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Metodiske fremskritt for kvantifisering av kroppsbevegelse og
samtidig målt hjerneaktivitet ved bruk av exergames

Økt andel eldre i befolkningen kombinert med en prognostisert ned-gang i antall helsepersonell nødvendiggjør økt bruk og utvikling av tek-nologiske løsninger for å begrense funksjonssvikt hos eldremennesker.Exergames har vist seg å ha stort potensiale både som generell treningog etter en sykdom eller skade for å forbedre både fysisk og kogni-tiv funksjon. Imidlertid har det vært lite oppmerksomhet rundt spesi-fikasjoner ombevegelser og hjerneaktivitet som fremkalles under exer-gaming, hvordandisse påvirkes av exergame innstillinger og ikkeminst,hvordan man samtidig måler og behandler bevegelse og hjerneaktiv-itet. Målet med denne avhandlingen er å bidra til utvikling av exer-games som et verktøy for trening og rehabilitering ved å undersøkeeffekten av spillinnstillinger på bevegelsesegenskaper og kortikal ak-tivitet, og bevegelsesoppgave på automatisert EEG-artifakt forbehan-dling.
Resultatene viser at spillinnstillinger i exergames påvirker både hjerne-aktivitet og bevegelsesmønster hos spilleren, og dette kan enten værepositivt eller negativt for de ønskede treningseffektene. Derfor er detnødvendig å velge exergames med innstillinger som passer best foren spiller for å sikre maksimal effektivitet av et exergame. Videre ersamtidig måling av kortikal aktivitet under exergaming mulig, til trossfor tilstedeværelsen av bevegelsesartifakter. Rengjøring av EEG medartifact subspace reconstruction var best i den mest bevegelsesinten-sive oppgaven, noe som indikerte anvendbarheten for bruken i EEGsamlet under exergaming. Disse resultatene baner vei for framtidigutvikling og bruk av avanserte EEG målinger som muliggjør analyseav kortikal aktivitet også i bevegelsesintensive exergames. Den resul-terende kunnskapen kan bidra til fortsatt utvikling av mer målrettedeog effektive exergames og gjøre det mulig for fremtidige studier å un-dersøke bevegelseskarakteristikker og hjerneaktivitet samtidig.
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Tilknytning Institutt for nevromedisin og bevegelsesvitenskap
Hovedveileder Beatrix Vereijken
Biveiledere Nina Skjæret-Maroni og Anton Shiriaev
Finanseringkilde Strategic Research Areas 2014-2023 NTNU Health

Ovennevnte avhandling er funnet verdig til å forsvares offentlig forgraded PhD i medisinsk teknologi.
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Abstract

The aging population and a projected decline in the number of healthcare per-sonnel necessitate the development and increased use of health technologyto halt or delay functional decline in older adults connected to aging. Exer-games in particular show great promise in both exercise and clinical contextsto train and improve both physical and cognitive function. However, there hasbeen little attention to the specifics of movements and brain activity elicitedduring exergaming, how these are influenced by exergame settings and notin the least, how to concurrently measure and process movement and brainactivity. The aim of this dissertation is to contribute to the development ofexergames as a tool for training and rehabilitation by investigating the ef-fect of game settings on movement characteristics and cortical activity, andof movement task on automated EEG cleaning performance.
Paper I investigated how two key game elements, game speed and the pres-ence of obstacles, influence movement characteristics in 15 older adults play-ing a step-based balance training exergame. The task consisted of movingsideways to catch falling grapes and to avoid obstacles (falling branches), ifpresent. Occasionally appearing chickens were caught by raising at least onearm over the head. Participants played the game for eight 2 min trials in to-tal, at two speed settings and with or without obstacles. The 3D position of22 retroreflective markers fixed to anatomical landmarks was captured us-ing amotion capturing system. Calculatedmovement characteristics includedstep size, step frequency, single leg support, arm lift frequency, and horizon-tal trunk displacement. An increase in game speed resulted in a decrease inmean single support time, step size, and arm lift frequency, and an increasein cadence, game score, and number of error messages. The presence ofobstacles resulted in a decrease in single support ratio, step size, cadence,frequency of arm lifts, and game score. Furthermore, an increase in step sizefrom the first to the second trial repetition was observed. These results showthat both game speed and the presence of obstacles altered movement char-acteristics with some changes considered beneficial and others detrimental
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for the effectiveness of balance training.
Paper II aimed to assess whether concurrent electrophysiological measure-ments during exergaming are feasible and if so, whether cortical activitychanges with additional cognitive elements. Twenty-four young adults firstperformed self-paced sideways leaning movements, directly followed by twoblocks of exergames inwhich the samemovement as inputwas used. The taskof the exergamewas to complete a 5by 5puzzlematrix. Puzzle pieceswere se-lected by leaning towards them. The exergames were played in two difficultylevels. At the easy level, only the correct piece was shown, while two pieceswere presented for the more difficult level. Brain activity was recorded usinga 64-channel passive EEG system. Results showed that it is feasible to recordbrain activity in young adults while playing exergames. Five spatially differentclusters of independent components were identified located frontal, bilateralcentral, and bilateral parietal. Significantly higher absolute theta power in themore difficult exergaming condition was found compared to the easy leveland the self-paced movement. Both central clusters showed a significant in-crease in absolute alpha-2 power in the exergaming conditions compared tothe self-paced movements.
In Paper III, the effect of task on the EEG artifact removal abilities of artifactsubspace reconstruction was assessed. Using state-of-the art preprocessingalgorithms is a precondition for artifact contaminated EEG recorded duringmore movement intensive exergames. However, the effect of the task onartifact subspace reconstruction has not yet been assessed. EEG recordedduring three tasks was preprocessed manually and by the use of artifact sub-space reconstruction using 10 cut-off parameters, which can determine therigor of the artifact reconstruction. The mean cut-off parameter equivalentto the ratio of EEG removed in manual cleaning was strictest for the walk-ing task. Quality indexes of independent components which give informationabout the repeatability of independent component decompositionswere bestfor the walking and worst for the single-leg stance task across all cut-off pa-rameters. Furthermore, quality indexes of independent components reacheda maximum plateau for cut-off parameters of 10 and higher. Dipolarity waslargely unaffected by the choice of the cut-off parameter. The number of inde-pendent components within each task remained constant, regardless of thecut-off parameter used. Surprisingly, ASR performed better in motor taskscompared to non-movement tasks. Furthermore, there was no benefit of us-ing cut-off parameters less than 10.
The combined results of these papers show that game settings in exergamesinfluence both brain activity andmovement characteristics of the players, andthis can be either beneficial or detrimental to the desired training effects.
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Therefore, an informed approach is needed in order to achieve the intendedbenefit and effectiveness when choosing specific game settings in an exer-game. Furthermore, simultaneousmeasurement of cortical activitywhile exer-gaming is possible, despite the presence of movement artifacts. The cleaningperformance of artifact subspace reconstruction was best in the most move-ment intensive task, indicating its applicability for use in EEG collected duringexergaming. This result paves the way for continued development of state-of-the-art EEG preprocessing algorithms that enable analysis of cortical activityalso in movement intensive exergames, thereby allowing concurrent analysisof brain activity in specific areas during playing.
The resulting knowledge from all three papers can contribute to the contin-ued development of more targeted and effective exergames and enable fu-ture studies to investigate movement characteristics and brain activity con-currently.
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“All work and no play makes Jack a dull boy.”

– James Howell, Proverbs in English, Italian, French and Spanish
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Introduction 1
Ættestup is the name given to several precipices in Scandinavia that served asritual sites for senicides, according to Norse mythology1. People who werenot able to support themselves anymore either jumped down a cliff or wereforced to jump to their deaths. Although this practice is phased out in elderlycare in Norway, the basic principle of having a good health and high levels ofphysical and mental functioning until the end of one’s life is still a desirablegoal. One key factor for a long and healthy life with high levels of functioningis physical activity (and of course, not falling from cliffs).
The challenges connected to an aging population aremanifold and highly per-sonal. Aging is accompanied by increased risk for diseases, chronic condi-tions, and functional decline. The number of people aged 60 years or olderoutnumbers children under five years, according to the world report on agingand health issued by the World Health Organization (2015). There is a needfor a (cost-) effective method for the prevention of functional decline due to asedentary lifestyle in order to relieve strains from the health sector.
Besides the functional decline connected to aging, older people are generallyalso more likely to encounter falls. Falls in older adults are among the maincauses for hospitalization and institutionalization (Kannus et al., 2005) and sig-nificantly impact the cost burden on health care budgets worldwide (Heinrichet al., 2010). Both actual falls and fear of falling are associated with reducedactivity (Hornyak et al., 2013; Yardley and Smith, 2002), which in turn increasesthe risk for developing chronic diseases.

1Gautreks saga: https://digitalt.uib.no/handle/1956.2/2887 — it is debated amongscholars if senicides really happened. However, the answer to this question is out ofthe scope of this thesis.
1



1. INTRODUCTION
1.1 From ættestup to exergaming
Developments in computer and sensor technology since the age of the Vikingsled to newpossibilities of aiding humans tomaintain an active lifestyle and canthereby help to counteract the negative effects of aging. In our daily life, weare surrounded by sensor technology and computers such as those appliedin smartwatches and mobile phones that track our health status and enableus to compete and connect digitally with other people through fitness apps.
In recent years, computer games that require bodily movements as inputsgained popularity in the consumer market. However, this is not a new con-cept. Already in the late 1970s and 80s, some arcade games required dancemoves or similar bodily movements for playing a game. The modern termi-nology for those games is exergames2. Besides for entertainment, exergamescan be used for serious purposes, such as rehabilitation after injuries or as apreventative measure for age-related decline in functioning.

1.2 Why exergames?
The main advantage of exergames is that even repetitive and otherwise bor-ing tasks can become a fun activity if they are incorporated in a challenge,competition, or game. This concept is called gamification (Hamari et al., 2014).Gamification is the application of game-design elements, such as points andcompetition to tasks typically not associated with the term gaming.
Furthermore, exergames offer the possibility to add a cognitive element to atraining task, potentially creating a dual task situation (Caetano et al., 2016,2018; Schoene et al., 2011; Smith et al., 2011) which were shown to be beneficialfor balance training (Zijlstra et al., 2008).
Exergames usually include amethod for detecting the users’ movements suchas force sensitive mats or color and depth cameras (RGB-D cameras). Popularexamples from the consumermarket include Sony’s EyeToy camera andMovecontroller, Nintendo’s Wii fit and Wii Fit balance board, as well as Microsoft’sKinect, shown in Figure 1.1. Especially the two latter products in particular be-came popular among regular users, as well as researchers. The popularityamong researchers was mostly due to the availability and ease of use of thesystems, when used with the original software. Another important factor con-tributing to their popularity was an open and well-documented application

2As usual researchers are arguing about exact definitions for those games. In thisthesis all games using bodily motions as an input will be referred to as exergames.
2



1. INTRODUCTION
programming interface (API), as well as an active community support amongresearchers and people who like to “hack” technology. Those factors have en-abled researchers to use the hardware for their own exergame creations.
Exergames have gained popularity both as a complementary tool or as a re-placement for traditional exercise and rehabilitation (e.g.Mellecker et al., 2013),with the same or better effectiveness compared to usual care (Skjæret et al.,2016). In addition, exergames have been shown to have positive effects onphysical activity in general (e.g. Fang et al., 2019; Höchsmannet al., 2016; Rhodeset al., 2017), as well as in specific rehabilitation settings (e.g. Baltaci et al., 2013;Laver et al., 2012).
Adherence to a prescribed training is potentially higher in exergaming inter-ventions compared to traditional exercises (Skjæret et al., 2016). Furthermore,exergames are a cost-effective way to administer balance training (Stanmoreet al., 2019).

Sony Playstation
Move and EyeToy

Nintendo
Wii & balance board

Microsoft
Kinect v2

Figure 1.1: Common Christmas presents for researchers and kids alike dur-
ing the 2000s (Nintendo Wii and balance board, left; Microsoft Kinect v2,
top right; and Sony Move and EyeToy, bottom right).

3



1. INTRODUCTION
1.3 Are exergames just a toy?

Themajority of commercially available exergames are designed for entertain-ment purposes and generally with a younger audience in mind. Even thoughexergames that are designed solely for entertainment purposesmight requiremovements beneficial for training and rehabilitation purposes, a specificallydesigned exergame for this use case would presumably show even more ad-vantages for the player. Exergames designed with a health purpose in mindare often marketed as wellness or fitness games, since those terms are notregulated in the EU’s medical device directive (Directive 2001/83/EC, 2017). Byavoiding terms like medical or rehabilitation in the title or description of anapp or an exergame, no proof of their effectiveness is needed. However, thismakes it more difficult to use exergames as a form of prescribed training orin rehabilitation, since they are not recognized as a form of treatment, butas a leisure activity instead. How can we move from using exergames as atoy to their implementation in practice and what methodological knowledgeis needed to develop more targeted exergames for the use in training and re-habilitation?

1.3.1 Movement characteristics and the effect of exer-
game settings

Although exergames are increasingly used as a training or rehabilitation tool(e.g. Fang et al., 2019), the evidence about their effectiveness is inconsistent(Skjæret et al., 2016). One potential reason could be that we know very lit-tle about the actual movements performed by seniors while playing an exer-game. This makes it difficult to properly interpret the effects, or the lackthereof, of exergame interventions. For example, it is common to adjust gamesettings such as game speed or to add cognitive elements (Van Diest et al.,2013) to keep the exergame player engaged. Changes to the game speed areoften used to adjust the difficulty level of an exergame to the player’s physicalabilities, whereas adding cognitive elements can create dual task situations fore.g. balance training. However, the effect of these adjustments onmovementcharacteristics is yet to be studied, so we do not know whether they are ben-eficial or detrimental for the intended rehabilitation or training purpose. Thisknowledge is crucial for the development of exergames that can be expectedto be effective in rehabilitation and for maintaining physical functioning.
4



1. INTRODUCTION
1.3.2 Cognitive functions and cortical activity in exer-

games
Besides providing physical training, exergames have the potential to trainolder adults’ cognitive abilities through dual tasks, decision making tasks anddiscrimination tasks (Anguera et al., 2013; Zelinski and Reyes, 2009). It hasbeen shown that there are synergistic benefits for the training outcome ifphysical activities are paired with decision-making opportunities comparedto separate physical or cognitive interventions (Anderson-Hanley et al., 2012;Basak et al., 2008; Kraft, 2012; Yan and Zhou, 2009). However, most studiesused cognitive tests or pre- and post-measurement designs instead of directmeasurements of cortical activity during exergaming, since concurrent mea-surement of cortical activity during tasks that include vigorous movementwas not possible until recently. Direct measurement of cortical activity duringmovements as already suggested in Makeig et al. (2009) is still in its infancydue to the difficulties connected to the low signal-to-noise ratio (SNR) of theelectroencephalogram (EEG) recordings and the higher likelihood for the oc-currence of motion artifacts. Only Baumeister et al. (2010) directly assessedbrain activity during exergaming in a virtual golf-putting environment usingEEG. Their EEG results revealed increased frontal theta power and decreasedparietal alpha-2 power during virtual golf-putting compared to a resting pe-riod. An increase in frontal theta power indicated higher focused attention,whereas a decrease in alpha-2 power is linked to the quantity of sensory in-formation processing.
Previous evidence (Baumeister et al., 2010; Eggenberger et al., 2016) suggeststhat the presence of cognitive elements in exergames affects cortical activa-tion and suggests changes in cognitive control during and after game play.However, there is still sparse knowledge regarding cortical processing duringexergaming. One of the reasons for this might be the time-consuming man-ual cleaning of highly contaminated EEG for which high level of EEG-expertiseis needed. Automating the artifact removal process would be an importantstep forward to enable more research in this field.

1.4 Rationale for this thesis
Exergames seem to be a promising tool to increase physical activity in olderadults in general, as well as in specific training tasks such as e.g. balance train-ing for fall prevention. Previously, exergames have been shown to increaseadherence and enjoyment of training and rehabilitation interventions in olderadults (Skjæret et al., 2016).

5



1. INTRODUCTION
However, the lack of knowledge about the interaction of exergame settings,movements and cortical activity in older adults makes it difficult to developand further improve targeted and effective exergames. The aim of this disser-tation is to contribute to the development of exergames as a tool for trainingand rehabilitation by investigating the effect of game settings on movementcharacteristics and cortical activity, and of movement task on automated EEGcleaning performance. This thesis contributes to this endeavor by answer-ing whether changing the settings of an exergame, such as game speed andthe presence of additional obstacles to avoid, alter movement characteristicsand cortical activity in players. Thereby, future development of exergamescan be based on empirical evidence and users of exergames can make moreinformed desicions when choosing a game for training or rehabilitation, toensure maximum benifit for the player.
In an ideal world, cortical activity and movement characteristics would be re-corded concurrently and assessed as a whole. Makeig et al. (2009) introducedthe concept of mobile brain and body imaging (MoBI) in which bodily move-ments and cortical activity are recorded simultaneously. However, the concur-rent recording of EEG during movements is challenging, due to the low SNR.Advances in our knowledge about and a better understanding of the tech-nology used to filter noise and artifacts are needed in order to enable futureresearch to apply the concept ofMoBI. The papers this thesis is based on serveas stepping stones towards such future projects, with insights into the move-ment characteristics of older adults and cortical activity during exergaming(Paper I and II), and an assessment of a state-of-the-art automatic EEG artifactremoval tool for tasks involving bodily movements (Paper III). In addition, thethesis presents a combined discussion of the results obtained throughout theprojects and the lessons learned during this journey.

