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By means of a particle model that includes interactions only via the local particle
concentration, we show that hyperballistic diffusion may result. This is done by findng
the exact solution of the corresponding non-linear diffusion equation, as well as by particle
simulations. The connection between these levels of description is provided by the Fokker-
Planck equation describing the particle dynamics. PACS numbers:
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I INTRODUCTION

Superdiffusion is characterized by the fact that the root mean square displacement of some kind of
particles, increases with time t as rrms ∼ tτ with the exponent τ > 1/2, the normal diffusion value being
τ � 1/2. This behavior may arise in physical, biological or geological systems; examples include Levy
flights [1, 2], particle motion in random potentials or the seemingly random paths of objects moving
in turbulent flows [3, 4].

Biological examples may be found in the foraging movement of spider monkeys [5] and the flight
paths of albatrosses [6, 7]; in both cases τ ≈ 0.85. These movements are Levy walks, which are
random walks of uncorrelated steps of length δx, that take their value from a distribution
p(δx) ∼ 1/δxμ+1. They result in superdiffusive behavior with rrms ∼ t2/μ when 0< μ< 4 [1].

However, the mere observation that the step length distribution has a fat tail, does not by itself
provide any physical model to explain the superdiffusive behavior. The simplest physical example of
superdiffusion is perhaps provided by the undamped Langevin equation which describes a random
walk in momentum space and a corresponding real space displacement with τ � 3/2 [8]. This kind of
behavior is termed hyperballistic as τ > 1. Quantum- or classical particles in random potentials
behave much like those described by the undamped Langevin equation, and yield hyperballistic
diffusion with τ � 3/2 [8] too, though Golubovic et al. [9] studied a case where τ � 9/8. In optical
experiments [10, 11] where the spatial coordinate in the direction of the light plays the role of the
time coordinate, hyperballistic spreading has been observed as well. This effect is linked to Anderson
localization [12], and comes from a transition where the light modifies its mean free path as it passes
through the medium.

Anomalous diffusion of the subdiffusive kind has been studied in a wide range of contexts: It may
be observed in compressible gases flowing through porous media [13, 14], a pulse of energy
propagating in vacuum [15], or in filtration processes [16]. Another example is heat diffusion at high
temperature [17, 18]. Population dynamics gives rise to this kind of behavior [19–21], as does water
ingress in zeolites as studied by Azevedo et al. [22, 23] and Fischer et al. [24]. The diffusion of grains
in granular media considered by Christov and Stone [25] is yet another example. Pritchard et al., [26]
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studied gravity-driven fluid flow in layered porous media finding
that the fluid motion could be described by a concentration-
dependent diffusivity as did Hansen et al. [27] for the spreading of
wetting films in wedges. Anomalous diffusion in random
geometries, fractals and tree-like structures has been studied
for decades [28–32]. Common to all of these examples is
subdiffusion, τ < 1/2

Hyperballistic diffusion seems almost a contradiction in terms,
for how could a random walker move faster than a directed
walker that never changes direction? The explanation lies in the
fact that the velocity, and thus the step length, keeps increasing
with time without limits. This behavior is of course unphysical in
the context of the Langevin equation as there will always be
dissipative forces that match the fluctuations, but has a physical
basis in random potentials. On the other hand, in a
hydrodynamic shear-flow that increases without bounds, a
random walker will achieve step-lengths that are umlimited
too [33, 34], an effect that may give rise to hyper-ballistic
diffusion. Without diverging velocities or step lengths, long
range time-correlations are required for superdiffusion, an
example being the elephant random walk, so named because
both the walkers and elephants have long memories, which in the
model give rise to (sub-ballistic) superdiffusion [35].

