
the trading session towards gate closure.

3 Methodology
We aim at modeling the asymmetric behavior of 15-minute intraday electricity prices to explana-
tory variables, in particular, to renewable forecast changes. As a starting point, we reimplement
the fundamental model by Kiesel and Paraschiv (2017). Moreover, we suggest an extension of
their model to overcome its weaknesses. We employ a threshold regression model to calibrate
the fundamental models to market data.

3.1 Benchmark fundamental model
As a benchmark, we employ the fundamental model for continuous intraday price changes of
15-minute contracts proposed by Kiesel and Paraschiv (2017). For each 15-minute contract, the
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model specification reads

∆Pt = α0 +
3∑

τ=1
ατ ∆Pt−τ + α4 Vt + α5DQ+ α6 ∆wnt + α7 ∆wpt

+ α8 ∆snt + α9 ∆spt + α10
√

∆t+ εt , (1)

where ∆Pt = Pt − Pt−1 denotes the transaction price change between times t and t − 1,
Vt the trading volume at time t, DQ = `

c the demand quota with expected demand ` and
expected conventional capacity c for a given 15-minute contract, ∆wnt = min(∆wt, 0) and
∆wpt = max(∆wt, 0) negative and positive wind power forecast changes, respectively, where
∆wt = wt−wt−1 is the wind power forecast change between times t and t−1, ∆snt = min(∆st, 0)
and ∆spt = max(∆st, 0) negative and positive solar power forecast changes, respectively, where
∆st = st − st−1 is the solar power forecast change between times t and t − 1, and ∆t the
interarrival time between two consecutive transactions conducted at times t and t− 1.

The demand quota DQ quantifies the proportion of expected demand which is expected
to be met by conventional power generation capacities, or, put another way, how much the
expected conventional capacity does cover expected demand. DQ is the only variable remaining
constant during the continuous trading session of a given 15-minute contract. However, it does
depend on the specific contract since the expected demand l is provided in quarter-hourly
granularity. In particular, the value of the demand quota is known daily at 10 AM and thus
before continuous trading begins. We useDQ as threshold variable since we assume that the gap
between expected demand and expected conventional capacity influences the trading behavior
of market participants on the intraday market: A large gap induces a great necessity to balance
electricity produced from renewable energy sources, whereas a small gap puts less pressure
to adjust renewable electricity (see Kiesel and Paraschiv, 2017, chap. 2, for a more detailed
discussion). From a trader’s perspective, the demand quota is well suited as threshold variable,
too, since it indicates in which regime the market is before continuous trading begins. Thereby
the corresponding intraday price model can be chosen ex-ante.

The sum in Equation (1) covers three lagged price changes ∆Pt−τ , τ = 1, . . . , 3, that is,
autoregressive terms, where the number of lags has been determined by partial autocorrelation
of price changes. Moreover, we distinguish between positive and negative wind and solar power
forecast errors ∆wpt ,∆s

p
t and ∆wnt ,∆snt , respectively, as we expect them to have a different

effect on the electricity price change ∆Pt: A positive renewable forecast error should decrease
the electricity price, whereas a negative renewable forecast error should increase the electricity
price. We control for the interarrival time ∆t since transactions do not take place at equidistant
points in time, but it may take one minute or several hours until the next trade is conducted.

3.2 Extended fundamental model
In Kiesel and Paraschiv (2017), one weakness of the demand quota is that it does not recognize
whether the market is in a flat or steep merit-order-curve regime: Proportionally speaking, a
high expected demand and high expected conventional capacity lead to the same value of DQ as
low demand and low capacity. Another weakness is that the demand quota aggregates expected
capacities over all conventional generation technologies. Thus it loses information on the price-
setting power plant and the slope of the merit order curve. We overcome these limitations in
our extended version of the model.
We refine the fundamental model by Kiesel and Paraschiv (2017) along three dimensions

by incorporating supplementarily: (i) the slope of the merit order curve, (ii) price changes
of neighboring 15-minute contracts, (iii) the 15-minute intraday auction price. For a given
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15-minute contract i = 1, . . . , 96, the model specification reads

∆P (i)
t = α

(i)
0 +

m∑
τ=1

α(i)
τ ∆P (i)

t−τ +
n∑

j=−n,
j 6=0

β
(i)
j ∆P (i+j)

t + η
(i)
1 ξ(i) + η

(i)
2 PAuc,(i) + η

(i)
3 V

(i)
t

+ η
(i)
4 ∆wn,(i)t + η

(i)
5 ∆wp,(i)t + η

(i)
6 ∆sn,(i)t + η

(i)
7 ∆sp,(i)t + η

(i)
8

√
∆t(i) + ε

(i)
t , (2)

where ξ(i) denotes the slope of the merit order curve of contract i, and PAuc,(i) the 15-minute
intraday auction price of contract i. The remaining variables correspond to the benchmark
model (1) described in Section 3.1. ξ(i) and PAuc,(i) are the only variables remaining constant
during the trading session of contract i. We use the slope of the merit order curve ξ(i) as
threshold variable instead of the demand quota. The value of ξ(i) can be determined daily at 10
AM and hence before continuous trading begins. Thereby we know whether the market is in a
flat or steep merit-order regime ex-ante and the appropriate intraday price model can be chosen
accordingly. This is an attractive feature of our fundamental model for practical applications.
We estimate ξ(i) from empirical intraday auction prices PAuc,(i) and expected demands `(i)

in the spirit of Burger et al. (2004); He et al. (2013). This approach is reasonable for describing
the slope of the merit order curve since the level of intraday auction prices reflects the marginal
costs of power plants needed to cover expected demand. They construct a merit order curve
for the electricity spot market as a whole, independent of the contract, from hourly day-ahead
prices and hourly load forecasts. We, however, determine a merit order curve for each 15-minute
contract i individually and thus arrive at a more fine-grained picture. We fit a function f(`) to
the price-load data and call f(`) the empirical merit order curve3. Then we take the derivative
of the empirical merit order curve f ′(`) = df(`)

d` and substitute empirical expected demands `(i)
into f ′(`) to obtain empirical merit-order-curve slopes ξ(i) = f ′(`(i)).

The second sum in Equation (2) captures the price change ∆Pt between times t and t − 1
of n 15-minute contracts maturing before and n 15-minute contracts maturing after contract i.
For example, if n = 2 and i = H13Q1, the price change at time t of contracts H12Q3, H12Q4,
H13Q2, H13Q3 is included. The intraday auction price PAuc,(i) is determined daily at 3 PM and
can be considered as an estimate of the initial price of a 15-minute contract i in the continuous
trading session.

3.3 Threshold regression
We use the threshold regression model introduced by Hansen (2000) to calibrate our funda-
mental models to market data. The threshold regression model is able to reveal asymmetries
in the impact of explanatory variables with respect to a specified threshold variable. The basic
concept of the threshold regression involves two steps: First, we split the entire sample into
two subsamples, also referred to as groups, classes, or regimes; second, we estimate a linear
regression model on each subsample separately.
More formally, suppose we observe the sample {yi,xi, qi}ni=1, where yi is the dependent vari-

able, xi ∈ Rm an m-vector collecting the independent variables, and qi the threshold variable.
The threshold variable qi may be one of the independent variables gathered in xi and must have
a continuous distribution. The threshold regression model reads

yi =
{
θ′1 xi + εi, if qi ≤ γ
θ′2 xi + εi, if qi > γ

,

= θ′1 xi 1{qi ≤ γ}+ θ′2 xi 1{qi > γ}+ εi , i = 1, . . . , n, (3)

where γ is the threshold parameter, θ1,θ2 ∈ Rm the regression parameters, and εi the error
term. Thus the observed sample is split into two subsamples along the threshold variable qi at a

3Burger et al. (2004) call f empirical price load curve.
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specific value γ. By design, the threshold regression model (3) allows the regression parameters
θ1,θ2 to vary between the regimes.