1.4.1 Paper I: Movement characteristics during exer-
gaming

One major gap in our knowledge is that until now, only a few studies have fo-cused on the movements of older adults during exergaming. In addition, nostudy has focused on the influence of obstacles and game speed, both com-monly used to adjust the difficulty level of an exergame on elicitedmovementcharacteristics.
Therefore, the main aim of Paper I was to assess the changes in movementcharacteristics in older adults induced by variations in game speed and thepresence of additional obstacles to avoid in a side-stepping exergame.

6



1. INTRODUCTION
1.4.2 Paper II: Brain activity during exergaming
The cognitive involvement during exergaming is largely unknown. Until re-cently, the collection of usable EEG data recorded concurrently while perform-ing a movement task was out of the scope of possibilities. However, with rel-atively recent developments in both software and hardware, the concurrentmeasurement of brain activity during exergaming might be within reach.
The main aim of Paper II was to assess the feasibility of concurrent EEG mea-surements during exergaming and to assess changes in cortical activity causedby additional cognitive tasks during a weight shifting exergame played in twodifficulty levels.
1.4.3 Paper III: Assessment of an automatic EEG arti-

fact cleaning algorithm
Recent developments in EEG processing that originated in the field of brain-computer interfaces (BCIs) led to the possibility for automatic processing oflarge amounts of EEG data that is contaminated with artifacts, such as in high-density movement EEG datasets. Artifact subspace reconstruction (ASR) isone promising example for such an algorithm, especially as a preprocess-ing step for analyses in source-space. It is commonly used for processingEEG. However, the only assessment of the artifact removal performance ofASR was based on an EEG dataset recorded during a simulated driving task(Chang et al., 2019). Compared to a simulated driving task, higher levels ofartifact contamination can be expected during exergaming due to more vig-orous movements. Testing such potential effects of the task on the artifactremoval performance is therefore necessary for the use of ASR in a process-ing pipeline for EEG recorded during actual movement tasks.
The main aim of Paper III was to assess the quality and reproducibility of in-dependent components (ICs) derived from EEG data that was preprocessedusing ASR. The dataset consisted of continuous EEG collected during threetasks with different likelihood for causing movement artifacts.
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Background 2
This chapter is intended to aid readers who are new to the field of movement-or neuroscience. Basic concepts of motion capture techniques, as well as thebasics of EEG including the necessary signal processing steps and indepen-dent component analysis will be explained. Readers familiar with those topicsmay continue with chapter 3.

2.1 3D motion capture technology
Capturing the movements of a person or object in three-dimensional space iscalled 3D motion capture. A non-exhaustive list of possible methods for cap-turing movement data is presented in the following sections. Some methodspresented rely on equipment worn by the user or participant. Those require,in general, more preparation time but deliver more precise results, resultingin a trade-off between measurement precision and preparation time.
2.1.1 Marker-based systems
If a point in 3D space is recorded by at least two cameras simultaneouslyplaced at known positions in relation to each other, the point’s position can becalculated. Commercial systems for 3D motion capture used in research andthe movie industry use infrared light emitters and reflective markers or activemarkers with infrared LEDs placed on points of interest. This ensures easierrecording of marker positions during daylight conditions. These systems usu-ally consist of upwards of eight cameras to avoid marker concealment.
In studies involving human participants, reflective markers are usually placedon well-defined anatomical landmarks to track their position throughout an
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2. BACKGROUND
experiment. If more than one marker is used, then post processing mightbe necessary in order to ensure proper recognition of the markers by thesoftware.
2.1.2 Markerless systems
Placing markers on the participant’s body is tedious and requires skilled ex-perts in anatomy. For applications which do not require highly precise mea-surements, other methods of collecting movement data may offer more ben-efits.
Camera-based systems
Cameras that record video images and depth simultaneously, so called RGB-Dcameras, can be used to record point-cloud data of an object or a person. Al-gorithms can be used to calculate the position data of joints in a human body,based on the recorded point-cloud data. Infrared light is commonly used fordepth measurement.
The commonly used Microsoft Kinect v2 (Microsoft, Redmond, WA) combinesa video camera with a depth sensor using infrared light. It compares the re-corded point-cloud data with a built-in proprietary database of known humanposes, in order to generate a model of joint positions. The joint positions canbe sent to a computer and used as an input for e.g. an exergame. An exampleof point-cloud data and skeleton joints can be seen in Figure 2.1.
Similar to the techniques described above, normal video data from multiplecameras can be used to reconstruct a 3D representation of objects using ar-tificial intelligence or advanced algorithms vision to interpret the visual input.This became possible after major advances in the fields of computer visionand parallel computing.
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2. BACKGROUND

Figure 2.1: Point-cloud data (smaller dots) and skeleton joints (larger blue
dots) recorded using a Microsoft Kinect v2 during Study II.

Inertial measurement units

A different approach for measuring the position of an object in 3D space isthe application of three accelerometers perpendicular to each other. Datarecorded using these accelerometers can be used to calculate changes in theposition by numerically integrating the output signal twice. However, the dou-ble integration of themeasured acceleration results in the displacement fromthe starting position plus a quadratic growing and accumulating error termcaused by offsets, non-linearities and noise. In order to compensate for driftin the output signal, accelerometers are oftentimes combinedwith gyroscopesand magnetometers in so-called inertial measurement units (IMUs). In orderto get a more robust estimation of the position of the sensor, IMUs use theinformation from the additional sensors to correct the accumulating error inthe measurement.
IMUs are commonly used in mobile phones and smartwatches. The sensorsare cheap andwidely available as hardware development kits such as Arduinobreakout boards, whichmakes them especially suited for rapid prototyping ofe.g. gamified objects.
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2. BACKGROUND
2.2 Cortical activity
Besides breathing and heartbeat, brain activity is what keeps us alive, literallyand legally1. However, measuring the latter comes with unique challengeswhich will be explained in the following sections.

2.2.1 Overview of measurement techniques for corti-
cal activity

In this section a selection of methods for the recording of brain activity will bepresented and compared in terms of applicability for MoBI.

Methods using the brain’s metabolism

Metabolism in the brain can be used as a proxy for measuring cortical pro-cesses. A consequence of higher metabolism is increased blood flow, whichcan be measured using functional magnetic resonance imaging (fMRI) andfunctional near-infrared spectroscopy (fNIRS).
In fMRI strong magnetic fields are used to induce spin in hydrogen atoms.The spin can be detected by sensitive radio antennas. This gives informationabout the structure and type of tissue in a body. The hemodynamic responsecan bemeasured in fMRI using blood-oxygen-level-dependent imaging (Chou,2008). Specially shielded facilities, usually in a hospital, are needed to recordthe radio frequencies emitted by the spinning hydrogen atoms. FMRI offerscomparably good spatial but low temporal precision. However, fMRI is notsuited for MoBI applications, since the machines are neither wearable, norportable as shown in Figure 2.2 (a).
Similar to fMRI, fNIRS measures the haemodynamic response as a proxy forcortical activity. The measuring mechanism behind an fNIRS system is thesame as in pulse oximetry. Infrared light of different wavelengths in the spec-tral interval between 700 and 900 nm is emitted by a light source and sub-sequently recorded by optodes2 placed in an array on the scalp or on theforehead. Due to the optical characteristics of skin and bone tissue, infraredlight passes through those layers until it reaches the haemoglobin in the bloodvessels. The light absorption properties of oxygen saturated and unsaturated

1Norwegian law regarding the determination of death: Forskrift om døds-
definisjon ved donasjon av organer, celler og vev, § 2. Stadfesting av døden:https://lovdata.no/forskrift/2015-12-21-1813/§22“electrode” for light
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2. BACKGROUND
haemoglobin are different fromeachother and further dependedon thewave-length. At 810 nm oxygenated and non-oxygenated haemoglobin have thesame absorption properties. The relative concentration of oxygenated hae-moglobin can therefore be calculated using a modified version of Lambert-Beer’s law (Beer and Beer, 1852; Bouguer, 1922; Lambert, 1892). This resultsin measurements with high spatial, but low temporal precision compared tomethods using the brain’s electrical activity. FNIRS systems are easy to use,light and portable. This makes them usable for MoBI applications as shownin Figure 2.2 (b).

(a) (b)
Figure 2.2: Methods for measuring brain activity using blood flow (a) func-
tional magnetic resonance imaging and (b) functional near-infrared spec-
troscopy.

Methods using electrical activity

Synchronized activity of neurons can be measured using their magnetic fieldor the voltage differences measured between two scalp sites.
Synchronized neural currents induce weak magnetic fields. In magnetoen-cephalography (MEG) an array of highly sensitive magnetometers, sensitiveenough to measure the changes in the magnetic field, is used in a scanner asshown in Figure 2.3 (a). MEG scanners are large and require shielding againstmagnetic interferences, similar to the measures used in fMRI. This prohibitsthe recording of moving participants.
The remaining chapter will focus on EEG and the challenges connected to therecording of usable data during participant movements. The aforementionedmeasurement methods all come with distinct advantages and disadvantages.

13



2. BACKGROUND
However, for themeasurement of brain activity duringmovements only fNIRSand EEG are suitable. The remaining section will focus on EEG, since thismethod for acquiring cortical activity was used in Studies II and III.

(a) (b)
Figure 2.3: Methods for measuring brain activity using electrical activity (a)
magnetoencephalography and (b) electroencephalogram.
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2.2.2 Electroencephalogram
An EEG records electrical activity of neurons measured invasively by insertingelectrodes through the skull or non-invasively by measuring differential volt-ages between two electrodes placed on the scalp (Berger, 1929). Surface EEGamplitudes have more than 90 % of its energy content between 1 and 30 Hz,and typically range between 10 and 100 µV (Thompson et al., 2008). The elec-trical activity is caused by excitatory and inhibitory postsynaptic potentials inapical dendrites of neurons. EEG activity is mainly generated by pyramidal cellpostsynaptic potentials, shown in Figure 2.5. Only synchronized activity due tointeraction between the cerebral cortex and thalamus can be recorded (Saz-gar and Young, 2019).
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Figure 2.5: Anatomy of dendrites, skin and bone layers of the head, and a
simplified measurement setup for electroencephalogram.

In contrast to othermethods such as fMRI and fNIRS, EEGhas higher temporal,but lower spatial resolution, as shown in Figure 2.4. Furthermore, EEG systemsare mobile and can therefore potentially be used for capturing brain activityduring bodymovements. Electrodes are usually placedusing the international10-20 system as shown in Figure 2.6.
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Figure 2.6: Electroencephalogram electrode placement according to the
international 10-20 system.

The recorded electrical activity from the scalp can be divided into four mainfrequency bands as shown in Figure 2.7. Increased or decreased activity in cer-tain frequency bands can be used to diagnose certain diseases by clinicians.
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2. BACKGROUND

Themathematical description of an EEG signal can be seen in Equation 2.1. Themeasured EEG on the surface of the scalp is a product of the source activity Sand amixing matrix A plus an error term η to account for all types of artifacts,noise and measurement imperfections.
X = A S + η (2.1)

2.2.3 Artifacts
Differential voltages measured on the surface of the scalp using an EEG sys-tem are a mixture of brainwaves, and biological and non-biological noise, asshown in Figure 2.7. Regardless of their origin, noise and artifacts need tobe removed from the signal in order to analyze brain activity. The likelihoodfor the occurrence of some types of artifacts can be omitted by instructingthe participants to avoid certain behaviors, such as sudden movements orthe tensing of facial muscles. Other types of artifacts are unavoidable, eitherbecause they are necessary to maintain homeostasis of the participants (e.g.heartbeat) or unavoidable due to the research question (e.g. movement task).

Biological sources of noise and artifacts

There are three prominent biological sources of noise that originate frombod-ily functions.
The first source is the electrical activity of skeletal muscles, measured as elec-tromyogram (EMG). In traditional EEG researchmovements of the participants,and thereby EMG activity, is restricted to a minimum to avoid contaminationof the EEG signal (Gwin et al., 2011).
The second source is the orientation of the eyes and their movement mea-sured as electro-oculogram (EOG). An EOGmeasures the corneo-retinal stand-ing potential between the cornea and foveal sclera. Eyemovements andblinksinduce electrical changes that can be measured, in the case of EEG as un-wanted artifacts. Participants in an EEG study can be instructed to reduce thenumber of eye blinks and to minimize eye movements if the research ques-tion permits this.
The third source is the electrical activity of heart muscle, which is measuredusing an electrocardiogram (ECG). For obvious reasons heartbeat can not beavoided.
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2. BACKGROUND
Non-biological sources of noise and artifacts

Non-biological sources of noise and artifacts are caused by imperfections inthe measurement chain. Neither amplifiers nor electrodes are perfect. Therisk of occurrence of unwanted signals due to technical reasons can be mit-igated with careful preparation of the study participant. Common examplesare impedance changes of electrodes or electrical line noise. In traditionalEEG experiments, minimal behavior models are used to reduce the likelihoodfor artifacts caused by movements. The use of active EEG electrodes that per-form an impedance conversion at the measurement site can help to reducethe likelihood for artifacts and noise.
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changes in impedance

measured
EEG = Σ of
all signals
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Figure 2.7: Frequency bands of brain activity and common sources of elec-
trical noise and artifacts. EOG: electrooculogram, EMG: electromyogram,
ECG: electrocardiogram.

2.2.4 Preprocessing
It is necessary to remove unwanted noise and artifacts from EEG in order toproceed with further analysis steps. Preprocessing or cleaning steps usually
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2. BACKGROUND
include the removal of line noise, band-limitation and down sampling. Clean-ing is always a compromise between removing the unwanted parts and keep-ing what is important. One would never wash a marius genser3 using bleach,but only gentle soap. Similarly, when cleaning EEG data, a compromise be-tween noise and artifact removal and conservation of the brain signal needsto be found. Examples of EEG data in various preprocessing stages acquiredduring Study II are shown in Figure 2.10 (A) — (C).
Band limitation
Frequencies of interest in EEG recordings are usually on the lower end of thespectrum and generally below the frequency range of muscle activity. Thiscan be used as an advantage for EEG data processing, since the part of thesignal that represents an EMG can be excluded using a low-pass filter. Bandlimited and re-referenced EEG data is shown Figure 2.10 (A).
Manual cleaning of artifacts
Artifacts in otherwise relatively clean EEG can be removedmanually by exclud-ing time series contaminated with biological and non-biological artifacts. Thisresults in a loss of data, with the remaining signal not being affected by thismethod of cleaning. Manual removal of artifacts has been the gold standardfor many decades. However, with more powerful hardware, computationallyexpensive and complex algorithms may clean EEG equally well or even betterthan a human can do while being faster and lossless at the same time. Man-ually cleaned EEG data is shown in Figure 2.10 (B). The vertical red lines in theEEG time series are a result of removed data in between.
Channel rejection
If a channel of an EEG recording is contaminated with noise throughout themeasurement setup, it is sometimes unavoidable to remove it completely be-fore conducting further analyses. Excessive noise in a single channel can becaused by high impedance between skin and electrode or excessive EMG con-tamination.
2.2.5 Blind source separation and their application for

EEG preprocessing
If an observation is a linear and stationary mix of more than one unknownindependent source signals, blind source separation (BSS) can be used to re-cover original components of the signal.

3Traditional Norwegian woolen sweater
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Principal component analysis

Principal component analysis (PCA) is a decorrelation technique that ensuresmaximum uncorrelation between output pairs (〈uiuj〉 = 0, for all i, j). By rota-tion of the coordinate system, the geometrical distance to each data point onthe plane is minimized. The origin of the coordinate system is also adjustedin a way that the distance to each point is at a minimum. A PCA is well suitedfor Gaussian noise separation. As a consequence, the standard deviation ofthe resulting principal component (PC) in the new coordinate system is lowerthan in the original. PC are the highest energy components in the data set.Furthermore, PCA can be helpful for detecting outliers, since the lower stan-dard deviation in the new coordinate systemmakes it easier to detect outliers.
Independent component analysis

Independent component analysis (ICA; Bell and Sejnowski, 1995; Hyvärinenand Oja, 2000; Makeig et al., 1996) is a signal processing method to separateindependent sources that are linear mixed and recorded using several sen-sors. Using an ICA, a multivariate signal X recorded using m sensors and ofthe duration T (see Equation 2.2) can be decomposed into n independent sig-nals S (see Equation 2.3) using an unmixing matrix.
X = (x1(t), ..., xm(t))T (2.2)

S = (s1(t), ..., sn(t))T (2.3)

The original independent non-Gaussian signals S ∈ RK×T are mixed using amixing matrix A ∈ RM×K , before they can be recorded as
X ∈ RM×T shown in Equation 2.4. M denotes the number of sensors used, Kdenotes the number of individual sources and T stands for the time. Contraryto Equation 2.1, there is no additional noise or error term η. For ICA decom-position, noise and artifacts are considered non-brain sources of activity andcan therefore be found in the matrix S.

X = A S (2.4)

Under the precondition that the mixing is stationary, an unmixing matrix canbe determined. The unmixing matrix W in Equation 2.5 is used to transform
X to S using Equation 2.6. However, A is unknown and can not be measured.
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Therefore, e.g. a gradient descent function to maximize kurtosis can be usedto approximate W .