Generally, superdiffusion has been modeled by independent
agents interacting with an environment, or possessing a long term
memory [36]. The main question of the present article is if
superdiffusion, including the hyperballistic case, could result
directly from a Markovian description of particle interactions.
Such interactive systems could include crowds of people, bacteria
swimmers competing for food [37, 38] or the evolution of the
porosity in a granular packing. For the purpose of addressing this
question we investigate the potentially simplest description of
particle interactions, namely, that where a conserved
concentration C of particles is governed by Ficks law
j � −D(C)∇C. Here the C-dependence in D reflects interactions
between the particles; in many cases of interest these interactions are
well captured by this type of mean field description.

II SOLUTION TO THE NON-LINEAR
DIFFUSION EQUATION

Already in 1959 did Pattle [39] solve the diffusion equation

z

zt
C(r, t) � ∇ · (D(C)∇C(r, t)) , (1)

where C � C(r, t) is the concentration and D is given by the
power law D � D0(C(r, t)/C0)− c where C0 is a constant reference
concentration,D0 is the diffusivity at that reference value, and the
exponent c< 0. Pattle found the root mean square displacement
rrms(t) ∼ tτ with

τ � 1
2 − dc

, (2)

where d is the dimension. For negative c this will always lead to
sub-diffusion. We have recently shown that in d � 1 there are

exact solutions with positive c as well [40], which still satisfy Eq.
2, thus yielding superdiffusion with 1/2< τ < 1 as c< 1 always. In
the present article we take this result further by deriving the
solution for C(r, t) and rrms(t) for c> 0 in any dimension. When
d ≥ 2 the corresponding exponent t will then take on any value,
including those of the hyperballistic regime, implying that
hyperballistic diffusion is a higher-dimensional effect. We coin
the term “explosive” for the corresponding time dependence of
C(r, t) because the decay of an intially localized C-profile is
qualitatively faster than normal diffusive, or even
superdiffusive, decay.

To validate the mean field description and provide it with a
physical basis, we introduce a particle model that is described by
Eq. 1. The step lengths in this model ∼ C−c/2, and therefore
correspond to velocities that diverge as C→ 0. This would
correspond to an unlimited access to thermal energy.
However, unlike the Langevin equation where τ � 3/2 [8], this
model can produce any τ-value.

Following the same lines as in [40] we rewrite Eq. 1 as

1 − c

D0C
c
0

z

zt
C(r, t) � ∇2C(r, t)1− c . (3)

Hence, we see that we need c< 1 for the equation to be defined
when C(r, t) � 0. The initial condition at t � 0 is a point source
pulse containing Np particles, C(r, 0) � Npδ(r). This means that
there is no intrinsic length- or time scale in the problem, and the
particle number N(r, t) inside a radius r should satisfy the scale
invariance condition N(r, t) � N(λr, h(λ)t) for some h(λ).
Differentiating this equation with respect to r, using the fact
that dN(r, t)∝C(r, t)rd−1dr leads to the scaling relation

C(r, t) � λdC(λr, h(λ)t). (4)

We are free to chose λ such that h(λ)t � 1, that is by requiring
that λ(t) � h−1(1/t) � 1/f (t) where for simplicity, we have
introduced the function f (t), and

C(r, t) � 1

f (t)d C( r
f (t), 1) � 1

f (t)d p(y) , (5)

where we have introduced p(y) ≡ C(y, 1) and the reduced
variable y � r/f (t). Inserting Eq. 5 in Eq. 3 yields

c − 1
D0C

c
0(2 − dc) df (t)2− dc

dt
�

d
dy (yd−1 d

dy p(y)1− c)
d
dyy

dp(y) � c , (6)

for some dimensionless constant c, which can be absorbed in the
definition of f (t). The point-like initial condition, implies
f (0) � 0, and the left hand side of Eq. 6 can be easily
integrated to give

f (t) � (2 − dc
1 − c

D0C
c
0 t) 1

2− dc

. (7)

Note That This Form Immediately Gives

r2rms �
∫ 
drrd+1C(r, t)∫ 
drrd− 1C(r, t) ∼ t2τ . (8)
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with τ given by Eq. 2.
From Eq. 6, we also have an expression for p(y),

d
dy

(ydp(y)) � − d
dy

(yd− 1 d
dy

p(y)1−c) , (9)

which can be integrated to give,

yp(y) + d
dy

p(y)1− c � K . (10)