We define xi(γ) = xi 1{qi ≤ γ}, where 1 denotes the indicator function, and call δn = θ1−θ2
the threshold effect. Then we can write the threshold regression model (3) in the alternative
form

yi = θ′xi + δ′n xi(γ) + εi , i = 1, . . . , n, (4)

where θ = θ2. Stacking the variables yi and εi results in n-vectors y, ε ∈ Rn, and stacking the
vectors x′i and xi(γ)′ yields n×m matrices X,Xγ ∈ Rn×m. Then we can rewrite Equation (4)
in matrix notation

y = Xθ + Xγ δn + ε , (5)

where (θ, δn, γ) are the regression parameters which can be estimated by least squares (LS). By
definition, the LS estimators θ̂, δ̂, γ̂ jointly minimize the sum of squared errors function

Sn(θ, δ, γ) = (Y−Xθ −Xγ δ)′ (Y−Xθ −Xγ δ) . (6)

Following the derivation by Hansen (2000), the threshold parameter estimate γ̂ is the value that
minimizes the concentrated sum of squared errors function

Sn(γ) = Y′Y−Y′X∗γ (X∗′γ X∗γ)−1X∗′γ Y , (7)

where X∗γ = [X Xγ ], that is,

γ̂ = arg minSn(γ) . (8)

To test the hypothesis H0 : γ = γ0, a standard approach is to use the likelihood ratio statistic

LRn(γ) = n
Sn(γ)− Sn(γ̂)

Sn(γ̂) , (9)

under the auxiliary assumption εi
iid∼ N (0, σ2). The likelihood ratio test of H0 is to reject for

large values of LRn(γ0). We can calculate asymptotic p-values for the likelihood ratio test by

pn = 1−
(
1− e−

1
2 LRn(γ0)2)2

. (10)

4 Estimation results
4.1 Benchmark fundamental model
We estimate the coefficients of the benchmark fundamental model (1) by Kiesel and Paraschiv
(2017) by the threshold regression described in Section 3.3 for all 96 15-minute contracts. Here a
selection of 15-minute contracts representative for morning, noon, and evening hours is analyzed,
that is, H7, H13, H18, Q1–Q4 each. Our estimation results stemming from January–December
2015 data are compared with the results by Kiesel and Paraschiv (2017), who study January–
June 2014 data. For all contracts, we use the demand quota DQ as threshold variable.
The estimation results of all 15-minute contracts in hours H13, H7, H18 are presented in

Tables 1, 2, 3, respectively. The threshold parameter estimate is highly statistically significant
and amounts to γ̂ ≈ 1.1 for all contracts in hours H13 and H7, while in hour H18, it is
only statistically significant for contract Q2. A demand quota of DQ = 1.1 implies that the
expected total electricity demand exceeds expected conventional capacity by approximately
10%. Likewise this value implies that roughly 10% renewable power infeed is expected. In
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general, the low demand quota regime (Regime 1) describes a market in which much conventional
power generation is planned to meet expected demand, since little renewable power production
is anticipated. Conversely, the market is in the high demand quota regime (Regime 2) if much
renewable power infeed is anticipated and consequently less conventional power generation is
planned. For all contracts, the total sample is split into subsamples of reasonable size and allows
for a sound interpretation of the estimation results. The adjusted R2 ranges between 9% and
23%.
The estimated coefficients of the lagged price changes ∆Pt−1,∆Pt−2 are highly statistically

significant and negative in both regimes for all contracts, and even the coefficients of ∆Pt−3 are
significant and negative in most cases. For evening contracts, the higher-order autoregressive
terms lose statistical significance. The negative coefficients of lagged price changes are an
indicator of mean reversion in the price formation process of 15-minute contracts. As such they
reflect the so-called “learning effect” or “participant conduct” (Karakatsani and Bunn, 2010;
Frauendorfer et al., 2018). Our results confirm previous findings of Kiesel and Paraschiv (2017)
for morning and evening contracts. For noon contracts, in contrast, they find that autoregressive
terms are less significant and trading is primarily driven by renewable forecast changes. Our
results, however, suggest that autoregressive terms and the mean reversion pattern associated
therewith play an essential role at noon in 2015.
The estimated coefficients of trading volume Vt are statistically significant for most of the

contracts and regimes. For contracts H13Q1 and H13Q2 they are negative, whereas for H13Q3
and H13Q4 they turn positive independent of the regime. The same sign profile is found for
contracts H18Q1 and H18Q4. This sign pattern is reasonable as it reflects the joint hourly
seasonality of transaction prices and trading volumes described in Section 2.2: In the first and
second half of an hour, more and less solar power is produced than the hourly average which
induces sell and buy pressure, respectively. Consequently, electricity prices decrease and increase
in the first and last quarter-hours of an hour. In morning hours, we observe the opposite: For
contracts H7Q1 and H7Q2 the coefficients of Vt are positive, whereas for H7Q3 and H7Q4 they
turn negative independent of the regime. This sign pattern coincides with buy and sell pressure
at the beginning and end of the hour, respectively. Overall, we find an asymmetric adjustment
of intraday price changes ∆Pt to trading volumes Vt. This confirms the results of Kiesel and
Paraschiv (2017).
In hour H13, the coefficients of negative wind forecast changes ∆wnt are statistically significant

and negative in both regimes for all contracts, whereas coefficients of positive wind forecast
changes ∆wpt are not significant. In Kiesel and Paraschiv (2017), the coefficients of ∆wnt are
also negative but only significant for some contracts. In hour H7, the coefficients of negative
wind forecast changes ∆wnt are significant and negative in the high demand quota regime for
Q1–Q3, whereas coefficients of positive wind forecast changes ∆wpt are significant and negative
for Q1 and Q2. In Kiesel and Paraschiv (2017), the coefficients of ∆wnt are also not significant,
while some coefficients of ∆wpt are significant but with no clear regularity. In hour H18, the
coefficients of negative and positive wind forecast changes ∆wnt , ∆wpt are rarely significant and
mostly negative. Overall, no asymmetry in the coefficients of wind forecast changes between
the regimes is found. We conclude that forecast errors of wind power generation contribute
to pricing electricity for noon contracts, but they are less significant for pricing morning and
evening contracts.
In hours H13 and H7, the coefficients of negative solar forecast changes ∆snt are significant

and negative in the high demand quota regime, but never significant in the low regime for all
contracts. In hour H18, the coefficients of ∆snt are generally not significant. The negative sign
of the coefficients is economically meaningful as electricity prices should increase if less solar
power is forecasted. In Kiesel and Paraschiv (2017), the coefficients of ∆snt are also negative in
the high regimes but only significant for some contracts. In the high demand quota regimes,
the coefficients of ∆snt are at least three times larger by absolute value than in the low regimes.
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The high regime implies that much renewable power infeed is expected; if solar forecast changes
are negative, they contradict our expectation of the electricity generation mix established day-
ahead and thus influence electricity prices more severely than in the low regime. In Kiesel and
Paraschiv (2017), this asymmetry is less or not at all pronounced.
The coefficients of positive solar forecast changes ∆spt are significant and negative in both

regimes for contracts H13Q1–Q3, while in hours H7 and H18, the coefficients of ∆spt are rarely
significant and mostly negative. The negative sign is intuitive: If the expectation of solar power
at time t is larger than at time t− 1, st > st−1, the electricity price should decrease. In the low
demand quota regimes in hour H13, the coefficients of ∆spt are two to four times larger than in
the high regimes. The low regime implies that little renewable power production is anticipated;
it is reasonable that positive solar forecast changes in the low regime decrease electricity prices
more severely than in the high regime where more renewable power infeed is planned anyway.
Our results confirm the findings of Kiesel and Paraschiv (2017).
Eventually, intraday price changes of 15-minute contracts are driven by both autoregressive

terms and fundamental variables at noon. In morning and evening hours, however, intraday
trading is primarily affected by autoregressive price changes.