W = A−1 (2.5)

S = W X (2.6)

In contrast to a band-pass filter or a Fourier transformation, an ICA can beused to isolate in-band noise, such as EMG (Brown, 2000). The number ofdiscovered independent sources is limited by the number of sensors used.Furthermore, it is important to use a relatively clean EEG signal as input foran ICA, since noise and artifacts manifest in the matrix S as sources of activitybecause they are usually of higher amplitudes compared to EEG. By removingasmuch noise and artifact contamination as possible, themaximum availabil-ity of independent sources for brain related source activity is ensured.
An ICA decomposition is based on a number of assumptions such as: (1) themixing of sources is linear, (2) propagation delays are negligible, (3) compo-nent time courses are independent and the (4) number of components is lessthan the number of channels. Linear mixing of sources is ensured, since themajority of the EEG signals’ energy is below 1 kHz and each time instance canbe considered separately, so the quasistatic approximation ofMaxwell’s equa-tion holds (Hämäläinen et al., 1993). Furthermore, electrical signals travel closeto the speed of light. As a consequence, delays are negligible n the timescaleused in EEG analysis. Moreover, even though component time courses arenot completely independent, most ICA algorithms use a maximum projectionalgorithm to find solutions that are maximally independent. In order to rep-resent all sources present in e.g. the cortex, at least as many sensors needto be used as there are sources. However, the number of synchronized localfield potentials S and the number of noise sources is unknown andmost likelyhigher than the number of sensors. ICA applies a cut-off for sources that donot contribute much to the EEG signal. Previous research showed that EEGmeasurements with the aim of analyzing data in source-space should at leastconsist of 32 sensors (Troy M et al., 2012). More sensors are of benefit if addi-tional noise is to be expected.
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The cocktail party
After numerous difficult sections, it is time to relax and have a drink at a cock-tail party (Cherry, 1953)4. At a cocktail party, there are usually many peopletalking to each other. A band performs some light jazz in the background,which adds to the relaxing atmosphere. Later in the evening, the band changesgenre and plays loud dance music instead. It becomesmore difficult to followthe interesting conversations. Fortunately, ICA can help. Figure 2.8 (a) showsa stylized version of a cocktail party. Sound is very difficult to represent on pa-per or a screen, so it is changed out with color instead. In order to understandwhat the three sources (K interesting people who speak S) say, the noise (bynow an annoyingly loud band) must be filtered out. By placing a number ofsensors (M microphones) in the room, the recorded sound (channel data X)can be fed into a computer that runs a BSS script, for example ICA, to decom-pose the independent sources of the signal (speech and music).
For the context of EEG, the multivariate signal X is the measured sensor data,
S are the ICs calculated based on the synchronized local field potentials gen-erated in the cortex and unwanted noise (see Figure 2.7). A simplified exampleof brain signal propagation within the brain is shown in Figure 2.9 (Onton andMakeig, 2009).
Using the ICs of an EEG signal instead of the measured signal X can aid com-parability between participants, since the signal propagation is affected by theindividual’s brain anatomy.

4Please keep it non-alcoholic. I don’t want to get in trouble with my previous em-ployer.
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(A)
(B)

(C)
(D)

Figure 2.10: Preprocessing steps in EEGLAB used in Study II. (A): EEG data
after band limitation line-noise removal and re-referencing. (B): EEG data
aftermanual rejection of non-stereotypical artifacts using visual inspection.
(C): EEG data after removal of stereotypical artifacts using the results of the
independent component analysis. (D): Source localization of brain activity.

Artifact subspace reconstruction
ASR (Kothe and Jung, 2016; Mullen et al., 2015) can be used to remove non-stationary, non-stereotypical and high-variance signals from EEG recordings.The removed data is then reconstructed using a spatial mixing matrix. EEGdata before and after cleaning with ASR can be seen in Figure 2.11.
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Figure 2.11: EEG data before (red traces) and after artifact removal using
artifact subspace reconstruction (blue traces).

ASR uses a manually or automatically chosen reference signal
Xc ∈ RQ×M of the durationM with low artifact content from the EEG recordedusing Q sensors. A PCA is then applied to a short sliding window X ∈ RQ×N

of the duration N in order to calculate the PCs V ∈ RQ×Q of X. PCs whosevariance σk exceeds a threshold t (vk), derived from Xc. Removed PCs are re-constructed using linear combination of the remaining non-artifact contami-nated PCs.
Back-projection of PCs to the sensor-space used the linear operator in Equa-tion 2.7. The threshold operator U ∈ RQ×Q is chosen such as Uki = 0 if thevariance σk is larger than the threshold t (vk), otherwise Uki = 1. M is theprojected matrix square root of the covariance matrix C of XC as shown inEquation 2.8 such that Equation 2.9 is fulfilled. The linear operator in Equa-tion 2.7 is applied to x(t) as shown in Equation 2.10.

R = V M (M ◦ U)† V T (2.7)
M = V T M̄ (2.8)
M̄M̄T = C (2.9)

x̂ (t) = Rx (t) (2.10)
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The thresholds are computed using the PCs W ∈ QQ×M of the reference data
Xc. Subsequently, component activations Y are calculated using Equation 2.11.

Y = Xc W T (2.11)

For each y, meanm and standard deviation s are calculated, so that a per com-ponent threshold z can be obtained as shown in Equation 2.12. This equationincludes a tuneable cut-off parameter c. Recommendations for the selectionof c can be found in Chang et al. (2019).
z = m + c s (2.12)

Subsequently, the threshold t (υ) can be calculated using Equation 2.13 and2.14.
Z = diag (z) W T (2.13)

t (υ) ≡ ‖Zυ‖2
2 (2.14)

Using the example of themarius genser again, ASR can remove in-band noiseor in this case in-yarn noise from the pullover by patching parts of the contam-inatedwool based on a reference knitting patternXC obtained from the samepullover (unstained part). Figure 2.12 shows an example of a dirty pulloverwiththe traditional Norwegianmarius knitting pattern. The pattern represents therecorded EEG data in sensor space X. The EEG is depicted as channel dataas rows on the “y-axis” over time as loops on the “x-axis”. The pullover is con-taminated with dirt stains in the yarn (in-band noise and artifacts, e.g. lowerspectrum of EMG) and superficial mustard stains (out-of-band noise and arti-facts, e.g. line noise). The latter can be removed using e.g. a notch filter. ASRuses the clean reference data XC to reconstruct the color of the dirt stainswithin the yarn (in-band noise, discolorations). The resulting reconstructedpullover is a closer resemblance of its original, uncontaminated state com-pared to the dirty version. To assess the source material, the pullover cannow be un-knitted to form balls of wool using an ICA.
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27





Graphical abstracts 3
The following pages show graphical abstracts for Paper I— III. Amore detaileddescription of the methods and results follows inChapters 4 — 5. Furthermore, a comprehensive discussion across the threepapers and the PhD project in general can be found in Chapter 6, with a con-clusion in Chapter 6.6.

Paper I: Balance training in Older Adults Using Exergames: Game Speed andCognitive Elements Affect How Seniors Play (Anders et al., 2020a) in Fig-ure 3.1.
Paper II: Exergames Inherently Contain Cognitive Elements as Indicated byCortical Processing (Anders et al., 2018) in Figure 3.2.
Paper III: The influence of motor tasks and cut-off parameter selection onartifact subspace reconstruction in EEG recordings (Anders et al., 2020b)in Figure 3.3.
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Methods 4

This thesis is based on three studies conducted at the Norwegian Universityof Science and Technology (NTNU) in Trondheim, Norway (Studies I and II) andat Paderborn University in Paderborn, Germany (Study III). The protocols forstudies conducted in Norway were approved by the Regional Committees forMedical and Health Research Norway. All procedures performed during thestudy conducted in Paderborn were in accordance with the ethical standardsof the institutional review board of the University of Paderborn. All studieswere performed in accordance with the Declaration of Helsinki and its lateramendments. The data collected in each study was published in separatepapers (Study I — Paper I, Study II — Paper II and Study III — Paper III). Allparticipants gave their informed consent before entering in each study.

4.1 Study designs and study sample charac-
teristics

The three studies this thesis is based on were experimental lab studies. Allparticipants in the three studies were part of a convenience sample of inde-pendently living and healthy participants. For Study I older adults aged 65years or older served as participants, whereas in Studies II and III young adultsin the age group between 18 and 30 years were recruited. An overview overthe demographics of participants in each study can be seen in Table 4.1.
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4. METHODS

Table 4.1: Demographics, place of data collection and study sample size
of all studies (M: mean; SD: standard deviation; TRD: Norwegian Univer-
sity of Science and Technology NTNU, Trondheim, Norway; PAD: Paderborn
University, Paderborn, Germany; ✙: female, ✚: male).

Study Age Height Weight Study NM ± SD yrs. M ± SD cm M ± SD kg site ✙— ✚

I 73.7 ± 4.4 172 ± 4 68.6 ± 8.4 TRD 7 — 8II 24.6 ± 2.1 175 ± 10 74.8 ± 11.8 TRD 12 — 12III 23.2 ± 2.6 172 ± 3 63.8 ± 4.4 PAD 5 — 0

4.2 Exergames and Equipment
Due to the difference in scope of the three studies various equipment wasused for data collection. In Table 4.2 an overview of the equipment used ispresented. Further details can be found in the following subsections.
Table 4.2: Overview of the exergames and equipment used in Studies I, II
and III. Study Exergame Movement capture EEG system

I The Fox 3D motion capture —II Puzzle force plates 64ch, passiveIII — — 64ch, active

4.2.1 Exergames
The software part of the commercially available exergame system Silverfit3D(SilverfitBV, Woerden, NL) used in Studies I and II was provided free-of-charge.The commercially available system consists of a computer, a screen and anRGB-D camera (e.g. Microsoft’s Kinect v2). The intended use of the completesystem is for rehabilitation and training purposes in care facilities. In con-trast to the majority of available commercial exergames, Silverfit3D (Silver-fitBV, Woerden, NL) is certified as a medical product.
In Studies I and II, we used a laptop, a Kinect v2 (Microsoft, Redmond, WA) anda 55” (139.7 cm) TV screen to run the exergames. The free and open-sourcecross-platform streaming and recording programOpen Broadcaster SoftwareStudio (Bailey and the OBS Project Contributors, 2017) was used to record thescreen output of the exergames in Studies I and II.
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4. METHODS
The Fox
In Study I, a balance-training side stepping exergame called The Fox (Silver-fit3D, SilverfitBV, Woerden, NL) was used. A screenshot of the exergame canbe seen in Figure 4.1. The fox avatar in this exergame mirrored the lateralmovements of the players within a predefined exergaming area. The aim ofthe game was to catch falling grapes by moving under their trajectory andcatch roasted chickens by raising at least one arm over the head whilst theavatar is placed under the prey. In addition, participants had to avoid be-ing hit by (optional) falling branches that covered approximately 35 % of thescreen width. No steps in either anterior or posterior direction are requiredto play the exergame. The point scores for all exergame items can be seen inFigure 4.2.

Figure 4.1: Screenshot including all game items and the avatar used in the
exergame The Fox (Silverfit3D, SilverfitBV, Woerden, NL).
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4. METHODS

+3 points +1 point -2 points

Figure 4.2: Avatar and game items with their respective effects on the
player’s game score in the exergame The Fox (Silverfit3D, SilverfitBV, Wo-
erden, NL). From left to right: fox avatar, chicken, grapes and branch.

Puzzle

In Study II, a balance-training weight shifting exergame called Puzzle (Silver-fit3D, SilverfitBV, Woerden, NL) was used. The tasks in this exergame con-sisted of completing a puzzle that was displayed on a screen. Puzzle pieceswere selected by leaning the upper body sideways towards them. The exer-game could be played in two different conditions as shown in Figure 4.3. Exer-game players were either presented with only the one correct puzzle piece orhad to choose the correct piece between two puzzle pieces presented on ei-ther side of the screen for the current position. Furthermore, participantsplayed the exergame with two target pictures as shown in Figure 4.3.

(a) (b)
Figure 4.3: Screenshot of the exergame Puzzle (Silverfit3D, SilverfitBV, Wo-
erden, NL). (a) condition with only one puzzle piece at a time, (b) condition
with choice option between two puzzle pieces.
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4. METHODS
4.2.2 3D motion capture
In Study I a 3D motion capturing system (Oqus, Qualisys AB, Gothenburg, SE)with 22 reflective markers was used to record the position of anatomical land-marks throughout playing the exergame. The position of the markers can beseen in Figure 4.4. Double-sided tape and velcro bands were used to keepthe markers in place. Eight cameras recorded the participant’s movementthroughout data collection at a frequency of 120 Hz. The software suite Qual-isys Track Manager (Qualisys AB, Gothenburg, SE) was used to prepare therecorded raw position data of the 22 markers for export and further analysesin Matlab (The Mathworks Inc., Natick, MA). The marker on the center of theright thigh was used tomake the distinction between the participant’s left andright body side easier.
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Figure 4.4: Skeleton model of a participant in Study I, based on the re-
corded position of 22 reflective markers placed on anatomical landmarks
digitized using a 3D motion capture system (Oqus, Qualisys, Gothenburg,
SE). The lines in-between markers are for illustration purposes only and do
not represent the actual skeletal structure.

4.2.3 Electroencephalogram
In Studies II and III, EEG systems were used to record the participant’s brainactivity. In both studies 64 channels arranged according to the international10-20 system (Klem et al., 1999, see Figure 2.6) were recorded using silver / sil-ver chloride electrodes (Ag / AgCl electrodes).
In Study II, passive electrodes and an elastic cap (QuikCap, CompumedicsNeu-roscan, Charlotte, NC) were used. The reference electrode was positioned be-tween CZ and CPZ. Electrode impedance was reduced to < 10 kΩ to ensure
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4. METHODS
an appropriate signal-to-noise ratio. EEG data was amplified with an analogamplifier (SynAmps RT, Compumedics Neuroscan, Charlotte, NC). The analogEEG signalwas digitized using a 24bit analog-to-digital converter (SynAmpsRT,Compumedics Neuroscan, Charlotte, NC) and subsequently recorded usingScan 4.5 (Compumedics Neuroscan, Charlotte, NC) with a sample frequencyof 1 kHz.
In Study III active electrodes in an elastic cap (Easycap, Herrsching, DE) and awireless amplifier (LiveAmp, Brain Products GmbH, Gilching, DE) were used.The impedance was kept below 25 kΩ, in accordance with the manufacturer’srecommendations.
The amplifiers in both studies were placed in a backpack in order to relievemechanical stress from the cables. This measure reduces the likelihood forartifacts due to lifting of the electrode.
4.2.4 Other equipment
In addition to the measurement of brain activity in Study II, ground reactionforces were recorded using force plates (Type 9286A, Kistler, Winterthur, CH)placed under each foot. Data was recorded at a frequency of 100 Hz.
Furthermore, in Study III the Witty SEM (Microgate Slr, Bolzano, IT) systemwas used. The system consisted of five combined RGB-LED matrices with aproximity sensor mounted on tripods.

4.3 Procedures

4.3.1 Study I: Movement characteristics during exer-
gaming

All participants in Study I played eight exergame trials at two speed settings,either with or without branches present in counter balanced order using theexergame The Fox (Silverfit3D, Silverfit BV, Woerden, NL). Each trial had a du-ration of 2 min. The exergaming area was set to 2 by 2 m. Increasing theexergame speed led to an increased number of grapes and branches fallingsimultaneously on the screen (from 1 — 3 to 3 — 5 grapes, and from 1 — 2 to1— 3 branches) and reducing their time on the screen from 8— 10 s to 6— 9 s(measured from top to bottom of the screen for missed grapes and avoidedbranches). The number of chickens, as well as their time on the screen, re-mained unchanged regardless of the chosen game speed. In addition, func-tional reach test was performed to ensure that all participants were able to
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4. METHODS
perform all required movements in order to play the exergame.

4.3.2 Study II: Brain activity during exergaming
Continuous EEG was recorded throughout the entire experiment. Three min-utes of seated baseline data was recorded followed by self-paced sidewaysleaning with feet hip-wide apart on force plates to record both cortical activityand ground reaction forces. After a 2 min break, participants played the exer-game Puzzle (Silverfit3D, Silverfit BV, Woerden, NL). Each participant playedthe exergame with and without choice option and with two different targetpictures as shown in Figure 4.3, counterbalanced across participants. Eachparticipant played 10 sets of two exergames for a total of 20 exergames. Af-ter completing all exergames, another seated baseline recording followed byself-paced sideways leaning was acquired.

4.3.3 Study III: Assessment of an automatic EEG arti-
fact cleaning algorithm

Participants in Study III performed three tasks with increasing likelihood forcausing EEG movement artifacts. All participants started with a seated work-ing memory n-back task, with 10 sets of 30 stimuli of 2 s each. The n-back taskconsisted of a 3 by 3 dot matrix was presented on a computer screen. Par-ticipants were asked to press a button with their right thumb if the currentpattern was the same as the pattern shown three pictures prior. Otherwiseparticipants were asked to press a buttonwith their left thumb. After complet-ing the first task, participants were asked to perform 20 alternating single-legstance phases held for 30 s each, with a break of 10 s between consecutivestance phases. Lastly, participants were asked to do two repetitions of a fastforward and backward walking task for 5.5 min each, using the Witty SEM (Mi-crogate Slr, Bolzano, IT). Five LED lamps were mounted on tripods and placedat 0°, ± 22.5°, and ± 45° from the participant’s point of view at a distance of2.5 m. The task was to go swiftly (not run) to the lit LED lamp and cover itwith their right hand before walking backwards to the starting position. Thisprocedure continued until the end of the task.

4.4 Data analyses
Data collected throughout all studies was analyzed using Matlab (The Math-works Inc., Natick, MA). A custom script was developed to analyze 3D motioncapture data acquired during Study I. All processing of EEG in Studies I and II
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4. METHODS
was performed using the EEGLAB toolbox (Delorme and Makeig, 2004).