For Fick’s law to be valid throughout the domain, C(r, t), and
therefore, p(y), must be differentiable everywhere when t > 0. To
avoid a spike at the origin we must have p′(0) � 0 and also a finite
p(0), which implies that K � 0. So, Eq. 10 may be integrated to
yield

p(y) � [ c

2(1 − c)y2 + k]− 1
c

(11)

where k is an integration constant. This expression is independent
of the dimension d. The value of the constant k can be determined
through the normalization, ∫

dVC(r, t) � Np, which gives

k � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Np( c

2π(1 − c))
d
2 Γ(1

c)
Γ(1

c
− d

2)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2c
dc−2

, (12)

and yields the concentration field by means of Eq. 5; 11. The
mean square displacement is given by

r2rms �
dπ

d
2k

d
2+1−1c

2Np

Γ(1
c
− d

2 − 1)
Γ(1

c) (2(1 − c)
c

)d
2+1
f 2(t), (13)

which is limited to the range of c-values where the integrals in
Eq. 8 converge. Since rd+1C(r, t) ∼ rd+1−2/c for large r this
range is 0< c< 2/(d + 2). However, in any particle
simulation there will always be a largest particle position
rmax that will act as a cut-off. This means that the t2τ factor in
r2rms survives, but that its prefactor will fluctuate with the rmax

value. The behavior with different d and γ is summarized in
Table 1.

Interestingly, there exists an alternative route to the
solution given in Eq. 5; 11: Working in d � 1 Plastino and
Plastino [41] showed that by adding a drift term to Eq. 1 that
corresponds to the force from a harmonic potential, a
stationary solution could be found. Using the anzats that
the full time-dependent solution has that same structure as
the stationary one, only with time-dependent coefficients, the
structure of Eq. 5; 11 is established. Later, Tsallis and
Bukman [42] established the full analytic solution to this
problem, which structurally reduces to Eq. 5; 11 as the
strength of the potential is taken to zero.

III PARTICLE MODEL THAT REALIZES THE
NON-LINEAR DIFFUSION EQUATION

We will employ two simulation models, both in d � 3 with Np

random walkers, labeled i, that have positions ri → ri + δri. The
particles interact only via the value of C, which is the local
population density. The steps are chosen isotropically at each
time step; to find their length we need to derive the appropriate
Fokker-Planck equation andmatch it to Eq. 3. For every time step
Δt the walkers move

δriα � ηg(C(ri))
��
Δt

√
(14)

where α is a Cartesian index and the function g(C) is to be
determined. This defines a Wiener process with η as a random
variable with 〈η〉 � 0 and 〈η2〉 � 1. Now, following the same
steps as in [40, 43] we use the standard Chapman-Kolmogorov, or
master equation, to derive the following Fokker-Planck equation
for the particle concentration C(r, t)

zC(r, t)
zt

� 1
2
∇2(a2(r)C(r, t)) . (15)

Here a2(r) is the mean squared jump length per time,

TABLE 1 | Behavior with γ in various dimensions d as predicted by Eq. 2.

τ > 1 rrms Prediction converges C Is normalizable

d � 1 Never c<2/3 All c<1
d � 2 c>1/2 c<1/2 All c<1
d � 3 c>1/3 c<2/5 c< 2/3

FIGURE 1 | (A) Simulations of rrms compared to the theoretical values of
Eq. 13 for the finite-interaction range model using Np � 106 particles
and D0 � 1. (B) rrms resulting from the infinite-interaction range model using
Np � 1500 particles. The solid lines show the predicted slope of Eq. 2.
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a2(r) � ∫ 

d3x
x2

3
W(r, x) � 1

3
〈δr2〉
Δt � g(C)2 , (16)

whereW(r, x) is the probability per unit time that a walker jumps
a distance x from r. Setting g(C) � bC−c/2 gives

zC
zt

� b2

2
∇2C1−c , (17)

FIGURE 2 | The sphere of volume Vr containing the Nr � 10 particles
that defines the local concentration for the central particle.