4.2 Extended fundamental model
We estimate the coefficients of the extended fundamental model (2) by the threshold regression
described in Section 3.3 for all 96 15-minute contracts. As representatives of morning, noon,
and evening hours, we exemplarily analyze 15-minute contracts H7, H13, H18, Q1–Q4 each.
For all contracts, the merit-order-curve slope ξ is used as threshold variable.

4.2.1 Estimation of merit-order-curve slope

We estimate the slope of the merit order curve ξ(i) of 15-minute contract i based on intraday
auction prices PAuc,(i) and corresponding expected demands, or total load forecasts, `(i). As
both PAuc,(i) and `(i) are provided in quarter-hourly resolution, we are able to determine a
merit order curve for each 15-minute contract i individually. Figure 5 depicts a scatter plot of
empirical intraday auction prices PAuc,(i)

d versus empirical expected demands `(i)d observed on
days d = 1, . . . , T , for contract i = H13Q4. We filter out a total of 13 negative auction prices. We
observe a positive relationship between intraday auction prices and expected demands: PAuc,(i)

d

increases as `(i)d increases. For high levels of demand, more expensive generation technologies are
in use which puts upward pressure on prices. In particular, we may identify two clusters: One
cluster encompasses expected demands ` < 58 GW, and the other cluster comprises ` ≥ 58 GW.
These clusters reflect low and high electricity demand on weekends and weekdays, respectively.
Overall the data points exhibit a fairly wide range of variation which stems from the strongly
varying expectation of renewable power infeed.
For the empirical merit order curve f(`), we use the exponential function f(`) = ea `+b

following He et al. (2013). Of course other choices for f(`) are possible, but we want to keep
our model as simple as possible. We fit the exponential function f(`) to the empirical intraday
auction price PAuc,(i) as a function of expected demand `(i). Technically, we minimize the sum of
squared errors between the logarithm of the function fΦ(`) implied by the choice of a parameter
set Φ = {a, b}, and the logarithm of the empirical intraday auction price PAuc,(i)

d

(
`
(i)
d

)
,

min
Φ

T∑
d=1

∣∣∣log
(
P

Auc,(i)
d

(
`
(i)
d

))
− log

(
fΦ(`)

)∣∣∣2 . (11)

The least squares fit for contract i = H13Q4 is shown in Figure 5. The parameter estimates of
a, b for contracts H7, H13, H18, Q1–Q4 each, are reported in Table 4.
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H13Q1

Regime 1 Regime 2

DQ ≤ 1.100∗∗∗ DQ > 1.100∗∗∗

Variable Estimate Std error Estimate Std error

Const −1.337 (0.990) −0.391 (1.725)
DQ 1.466 (0.977) 0.361 (1.464)
∆Pt−1 −0.318∗∗∗ (0.026) −0.269∗∗∗ (0.024)
∆Pt−2 −0.151∗∗∗ (0.021) −0.072∗∗∗ (0.018)
∆Pt−3 −0.093∗∗∗ (0.025) −0.059∗∗ (0.019)
Vt −0.022∗∗∗ (0.004) −0.014∗∗∗ (0.004)
∆wnt −1.137∗∗∗ (0.322) −1.180∗∗∗ (0.260)
∆wpt −0.796∗ (0.332) −0.587 (0.303)
∆snt 0.111 (0.428) −1.730∗∗∗ (0.534)
∆spt −3.545∗∗∗ (0.492) −1.374∗∗∗ (0.428)
∆t 0.092∗∗∗ (0.020) 0.061∗∗∗ (0.021)

#Obs 6499 6554
R2

adj 0.159 0.144

H13Q2

Regime 1 Regime 2

DQ ≤ 1.065∗∗∗ DQ > 1.065∗∗∗

Variable Estimate Std error Estimate Std error

Const −1.403 (1.534) −1.765 (1.455)
DQ 1.600 (1.574) 1.441 (1.239)
∆Pt−1 −0.281∗∗∗ (0.028) −0.304∗∗∗ (0.029)
∆Pt−2 −0.142∗∗∗ (0.024) −0.093∗∗∗ (0.019)
∆Pt−3 −0.047∗ (0.025) 0.014 (0.030)
Vt −0.022∗∗∗ (0.007) −0.005 (0.008)
∆wnt −1.300∗∗∗ (0.351) −1.175∗∗∗ (0.245)
∆wpt −0.606 (0.378) −0.220 (0.208)
∆snt −0.390 (0.552) −1.738∗∗∗ (0.385)
∆spt −3.442∗∗∗ (0.432) −1.329∗∗ (0.438)
∆t 0.053 (0.026) 0.035 (0.019)

#Obs 4279 7764
R2

adj 0.123 0.137

H13Q3

Regime 1 Regime 2

DQ ≤ 1.019∗ DQ > 1.019∗

Variable Estimate Std error Estimate Std error

Const 0.574 (1.825) −2.007 (1.175)
DQ −0.877 (1.950) 1.507 (1.023)
∆Pt−1 −0.270∗∗∗ (0.028) −0.269∗∗∗ (0.021)
∆Pt−2 −0.116∗∗∗ (0.030) −0.138 (0.019)
∆Pt−3 −0.027 (0.023) −0.073 (0.016)
Vt 0.014∗ (0.008) 0.012 (0.004)
∆wnt −0.892∗ (0.479) −1.125 (0.254)
∆wpt −0.134 (0.318) −0.522 (0.219)
∆snt 0.204 (0.449) −2.063∗∗∗ (0.446)
∆spt −2.292∗∗∗ (0.518) −1.267 (0.461)
∆t −0.023 (0.028) 0.026 (0.019)

#Obs 3538 9278
R2

adj 0.087 0.125

H13Q4

Regime 1 Regime 2

DQ ≤ 1.148∗∗∗ DQ > 1.148∗∗∗

Variable Estimate Std error Estimate Std error

Const −2.969 (0.712) −4.635 (2.765)
DQ 2.609 (0.671) 3.765 (2.299)
∆Pt−1 −0.292∗∗∗ (0.021) −0.219∗∗∗ (0.023)
∆Pt−2 −0.128∗∗∗ (0.015) −0.102∗∗∗ (0.021)
∆Pt−3 −0.049∗∗∗ (0.014) −0.094∗∗∗ (0.020)
Vt 0.014∗∗ (0.003) 0.007 (0.003)
∆wnt −1.527∗∗∗ (0.298) −1.203∗∗∗ (0.313)
∆wpt −0.355 (0.220) −0.299 (0.443)
∆snt −0.811 (0.333) −3.001∗∗∗ (0.684)
∆spt −0.450 (0.498) −1.779 (0.696)
∆t −0.036 (0.020) −0.025 (0.027)

#Obs 10 372 4782
R2

adj 0.110 0.149
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 1: Estimation results of the benchmark fundamental model (1) for 15-minute contracts
H13Q1–4.
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H7Q1

Regime 1 Regime 2

DQ ≤ 1.022∗∗∗ DQ > 1.022∗∗∗

Variable Estimate Std error Estimate Std error

Const 1.277 (1.613) −0.575 (2.142)
DQ −2.147 (1.833) −0.379 (1.896)
∆Pt−1 −0.332∗∗∗ (0.031) −0.375∗∗∗ (0.025)
∆Pt−2 −0.148∗∗∗ (0.031) −0.169∗∗∗ (0.021)
∆Pt−3 −0.087∗∗∗ (0.028) −0.063∗∗∗ (0.018)
Vt 0.043∗∗∗ (0.006) 0.038∗∗∗ (0.003)
∆wnt −1.271 (0.742) −0.808∗∗ (0.353)
∆wpt −1.331∗∗∗ (0.383) −0.577∗∗ (0.265)
∆snt 8.318 (4.777) −3.889 (4.843)
∆spt −6.672 (5.434) 8.814∗ (4.036)
∆t −0.094 (0.050) 0.093∗∗ (0.034)