4.4.1 Study I: Movement characteristics during exer-
gaming

Themotion capture datawas analyzedusing a customMatlab (TheMathworksInc., Natick, MA) script. In order to detect steps, the position of the markerson the velocity of the marker placed on the lateral malleolus was used. A stepwas defined as a≥ 0.03m displacement of the toemarker lasting for≥ 0.05 s.A marker velocity of 0 ± 0.1 ms-1 was used for the identification of step initi-ation and termination. Arm lifts were detected by comparing the height ofthe marker on the wrist with the average height of the four head-mountedmarkers. The position of the exergamer within the exergaming area was de-termined by the position of the marker on the participant’s sternum.
Step size, the ratio and mean duration of single-leg support, cadence, andarm lift frequency, as well as the position of the exergamer on the exergam-ing area, were calculated from the 3D motion capture data. Optical characterrecognition was used to record the game score, caught chickens and avoidedbranches (if present) using the screen captures. Furthermore, the numberand duration of error messages was recorded using the same method.

4.4.2 Study II: Brain activity during exergaming
The recorded continuous EEG was band limited to 1 — 100 Hz before down-sampling to 250 Hz. The CleanLine plugin for EEGLAB was used to removeline noise. A band-pass between 2 — 30 Hz (Winkler et al., 2015) was used toremove EMG and signal drift. Channels contaminated by excessive noise ormajor non-stereotypical artifacts were deleted after visual inspection beforethe EEG was re-referenced to common average. Non-stereotypical artifactswere removed manually by visual inspection. Data from two participants wasexcluded due to extensive artifact and noise contamination. To reveal thesources of brain activity, an adaptive mixture independent component analy-sis (Palmer et al., 2006, 2008) was used with subsequent manual selection offunctional independent components (fICs). A four-shell spherical head model(Kavanagk et al., 1978) included in the DIPFIT function (Oostenveld and Oost-endorp, 2002) was used to locate the equivalent dipoles. A k-means algorithmwith a preset for five clusters was used to cluster the dipoles. Dipoles were as-signed to a cluster if they were within two standard deviations of the respec-tive cluster and showed a residual variance of less than 16 %. The absolutepower of the EEG signal for each condition and cluster (Pivik et al., 1993) in the
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4. METHODS
a priori defined frequency bands: theta (4 — 7 Hz) for the frontal cluster, aswell as alpha-2 (10 — 12 Hz) for both central and parietal clusters was calcu-lated as area under the curve.
Force plate data was used to calculate themean of themedio-lateral center ofpressure amplitude peaks for each sideways lean, as well as the overall centerof pressure velocity.

4.4.3 Study III: Assessment of an automatic EEG arti-
fact cleaning algorithm

The CleanLine plugin for EEGLAB was used to remove line noise before usinga band pass with limiting frequencies at 3 and 30 Hz (Winkler et al., 2015). AllEEG data sets were copied to obtain 11 identical versions, which were subse-quently processed separately.
One data set was processed manually using the same workflow as in StudyII. ASR was used to process the remaining 10 data sets. Channels were re-moved when poorly correlated (r < 0.85) to neighboring channels, or whennon-transient noise exceeded 4 SDs. The cut-off parameter k was set to 1, 2,5, 10, 20, 50, 100, 200, 500, and 1000, respectively. EEG data was downsampledto 250 Hz after cleaning.
Channels removed during either cleaning process were interpolated to avoidbias towards a hemisphere. Spatio-temporal sources of brain activity werecalculated by using an adaptive mixture independent component analysis(Palmer et al., 2006, 2008). Their location was determined by using the dipfit-plugin (Oostenveld and Oostendorp, 2002) using a boundary element model(Akalin-Acar and Gençer, 2004; Gençer and Akalin-Acar, 2005). ThefitTwoDipoles plug-in (Piazza et al., 2016) was used to account for bilaterallysymmetrical ICs.
The IClabel plug-in (Pion-Tonachini et al., 2017) was used to classify ICs intoseven categories (brain, muscle, eye, heart, line noise, channel noise, andother).
To assess the reliability and quality of the discovered fICs, RELICA plug-in (Ar-toni et al., 2014) was used.
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4. METHODS
4.5 Statistical analyses
All statistical analyzes were performed in R (R Core Team, 2019). Statisticalsignificance was set at p < 0.05 in all studies.
4.5.1 Study I: Movement characteristics during exer-

gaming
Movement characteristics derived from 3D motion capture data was statisti-cally analyzed using a linear mixed effect analysis in R using the lme4 package(Bates et al., 2015). Fixed effects of the model were game speed, the presenceor absence of obstacles, gender, and trial repetition. Random effects includedintercepts for participants as well as by-participant random slope for the ef-fect of body side (right or left arm or foot). Normality or homoscedasticitywas assessed by visual inspection of the residual plots, with no derivationsrevealed. P-values were based on conditional F-tests with Kenward-Roger ap-proximation for the degrees of freedom (Halekoh and Højsgaard, 2014).

4.5.2 Study II: Brain activity during exergaming
One-way repeated measures ANOVAs on the absolute EEG power of prede-fined frequency bands and the performance measures were used to statis-tically analyze differences between the conditions. Significant main effectswere followed up by paired-sample t-tests. Friedman’s test followed up byWilcoxon’s paired signed-ranks tests in case of detected significance was usedfor measures that were non normally distributed measures as indicated by aShapiro-Wilk test.

4.5.3 Study III: Assessment of an automatic EEG arti-
fact cleaning algorithm

Due to the data being non-normally distributed, Kruskal-Wallis tests by rankswere used in R (R Core Team, 2019) to assess the effects of task and cut-offparameter on the quality indices and dipolarity, the number of ICs classi-fied as brain related, and the certainty of the classification as brain-relatedICs. Wilcoxon’s signed-rank tests were used as follow-up in case of signifi-cance. The resulting p-values after the Wilcoxon’s signed-rank tests were cor-rected for multiple comparisons using Benjamini and Hochberg’s (Benjaminiand Hochberg, 1995) method.
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Results 5
This chapter provides a summary of the results of the three papers this the-sis is based on. Figure 5.1 to 5.3 present the main results of Papers I to III. InFigure 5.1 and 5.2 yellow is used to represent tasks with higher cognitive de-mands, whereas blue is used to represent less cognitively demanding tasks.

5.1 Paper I:Movement characteristics during
exergaming

Paper I aimed to assess the changes in movement characteristics of olderadults who played a side-stepping exergame caused by a change in gamespeed and the presence or absence of additional cognitive elements in theform of obstacles to avoid.
A summary of the main results of Paper I are shown in Figure 5.1. The calcu-lated movement characteristics are shown in subfigures (A) to (E). The meanstep size shown in Figure 5.1 (A) decreased significantly with increasing theexergame speed (p = 0.038) and if no obstacles were present (p = 0.001). Fur-thermore, the mean step size increased significantly with trial repetition (notshown in Figure 5.1, p < 0.001). The participant’s cadence is shown inFigure 5.1 (B). It increased significantly with exergame speed (p < 0.001) anddecreased if obstacles were present in the exergame (p < 0.001). Similarly,the frequency of arm lifts, shown in Figure 5.1 (C), significantly decreased ifobstacles were present in the exergame (p < 0.001). However, with increasedexergame speed the frequency of arm lifts decreased significantly (p < 0.001).The mean duration of single-support decreased significantly with an increase
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5. RESULTS
in exergame speed (p < 0.001), as shown in Figure 5.1 (D). The absence of ob-stacles led to a significant increase in the ratio of single-support (p < 0.001), asshown in Figure 5.1 (E).
The exergamers’ position within the exergaming area was recorded using thechest mounted reflective marker. A heat map of the resulting observations isshown in Figure 5.1 (F). Warmer colors indicate more observations, whereasdark blue squares represent areas in which no observations were made. Par-ticipants drifted forward and towards the screen throughout playing the exer-game as indicated by the warmer colored squares approximately 0.5 m infront of the starting position.
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5. RESULTS
5.2 Paper II: Brain activity during exergam-

ing
The aim of Paper II was to assess both feasibility of concurrent EEG measure-ments during exergaming, as well as to assess changes due to variations ofcognitive demands in the exergame.
Results indicated that it is feasible to record brain activity in young adultswhile playing a simple exergame. Furthermore, five spatially different clus-ters were identified that were located frontal, bilateral central, and bilateralparietal as shown in Figure 5.2 (A). With increasing cognitive demands fromthe self-paced sidewaysmovements (SP) to exergamingwithout choice option(NC) to exergaming with choice option (C), the frontal cluster showed a signif-icant increase of absolute theta power as shown in Figure 5.2 (B), while bothcentral clusters (D) showed a significant increase in absolute alpha-2 powerfrom the self-paced condition to both exergaming conditions.
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Figure 5.2: Main results of Paper II at a glance. (A): five dipole clusters,
(B): frontal absolute theta power, (C): parietal absolute alpha-2 power, and
(D): central alpha-2 power during self-paced sideways leaning (SP, brown),
no choice condition (NC, blue), and the choice condition (C, yellow).
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5.3 Paper III: Assessmentof anautomatic EEG

artifact cleaning algorithm
In Paper III, the influence of task and cut-off parameter on ASR cleaned EEGdata was assessed.
The cut-off parameters equivalent to the ratio of EEG data removed inmanualcleaning were 7 to 14 for the walking task, 5 to 40 for the single-leg stance taskand 10 to 45 for the n-back task. Figure 5.3 (A) shows the accumulative meanratios of removed and reconstructed EEG data for each task across partici-pants and their respective ranges. No EEG data was reconstructed in datasetspreprocessed using ASR with a cut-off value of 100 or above, as indicated bythe flat lines.
The quality indexes calculated using RELICA (Artoni et al., 2014) increased up toplateau at a cut-off parameter of 10. Dipolarity was largely unaffected by thechoice of cut-off parameters. Figure 5.3 (B) shows the mean quality indexesacross participants for cut-off parameters between 1 and 100.
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Discussion 6
The aim of this dissertation is to contribute to the development of exergamesas a tool for training and rehabilitation by studying movement characteristicsand cortical activity concurrently during exergame play while using variationsin game speed and cognitive demands. Furthermore, to enable the analysisof high-density EEG data recorded during movement intensive task, such asmovements during exergaming, an automated EEG preprocessing algorithmwas assessed for the effect of various movement tasks on its cleaning perfor-mance.
Exergames have been shown to have positive effects in several areas, such asin the adherence to exercise programs and in balance training. However, littleis known about the effects of exergame settings, such as game speed, addi-tional obstacles or the difficulty level of a task, on movement characteristicsof older exergame players and directly measured cortical activity in general.Despite the lack of knowledge about their effects, variations in game settingsare often used to adjust the difficulty of an exergame to the player’s abilitiesin order to keep the player in a state of flow (Csikszentmihalyi, 1975). In theflow-zone a player is neither overly challenged, nor bored by the tasks or inthis case the exergame. However, contrary to the goals of the entertainmentindustry, enjoyment is not the most important goal to achieve if an exergameis intended for rehabilitation and training purposes.
In summary, the first two papers of this thesis contribute towards buildinga more solid foundation of evidence on which further development of exer-games can be based. By assessing and highlighting the effects of exergamesettings, the papers emphasize the need for an informed approach in exer-game design. Paper I provided insight into the movement characteristics of
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6. DISCUSSION
older adults while playing a side-stepping exergame and the effects of gamespeed and the presence of additional cognitive objects in the form of obsta-cles to be avoided. Paper II showed that usable EEG data can be measuredconcurrently during exergaming and that even a simple exergame containscognitive elements as indicated by task-specific cortical representation.
Paper III aimed to contribute to a better understanding of a commonly used,but little understood, EEG preprocessing algorithm that originated from thefield of BCIs. Applications such as the concurrent measurement of corticalactivity during exergaming particularly benefit from EEG preprocessing meth-ods that can remove prominent artifact contamination in otherwise unusableEEG data, whilst at large not removing significant portions of the recordedEEG data. Paper III is the first publication to assess the effect of several cut-off parameters which are used to control the rigor of the algorithm and theeffect of movement intensity during the task on the cleaning performance ofthe algorithm assessed by results in source-space.
Beyond the results reported in each of the three papers, this thesis providesadditional insights gained during the data collections, analyses and interpre-tation of the results of Studies I through III, which are described in detail insection 6.4. Furthermore, an interdisciplinary endeavor, such as the projectthis thesis is based on, comes with several challenges that need to be solvedalong the way. Some of the solutions found to overcome those hurdles didnot find their way into the peer-reviewed journal articles but are neverthe-less worth describing as they might help avoid unnecessary dead-ends anddetours in future research.

6.1 Influencing movement characteristics of
older exergamers

As this thesis illustrated, game characteristics affect how older adults playexergames designed to train their balance, but the effects can go in differ-ent directions and be beneficial or detrimental for balance training. Bothgame speed and the presence of obstacles were shown to influence players’movement characteristics. In Paper I, higher exergame speed led to higherstep frequency and thereby more frequent weight shifts, which may bene-fit balance training. At the same time, the mean duration of single-supportand step size decreased, which might not be beneficial for balance training.Therefore, an informed approach when designing exergames is necessary foreliciting the desired movements for balance training, while not losing sight ofthe enjoyment factor. An informed approach for the development of futureexergames should include all elements of an exergame, such as the game de-
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6. DISCUSSION
sign and the required movement speed, since those elements influence theelicited movements and cognitive activity in exergame players. Similar to themethods used in drug development, a method for quality assurance shouldbe in place for newly developed exergames to ensure their effectiveness, andthe actual elicited movements that result from the chosen exergame and itssettings. This would also contribute to the acceptance of exergames as viableoptions for treatment for diseases and rehabilitation to restore and maintainphysical functioning.
Both exergame designers and healthcare workers choosing exergames fortheir clinical practice can make smart choices in enticing players to make themost beneficial movements for training effects, or they can miss the trick.However, the variety of exergames on the market that are not certified medi-cal productswith documented effectivenessmakes it difficult to select a suitedexergame that elicits the required movements for effective training.
Besides the specific settings of an exergame, the exergame itself plays amajorrole in eliciting movements. An exergame can elicit movements unwanted forthe intended training or rehabilitation purpose. This can be due to multiplereasons. Players can find out that a system can be tricked into thinking thata correct movement was performed using a e.g. less strenuous gesture. Fur-thermore, players could use unwanted and potentially dangerous strategiesto play an exegergame, such as crossover steps in balance training. Besidesthe aforementioned movements, players can also drift towards unintendedpositions throughout playing an exergame. This slow and gradual movement,e.g. towards the screen, can result in unwanted disruptions of the exergameand should therefore be avoided by design. If an exergame is played usingonly movements along a single plane such as sideways movements in The Fox(Silverfit3D, Silverfit, Woerden, NL), corrective measures to nudge the playerback into the intended position should be incorporated into the design of theexergame. Exergames played on a two dimensional playing field do not leadto players drifting into unwanted positions (e.g. The Mole, Silverfit3D, Silverfit,Woerden, NL; Skjæret-Maroni et al., 2016).
Elicited movements and brain activation can vary vastly between exergamesand even between different exergame settings. This implies a need for a cate-gorization of the evokedmovement characteristics and brain response to spe-cific exergames including the effects of changing its settings. The current find-ings in this thesis can serve as the first entries in a future catalogue or look-uptable for evokedmovement characteristics depending on either the exergameor the exergame setting used. This would enable physiotherapists or otherhealth professionals to make an informed decision about the selection of theappropriate exergame interventions that offer the maximum benefit for the
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patient by choosing exergames that elicit the specific and desiredmovementsrequired for training or rehabilitation. Moreover, such a database containingthe required and elicited movements for playing the exergame would makethe selection of an exergame that fits the functional abilities of a patient func-tioning easier.
National initiatives for the categorizing of exergames such as the Spill deg
bedre (EN: Play to get better) project who published the user manual Veileder
for bruk av dataspill i opptrening etter sykdom eller skade (EN: Guide for theuse of computer games in training after illness or injury; Johansen, 2017) areuseful for physiotherapists and occupational therapist who would like to useexergames in their rehabilitation and training programs. However, the guidelacks a thorough description of the movements elicited in exergames, includ-ing the effects of exergame settings, which were shown to affect the elicitedmovements. Adding this granularity to the categorization of exergameswouldenable healthcare professionals to choose the optimal exergame that suitsthe abilities of a patient and elicits the optimal movements for training or re-habilitation.

6.2 Concurrent measurement of cortical ac-
tivity

With increasing capabilities of EEG recording hardware such as active elec-trodes (Laszlo et al., 2014) and high impedance amplifiers, and processing al-gorithms (Bigdely-Shamlo et al., 2015; Mullen et al., 2015), it has become pos-sible to concurrently measure EEG during the execution of movement tasks.Furthermore, due to the advantages in temporal resolution of EEG comparedto methods such as fNIRS, it is now possible to immediately measure whichbrain areas are active in specific exergame situations. This would potentiallyenable the use of exergames as neurorehabilitation tools, with documentedcortical effects, or lack thereof, in specific regions of the brain.
The results of Paper II showed that it is possible to record usable EEG data dur-ing a simple exergame. However, for more movement intensive exergames,the preprocessing approach used in Paper II might not provide sufficientlyclean EEG data for further processing to reveal the sources of cortical activ-ity using an ICA. Fortunately, relatively recent developments in EEG data pro-cessing such as ASR might enable the use of EEG data recorded during moremovement intensive exergames. As a consequence of the need for a methodto remove artifacts from EEG recordings in high intensity movement tasks,the performance of ASR (Kothe and Jung, 2016; Mullen et al., 2015) in termsof quality and repeatability for different cut-off parameters was assessed in
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Paper III. An informed cut-off parameter selection for ASR is crucial, since itcontrols the rigor of the artifact removal. If the chosen cut-off parameter is toolow for the EEG dataset at hand, ASR can potentially remove cortical activity.On the other hand, if the cut-off parameter is too lax, ASR would likely leaveartifacts uncleaned. Previous research (Chang et al., 2019) only assessed ASRusing a single, low-intensity movement task. Paper III provides the first as-sessment of the effects on quality and repeatability of the resulting ICs basedon EEG data recorded during different cognitive and movement tasks.
Advanced EEG cleaning methods, such as those assessed in Paper III, are nec-essary for the analysis of more movement intensive exergames, especially indatasets that consist of many channels as the likelihood for movement ar-tifacts, such as electrode pops that increases with the number of channels.Manual cleaning of EEG data results in a significant loss of data, since contam-inated parts in one channel have to be removed from the recording across allchannels. Consequently, an EEG data collection would have to be substan-tially longer in order to account for the expected loss in data due to manualcleaning. Furthermore, a human rater might not be able to distinguish noiseand artifacts from cortical activity in highly contaminated EEG datasets, mak-ing the use of automated EEG cleaning the only feasible option.