FIGURE 3 | The predicted/theoretical concentration field at different
γ-values when D0 � 1 and t � 10. The black curves show Pattles [39] solution
for c � −0.1,−0.2,−0.4,−0.5.

FIGURE 4 | Projections into the xy-plane of particle trajectories for
different values of γ, using the infinite-interaction-rangemodel. The last 10 time
steps are shown in black the last step in red. All simulations are run for a time
t � 10 with Np � 500 particles, dt � 1/Nc

P , and D0 � 1.
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and requiring equivalence with Eq. 3 thus implies that
b2 � 2D0/(C−c

0 (1 − c)). This leads to the step

δrα � η

������
2D0Δt(1 − c)

√ (C(r, t)
C0

)− c/2
(18)

where the random variable η is given above.

,

This defines the
particle model that is described by Eq. 3.

In the finite interaction range model C is calculated by
assuming a maximum interaction range Δx between particles.
This is done by calculating C onto a lattice with lattice constant
Δx: The local value C(rn, t) at the discrete site rn is simply 1/Δxd
times the number of particles at positions xi that satisfy
|xiα − xnα|<Δx/2. The step length for a particle that is located
at x depends on the C-value at the nearest lattice site. The finite
interaction range of this model has a discretization effect: Once C
is so small that there is only one- or zero particles in each Δx cell,
the step length will always be the same, and as a result, there will
be a cross-over to normal rrms ∼ t1/2 diffusion, an effect that is
observed in the c � 0.35 curve of Figure 1A.

The other, infinite interaction range model employs no lattice
at all, but evaluates C at any particle position x as C(x, t) �
Nr/Vr(x) where Nr ∼ 10 is a fixed particle number and Vr(x) is
the volume of the sphere that contains Nr nearest neighbors, as
illustrated by Figure 2 in the d � 2 case with Nr � 10.

There is no upper limit to the size of Vr(x), and it is in this
sense that the model has a potentially infinite interaction range.
When c≠ 0 this model will never cross over to normal diffusive
behavior. A somewhat similar particle, but one-dimensional,
particle model was introduced by Borland [44], who in stead
of calculating the local C-value from the neighboring particles,
employed the analytical solution for C.

In Figure 3 the analytic solution of Eq. 11 is plotted for
different c-values. The term “explosive” seems an appropriate
label for the behavior of the concentration for two reasons: First,
as c→ 1/2 close to the critical value of 2/3, the initial
concentration C(0, 0) drops by more than 10 orders of
magnitude in the same time that the negative γ solutions
(taken from Pattle [39]), drop by less than two orders. Second,
the divergence of the integral in Eq. 8 defining rrms(t) signals a
cross-over to a regime where the break-away particles dominate
the rrms(t) behavior at ever increasing step lengths.

Figure 4 show simulations using dimensionless spatial and
time coordinates. If units were assigned to them the background
diffusivity D0 would have dimension length2/time as usual. The
time step dt � 1/Nc

p is chosen in order to avoid significant
changes in the local concentration from time-step to time-
step. Note the increasing presence of particles that separate
from the main crowd as γ is increased.

In Figure 5 the data collapse anticipated in Eq. 5 is seen to be
satisfied. Figures 1A,B demonstrate that the particle displacement
is in fact characterized by Eq. 13, the difference between Figures
1A,B, being that the first figure compares simulations and the full
analytic prediction of Eq. 13, while the hyperballistic transport
shown in Figures 1B, only confirms the prediction of the τ

FIGURE 5 | Simulations, sampled at equispaced time intervals (the
stapled curve shows the first time) using c � 0.4 and the finite-interaction
range model. The curves show p(y) � C(r, t)f3(t) as a function of y � r/f(t)
compared to theory (red curve) of Eq. 11 and Eq. 12.