#Obs 3092 6953
R2

adj 0.157 0.160

H7Q2

Regime 1 Regime 2

DQ ≤ 1.042∗∗∗ DQ > 1.042∗∗∗

Variable Estimate Std error Estimate Std error

Const 0.332 (1.557) 0.668 (2.484)
DQ −0.748 (1.743) −1.099 (2.180)
∆Pt−1 −0.307∗∗∗ (0.026) −0.303∗∗∗ (0.023)
∆Pt−2 −0.180∗∗∗ (0.025) −0.128∗∗∗ (0.018)
∆Pt−3 −0.100∗∗∗ (0.021) −0.083∗∗∗ (0.016)
Vt 0.059∗∗∗ (0.012) 0.021∗∗ (0.008)
∆wnt −0.376 (0.600) −0.686∗∗ (0.264)
∆wpt −1.471∗∗∗ (0.430) −0.622∗ (0.322)
∆snt 2.863 (2.657) −8.558∗ (4.051)
∆spt −2.338 (4.187) 1.673 (2.340)
∆t −0.145∗∗ (0.046) 0.113∗∗∗ (0.033)

#Obs 2813 6180
R2

adj 0.161 0.111

H7Q3

Regime 1 Regime 2

DQ ≤ 1.053∗∗∗ DQ > 1.053∗∗∗

Variable Estimate Std error Estimate Std error

Const −1.927 (1.514) −2.104 (2.772)
DQ 2.532 (1.646) 1.670 (2.429)
∆Pt−1 −0.322∗∗∗ (0.026) −0.321∗∗∗ (0.029)
∆Pt−2 −0.139∗∗∗ (0.024) −0.148∗∗∗ (0.022)
∆Pt−3 −0.061∗∗ (0.022) −0.093∗∗∗ (0.021)
Vt −0.026∗∗ (0.010) −0.020∗∗∗ (0.006)
∆wnt −0.111 (0.568) −0.781∗ (0.356)
∆wpt −0.636 (0.335) −0.281 (0.402)
∆snt 2.767 (2.280) −10.365∗ (4.773)
∆spt −3.519 (3.005) −1.861 (1.975)
∆t −0.085 (0.043) 0.131∗∗∗ (0.035)

#Obs 3154 6399
R2

adj 0.113 0.139

H7Q4

Regime 1 Regime 2

DQ ≤ 1.156∗∗∗ DQ > 1.156∗∗∗

Variable Estimate Std error Estimate Std error

Const −2.178 (0.781) −1.898 (5.697)
DQ 2.115 (0.743) 1.422 (4.773)
∆Pt−1 −0.332∗∗∗ (0.019) −0.228∗∗∗ (0.034)
∆Pt−2 −0.154∗∗∗ (0.016) −0.101∗∗∗ (0.029)
∆Pt−3 −0.061 (0.015) −0.039 (0.033)
Vt −0.014∗ (0.003) −0.014∗∗ (0.005)
∆wnt −0.888 (0.400) −0.187 (0.647)
∆wpt −1.075∗∗ (0.307) 0.716 (0.472)
∆snt 1.202 (2.256) −8.426∗∗ (3.314)
∆spt −6.350∗∗ (2.088) −3.800 (2.609)
∆t 0.064 (0.033) 0.164∗∗ (0.053)

#Obs 8308 3173
R2

adj 0.126 0.122
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 2: Estimation results of the benchmark fundamental model (1) for 15-minute contracts
H7Q1–4.
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H18Q1

Regime 1 Regime 2

DQ ≤ 1.135 DQ > 1.135

Variable Estimate Std error Estimate Std error

Const 0.151 (0.984) 9.257 (7.735)
DQ 0.075 (0.916) −7.531 (6.525)
∆Pt−1 −0.278∗∗ (0.039) −0.431∗∗ (0.174)
∆Pt−2 −0.115 (0.022) −0.176 (0.166)
∆Pt−3 −0.018 (0.020) 0.077 (0.128)
Vt −0.003 (0.003) −0.012 (0.005)
∆wnt −1.831 (0.243) −0.609 (0.729)
∆wpt −0.539 (0.606) −2.141 (0.546)
∆snt −1.823 (1.332) −2.994 (3.769)
∆spt −4.223 (1.224) −2.563 (2.356)
∆t −0.052 (0.015) −0.036 (0.042)

#Obs 9790 2403
R2

adj 0.105 0.194

H18Q2

Regime 1 Regime 2

DQ ≤ 1.118∗ DQ > 1.118∗

Variable Estimate Std error Estimate Std error

Const −0.145 (1.045) −1.549 (5.186)
DQ 0.180 (0.986) 1.364 (4.503)
∆Pt−1 −0.322∗∗∗ (0.019) −0.277∗∗∗ (0.029)
∆Pt−2 −0.112∗∗ (0.016) −0.138∗∗∗ (0.023)
∆Pt−3 −0.063 (0.014) −0.010 (0.020)
Vt 0.010 (0.006) −0.006 (0.007)
∆wnt 0.101 (0.618) −3.040 (1.238)
∆wpt −1.736∗∗ (0.371) 0.652 (0.668)
∆snt −0.848 (1.465) 1.752 (3.483)
∆spt −1.716 (1.551) 0.654 (1.895)
∆t −0.016 (0.016) −0.015 (0.029)

#Obs 7672 2973
R2

adj 0.121 0.105

H18Q3

Regime 1 Regime 2

DQ ≤ 1.144 DQ > 1.144

Variable Estimate Std error Estimate Std error

Const −0.443 (0.893) 5.784 (9.044)
DQ 0.236 (0.838) −4.823 (7.749)
∆Pt−1 −0.308∗∗∗ (0.016) −0.291∗∗∗ (0.044)
∆Pt−2 −0.150∗∗∗ (0.016) −0.045 (0.032)
∆Pt−3 −0.044∗∗∗ (0.012) −0.009 (0.026)
Vt 0.006 (0.007) −0.008 (0.011)
∆wnt −0.423 (0.326) −3.505∗∗∗ (0.822)
∆wpt −1.480∗∗ (0.673) 2.335 (2.162)
∆snt −4.480∗∗ (1.830) 0.073 (2.401)
∆spt −0.267 (1.432) 16.354∗∗ (7.125)
∆t 0.018 (0.014) −0.066 (0.055)

#Obs 9745 1249
R2

adj 0.112 0.155

H18Q4

Regime 1 Regime 2

DQ ≤ 1.171 DQ > 1.171

Variable Estimate Std error Estimate Std error

Const −0.378 (0.730) 21.412 (39.252)
DQ 0.279 (0.693) −17.492 (32.591)
∆Pt−1 −0.312∗∗∗ (0.021) −0.386∗ ( 0.212)
∆Pt−2 −0.126∗∗∗ (0.016) −0.118 ( 0.148)
∆Pt−3 −0.030 (0.013) −0.266 ( 0.101)
Vt 0.001 (0.002) 0.051 ( 0.027)
∆wnt −1.897 (0.977) 2.568 ( 5.729)
∆wpt −0.180 (0.297) −5.008 ( 3.700)
∆snt 1.935 (1.927) 7.501 ( 6.666)
∆spt −4.024∗ (1.563) 4.548 ( 6.819)
∆t 0.008 (0.016) −0.130 ( 0.127)

#Obs 12 779 326
R2

adj 0.115 0.231
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 3: Estimation results of the benchmark fundamental model (1) for 15-minute contracts
H18Q1–4.
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We observe an hourly seasonality of the parameter estimates â, b̂. For contracts H4Q1–H14Q4,
the estimates â, b̂ increase and decrease from the first to the last 15-minute contract within an
hour, respectively, whereas for contracts H15Q1–H2Q4, the estimates â, b̂ decrease and increase,
respectively. Thus the curvature of the empirical merit order curve f(`) grows from Q1 to Q4 in
each hour during morning and noon hours, whereas it declines from Q1 to Q4 during afternoon
and evening hours. This hourly seasonality may be associated with rising and falling demand
in the first and second half of the day, respectively, following human activity (Paraschiv, 2013).
Consequently, in the first half of the day, more expensive power plants are needed to cover
demand in the last than in the first quarter-hour in each hour, whereas in the second half of
the day, more expensive power plants are operated in the first than in the last quarter-hour per
hour.
Eventually, we take the derivative of the fitted merit-order-curve function f ′ Φ(`) = dfΦ(`)

d`
and substitute empirical expected loads `(i)d into f ′ Φ(`) to obtain empirical merit-order-curve
slopes ξ(i)

d = f ′ Φ
(
`
(i)
d

)
on days d = 1, . . . , T , for 15-minute contract i.
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Figure 5: Empirical merit-order-curve function f(`) = ea `+b (red) fitted to the empirical intra-
day auction price PAuc,(i)

d as a function of expected demand `
(i)
d (blue) observed on

days d = 1, . . . , T , for 15-minute contract i = H13Q4.