6.3 Methodological considerations
Within the scope of a PhD thesis, there are many choices to be made alongthe way, turns to be taken and hurdles to be overcome. Furthermore, exter-nal factors, such as time and availability of equipment, played an importantrole in those decisions. In this section, some of the decisions will be explainedin further detail.
Two overall strengths of the current work are the use of state-of-the art mo-tion capture technology to record the participants’ movements in Study I anddirect measurements of cortical activity in Study II. There were additional con-siderations regarding the study designs and execution that benefitted thequality and feasibility of the studies. The different strengths and limitationsof the thesis will be addressed below.
The exergame used in Study II (Puzzle; Silverfit3D, SilverfitBV, Woerden, NL)was not asmovement intensive as the exergame in Study I (The Fox; Silverfit3D,SilverfitBV, Woerden, NL). This decision was based on the expectation that aless movement intensive exergame would cause fewer movement artifacts.However, with more modern active EEG electrodes, the concurrent record-ing of cortical activity during more movement intensive exergames might be

57



6. DISCUSSION
possible. Nevertheless, even an exergame simple in terms of movements re-quired was able to elicit measurable changes in cortical activity. This showsthat it is possible to record usable EEG data during the execution of move-ment tasks in an exergame and that the cognitive demands can be differentdepending on the settings of an exergame.
Although one of the aims of the project was to contribute to a better knowl-edge about exergaming that canbenefit its application in older adults, youngeradults participated in Study II and III. One of the aims of Study II was to assessthe feasibility of concurrent EEG measurements during exergaming. There-fore, younger adults were recruited as participants for pragmatic reasons,since there was no focus on potential differences of the EEG activity due toage. EEG data collected in Study III was used for a methodological assess-ment of an EEG processing algorithm. We did not expect any differences inmovement artifact patterns due to age. Furthermore, Study III only includedfemale young adults as participants, since the EEG data was recorded aftertheir participation in a different, unrelated study using the same EEG equip-ment, thereby avoiding the time-consuming participant preparation. We didnot aim to assess any gender or age differences in cortical activity. Further-more, we suspected movement artifacts to be the main contributor of non-stationary, non-stereotypical and high-variance signals ASR claims to removefrom recorded EEG.
Taken together, the studiesmight provide someadditional insights if repeatedwith older participants in the course of a study that follows the principles ofMoBI in the future. Furthermore, since all participants in studies conducted inthe scope of this thesiswere convenience samples and free fromself-reportedinjuries, it might be of interest to repeat the studies in more frail populations.In addition, exergame events could be measured concurrently in order to en-able the analysis of event-related potentials (ERPs). This would enable linkingexergame events to their immediate reaction in the brain.

6.4 Lessons learned along the way — side-
quests and glitches

Scientists use peer-reviewed journal publications as themain channel to com-municate their findings to other scientists. Although they offer a good way tocommunicate the results of research in a quality assured form, they do notcater themselves for the communication of smaller lessons learned through-out the conduction of a project - or honesty about bigger missteps. Despitenot being substantial enough to become a manuscript on their own, com-municating through a different channel such as this thesis might help other
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researchers to make better informed decisions for the conduction of their re-search projects.
6.4.1 Expect the unexpected
Although itmight seem completely clear to the researchers what an exergameexpects you to do, participants sometimes come up with alternative playingstyles. An example of this was shown by participants in Study I, who either dis-regarded catching the chickens completely or only used one hand to triggerthe avatar to jump. Depending on the research question, this could lead tocomplications down the statistical road and problems interpreting and gen-eralizing the results. Extensive testing before the start of a study, ideally withpeople not familiar with the exergame, can help to anticipate such unantici-pated playing tactics.
Another observation fromStudy I was that nearly all participants drifted closerto the screen as they were playing the exergame. This triggered an error mes-sage in the exergame. This observation bears important ramifications for thedevelopment of future exergames, in which artificial disruptions caused byerror messages might be avoided by designing game elements that nudgeplayers back to the center of the exergaming area instead of disrupting theirflow by displaying an error message. This shows that extensive pilot testing isimportant to record usable data before conducting a large-scale study.
6.4.2 Application programming interfaces — or the

lack thereof
Synchronizedmeasurements of brain activity andmovement datawith eventsin an exergame would enable researchers to assess the immediate effectsof events in an exergame. In EEG research ERPs, which are the mean valueof EEG activity milliseconds before and after a trigger event, are often usedto assess an underlying behavior pattern that would otherwise be obscuredby random noise. By overlaying hundreds of ERPs a regression to the meancan be achieved. This would potentially help with movement artifact contam-ination. However, commercially available exergames often lack a method torecord exergame events directly through an API.
If an exergame lacks a well-documented and accessible API, such as was thecase for the exergames used in Studies I and II, it is more difficult to obtainusable events from the exergame. If exergame events are crucial for answer-ing the research question, an exergame can be developed in-house. How-ever, exergame development is time intensive and a different profession thanbeing a researcher, which can potentially lead to boring and barely working
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exergame prototypes. If a commercially available exergame without an APIis used, trigger signals can be obtained using optodes fixed to the screen ifcertain events in the exergame show a repeating pattern on the screen. How-ever, this solution might necessitate the use of a second screen, ideally of thesame size and latency, if the optode obscures the player’s view. Furthermore,optodes and a second screen might not be readily available in the laboratoryand need to be bought for an experiment which can add significant costs to aproject.

6.4.3 Participant preparation time

Both the measurement of movements using a 3Dmotion capture system andthe recording of cortical activity using an EEG system require time intensivepreparation steps and highly trained professionals with practical experience.With some participants it might not be possible to ask them to sit still for anhour (e.g. children or people with diseases or cognitive decline) to ensure theproper placement of markers and electrodes as well as sufficiently low levelsof impedances. Furthermore, depending on the research question, the simul-taneous use of certain measurement systems might be mutually exclusive,such as reflective markers on the participant’s back for 3D motion captureand an EEG amplifier in a backpack.
In this case, a lower fidelitymeasurement setup such as using a RGB-D camerainstead of a marker based 3Dmotion capture systemmight be sufficiently ac-curate to answer the research question at hand. However, using EEG systemswith faster preparation time such as dry EEG electrodes might not offer thenecessary robustness towards movement artifacts and electrical noise. Thismight change with future innovations in the field of neuroscientific hardware.

6.5 Implications — taking exergames to the
next level

Exergames offer a possibility to be active for people who have reduced orconstrained opportunities to get sufficient movement and exercise, such assedentary older adults. Below, perspectives for different stakeholder groupsare presented on what is needed to be able to implement exergames in prac-tice, and where future research could or should be going.
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6.5.1 Perspectives onusing exergames for seriousbusi-

ness

From a patient’s perspective, exergames offer a potentially fun way to do therecommended exercises prescribed by a healthcare professional for trainingor rehabilitation. Furthermore, exergames offer a more structured approachto exercising, with the possibility to track both frequency of training sessionsand improvements in functioning. This can potentially help patients to recog-nize the effect of training or rehabilitation in a quantifiable way. Instead of justfeeling better in general, patients could track their progress and therefore rec-ognize the importance of adhering to a prescribed training program. Variousmovement characteristics were described in this thesis that could be used asfeedback to the player. Furthermore, the meta-analysis by Sherrington et al.(2011) identified importantmovements for balance training. Depending on thecognitive abilities of the player, those metrics might need to be combined toan easier understandable score instead of presenting the user with the rawdata. Besides presenting the player with either movement characteristics, ora summary thereof, it would be of great benefit for an exergame player to getimmediate feedback on the quality of the performedmovement tasks directlyafter, or even during, an exergame session. (Vonstad et al., 2018). Moreover, aconsiderable number of participants across the studies asked about their per-formance in comparison to their peers. This indicated that there is a potentialfor motivating exergame players by competition, similar to the functionalityof exercise tracking apps such as Strava (Strava Inc., San Francisco, CA).
From a healthcare perspective, exergames offer a method for the admin-istration of unsupervised training, while simultaneously offering a possibil-ity to track the progress of a user. Instead of asking the patient whetherthey followed the prescribed training or rehabilitation plan, a physiotherapistcan get a report from an exergaming system, containing frequency, durationand length of the training or rehabilitation sessions performed between e.g.weekly visits to the healthcare provider. Amajor advantage of exergames as aform of treatment is that patients after an introduction to the exergames, anddepending on their abilities, can train unsupervised or under less supervisioncompared to traditional on-site rehabilitation.
From a technological perspective, exergames need to be usable and safe touse in a home setting, in order to be used as amethod for administering train-ing or rehabilitation in a widespread manner. Current systems are difficult toset up in people’s homes due to the space required for an RGB-D camera andthe required space for playing an exergame. If e.g. a living room is used forplaying an exergame, it is important to set up the system in a way that nofall hazards are present. This either needs to be assured through video in-
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structions or by a trained person installing and introducing the user to theexergaming system.

Furthermore, future exergame systems need to be easier to use for a non-technologically savvy person. This would require a commitment to designinga system that is “plug and play”.

The observed drift towards the screen of the participants indicated that olderadults focus more on the exergame or screen, instead of being aware abouttheir position in the real world. This is by itself a sign for immersion into theexergame which is desirable for achieving a state of flow, but in the contextof safety, it becomes an issue to be aware of. Furthermore, a slow changeof the player’s position within the exergaming area could lead to problemsdetecting the player if e.g. a RGB-D camera is used. If the player drifts toofar to the edges of the area, some form of corrective measure needs to betriggered such as error messages. The issue of drifting can be resolved by de-signing an exergame that takes the movement in anterior-posterior directioninto account. If an exergame is solely controlled by parallel movements to thescreen and there is no exergamemechanics to control the drift of a player, anunwanted situation in terms of a disruption of the flow, such as through e.g.an error message or even worse, a fall could occur caused by e.g. a collisionwith an obstacle outside the exergaming area.

Both game designers and healthcare professionals installing and introducingthe exergame system to a future user need to pay attention onhow tomitigatetripping hazards. Given the rapid development in the field of computer visionand artificial intelligence, the process of identifying tripping hazards might bebuilt into an exergame. The RGB-D camera system of an exergame could col-lect data for a 3D visualization of the room. The acquired data can then beassessed for potential hazards in the exergaming area.

From a regulatory perspective, clear evidence about the effectiveness of exer-games as a rehabilitation tool is needed to elevate exergames from a use-ful toy to a classified medical product. A better understanding of the elicitedmovements both due to the exergame and its selected settings is needed fora better assessment of the effectiveness, or lack thereof, of exergame inter-ventions. Furthermore, a classification as medical products might aid the ac-ceptance in countries with strict policies on what is prescriptible by a medicaldoctor.
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6.5.2 Future research
Concerning the implications for future research, the results presented in thisthesis indicate that there are measurable differences in brain activity andmovement characteristics that depend on settings in exergames. Future re-search can build upon and expand these findings presented in this thesis.
Firstly, future research can add to the catalogue of elicitedmovements in exer-games for which this thesis provided the first entries. This wouldmake the se-lection of the appropriate exergame for a patient or player for rehabilitationor training easier for healthcare providers. Furthermore, amethodical assess-ment of the elicited movements and the activation of certain brain areas foreach exergame and its settings would aid the acceptance of exergaming as aserious tool to train and regain physical and cognitive functioning.
Secondly, future research couldmeasure brain activity and 3Dmotion capturedata simultaneously. The brain and the musculoskeletal system are physi-cally connected and perform a constant interaction to maintain balance whileperforming tasks and reacting to game elements. Deepening our knowledgeabout this connected system could be valuable for the creation of more tar-geted neurorehabilitation exergames (Makeig et al., 2009). Assessing whichareas of the brain are active during exergaming through concurrentmeasure-ment of brain activity during exergaming and capturing 3D motion capturedata would be of great interest for the future development of exergames thatcan affect and thereby potentially regain neurological functions. Knowledgeabout which brain areas are activated while playing different kinds of exer-games under different play settings can be used to design custom-made exer-games that can activate specific areas of the brain affected by a disease. Forexample, an exergame could be used to activate areas of the brain affectedby a stroke and thereby help the players to regain their lost abilities.
Thirdly, future research should aim to provide evidence for the effectivenessof exergaming as a medical or rehabilitation tool. A starting point for theassessment of the effectiveness of exergaming interventions for a specifictreatment application could be the previouslymentioned catalogue of elicitedmovements.

6.6 Conclusion
The characteristics of an exergame, such as game speed and difficulty levelinfluence both movement characteristics and cortical activity in players. Thisimplies that there is a need for a database or catalogue of elicitedmovementsdepending on both the exergame itself and the chosen settings in order to
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ensure that a patient plays the most beneficial exergame available. Further-more, this thesis serves as a steppingstone for future mobile brain and bodyimaging research in exergaming. The results of the three papers pave the wayfor future research on movement characteristics and cortical activity duringexergaming combined. Furthermore, the results of the papers by themselvesmay aid future development of exergames by providing empirical evidencefor the effect of game settings, such as game speed and cognitive elements oncortical activity andmovement characteristics. This knowledge can contributeto the design of more targeted exergames that potentially achieve better ef-fectiveness.
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Falls in older adults are a serious threat to their health and independence, and a prominent

reason for institutionalization. Incorrect weight shifts and poor executive functioning have

been identified as important causes for falling. Exergames are increasingly used to train

both balance and executive functions in older adults, but it is unknown how game

characteristics affect the movements of older adults during exergaming. The aim of this

study was to investigate how two key game elements, game speed, and the presence of

obstacles, influence movement characteristics in older adults playing a balance training

exergame. Fifteen older adults (74 ± 4.4 years) played a step-based balance training

exergame, designed specifically for seniors to elicit weight shifts and arm stretches.

The task consisted of moving sideways to catch falling grapes and avoid obstacles

(falling branches), and of raising the arms to catch stationary chickens that appeared

above the avatar. No steps in anterior-posterior direction were required in the game.

Participants played the game for eight 2min trials in total, at two speed settings and

with or without obstacles, in a counterbalanced order across participants. A 3D motion

capture system was used to capture position data of 22 markers fixed to upper and

lower body. Calculated variables included step size, step frequency, single leg support,

arm lift frequency, and horizontal trunk displacement. Increased game speed resulted

in a decrease in mean single support time, step size, and arm lift frequency, and an

increase in cadence, game score, and number of error messages. The presence of

obstacles resulted in a decrease in single support ratio, step size, cadence, frequency

of arm lifts, and game score. In addition, step size increased from the first to the

second trial repetition. These results show that both game speed and the presence of

obstacles influence players’ movement characteristics, but only some of these effects

are considered beneficial for balance training whereas others are detrimental. These

findings underscore that an informed approach is necessary when designing exergames

so that game settings contribute to rather than hinder eliciting the required movements

for effective balance training.

Keywords: balance training, older adults, exergaming, movement characteristics, game settings
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INTRODUCTION

The rapidly aging population in industrialized countries and
concurrent strains on the health care system necessitate more
cost-effective treatment and prevention options to counteract
age-related decline in functioning. Falls in older adults are among
the main causes for hospitalization and institutionalization
(Kannus et al., 2005) and significantly impact the cost burden
on health care budgets worldwide (Heinrich et al., 2010).
Furthermore, both actual falls and fear of falling are associated
with reduced activity (Yardley and Smith, 2002; Hornyak
et al., 2013), which in turn increases the risk for developing
chronic conditions.

There is good evidence that balance training reduces fall risk
(e.g., Buchner et al., 1997) and can counteract inactivity caused
by fear of falling (Gusi et al., 2012). A cost-effective way to
administer additional balance training with good adherence rates
is exergaming (Burke et al., 2009; Skjæret et al., 2016). Exergames
are videogames that require bodily movements as input to play
the game (Brox et al., 2011). The term is used both for vigorous
exercises and for less intensive exercises such as balance training
or seated upper body exercises. Furthermore, exergames allow for
home-based training in elderly, as demonstrated in early studies
using force-sensitive matbased stepping exergames (Schoene
et al., 2011; Smith et al., 2011). In recent years, exergames
have gained popularity both as a complementary tool or as
a replacement for traditional exercise and rehabilitation (e.g.,
Mellecker et al., 2013), with the same or better effectiveness
compared to usual care (Skjæret et al., 2016). In addition,
exergames have been shown to have positive effects on physical
activity in general (e.g., Höchsmann et al., 2016; Rhodes et al.,
2017), as well as in specific rehabilitation settings (e.g., Laver
et al., 2012; Baltaci et al., 2013). Ongoing developments in
game technology, such as videobased motion detection of the
player, allow for exergames with more variation in movements
compared to mat-based exergame systems.