FIGURE 6 | Simulation results for τ using the finite range (Δx � 1)model
for c≤ 0.6 (black symbols), and the infinite-range model for c � 0.35 − 0.6 (red
symbols). The full line is the theoretical values.
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exponent, Eq. 2. Note that in Figures 1A the convergence to the
prediction of Eq. 13, happens over a time that increases with γ,
signaling the end of the regime where rrms(t) has an exact
analytical expression.

Figure 6 summarizes this comparison for the full range of
relevant γ-values, using the finite-range model for the smaller- and
the infinite range model for the larger c-values.

IV CONCLUSION

In conclusion, we have shown that particle interactions described
entirely in terms of their local concentration may yield

superdiffusion, and even hyperballistic diffusion. This was
done by solving the diffusion equation with the diffusivity
D ∼ C−c exactly. The particle interactions were described in
terms of this concentration dependence alone. Unlike earlier
solutions [42, 44] in d � 1 the present solutions yield hyper-
ballistic diffusion. In d � 3 (d � 2) this happens when
c> 1/3 (1/2). The 3-dimensional particle model that was
introduced as a realization of this diffusion equation was
found to reproduce the exact solution for a range of γ-values,
and also the predicted root-mean-square displacement in the
range of γ values where this prediction is finite. Notably, also
outside this range (c> 0.4) did the particle simulation confirm the
predicted diffusion exponent.
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APPENDIX

In Pattles classical 1959 paper [39] the c< 0 solution of Eq. 1
is not actually derived, but only written down. So, for
completeness we derive it here along the same lines as
those leading up to Eq. 11. In the solutions thus derived
C(r, t) has a final support outside which it is strictly zero. For
any γ the normalization

Cd∫  ∞

0
dr rd−1C(r, t) � Cd∫ ∞

0
dy yd−1p(y) � Np , (19)

where we have used the isotropic nature of the problem to
perform the angular integration and thus introduced the
geometric factor Cd � 1, 2π, 4π when d � 1, 2, 3.

We see from Eq. 11 that, for c< 0, the domain of the
probability density, p(y), is limited to y < yc �

����������
2k(c − 1)/c√

,
so that the normalization condition is

∫ yc

0
dy yd−1p(y) � Np

Cd
. (20)

yielding the normalization constant

k � ⎡⎢⎢⎣Np( c

2π(c − 1))
d
2 Γ(d

2 + 1 − 1
c)

Γ(1 − 1
c) ⎤⎥⎥⎦ 2c

dc−2

, (21)

for c< 0.

We now combine results, using Eqs. 5, 7; 11. to find the
concentration field, C(r, t)

C(r, t) � Θ(rc − r)(2 − dc
1 − c

D0C
c
0 t)− d

2− dc⎡⎢⎣k − c

2(c − 1) (2 − dc
1 − c

D0C
c
0 t)− 2

2− dc
r2⎤⎥⎦− 1

c

, (22)

where

rc � (2k(c − 1)
c

)1
2(2 − dc

1 − c
D0C

c
0 t) 1

2− dc

, (23)

By comparison, for c> 0 we have

C(r, t) � (2 − dc
1 − c

D0C
c
0 t)− d

2− c⎡⎢⎣ c

2(1 − c) (2 − dc
1 − c

D0C
c
0 t)− 2

2− dc

r2 + k⎤⎥⎦− 1
c

, (24)

with k given by Eq. 12 now. Finally we find that for c< 0, r2rms �
At2τ with

A � π
d
2

Np
k
d
2+1−1cd

2

Γ(1 − 1
c)

Γ(d
2 + 2 − 1

c)(2(c − 1)
c

)d
2+1(2 − dc

1 − c
D0C

c
0) 2

2− dc

.

(25)

In Figure 7 this behavior is confirmed by simulations using the
finite-range model.
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