4.2.2 Model calibration

The estimation results of all 15-minute contracts in hours H13, H7, H18 are presented in Ta-
bles 5, 6, 7, respectively. The threshold parameter estimate is highly statistically significant
in hours H13 and H7, while in hour H18, it is only statistically significant for contract Q2. A
merit-order-curve slope of ξ = 1 EUR/MWh

GW implies that a change of 1 GW in expected demand
causes a change of 1 EUR/MWh in the intraday auction price. Regime 1 corresponds to a
market in which the merit order curve is flat, whereas Regime 2 reflects a market in which
the merit order curve is steep. For all contracts, the total sample is split into subsamples of
appropriate size and enables us to interpret the estimation results adequately.
The adjusted R2 ranges between 11% and 30%. Thus, overall, our extended fundamental

model exhibits higher explanatory power in explaining intraday price changes ∆Pt than the
benchmark model by Kiesel and Paraschiv (2017). In particular, our extended fundamental
model outnumbers the benchmark model’s adjusted R2 for each contract and regime in hours
H13 and H7. In hour H18, the extended model only marginally improves the explanation of
intraday price changes ∆Pt for contracts Q1 and Q2 compared to the benchmark model.

The estimated coefficients of the autoregressive terms ∆Pt−1,∆Pt−2 are highly statistically
significant and negative in both regimes for all contracts, and even the coefficients of ∆Pt−3 are
significant and negative in most cases. For evening contracts, the higher-order autoregressive
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Parameter

a b

Contract Estimate Std error Estimate Std error

H7Q1 0.029 (0.004) 1.632 (0.268)
H7Q2 0.036 (0.002) 1.412 (0.134)
H7Q3 0.045 (0.002) 0.961 (0.125)
H7Q4 0.045 (0.002) 0.940 (0.130)

H13Q1 0.022 (0.002) 2.194 (0.141)
H13Q2 0.037 (0.003) 1.214 (0.201)
H13Q3 0.045 (0.004) 0.548 (0.217)
H13Q4 0.065 (0.006) -0.856 (0.389)

H18Q1 0.061 (0.005) -0.372 (0.313)
H18Q2 0.039 (0.003) 1.246 (0.160)
H18Q3 0.021 (0.002) 2.546 (0.109)
H18Q4 0.013 (0.002) 3.074 (0.140)

Table 4: Parameter estimates of a, b of the empirical merit-order-curve function f(`) = ea `+b
for 15-minute contracts H7, H13, H18, Q1–Q4 each.

terms show less statistical significance. The negative coefficients of lagged price changes suggest
mean reversion in the price formation process of 15-minute contracts. We recall that Kiesel and
Paraschiv (2017) find less significance of autoregressive terms during noon hours when renewable
forecast changes primarily dominate the intraday trading. We, however, provide evidence of a
significant mean reversion effect for noon contracts in 2015.
In hour H13, the estimated coefficients of price changes of neighboring contracts ∆P (i−2)

t ,
∆P (i−1)

t , ∆P (i+1)
t are highly statistically significant and positive in both regimes for all con-

tracts, while the coefficients of ∆P (i+2)
t are significant and positive in the steep merit-order

regime only. In hour H7, the estimated coefficients of price changes of neighboring contracts
∆P (i−2)

t , . . . ,∆P (i+2)
t are highly statistically significant and positive in the steep merit-order

regime for all contracts, while the coefficients of ∆P (i−1)
t ,∆P (i+1)

t are significant and positive in
the flat regime for contracts Q2 and Q3, too. Thus price changes of neighboring contracts have
strong explanatory power and a positive effect on one another. In particular, we observe that
price changes of the nearest neighbors i±1 have a stronger impact on price changes of contract i
than price changes of next-nearest neighbors i±2 4. For contracts Q1, price changes ∆P (i+1)

t of
the following contracts Q2 have the greatest influence, whereas for contracts Q4, price changes
∆P (i−1)

t of the preceding contracts Q3 exhibit the largest impact. Hence 15-minute contracts
within the same hour are the most important price drivers. In hour H18, the coefficients of
∆P (i−2)

t , . . . ,∆P (i+2)
t are rarely statistically significant.

The coefficients of the intraday auction price PAuc are not significant for all contracts and
regimes. This is not surprising since PAuc can merely be considered as an estimate of the initial
price of a 15-minute contract in the continuous trading. Thus it is not expected that PAuc

affects continuous trading beyond the first price.
In hour H13, the coefficients of trading volume Vt are only significant in the steep merit-order

regime for contracts Q1, Q3, Q4. Independent of the regime, they are negative for Q1 and
Q2 and positive for Q3 and Q4. This sign profile illustrates the joint hourly seasonality of

4The terms nearest and next-nearest neighbors are motivated from physics where a nearest- and next-nearest-
neighbor interaction exists.

17



intraday prices and volumes presented in Section 2.2: As more solar power is generated than
the hourly average in Q1 and Q2, there is sell pressure at the beginning of the hour and intraday
prices decrease. Conversely, buy pressure increases intraday prices at the end of the hour when
below-average solar power is produced. In hour H7, the coefficients of Vt are significant for all
contracts and regimes. For contracts Q1 and Q2 they are positive, whereas for Q3 and Q4 they
turn negative independent of the regime. Thereby the positive and negative coefficients reflect
buy and sell pressure in line with the hourly seasonality. In hour H18, the coefficients of Vt are
not significant. In general, we do not find an asymmetric adjustment of intraday price changes
∆Pt to trading volumes Vt.
Overall the coefficients of negative wind forecast changes ∆wnt are significant and negative

in the steep merit-order regime for all contracts. The negative sign is reasonable as electricity
prices should increase if less wind power is forecasted. In hour H13, the coefficients of positive
wind forecast changes ∆wpt are only significant and negative in the steep regime for Q1 and Q3.
In hour H7, the coefficients of ∆wpt are significant and negative in both regimes for Q1 and Q2,
while in hour H18, they are significant and negative in both regimes for Q3. No asymmetry in
the coefficients of wind forecast changes between the regimes is observed.
The coefficients of negative solar forecast changes ∆snt are significant and negative in the steep

merit-order regime, but not significant in the flat regime for contracts in hours H13 and H7. In
hour H18, the coefficients of ∆snt are significant in both regimes for Q3. In the steep regimes,
the coefficients of ∆snt are at least two times larger by absolute value than in the flat regimes.
This reflects the fact that renewable forecast changes affect electricity prices more severely in
the steep than in the flat merit-order regime. In hour H13, the coefficients of positive solar
forecast changes ∆spt are significant and negative in both regimes for contracts Q1–Q3. In hour
H7, the coefficients of ∆spt are significant and negative in both regimes for Q4, while in hour
H18, they are generally not significant. The negative sign is intuitive as a larger expectation of
solar power should decrease electricity prices.
Generally, renewable forecast changes are more significant in the steep than in the flat merit-

order regime. When the market is in the steep merit-order regime, market participants rely
on the use of more expensive power generation technologies, which sets additional pressure on
them to balance the volatile renewable energies on the intraday market.
Eventually, intraday trading of 15-minute contracts is driven by both trade and fundamental

data at noon, while trade data have a slight surplus importance. For morning and evening
contracts, however, intraday price changes are predominantly influenced by trade data.