Correctly executed steps are important to maintain balance
and to avoid falls (Robinovitch et al., 2013). In daily life, one
is often required to make quick, unanticipated steps to react

to changing circumstances in order to avoid a fall (Lord and
Fitzpatrick, 2001). This requires both the mental and physical

capacity to react to an unknown situation. Caetano et al.
(2016) showed that the ability to adapt gait is an important
factor in predicting fall risk. Furthermore, they showed that
concurrent cognitive tasks resulted in older adults reducing their
walking speed and shortening their steps during the stepping and
avoidance paradigm used in their studies (Caetano et al., 2017,
2018).

Stepping exergames are well suited for creating artificial
situations in which unplanned steps are needed and have been
shown to reliably assess fall risk in community-dwelling older
adults (Schoene et al., 2011). Furthermore, a recent systematic
review of randomized control trials about the effect of balance
exergames in older adults (Fang et al., 2020) found improvements
in functional performance and balance confidence with respect to
dynamic balance, perceived balance, chair stand test, and balance
test batteries. Non-significant improvements in static balance and

proactive balance were speculated to be caused by ceiling effects
in the tests used.

Despite the good evidence for the use of stepping exergames
to train balance, there is an overall lack of knowledge on the
actual movement characteristics that are elicited by exergames,
both in elderly players and in other populations. This knowledge
is crucial for the development of evidence-based, targeted
exergames if the intention is to provide effective training
and rehabilitation in the aging population. This is even more
critical when exergames are to be used unsupervised in home-
based training. To date, most of the research has focused
on the effectiveness of, and adherence to, training programs
using exergames compared to usual care, not on whether the
intended movements are actually elicited. Without knowledge
about the movement characteristics elicited during gameplay,
it is difficult to design effective balance training exergames or
interpret the effects, or lack thereof, of exergaming interventions
in clinical trials.

In order to design effective exergames that achieve high
adherence rates over longer periods of time, expertise from
multiple disciplines is necessary. On the one hand, health care
professionals need to contribute with their knowledge about
which exercises and movements are required to train specific
functions. On the other hand, the expertise of programmers
and video game designers is crucial, both for the technical
aspects and to ensure that the exergames are enticing and
inherently motivating over longer periods of time. Furthermore,
to assess whether the intended movements are indeed elicited
during gameplay, the expertise of human movement scientists
is required. Such multidisciplinary effort at the intersection of
health, movement science, and computer science becomes even
more crucial given the lack of knowledge about movement
characteristics of elderly exergame users that are elicited by
different settings and potential additional cognitive challenges
within the exergame.

A critical element for training and rehabilitation programs to
be effective is adherence to the program. A common strategy
to achieve high adherence during exergaming is to try to
keep the player in a so-called flow-zone (Csikszentmihalyi,
1975). In the flow-zone, a player is neither overchallenged
nor bored by the exergame. One way to achieve this is by
dynamically adjusting the game settings during the game to
match the performance of the player. For example, game
speed can be changed to adjust the difficulty level of the
exergame, thereby personalizing the exergame to the player’s
abilities and enabling progression (e.g., van Diest et al., 2013).
However, very little is known about how a change in game
speed affects the movement characteristics of the player, and
whether these effects are beneficial or detrimental for the desired
training or rehabilitation effect. For example, if a higher game
speed would lead to less carefully executed movements, as in
a speed-accuracy trade-off (cf. Heitz, 2014), this might not
be beneficial to achieve the desired training effects. A better
understanding of the effects of game speed on elicited movement
characteristics is thus necessary to inform the development
of targeted exergames for balance training and prevention of
functional decline.
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Similarly, additional challenges in the form of cognitive
elements are used often in exergames to keep the player in the
flow-zone or to add cognitive training to the physical exercise
(Anders et al., 2018). These additional cognitive elements can
be in the form of extra tasks in the exergame such as counting,
matching objects, or avoiding obstacles. Cognitive elements
in exergames can create a dual task situation in which the
player needs to focus on two or more things simultaneously,
thereby training cognitive function as well as physical function.
Evidence suggests that dual task training can improve walking
performance of older adults (Wollesen et al., 2017). However,
the effect of additional cognitive elements on the player’s
movement characteristics in exergames is rarely explored.
In a rare exception, Skjæret-Maroni et al. (2016) found a
decrease in the quality of movement characteristics needed
to train balance when cognitive tasks were present during
exergaming, underscoring the need for better knowledge
about how game settings influence elicited movements
during exergaming.

The objective of the current study is to address these gaps
in our knowledge by investigating the effect of game speed and
obstacles on movement characteristics in older adults playing a
balance training exergame. As there is good evidence that step-
based balance training reduces the risk of falls in older adults
(e.g., Okubo et al., 2017), we chose a stepping exergame for
balance training and assessed the movement characteristics of
older adults playing at two different speed settings and either
with or without obstacles to avoid. To the best of our knowledge,
there is no previous study that assessed the effects of game
speed and obstacles in exergames on movement characteristics
in older adults. This knowledge is crucial for both health
care professionals and developers of exergames in order to
choose between existing or design new exergames that are most
beneficial for balance training.

We expected that both game speed and the presence
of obstacles would influence movement characteristics, and
that some of these effects would be beneficial for balance
training but others detrimental. Furthermore, in exergames with
higher cognitive load, we expected the participants to make
smaller steps.

METHODS

Participants
Fifteen older adults between 65 and 83 years of age participated
in an experimental laboratory study at the Norwegian University
of Science and Technology (see Table 1 for participant
characteristics). To be included, participants had to be 65 years or
older and live independently. Participants were excluded if they
had an injury or had undergone surgery of the back or the lower
extremities during the last 6 months, or if they were unable to
follow instructions given by the researchers.

The protocol was approved by the Regional Committees for
Medical and Health Research Ethics, Norway. All participants
gave written informed consent before data collection in
accordance with the Declaration of Helsinki.

TABLE 1 | Participant characteristics.

Mean SD Range

Age (years)

Female (N = 7) 72.6 4.7 65–79

Male (N = 8) 74.8 4.0 70–83

Total (N = 15) 73.7 4.4 65–83

Height (cm)

Female 166.8 3.5 162.8–172.2

Male 175.2 6.1 165.8–183.5

Total 171.3 4.1 162.8–183.5

Weight (kg)

Female 65.4 4.9 60–74.4

Male 76 4.1 70.2–82.8

Total 71 7 60–82.2

Procedure
All participants played a step-based balance training exergame
(“The Fox,” SilverfitBV, the Netherlands). The aim of the
exergame was to feed a fox-avatar by moving it sideways into
the trajectory of falling grapes. The avatar mirrored the lateral
movements of the participants, so when the participants placed
themselves to the far right of the exergaming area, the avatar
would be on the far-right side of the screen. The exergaming area
was set to 2 by 2m as shown in Figure 1. Thus, the movement
of the avatar from one side of the screen to the opposite side
corresponded to a 2m distance in the physical playing area.
The game itself did not determine any required step size, as
participants can take several smaller or fewer larger steps to move
the avatar the desired distance. Occasionally appearing stationary
chickens above the fox-avatar were caught by raising at least one
arm, which triggered the fox to jump. Only arm movements that
resulted in at least one hand being lifted higher than the head
were accepted by the exergame as a trigger for a jump. Other arm
movements, e.g. to maintain balance, were ignored by the game.
Participants had a time window of 7 s to place themselves under
a chicken and raise at least one arm to trigger a jump, before the
prey disappeared again.

Nomovement in the anterior-posterior direction was required
to play the exergame. The exergame system used a Microsoft
Kinect v2 camera (Microsoft Corporation, Redmond, WA, USA)
to capture the movements of the participants. The Kinect v2 was
used as input for the exergame only and not for data capturing.

Each participant played eight 2-min exergame trials at two
speed settings and either with or without additional obstacles,
falling branches, that had to be avoided. The width of a falling
branch can be seen in Figure 1. The distance between the
grapevines on either side corresponded to a physical distance of
2m, a branch covered approximately 57 cm (35%). Increasing
the exergame speed led to an increased number of grapes and
branches falling simultaneously on the screen (from 1–3 to 3–5
grapes, and from 1–2 to 1–3 branches) and reducing their time on
the screen from 8–10 s to 6–9 s (measured from top to bottom of
the screen for missed grapes and branches). Neither the number
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FIGURE 1 | Graphical image of the exergame area (left panel) and a screenshot of “The Fox” exergame (right panel) showing all exergame elements (Fox-avatar,

grapes, chickens, branches, game score, and remaining game time).

of chickens nor their time on the screen were affected by changes
of the game speed. The four conditions were played twice in
counterbalanced order across participants. Participants had a 2-
min break between exergame trials. Before the first trial, each
participant tested the game at a lower speed setting to ensure that
they understood the task and that they were able to perform all
required movements. After the participants completed all eight
trials, they performed a range-of-motion test to quantify that they
were able to perform all requiredmovements such as arm lifts and
forward and sideways steps.

To record the participant’s movements throughout the trials,
22 retroreflective markers were placed on anatomical landmarks
using double-sided tape and a headband. Markers were placed
bilaterally on the posterior and anterior side of the head, ulna
styloid process, lateral epicondyle of the humerus, acromion,
ilium posterior superior, ilium anterior superior, femur lateral
epicondyle, lateral malleolus, and lateral distal phalange 1 (big
toe), as well as one marker on the sternum and one on the
center of the right thigh. A 3D motion capture system (OQUS,
Qualisys, Gothenburg, Sweden) consisting of eight cameras was
used to record the spatial positions of the markers throughout all
exergame trials, with a measurement frequency of 120Hz. The
cameras were wall-mounted to minimize blockage by the TV
screen or the Kinect v2 camera. Markers that fell off during a trial
were replaced before the start of the next trial.

The output of the exergame on the 55” (139.7 cm) TV screen
was captured using Open Broadcaster Software Studio (version
21.0; Open Broadcaster Software Studio, 2018). Figure 1 shows
an exemplary frame including all game elements. The game score
displayed on the top right of the screen was explained to the
participants, but they were not specifically encouraged to achieve
the highest possible score.

If the participant moved outside the predefined exergaming
area of 2 by 2m, the game stopped and an errormessage appeared
on the screen containing information on how to resolve the
issue, e.g., “You are too far in the back. Please move closer to

the screen.” The exergame continued as soon as the participant
returned to the exergaming area. The size of the exergaming
area was not indicated on the floor in order to mimic a home-
based setting.

Data Analysis
A customMatlab script (version: 9.3.0, Mathworks Inc., Nantick,
MA) was used to analyze the movement of the extremities as well
as the position of the trunk based on the 3D motion capture
data. The start and stop of each step was identified using the
same method as in Skjæret-Maroni et al. (2016), which used
the position of the markers on the lateral malleolus. A step
was defined as a ≥ 0.03m displacement of the toe marker
lasting for ≥ 0.05 s. A marker velocity of 0 ± 0.1 ms−1 was
used for the identification of step initiation and termination.
From these, mean duration of single leg support, mean step
size, and cadence were calculated for each foot. We chose the
term step size rather than step length or step width to capture
both sideways and forward aspects of steps, as some participants
partly rotated their upper body whereas others remained parallel
to the screen while taking steps. Furthermore, the ratio of the
total duration of single-leg support (total accumulated single-leg
support time divided by trial time) was calculated. Movement
data for the arms was used to calculate the number of arm lifts per
minute. The start and end of an arm lift was determined by the
relationship between the vertical positions of the average height
of all head markers compared to the left and right markers on
the ulna styloid processes (wrists). The player’s position on the
playing field was determined by the position of the marker on
the sternum. Displacements of the sternum marker were used
to create heatmaps that reflected upper body positions of the
participants in relation to the screen.

There were slight variations in the duration of each exergame
across trials and participants due to error messages that appeared
on the screen when a participant left the exergaming area, which
temporarily stopped the game but not the 3D motion capture
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recording. Therefore, we report the ratio for single-leg support
and the frequency of arm lifts rather than the total duration of
single-leg support and the total number of arm lifts.

Finally, optical character recognition was used on the captured
screen frames to identify error messages during each trial, as well
as the total game score and the number of chickens caught and
branches hit (if present) at the end of each trial.

Statistics
A linear mixed effect analysis in R (R Core Team, 2019) was
used to analyze the effects of game speed, the presence or
absence of obstacles, gender, and trial repetition, which served
as fixed effects on the investigated movement characteristics,
using the lme4 package (Bates et al., 2015). Random effects
included intercepts for participants as well as by-participant
random slope for the effect of body side (right or left arm or
foot). Visual inspection of residual plots did not reveal deviations
from normality or homoscedasticity. The computation of p-
values was based on conditional F-tests with Kenward-Roger
approximation for the degrees of freedom (Halekoh and
Højsgaard, 2014). Statistical significance was set at p < 0.05.
The linear mixed effect analysis was chosen to remove individual
differences between participants (Schoene et al., 2011) and
to account for the slight gender imbalance without losing
statistical power.

RESULTS

Game Score
The game score that appeared on the screen after each trial
was a combination of grapes and chickens caught and branches
avoided (+ 1 point for each grape caught, + 3 points for
each chicken caught, and −2 points for each branch hit). The
number of grapes presented varied across trials, depending on
the chosen game speed, thereby resulting in more opportunities
for catching grapes in games with high game speed. In contrast,
the number of chickens did not vary with game speed but was
constant at 11 chickens per trial. The game score results are
shown in Table 2. Not surprisingly, the mean game score was
higher in the trials at high game speed without obstacles. The
presence of obstacles reduced the game score by approximately
20 points for either game speed setting, while the game
score was about 20 points higher in games at high speed
compared to games at low speed. The percentage of grapes
caught was ∼20% higher in low-speed compared to high-
speed games. Interestingly, the percentage of grapes caught
with or without obstacles was similar, with a small trend
to increase when obstacles were present. In contrast, a clear
decrease was seen in the percentage of chickens caught in games
with obstacles present. Percentage of branches unsuccessfully
avoided was very low and slightly higher in games with low
speed settings.

Movement Characteristics
Single Leg Support
As standing on one leg is an important strategy to train balance,
we investigated both the mean duration of single support

TABLE 2 | Mean game score and mean percentage of caught grapes, caught

chickens, and unsuccessfully avoided branches for all combinations of game

speeds and obstacles.

Speed

low high Overall

Game score

O
b
s
ta
c
le
s

without 69.8 86 78.5

with 48.7 67.4 58.3

Overall 59 77.1 68.5

Grapes caught without 77.6% 53.7% 64.8%

with 79.8% 59.1% 69.3%

Overall 78.7% 56.3% 67%

Chickens caught without 91.3% 93.1% 92.3%

with 74.8% 76.1% 75.5%

Overall 82.9% 84.9% 83.9%

Branches hit with 5% 3.8% 4.4%

The values in bold font represent the average across game speed, presence of obstacles

and overall.

events per foot (in seconds) and the ratio of single leg support
(accumulated single support time during a trial divided by trial
time). The mixed effects model indicated that the mean duration
of single support events decreased significantly (p < 0.001) with
an increase in game speed, whereas the ratio of single support
increased slightly but not significantly (p = 0.189) (see Figure 2
and Table 3). This indicates that participants stood slightly more
often but significantly shorter on one foot when playing at higher
speed. Furthermore, the ratio of single support decreased when
obstacles were present, indicating that participants accumulated
less single support time during a trial when having to avoid
obstacles. Neither ratio nor duration of single support were
significantly affected by trial repetition, gender, or body side (all
p’s > 0.10).

Mean Step Size and Cadence
Step size and cadence where both affected significantly by the
game speed (mean step size: p < 0.05; cadence: p < 0.001) and
the presence of obstacles (mean step size: p = 0.001; cadence: p
< 0.001). As can be seen in Figure 3, higher game speed and the
presence of obstacles led to a decrease in mean step size (panel
A). Cadence decreased as well when additional obstacles were
present but increased with an increase in game speed (panel B).
In addition, trial repetition had a significant effect on mean step
size (p < 0.001), with larger steps when participants played the
same condition for the second time. See Table 3 for all statistical
results for mean step size and cadence.

Frequency of Arm Lifts
The frequency of arm lifts decreased with high game speed (p <

0.001) and when additional obstacles were present (p= 0.001), as
shown in Figure 4. Trial repetition, gender, and body side had no
significant effects on the frequency of arm lifts (all p‘s> 0.08). See
Table 3 for all statistical results.
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FIGURE 2 | Mean duration of single support events (A) and ratio of single support (B). Vertical bars indicate the standard error of the model.

Player’s Position
Heatmaps
As described above, the active area in which the exergame could
be played was ∼2 by 2m. The heatmap (see Figure 5) shows the
number of observations of the sternummarker in the exergaming
area (white square) across all participants and all trials, on a
30 by 30 grid. Warmer colors indicate more observations. The
starting position was centered in front of the screen, 0mm in
medial-lateral and 500mm in posterior direction (white circle
in Figure 5). On average, participants drifted ∼0.5m closer to
the screen throughout an exergame trial, as indicated by the
green and yellow squares, indicating more observations of the
sternum marker parallel to the screen (white rectangle). There
were no systematic differences in the heatmaps between the
different conditions.