5 Conclusion
This paper develops a fundamental price model for continuous intraday electricity markets of
15-minute contracts. We analyze a novel and unique data set of high-frequency transaction
data, fundamental supply and demand data, and intradaily updated forecasts of wind and solar
power generation. The nature of our data set allows the model specification to solely include
ex-ante market information.
We perform an empirical exploration of transaction prices and trading volumes of 15-minute

contracts. Empirical evidence suggests that, on average, transaction prices of 15-minute con-
tracts exhibit a sawtooth-shaped and trading volumes a U-shaped hourly seasonality. Moreover,
liquidity increases sharply within the last trading hour before gate closure. Our empirical anal-
ysis also indicates that renewable forecast updates are reflected in intraday prices within one
trading minute.
We refine the fundamental model by Kiesel and Paraschiv (2017) along three main dimensions

by incorporating: (i) the slope of the merit order curve, (ii) price changes of neighboring 15-
minute contracts, (iii) the 15-minute intraday auction price. We calibrate our fundamental
model to market data for a selection of morning, noon, and evening contracts. A threshold
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H13Q1

Regime 1 Regime 2

ξ ≤ 0.689∗∗ ξ > 0.689∗∗

Variable Estimate Std error Estimate Std error

Const −2.197 (1.598) −0.615 (0.886)
ξ 3.599 (2.597) 0.685 (1.025)
∆Pt−1 −0.388∗∗∗ (0.040) −0.339∗∗∗ (0.018)
∆Pt−2 −0.200∗∗∗ (0.029) −0.153∗∗∗ (0.015)
∆Pt−3 −0.136∗∗∗ (0.034) −0.090∗∗∗ (0.014)
∆P (i−2)

t 0.054∗∗ (0.025) 0.029∗∗ (0.010)
∆P (i−1)

t 0.092∗∗∗ (0.023) 0.067∗∗∗ (0.013)
∆P (i+1)

t 0.188∗∗∗ (0.035) 0.191∗∗∗ (0.015)
∆P (i+2)

t 0.076∗∗ (0.029) 0.040∗∗ (0.010)
PAuc 0.004 (0.014) 0.002 (0.006)
Vt −0.026 (0.006) −0.015∗∗∗ (0.003)
∆wnt −0.523 (0.376) −1.086∗∗∗ (0.201)
∆wpt −0.634 (0.371) −0.635∗∗ (0.243)
∆snt 0.729 (0.327) −1.531∗∗ (0.412)
∆spt −2.661∗∗ (0.449) −1.784∗∗∗ (0.386)
∆t 0.096 (0.029) 0.059∗∗∗ (0.016)

#Obs 3131 9922
R2

adj 0.236 0.227

H13Q2

Regime 1 Regime 2

ξ ≤ 1.115∗∗∗ ξ > 1.115∗∗∗

Variable Estimate Std error Estimate Std error

Const −0.449 (0.741) −0.171 (0.921)
ξ 1.352 (0.861) −0.109 (0.677)
∆Pt−1 −0.338∗∗∗ (0.029) −0.360∗∗∗ (0.024)
∆Pt−2 −0.181∗∗∗ (0.024) −0.147∗∗∗ (0.017)
∆Pt−3 −0.065∗ (0.023) −0.032 (0.021)
∆P (i−2)

t 0.093∗∗∗ (0.023) 0.076∗∗∗ (0.014)
∆P (i−1)

t 0.277∗∗∗ (0.030) 0.267∗∗∗ (0.022)
∆P (i+1)

t 0.150∗∗∗ (0.024) 0.177∗∗∗ (0.024)
∆P (i+2)

t 0.046 (0.027) 0.055∗∗∗ (0.017)
PAuc −0.015 (0.017) 0.008 (0.007)
Vt −0.021∗∗ (0.007) −0.003 (0.007)
∆wnt −0.828 (0.329) −0.960∗∗∗ (0.188)
∆wpt −0.527 (0.255) −0.069 (0.170)
∆snt −0.166 (0.444) −1.439∗∗∗ (0.289)
∆spt −2.230∗∗∗ (0.314) −1.064∗∗∗ (0.357)
∆t 0.019 (0.025) 0.024 (0.016)

#Obs 3742 8301
R2

adj 0.238 0.267

H13Q3

Regime 1 Regime 2

ξ ≤ 1.293∗∗∗ ξ > 1.293∗∗∗

Variable Estimate Std error Estimate Std error

Const −0.309 (0.414) −0.172 (0.816)
ξ 0.666 (0.598) 0.126 (0.546)
∆Pt−1 −0.309∗∗∗ (0.026) −0.321∗∗∗ (0.021)
∆Pt−2 −0.153∗∗ (0.025) −0.166∗∗∗ (0.019)
∆Pt−3 −0.059 (0.019) −0.083∗∗∗ (0.015)
∆P (i−2)

t 0.069 (0.021) 0.055∗∗∗ (0.015)
∆P (i−1)

t 0.121∗∗∗ (0.020) 0.199∗∗∗ (0.026)
∆P (i+1)

t 0.195∗∗∗ (0.026) 0.320∗∗∗ (0.026)
∆P (i+2)

t 0.063 (0.021) 0.043∗∗∗ (0.012)
PAuc −0.019 (0.019) −0.007 (0.007)
Vt 0.011 (0.006) 0.011∗∗ (0.004)
∆wnt −0.683 (0.303) −0.564∗∗∗ (0.175)
∆wpt −0.138 (0.202) −0.445∗ (0.204)
∆snt 0.093 (0.392) −1.737∗∗∗ (0.394)
∆spt −1.640∗∗∗ (0.303) −0.816∗ (0.403)
∆t −0.017 (0.022) 0.028 (0.019)

#Obs 4940 7876
R2

adj 0.174 0.296

H13Q4

Regime 1 Regime 2

ξ ≤ 1.605 ξ > 1.605

Variable Estimate Std error Estimate Std error

Const −0.982 (0.287) −0.780 (0.514)
ξ 0.638 (0.267) 0.097 (0.269)
∆Pt−1 −0.318∗∗∗ (0.023) −0.323∗∗∗ (0.019)
∆Pt−2 −0.160∗∗∗ (0.019) −0.162∗∗∗ (0.015)
∆Pt−3 −0.090∗∗∗ (0.016) −0.085∗∗∗ (0.017)
∆P (i−2)

t 0.054∗∗∗ (0.015) 0.078∗∗∗ (0.015)
∆P (i−1)

t 0.192∗∗∗ (0.021) 0.213∗∗∗ (0.017)
∆P (i+1)

t 0.116∗∗∗ (0.042) 0.053∗∗∗ (0.013)
∆P (i+2)

t 0.023 (0.016) 0.051∗∗ (0.014)
PAuc 0.004 (0.011) 0.010 (0.006)
Vt 0.012 (0.004) 0.012∗∗∗ (0.003)
∆wnt −1.469∗∗ (0.398) −1.017∗∗∗ (0.232)
∆wpt −0.259 (0.252) −0.543 (0.246)
∆snt −0.472 (0.360) −2.503∗∗∗ (0.433)
∆spt −1.056 (0.453) 0.254 (0.497)
∆t −0.041 (0.024) −0.037 (0.020)

#Obs 6367 8787
R2

adj 0.172 0.237
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 5: Estimation results of the extended fundamental model (2) for 15-minute contracts
H13Q1–4.
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H7Q1

Regime 1 Regime 2

ξ ≤ 0.700∗∗∗ ξ > 0.700∗∗∗

Variable Estimate Std error Estimate Std error

Const 2.642∗ (1.210) −0.384 (1.190)
ξ −6.105∗∗∗ (2.013) −0.383 (1.142)
∆Pt−1 −0.360∗∗∗ (0.033) −0.397∗∗∗ (0.023)
∆Pt−2 −0.189∗∗∗ (0.033) −0.187∗∗∗ (0.020)
∆Pt−3 −0.121∗∗∗ (0.030) −0.066∗∗∗ (0.018)
∆P (i−2)

t 0.020 (0.021) 0.026∗∗ (0.013)
∆P (i−1)

t 0.020 (0.024) 0.030∗∗ (0.014)
∆P (i+1)

t 0.171∗∗∗ (0.029) 0.102∗∗∗ (0.016)
∆P (i+2)

t 0.019 (0.024) 0.078∗∗∗ (0.015)
PAuc 0.014 (0.016) −0.008 (0.010)
Vt 0.041∗∗∗ (0.006) 0.038∗∗∗ (0.003)
∆wnt 0.094 (0.817) −1.216∗∗∗ (0.268)
∆wpt −1.313∗∗∗ (0.357) −0.649∗∗∗ (0.244)
∆snt 7.095 (4.622) −5.600 (3.885)
∆spt 0.149 (5.442) 6.780∗ (4.040)
∆t −0.087∗ (0.048) 0.081∗∗ (0.032)

#Obs 2898 7147
R2

adj 0.198 0.193

H7Q2

Regime 1 Regime 2

ξ ≤ 1.111∗∗∗ ξ > 1.111∗∗∗

Variable Estimate Std error Estimate Std error

Const 0.366 (0.939) −0.334 (0.981)
ξ −0.650 (1.156) −0.112 (0.605)
∆Pt−1 −0.349∗∗∗ (0.025) −0.329∗∗∗ (0.021)
∆Pt−2 −0.206∗∗∗ (0.025) −0.154∗∗∗ (0.017)
∆Pt−3 −0.117∗∗∗ (0.021) −0.094∗∗∗ (0.015)
∆P (i−2)

t 0.035 (0.020) 0.014 (0.014)
∆P (i−1)

t 0.263∗∗∗ (0.029) 0.140∗∗∗ (0.017)
∆P (i+1)

t 0.097∗∗∗ (0.025) 0.117∗∗∗ (0.019)
∆P (i+2)

t 0.077∗∗∗ (0.024) 0.082∗∗∗ (0.016)
PAuc −0.006 (0.017) −0.002 (0.013)
Vt 0.060∗∗∗ (0.012) 0.020∗∗ (0.008)
∆wnt 0.144 (0.438) −0.765∗∗∗ (0.208)
∆wpt −1.342∗∗∗ (0.403) −0.605∗∗ (0.290)
∆snt 0.629 (2.280) −9.681∗∗∗ (3.467)
∆spt −0.281 (3.216) 0.788 (2.152)
∆t −0.138∗∗∗ (0.040) 0.100∗∗∗ (0.029)

#Obs 2647 6346
R2

adj 0.265 0.169

H7Q3

Regime 1 Regime 2

ξ ≤ 1.403∗∗∗ ξ > 1.403∗∗∗

Variable Estimate Std error Estimate Std error

Const 0.448 (0.747) 0.211 (0.734)
ξ 0.210 (0.856) −0.170 (0.357)
∆Pt−1 −0.387∗∗∗ (0.025) −0.362∗∗∗ (0.028)
∆Pt−2 −0.192∗∗∗ (0.024) −0.180∗∗∗ (0.021)
∆Pt−3 −0.087∗∗∗ (0.022) −0.113∗∗∗ (0.019)
∆P (i−2)

t 0.042 (0.022) 0.056∗∗∗ (0.014)
∆P (i−1)

t 0.110∗∗∗ (0.022) 0.120∗∗∗ (0.015)
∆P (i+1)

t 0.260∗∗∗ (0.027) 0.189∗∗∗ (0.021)
∆P (i+2)

t 0.023 (0.025) 0.079∗∗ (0.031)
PAuc 0.001 (0.018) −0.002 (0.012)
Vt −0.032∗∗∗ (0.010) −0.020∗∗∗ (0.006)
∆wnt 0.222 (0.424) −0.632 (0.338)
∆wpt −0.634 (0.311) −0.224 (0.341)
∆snt 2.109 (1.908) −10.170∗∗ (4.036)
∆spt −1.478 (2.598) −2.136 (1.557)
∆t −0.131∗∗∗ (0.038) 0.120∗∗∗ (0.029)

#Obs 2694 6859
R2

adj 0.223 0.215

H7Q4

Regime 1 Regime 2

ξ ≤ 1.267∗∗∗ ξ > 1.267∗∗∗

Variable Estimate Std error Estimate Std error

Const −0.613 (0.853) 0.010 (0.511)
ξ 0.942 (0.948) −0.236 (0.264)
∆Pt−1 −0.373∗∗∗ (0.036) −0.342∗∗∗ (0.018)
∆Pt−2 −0.198∗∗∗ (0.033) −0.162∗∗∗ (0.016)
∆Pt−3 −0.078∗∗∗ (0.027) −0.068∗∗∗ (0.017)
∆P (i−2)

t 0.067∗∗∗ (0.025) 0.084∗∗∗ (0.011)
∆P (i−1)

t 0.206∗∗∗ (0.027) 0.186∗∗∗ (0.018)
∆P (i+1)

t 0.012 (0.031) 0.071∗∗∗ (0.016)
∆P (i+2)

t 0.034 (0.032) 0.058∗∗∗ (0.013)
PAuc 0.003 (0.015) 0.006 (0.009)
Vt −0.012∗ (0.006) −0.013∗∗∗ (0.003)
∆wnt 0.936 (0.772) −0.752∗∗ (0.348)
∆wpt −0.831∗∗ (0.370) −0.410 (0.325)
∆snt 2.750 (1.894) −8.485∗∗∗ (2.359)
∆spt −6.181∗∗ (2.845) −3.434∗∗ (1.600)
∆t −0.073 (0.047) 0.128∗∗∗ (0.028)

#Obs 2750 8731
R2

adj 0.219 0.197
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 6: Estimation results of the extended fundamental model (2) for 15-minute contracts
H7Q1–4.
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H18Q1

Regime 1 Regime 2

ξ ≤ 2.546 ξ > 2.546

Variable Estimate Std error Estimate Std error

Const 0.151 (0.252) 4.748 (3.304)
ξ 0.057 (0.140) −1.681 (1.240)
∆Pt−1 −0.289∗∗∗ (0.036) −0.433∗∗ (0.192)
∆Pt−2 −0.118∗∗∗ (0.021) −0.195 (0.181)
∆Pt−3 −0.013 (0.019) 0.053 (0.138)
∆P (i−2)

t −0.003 (0.009) 0.018 (0.031)
∆P (i−1)

t −0.001 (0.007) −0.004 (0.019)
∆P (i+1)

t 0.033∗∗∗ (0.008) −0.034 (0.037)
∆P (i+2)

t 0.009 (0.009) −0.041 (0.030)
PAuc 0.003 (0.005) 0.005 (0.017)
Vt −0.005∗ (0.003) 0.000 (0.006)
∆wnt −1.739∗∗ (0.367) −0.839 (0.958)
∆wpt −0.619 (0.586) −1.898∗∗ (0.873)
∆snt −2.231 (1.312) 2.510 (2.471)
∆spt −4.121∗∗∗ (1.092) 1.312 (1.800)
∆t −0.054∗∗∗ (0.016) −0.040 (0.039)