Moving Outside the Exergaming Area
When a participant moved outside the active exergame area
of 2 by 2m in any direction while playing, an error message
would appear on the screen to inform the participant to correct
their position in the playing area. We used a custom Matlab
script including optical character recognition to detect error
messages in the screen recording. Out of 15 participants, only
two participants never drifted outside the active exergame area
while playing the exergames. The remaining participants moved
outside the area between one and nine times across all conditions.
On average, 0.38 error messages per exergame trial were observed
across all exergame trials that had valid screen captures (113 out
of 120 trials). The majority of error messages were triggered by
participants who drifted too close to the screen while playing (36
out of 43 error messages in total). The average time to resolve this
was 2.44 s. The remaining error messages were divided between
being too far to the left (4 times, on average 1.34 s to resolve), too
far to the right (once, 0.67 s), and too far back (twice, 1.70 s).

More error messages were triggered in trials at high game
speed compared to those at low game speed (see Table 4).
However, a chi-square test indicated that the presence or absence

of obstacles showed no consistent effect on the number of
error messages triggered, nor was there a significant interaction
between game speed and the presence of obstacles, χ2

(1)
= 1.203,

p > 0.05.

DISCUSSION

The purpose of this study was to investigate the effect of game
speed and obstacles on movement characteristics of older adults
who played a step-based balance training exergame. According
to a meta-analysis by Sherrington et al. (2011), effective balance
exercises should include displacement of the center of gravity
and reduced base of support. Therefore, we assessed mean step
size and cadence, the ratio and duration of single-leg support,
as well as the frequency of arm lifts as arm lifts and stretches
influence the center of gravity. Both changes in game speed and
additional cognitive elements are used regularly in exergames
to keep the player in the flow-zone and/or train cognitive and
physical functions simultaneously. However, as the results of
the current study show, changing the settings of an exergame
can have both positive and negative effects on the player’s
movement characteristics with respect to training balance. Below,
we discuss our main findings regarding the effects of game speed,
the presence of obstacles, and trial repetition on movement
characteristics, the consequences of these effects for balance
training, and their relevance for choosing existing or developing
new exergames for balance training in older adults.

Game Speed
Higher game speed led to shorter single support events, shorter
steps, fewer arm lifts, and increased cadence. Higher cadence is
associated withmore frequent weight shifts, which are considered
beneficial for effective balance training (Sherrington et al., 2011).
Furthermore, eliciting faster steps during gaming at higher
speed may benefit the training of a quick step to avoid, or
recover from, a balance disturbance and imminent fall. On
the other hand, participants were more likely to move outside
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the active exergaming area when playing at higher speed, as
indicated bymore than twice as many error messages. This would
cause the exergame to stop, thereby potentially interrupting the
participant’s flow. Further research is necessary to find an optimal
balance between these contrasting effects of game speed when
designing or choosing themost beneficial game and game settings
for balance training. This is further attested to by our results
regarding game score. As higher game speed led to higher scores,
this may have important ramifications for exergames where
achieving a high score is the focus for the player, as game speed
affects the movement characteristics as well.

Obstacles
The presence of obstacles led to shorter steps, reduced cadence,
fewer arm lifts, and a decrease in the ratio of single-support
time. A likely explanation for these changes in movement
characteristics is increased cognitive load caused by the presence
of additional exergame elements and potentially conflicting
demands on the player. These results indicate that although
cognitive elements are often added to the game to increase
enjoyment and/or simultaneously train cognitive functions,
they can lead to unwanted side effects on elicited movement
characteristics that are less favorable for balance training (see also
Skjæret-Maroni et al., 2016).

Furthermore, we observed that when participants moved their
avatar toward the edge of the screen, the avatar was occasionally
trapped there by falling branches that blocked the path back
to the middle or the other side of the screen. This resulted in
participants waiting for the obstacle to pass before continuing
to play the game and try to catch grapes and chickens. The
waiting period in which the participants stood still could take
up to several seconds. The low percentage of collisions with
branches indicates that participants indeed tried to avoid being
hit by branches as much as possible, even when that meant
having to wait for the branch to pass before continuing to catch
chickens and grapes. Although having to avoid obstacles may be
positive in terms of adding cognitive training and enjoyment to
the exergame, this may also lead to strategies and movements
that are considered less beneficial for the training of balance.
Waiting for a situation to resolve should be avoided by the game
design, for example by allowing the avatar to move forward or
backward around the obstacle. An alternative solution could be
to introduce e.g., an extra bracing position to protect the avatar
from falling branches which could simultaneously challenge
balance. Our results underscore that the effects of additional
cognitive elements on intended movement characteristics need
to be taken into account when designing or using exergames for
balance training.

Trial Repetition
Participants played each condition twice, but we did not expect
to find learning or fatigue effects with such short exposure.
Although most movement characteristics were indeed unaffected
by the repetition, we did find larger steps on the second trial
compared to the first. A possible explanation for this might
be that in the second trial, participants were more familiar
and comfortable with playing the exergame in general and

Frontiers in Sports and Active Living | www.frontiersin.org 7 May 2020 | Volume 2 | Article 54

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Anders et al. Movement Characteristics of Older Exergamers

FIGURE 3 | Mean step length (A) and cadence (B). Vertical bars indicate the standard error of the model.

FIGURE 4 | Mean frequency of arm lifts. Vertical bars indicate the standard

error of the model.

the movements required to play the exergame in particular.
Pure sideways stepping without a forward component to the
movement is less common in everyday life. Therefore, it may be
speculated whether participants needed a short adaption phase
in order to perform this movement with enough confidence to
perform larger steps. In that respect, the observed increase in
mean step size from trial one to trial two is a positive result,
as stepping sideways can be an important strategy to recover
postural control after a balance disturbance (Hsiao-Wecksler
and Robinovitch, 2007). Furthermore, this result indicates
also that exergames might have an immediate short-term
learning effect.

Other Observations and Lessons Learned
Although the exergame itself did not distinguish between
different ways of raising arms to catch chickens, we observed
several distinct playing styles. Some participants raised both arms
to catch chickens, whereas others raised one arm only. One
participant did not raise the arms at all during the game and
did not catch any chickens. These differences did not result
from physical limitations, as we checked that all participants
were able to perform the required movements with both arms.
Some participants also used the jump of the avatar to catch
falling grapes faster instead of waiting underneath the trajectory
of the falling grapes. These observations indicate that exergame
players may perform or play in many different ways that can
benefit or hinder the intended balance training. Ideally, the
game technology used should be able to distinguish correct vs.
incorrect movements in these situations and provide feedback
in order for the exergame to function as an effective balance
training and rehabilitation tool (cf. Vonstad et al., 2018). Thus,
the knowledge gained by investigating different movement
characteristics displayed by the players when exergaming should
be used in the design and development of new exergames for
health benefits.

Throughout each trial, participants moved ∼0.5m closer to
the screen on average. There was no incentive in the exergame to
do so as the game was played on a two-dimensional plane parallel
to the screen. This gradual forward movement was observed
across all conditions and participants. The implemented elements
in the game such as the falling branches did not affect this
behavior. A possible explanation for the drift toward the screen
might be that a pure sideways movement is difficult to achieve
and less common in activities of daily living compared to side
steps with an additional forwards component to them, as in
avoiding an obstacle in the path of progression. Alternatively, it
can be speculated that the older adults who served as participants
in this study struggled to learn to use the system quickly enough
to avoid drifting outside the exergaming area. Younger adults and
children, themain customer-base of video game technology, grew
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FIGURE 5 | Heatmap of the players’ positions in the exergaming area based on the marker on the chest across all conditions and participants. The white square

indicates the 2 by 2m active exergaming area. All participants started each trial in the white circle. The white rectangle indicates the area with most observations. The

game screen was positioned to the left of the playing area.

TABLE 4 | Error messages triggered by the players moving outside the active

exergaming area for each combination of settings.

Error messages Obstacles

without with Total

Speed low 5 8 13

high 17 13 30

Total 22 21 43

up using technology such as Microsoft’s Kinect or Sony’s EyeToy
and are therefore more familiar with digital avatars mirroring
movements, as well as with the inherent limitations caused by
the limited field-of-view of the infrared cameras. Thus, they may
be more likely to reposition themselves when they drift away
from the center of the observable area. Although we did not mark
the exergaming area with tape in order to mimic a more natural
home-based setting, proper delimitationmight help to reduce the
ambiguity concerning one’s position within the exergaming area.

Over time, the accumulation of the drift forward resulted
in error messages and breaks in the game until participants
stepped back into the active exergame area. Though usually of
short duration and easily corrected by the player, those error
messages and game breaks likely result in a disruption of the
flow-zone (Csikszentmihalyi, 1975), with associated potential
negative consequences for enjoyment and adherence. However,
as we did not collect data on enjoyment of the exergame, this
remains an assumption that needs corroboration in further
studies. Yet, future development of exergames could take our

findings into account by letting the game stimulate the player to
move back toward the center of the play area without disrupting
the exergame experience by error messages and game breaks.

The current study was designed to observe immediate effects
of game settings on movement characteristics in a single
exergaming session. But even across only two trial repetitions,
steps became significantly larger. In order to achieve lasting
improvements in the ability to maintain balance, multiple
sessions over a longer period of time are needed. With
more repetitions, people who routinely use exergames for
balance training might show additional changes in movement
characteristics in reaction to changes in game speed or additional
challenges. Further research is needed with longer follow-up time
to study potential effects over extended playing time.

Limitations
The current study offers several insights into how game
settings in exergames influence the movement characteristics
of older adults, allowing to provide recommendations for the
development and usage of exergames to elicit the movements
necessary to train balance in older adults. However, a few
limitations should be highlighted as well. First, this study was
conducted using a screen-based exergame. Newly developed
exergames might use newer technologies such as immersive
virtual reality or gamified objects in the environment rather
than TV screens. However, we believe that many of the lessons
learned may be transferrable to virtual reality exergames, since
the basic concepts for eliciting the desired vs. less desirable
movements may largely be the same. Furthermore, older adults
are a specific subgroup of users who, at the moment, might be
less familiar with modern game and simulation technologies than
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younger generations. However, continued developments in non-
immersive virtual reality and increasing tech-savviness of new
generations of older adults may contribute to the accessibility of
exergame technology for a wider audience. Finally, although no
formal tests of the participants’ physical andmental capacity were
performed in this study, all participants were healthy for their
age and living independently. Further research should broaden
out to participants with a wider range of functional capacities to
investigate how they would react to changes in game speed and
additional challenges.

Next Steps
Methods to deliver safe, home-based, low-cost balance training
to older adults in order to prevent falls and to maintain
independence are an important issue for future research, and
the availability of a control system implemented in an exergame
that maximizes the likelihood of eliciting the most beneficial
balance-training movements is of great interest. There are still
several unanswered questions, such as potential changes in
movement characteristics when playing over extended periods
of time and to what extent comparable findings would be
produced using different game settings or different exergames.
Furthermore, personalizing the delivery of exergame training to
the abilities and preferences of older adults, including providing
feedback about the correctness of performance, might help
accommodate differences in functioning in this heterogenous age
group and potentially lead to additional improvements in balance
training outcomes.

CONCLUSION

Together, the results of the current study provide important
insights into how the settings of an exergame influence the
movement characteristics of older adults when playing a step-
based balance training exergame. Higher game speed led to
faster-paced movements with shorter duration of single support,
whereas additional cognitive elements in the form of obstacles to
avoid led to slower movements and smaller steps. Some of these
effects on movement characteristics are beneficial for balance
training, whereas others likely make the exergame less efficient.

Therefore, informed decisions are necessary when designing new,
or choosing between existing, balance training exergames if they
are to be effective tools for balance training in older adults.
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Exergames are increasingly used to train both physical and cognitive functioning, but
direct evidence whether and how exergames affect cortical activity is lacking. Although
portable electroencephalography (EEG) can be used while exergaming, it is unknown
whether brain activity will be obscured by movement artifacts. The aims of this study
were to assess whether electrophysiological measurements during exergaming are
feasible and if so, whether cortical activity changes with additional cognitive elements.
Twenty-four young adults performed self-paced sideways leaning movements, followed
by two blocks of exergaming in which participants completed a puzzle by leaning left
or right to select the correct piece. At the easy level, only the correct piece was shown,
while two pieces were presented at the choice level. Brain activity was recorded using
a 64-channel passive EEG system. After filtering, an adaptive mixture independent
component analysis identified the spatio-temporal sources of brain activity. Results
showed that it is feasible to record brain activity in young adults while playing exergames.
Furthermore, five spatially different clusters were identified located frontal, bilateral
central, and bilateral parietal. The frontal cluster had significantly higher theta power in
the exergaming condition with choice compared to self-paced leaning movements and
exergaming without choice, while both central clusters showed a significant increase
in absolute alpha-2 power in the exergaming conditions compared to the self-paced
movements. This is the first study to show that it is feasible to record brain activity
while exergaming. Furthermore, results indicated that even a simple exergame without
explicit cognitive demands inherently requires cognitive processing. These results pave
the way for studying brain activity during various exergames in different populations to
help improve their effective use in rehabilitation settings.

Keywords: exergaming, balance, EEG, theta, alpha, cognition

INTRODUCTION

Exergames are videogames that require bodily movements by the user in order to play the
game (Brox et al., 2011). Even though most commercial exergames are primarily developed for
entertainment purposes (Zyda, 2005), exergames have in recent years been considered valuable to
encourage participation in exercise, as well as to improve adherence to exercise and rehabilitation
tasks (Burke et al., 2009; Skjæret et al., 2016). Exergames have rapidly gained popularity in all age
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groups the last decade (e.g., Mellecker et al., 2013), and have
shown positive effects on increased physical activity in general
(e.g., Höchsmann et al., 2016; Rhodes et al., 2017), as well as
in specific rehabilitation settings (e.g., Laver et al., 2012; Baltaci
et al., 2013). Several studies have concluded that exergames can
be beneficial when used as an adjunct to, or even instead of,
usual care, as exergames are generally found to be as effective
as—or more effective than—traditional exercise programs, with
generally no reported negative effects (Skjæret et al., 2016).

Exergames do not only address physical activity, but have the
potential to influence players’ cognitive abilities as well through
dual tasks, decision making tasks and discrimination tasks
(Zelinski and Reyes, 2009; Anguera et al., 2013). As many of these
additional tasks require multiple cognitive processes, exergames
may have advantages over separate physical or cognitive
interventions, as simultaneous physical activities with decision-
making opportunities may be essential to maximize synergistic
benefits (Basak et al., 2008; Yan and Zhou, 2009; Anderson-
Hanley et al., 2012; Kraft, 2012). However, most of these
positions have not yet been substantiated with direct empirical
support. Most studies either used cognitive tests as proxy
measures for cognitive processing rather than directly measuring
brain activity during exergaming, or demonstrated changes in
cortical activation in pre-post exergame intervention designs.
For example, Eggenberger et al. (2016) found significantly
reduced oxygenation in the prefrontal cortex after 8 weeks of
interactive cognitive-motor exergame training, as examined with
functional near infrared spectroscopy. Furthermore, Anguera
et al. (2013) used electroencephalography (EEG) to quantify
cortical processing before and after video game training,
and demonstrated enhanced frontal theta power and fronto-
parietal theta coherence as indicators for improved cognitive
processes. While these studies indirectly addressed cognitive
processing related to exergaming, only Baumeister et al. (2010)
directly assessed brain activity during exergaming in a virtual
golf-putting environment. Their EEG results revealed increased
frontal theta and decreased parietal alpha-2 power during
virtual putting compared to a resting period. Collectively,
these electrophysiological approaches to cognitive elements of
exergaming indicate alterations of cortical activation, suggesting
changes in cognitive control during and after gameplay, but there
is still a lack of knowledge regarding cortical processing during
exergaming. Furthermore, no study has investigated whether
exergames inherently require different cortical processing
compared to performing similar movements without exergame
guidance, and whether additional cognitive elements in an
exergame further increase demands on executive functioning.
Gaining more knowledge about whether and how cognitive
tasks in exergames influence cortical activity could elucidate
underlying neurobiological mechanisms (Stanmore et al., 2017),
thereby allowing more effective use of exergames in exercise
and rehabilitation settings. Therefore, the aims of the current
study were to investigate whether it is feasible to measure
brain activity during gameplay using EEG and if so, whether
exergames inherently require cortical processing, and whether
increased cognitive demand in the exergame further changes
brain activity.

To address these aims, we measured cortical activity using
a portable EEG system in young, healthy participants. In order
to reduce movement artifacts in the EEG signals as much as
possible, we chose a puzzle exergame that is played by performing
simple sideways leaning movements. Furthermore, the puzzle
exergame could be played with and without an additional
cognitive choice task. We hypothesized that even this simple
exergame would require increased cortical processing compared
to performing similar movements without exergame guidance,
as indicated by increased frontal theta with concomitant changes
in alpha-2 activity (Sauseng et al., 2005). Similar to their
experiment on visuospatial working memory tasks, participants
in the current study would need to mentally manipulate a
picture in order to make a correct choice. Furthermore, we
hypothesized that the addition of a simple choice task would
further increase cortical processing, as reflected by increasing
frontal theta and decreasing parieto-central alpha-2 (Gevins
et al., 1997). Activity in the alpha band was shown to be inversely
related to task difficulty in order to allocate more resources to
the task performance. Both Gevins et al. (1997) and Sauseng
et al. (2005) described theta and alpha as neurophysiological
indicators of cognitive processing related to working memory
demands, with increased cortical processing related to increased
frontal theta power and inversely related to alpha power in
parietal areas of the cortex.

MATERIALS AND METHODS

Participants
As this study addressed the feasibility of recording EEG while
exergaming, a convenience sample of young participants was
chosen. Twenty-four injury-free young adults (12 of each gender;
age: 24.6± 2.1 years, height: 175± 10 cm, weight: 74.8± 11.8 kg)
provided written consent to participate in this experimental
study at the Norwegian University of Science and Technology
in Trondheim, Norway. To be included, participants had to be
between 20 years and 30 years old with no history of injuries
or surgeries to the lower extremity and/or back within the last
6 months, no balance problems, and no neurological disorders
that could affect postural control.