#Obs 10 142 2051
R2

adj 0.114 0.190

H18Q2

Regime 1 Regime 2

ξ ≤ 1.906∗ ξ > 1.906∗

Variable Estimate Std error Estimate Std error

Const −0.002 (0.325) −0.849 (12.290)
ξ 0.120 (0.250) 0.335 ( 6.205)
∆Pt−1 −0.323∗∗∗ (0.016) −0.166∗∗∗ ( 0.051)
∆Pt−2 −0.127∗∗∗ (0.014) −0.022 ( 0.043)
∆Pt−3 −0.055∗∗∗ (0.012) 0.024 ( 0.041)
∆P (i−2)

t 0.001 (0.006) −0.024 ( 0.022)
∆P (i−1)

t 0.026∗∗∗ (0.008) 0.038 ( 0.034)
∆P (i+1)

t 0.013 (0.010) −0.059∗ ( 0.028)
∆P (i+2)

t 0.004 (0.009) 0.028 ( 0.024)
PAuc −0.004 (0.007) 0.007 ( 0.028)
Vt 0.006 (0.005) −0.004 ( 0.021)
∆wnt −0.128 (0.487) −4.932∗∗∗ ( 0.561)
∆wpt −1.336∗∗∗ (0.504) 1.578 ( 1.746)
∆snt −1.679 (1.292) 7.481∗∗∗ ( 1.150)
∆spt −1.038 (1.264) 0.245 ( 1.746)
∆t −0.011 (0.014) −0.099∗∗ ( 0.040)

#Obs 10 072 573
R2

adj 0.119 0.172

H18Q3

Regime 1 Regime 2

ξ ≤ 1.015 ξ > 1.015

Variable Estimate Std error Estimate Std error

Const −1.187 (0.645) −2.340 (9.064)
ξ 0.962 (0.822) 2.419 (8.660)
∆Pt−1 −0.311∗∗∗ (0.017) −0.306∗∗∗ (0.034)
∆Pt−2 −0.143∗∗∗ (0.016) −0.120∗∗ (0.027)
∆Pt−3 −0.040∗∗∗ (0.012) −0.043 (0.024)
∆P (i−2)

t 0.015 (0.008) −0.007 (0.008)
∆P (i−1)

t 0.007 (0.009) −0.020 (0.013)
∆P (i+1)

t 0.018∗ (0.010) 0.045 (0.018)
∆P (i+2)

t 0.001 (0.004) 0.020 (0.017)
PAuc 0.004 (0.009) −0.003 (0.014)
Vt 0.009 (0.007) −0.015 (0.009)
∆wnt −0.185 (0.295) −2.401∗∗ (0.736)
∆wpt −1.249∗ (0.632) −2.795∗∗ (1.167)
∆snt −4.361∗∗ (1.654) 9.316∗∗∗ (1.459)
∆spt 3.529 (3.289) −11.441∗∗∗ (2.688)
∆t 0.011 (0.017) 0.021 (0.030)

#Obs 9032 1962
R2

adj 0.112 0.139

H18Q4

Regime 1 Regime 2

ξ ≤ 0.632 ξ > 0.632

Variable Estimate Std error Estimate Std error

Const −0.915 (1.402) −2.113 (2.030)
ξ 1.327 (2.497) 1.724 (3.016)
∆Pt−1 −0.303∗∗∗ (0.023) −0.334∗∗ (0.045)
∆Pt−2 −0.152∗∗∗ (0.020) −0.107 (0.032)
∆Pt−3 −0.012 (0.017) −0.081 (0.030)
∆P (i−2)

t 0.000 (0.010) −0.011 (0.011)
∆P (i−1)

t 0.015 (0.010) 0.044 (0.011)
∆P (i+1)

t −0.007 (0.009) 0.008 (0.004)
∆P (i+2)

t 0.000 (0.008) 0.011 (0.010)
PAuc 0.005 (0.009) 0.013 (0.007)
Vt 0.000 (0.003) 0.003 (0.003)
∆wnt −1.039 (0.697) −2.175 (1.211)
∆wpt −0.437 (1.036) −0.227 (0.349)
∆snt 0.518 (2.192) 0.410 (3.086)
∆spt −2.144 (1.708) −5.344 (2.861)
∆t −0.024 (0.020) 0.034 (0.021)

#Obs 5835 7270
R2

adj 0.113 0.134
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 7: Estimation results of the extended fundamental model (2) for 15-minute contracts
H18Q1–4.
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regression model is used to examine how 15-minute intraday trading depends on the slope of
the merit order curve.
Our estimation results reveal that autoregressive price changes up to the third order are highly

statistically significant and negative, independent of the time of day. This behavior provides
clear evidence of mean reversion in the price formation mechanism of 15-minute contracts.
Additionally, price changes of neighboring contracts exhibit strong explanatory power and a
positive impact on price changes of a given 15-minute contract. We observe an asymmetric
effect of positive and negative renewable forecast changes on intraday prices depending on
the merit-order-curve slope: Renewable forecasts affect electricity prices more severely in the
steep than in the flat merit-order regime. In general, renewable forecast changes have a higher
explanatory power for pricing noon than morning and evening contracts, but price information
is the key driver of 15-minute intraday trading. Overall, we conclude that the importance of
influencing factors on the intraday electricity market has changed from fundamental towards
trade-related factors.
As our fundamental model exclusively involves ex-ante knowledge, it allows to develop trading

strategies for intraday electricity markets, tailor-made for each contract. Furthermore, it helps
to design forecasting models for single intraday transaction prices in the continuous trading
– to our knowledge, an unexplored territory of scientific research hitherto. Moreover, our
article provides a valuable step towards the optimization of the bidding behavior on intraday
markets. Eventually, our insights should prove useful to energy companies within the process
of automating intraday electricity trading.
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Appendices
A Data
We provide a summary of explanatory variables, granularities, detailed descriptions and data
sources in Table 8.

References
Burger, M., Klar, B., Müller, A., and Schindlmayr, G. (2004). A spot market model for pricing
derivatives in electricity markets. Quantitative Finance, 4(1):109–122.

EPEX SPOT SE (2015). Press release: EPEX SPOT and ECC to reduce intraday lead time
on all markets. https://www.epexspot.com/document/32479/2015-06-16_EPEX%20SPOT_
Lead%20time%20reduction_E-D-F.pdf. (Accessed on Mar 1, 2019).

EPEX SPOT SE (2017). Press release: Exchange Council approves the introduction of 15-
minute contracts on the Belgian and Dutch market – Trading until delivery to be launched

22

https://cityxchange.eu/
https://www.epexspot.com/document/32479/2015-06-16_EPEX%20SPOT_Lead%20time%20reduction_E-D-F.pdf
https://www.epexspot.com/document/32479/2015-06-16_EPEX%20SPOT_Lead%20time%20reduction_E-D-F.pdf


Variable [Unit]
(Granularity)

Description Source

Transaction
price Pt
[EUR/MWh]
(up to 1-minute)

Transaction price of 15-minute con-
tracts traded on the German con-
tinuous intraday power market at
EPEX SPOT SE

European Energy Exchange AG
(2016b)

Trading volume
Vt [MW]
(up to 1-minute)

Trading volume of 15-minute con-
tracts traded on the German con-
tinuous intraday power market at
EPEX SPOT SE

European Energy Exchange AG
(2016b)

Auction price
PAuc [EUR/MWh]
(quarter-hourly)

Market clearing price of 15-minute
contracts traded in the German 15-
minute intraday auction at EPEX
SPOT SE

European Energy Exchange AG
(2016c)

Wind power
forecast wt [GW]
(quarter-hourly)

Intradaily updated forecast of wind
power generation for each quarter-
hour on the delivery day in Germany

EWE TRADING GmbH (2016)

Solar power
forecast st [GW]
(quarter-hourly)

Intradaily updated forecast of solar
power generation for each quarter-
hour on the delivery day in Germany

EWE TRADING GmbH (2016)

Expected de-
mand l [GW]
(quarter-hourly)

Day-ahead total load forecast for
each quarter-hour on the delivery
day in Germany (published: daily at
10 AM)

European Network of Transmis-
sion System Operators for Elec-
tricity Transparency Platform
(2016)

Expected con-
ventional capac-
ity c [GW]
(daily)

Expected daily average of available
generation capacity of conventional
power plants on the delivery day
in Germany (published: daily at 10
AM)

European Energy Exchange AG
Transparency Platform (2016)

Table 8: Summary of explanatory variables, granularities, detailed descriptions and data
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