All participants indicated that they were physically active
for at least 2–3 times a week. The majority (18 participants)
described their physical activity as ‘‘quite strenuous,’’ with a
duration of 30–90 min per session (20 participants).

This study was carried out in accordance with the
recommendations of the Regional Committees for Medical
and Health Research Ethics, Norway. The protocol was approved
by the Regional Committees for Medical and Health Research
Ethics, Norway. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Procedure
We recorded EEG continuously throughout the entire protocol,
starting with participants seated for 3 min, followed by 3 min
of self-paced leaning sideways (SP) with feet hip-wide apart.
Participants were instructed on how to perform SP before the
start of the trial, without guidance or feedback during the
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FIGURE 1 | Screen images of the “Puzzle” exergame. Left panel: no-choice condition (NC) presents only the correct puzzle piece to the left or right; Right panel:
choice condition (C) presents two puzzle pieces simultaneously.

trial. After a 2-min break, participants played a commercially
available exergame («Puzzle», SilverFit, Netherlands). The aim
of the exergame was to complete a screen-based 5-by-5-puzzle
in sequential order. Puzzle pieces were selected by leaning
sideways in the direction of the desired puzzle piece. This
simple exergame was chosen as it can be played without
vigorous movements, so as to mitigate the risk for movement
artifacts in the EEG signal. Each participant played the
exergame in two conditions (‘‘no-choice condition’’ NC and
‘‘choice condition’’ C) and with two different target pictures
as shown in Figure 1, counterbalanced across participants. In
NC, participants were presented with one puzzle piece, which
was selected by leaning in the corresponding direction. In
C, participants had to choose between two puzzle pieces and
lean in the direction corresponding to the correct piece. Each
participant played two sets, each consisting of ten exergames
for NC or C. After playing all 20 exergames, another seated
EEG baseline was recorded for 2 min followed by 1 min
of self-paced leaning. In a preliminary examination the day
before data collection, participants were familiarized with the
laboratory environment and the EEG equipment. Furthermore,
head circumferences were measured in order to choose the
proper EEG cap size.

Performance Measures
To check whether participants made similar leaning movements
in the different conditions, two force platforms (Kistler, type
9286A, Winterthur, CH) with a measurement frequency of
100 Hz were used to record ground reaction forces. The force
platforms were located 2.5 m in front of the exergame screen. The
mean of the medio-lateral center of pressure (COP) amplitude
peaks for each sideways lean as well as the overall COP velocity
were calculated. Due to technical issues with the force platforms,
COP trajectories could not be calculated for four trials.

EEG Recordings and Analysis
Cortical activity was recorded continuously from 64 Ag/AgCl
passive electrodes, using an elastic cap (QuikCap, Compumedics
Neuroscan, Charlotte, NC, USA), with electrodes placed
according to the international 10–20 electrode placement

standard (Klem et al., 1999) and a standard reference electrode
positioned between CZ and CPZ. Electrode impedance was
reduced to <10 kΩ to ensure an appropriate signal-to-
noise ratio. EEG data was amplified with an analog amplifier
(SynAmps RT, Compumedics Neuroscan, Charlotte, NC, USA),
which was placed in a small backpack in order to reduce
mechanical stress in the cables and to allow mobility during
data collection. The analog EEG signal was digitized using a
24-bit analog-to-digital converter (SynAmps RT, Compumedics
Neuroscan, Charlotte, NC, USA) and subsequently recorded
using Scan 4.5 (Compumedics Neuroscan, Charlotte, NC, USA)
with a sample frequency of 1 kHz.

The EEGLAB 14.0.0b (Delorme and Makeig, 2004) toolbox
for MATLAB (Mathworks Inc., Natick, MA, USA) was used
for processing the acquired EEG data. The digitized EEG signal
was band limited between 1 Hz and 100 Hz. The resulting
digital signal was down sampled to 250 Hz after filtering using
the CleanLine plugin (Mullen, 2012) to remove line noise and
applying a finite impulse response filter with a band-pass between
2 Hz and 30 Hz. Any channels contaminated by excessive noise
or major non-stereotypical artifacts were identified andmanually
deleted. EEG data was then re-referenced to common average.

Non-stereotypical artifacts were removed by visual inspection
of the continuous EEG signal. Due to extensive artifact
contamination, EEG data from two participants was excluded
from further analysis. For the remaining participants, 47%–55%
of the EEG data remained in each of the three conditions
for further processing. Given the number and length of the
trials, this was sufficient data to decompose the spatial-temporal
sources (Onton and Makeig, 2006). Spatio-temporal features
of the remaining participants were extracted using an adaptive
mixture independent component analysis (AMICA; Palmer et al.,
2006, 2008) on the entire dataset, resulting in spatially static
and maximally independent components (Makeig et al., 1996).
A heuristic approach described by Onton and Makeig (2006)
was used to distinguish between functional and stereotypical
artifacts.

Based on the results of the AMICA decompositions, a
four-shell spherical head model (Kavanagh et al., 1978) included
in the DIPFIT function (Oostenveld and Oostendorp, 2002)
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FIGURE 2 | Spatial location of electroencephalography (EEG) sources and absolute EEG power in µV2Hz−1 for all clusters and conditions (SP, self-paced; NC,
no-choice; C, choice) in a priori defined frequency bands theta (4–7 Hz) and alpha-2 (10–12 Hz). (A) Top-view of the identified EEG sources. (B) Absolute theta
power in the frontal cluster. (C) Absolute alpha-2 power in left and right central clusters. (D) Absolute alpha-2 power in left and right parietal cluster. The asterisk (∗)
denotes a significance level of < 0.05 and the double asterisk (∗∗) denotes a significance level of < 0.01. The error bars in (B–D) show the standard error.

of EEGLAB was used to locate equivalent dipole locations
of independent components. The resulting dipoles across all
participants were clustered using a k-means algorithm with a
preset for five clusters. Dipoles were assigned to a cluster if they
were within two standard deviations of the respective cluster.
Dipoles with a residual variance larger than 16% were excluded.

The absolute power of the EEG signal was calculated as area
under the curve for each condition and cluster (Pivik et al., 1993)
in the a priori defined frequency bands: theta (4–7 Hz) for the
frontal cluster, as well as alpha-2 (10–12 Hz) for both central and
parietal clusters.

Statistics
All statistical analyses were performed using R 3.4.2
(R Development Core Team, 2017). Differences between SP,

NC, and C were analyzed using one-way repeated measures
ANOVAs on the absolute EEG power of predefined frequency
bands and the performance measures, with post hoc paired-
samples t-tests to follow up significant main effects. For those
measures that were not normally distributed as indicated by
Shapiro-Wilk’s test, namely centralL and COP amplitude,
Friedman’s test was used to assess main effects, followed up
by Wilcoxon’s paired signed-ranks tests. Statistical level of
significance was set at p< 0.05.

RESULTS

Performance Measures
Although the mean medio-lateral COP amplitudes were of
comparable magnitude across the conditions (SP:M = 33.41 cm,
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SD = 7.23 cm; NC: M = 38.7 cm, SD = 4.89 cm; C:
M = 39.98 cm, SD = 5.32 cm), there was a main effect of
condition, χ2

(2,N = 22) = 11.47, p = 0.003. Post hoc Wilcoxon’s
signed-ranks tests indicated that the leaning movements were
significantly smaller in SP compared to C (Z = 3.09, p = 0.002)
and NC (Z = 3.04, p = 0.002). COP velocity showed no significant
main effect of condition (F(2,36) = 0.07, p = 0.933).

Cortical Activity
Figure 2 shows the spatial location of EEG sources and the
absolute EEG power in the respective frequency bands for
all conditions and clusters. Clustering of included functional
brain components revealed five robust clusters of dipoles
located in the frontal (nIC = 7), bilateral central (centralL
nIC = 20 and centralR nIC = 20) and bilateral parietal (parietalL
nIC = 21 and parietalR nIC = 25) areas. A significant main
effect for condition was found in absolute frontal theta power
(F(2,12) = 5.55, p = 0.02). Post hoc paired t-tests showed
a significant difference between SP and C (t(6) = 2.44,
p = 0.05), and between NC and C (t(6) = 2.84, p = 0.03).
Furthermore, both clusters in the central area showed significant
differences in absolute alpha-2 power (centralL χ2

(2,N = 20) = 9.1,
p = 0.011; centralR F(2,38) = 7.2, p = 0.003). A post hoc paired
Wilcoxon’s signed-ranks test on centralL and a paired-samples
t-test on centralR showed a significant difference between SP
and both exergaming conditions in both clusters (centralL:
SP-C Z = 2.91, p = 0.004, SP-NC Z = 2.91, p = 0.004;
centralR: SP-C t(19) = 3.11 p = 0.006, SP-NC t(19) = 2.58,
p = 0.018). No significant main effects were found for the parietal
clusters.

DISCUSSION

The present study investigated the feasibility of measuring
cortical activity in healthy young adults while playing an
exergame, as well as the effect of different levels of cognitive
demand on cortical activity. It was hypothesized that cortical
activity in frontal, central and parietal areas of the brain would be
affected differently by self-paced and exergame conditions with
and without an additional choice task.

Cortical Activity During Exergaming
The first major finding of the present study was that it
was feasible to collect good quality EEG signals of cortical
activity during exergaming despite participants making bodily
movements. Although approximately half of the EEG signal
consisted of non-stereotypical artifacts that had to be removed,
the remaining signal was both quantitatively and qualitatively
sufficient for finding functional brain components. Furthermore,
the amplitude and velocity of the sideways leaning movements
were comparable across self-paced and exergaming conditions,
despite a small but significant difference in amplitude, indicating
that participants’ movements were largely similar with or
without exergame guidance. After cleaning and processing of
the EEG data, clustering of independent components revealed
five robust clusters, which were assigned to frontal, central
and parietal brain areas, based on their equivalent dipole

centroids. The frontal cluster was centrally located over the
prefrontal cortex, while the estimated location of the equivalent
mean dipoles of the central clusters was close to the lateral
motor areas. In addition, the location of two lateral clusters
was estimated to be in the left and right posterior-parietal
cortex.

Another major finding of the present study was significantly
higher absolute theta power in the frontal cluster during
exergaming with choice. The task consisted of assembling
a virtual puzzle by consecutively selecting matching puzzle
pieces from two options displayed on the screen. This required
the processing of visual information, extracting features of
distinct choices, and subsequently generating a task appropriate
response. The interface between these underlying perception
and action circuits is responsible for temporally maintaining
task relevant information and focused attention (Baddeley, 2012;
Diamond, 2013). Moreover, evidence from electrophysiological
studies implies that the control of cognitive processes may
be indicated by theta oscillations (4–7 Hz) in the prefrontal
cortex, which is known to be involved in processes of attentional
control (Klimesch, 1999; Slobounov et al., 2005; Sauseng et al.,
2010). Furthermore, theta activity was previously shown to be
linked to rhythmic modulations of neuronal excitability in the
cortex (Womelsdorf et al., 2010). As synchronized synaptic
excitation ismore likely to activate neuronal populations in terms
of information processing, spatially and temporally dependent
theta synchronization has been related to active neuronal
processing for cognitive functions (Palva and Palva, 2011). Some
studies previously reported increased theta synchronization with
additional task requirements (Jensen and Tesche, 2002), as well
as during specific selection processing of choice in goal-directed
behavior (Womelsdorf et al., 2010). In line with these earlier
findings, significantly higher frontal theta may indicate increased
cognitive demands during exergaming with choice, compared
to self-paced movement or no-choice exergaming. Since these
latter conditions did not contain a choice task, higher demands
on cognitive processing during exergaming with choice may
explain the task-dependent increase of frontal theta in the present
study.

Previous research has demonstrated that both theta and
alpha-2 oscillations are involved in cognitive processes
(Klimesch, 1999). While theta has been attributed to a
general integrative function for the organization of cortical
activity (Sauseng et al., 2005), alpha-2 has been associated
with task-specific active processing or inhibition (Bazanova
and Vernon, 2014), characterized by an inverse relationship
between amplitude and number of neuronal populations
activated (Niedermeyer and da Silva, 2005). In this regard,
the present results support the notion that inhibition of
task-irrelevant activity in non-essential cortical areas may
facilitate cognitive processes and task performance (Klimesch
et al., 2007; Palva and Palva, 2011). In particular, alpha-2
power in the central clusters demonstrated a significant
increase from self-paced movement to exergaming, with
no difference between the no-choice and choice exergames.
The centrally located motor cortex, which contributes to
movement initiation and complex motion coordination, has
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been reported to be involved in postural control as well
(Slobounov et al., 2005, 2008). Additionally, suppressed
activity within the alpha-2 frequency band in sensorimotor
areas was shown to be associated with increased processing
of sensory and movement-related information (Pfurtscheller
and Berghold, 1989; Babiloni et al., 2014). However, the
current study demonstrated alpha-2 synchronization during
exergaming compared to self-paced movement. Based on
reports of Jensen et al. (2002), the present results suggest
that cortical activity of bilateral motor areas decreases with
cognitive load. Moreover, context-dependent inhibition
of the motor cortex may indicate that the generation of
postural responses in exergames results from an interplay
between various levels of the brain (Jacobs and Horak, 2007).
Traditionally, subcortical structures like the cerebellum, basal
ganglia, and brainstem have been linked to anticipatory
or automatized regulation of postural control during
upright stance (Nutt et al., 2011; Takakusaki, 2017). These
neural structures are postulated to contribute to posture
and voluntary movement through basic modifications
of muscle amplitudes and patterns (Jacobs and Horak,
2007). As response latencies increase, cortical circuitries
from either the prefrontal or motor cortex progressively
influence subcortical pathways in order to optimize postural
responses for the given environmental context (Jacobs and
Horak, 2007). Thus, it may be proposed that self-paced
movement with no external stimulus required active control
through subcortical-cortical circuitries. Furthermore, since
the dual-task conditions changed the distribution of attention
resources between the cognitive and motor tasks (Fujita et al.,
2016), exergaming may predominantly involve automatized
subcortical processes of postural control in favor of cognitive
performance.

Regarding the parietal clusters, no significant changes in
alpha-2 power were found between self-paced and exergame
conditions. The parietal lobe is part of a functionally
interconnected sensorimotor network of motor, prefrontal
and temporal cortical areas (De Waele et al., 2001). It has
been suggested to play an essential role in the integration of
multimodal sensory information related to voluntary movement
and postural control (Varghese et al., 2015). However, consistent
alpha-2 power in parietal areas may indicate that sensorimotor
processing in the current postural task may not change with
increased cognitive demand in a population of young adults.
Furthermore, it may be hypothesized that inhibition of parieto-
occipital areas may facilitate the maintenance of cognitive
processes in frontal areas of the cortex (Jensen et al., 2002).

Methodological Considerations
Although the present investigation showed that EEG
measurements during exergaming are possible and show
relevant findings, some methodological considerations should
be highlighted. First of all, participants in the current study
were healthy young adults for whom the different conditions
posed little challenge. Older or less healthy populations may
show stronger effects of exergaming, or indeed different
effects. Furthermore, it was not possible to provide guidance or

feedback during the self-paced condition without simultaneously
introducing cognitive processing, which would have rendered
the control condition invalid. Nonetheless, the sideways
movements were quite similar across the conditions. Although
the amplitude was slightly smaller in the self-paced condition,
movement velocity was the same across conditions, suggesting
comparable physical effort. Another potential limitation of
the current research protocol is the challenging nature of EEG
measurements during human movement. Although several
functional clusters were identified, the presence of movement-
related artifacts may have limited the number of functional brain
components being decomposed and may explain the relatively
small number of independent components included in the
frontal cluster. With recent advances in active EEG systems and
individualized head models, future studies may further elucidate
cortical processing changes during exergaming.

CONCLUSION

In conclusion, the present study demonstrated that even a
simple exergame contains cognitive elements as indicated by
task-specific cortical representation. Despite use of a passive
EEG system that is sensitive to movement artifacts and the
use of young adults as participants, frontal theta was found to
significantly increase with increasing task demands that involve
cognitive processes, such as in exergaming with a choice task.
Furthermore, central alpha-2 power was significantly higher
in exergame conditions compared to self-paced movement.
Exergames may therefore require adjustment in the distribution
of cortical resources between cognitive and motor elements in
order to optimize task performance (Fujita et al., 2016). These
results may provide further insight into why exergame training
has been effective in improving sensorimotor processing (e.g.,
Gevins et al., 1997), and pave the way for follow-up research into
how exergames can be used effectively to improve both cognitive
and physical functions in specific populations.

AUTHOR CONTRIBUTIONS

PA, TL, NS-M, JB and BV contributed to the conception and
design of the study. PA, HM and KG collected and processed
data. PA and TL performed the statistical analyses. PA, TL, HM,
KG, NS-M and BV wrote sections of the manuscript. All authors
contributed to manuscript revision, and read and approved the
final version.

FUNDING

The project was funded by NTNU Health, Strategic Research
Area 2014-2023, and received additional financial support from
the Norwegian Research Council and the German Academic
Exchange Service (grant number: 267451/F10).

ACKNOWLEDGMENTS

The laboratory and the force platforms were provided
by the core facility NeXt Move, Norwegian University

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 May 2018 | Volume 12 | Article 102

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Anders et al. Cortical Processing During Exergaming

of Science and Technology (NTNU). NeXt Move is
funded by the Faculty of Medicine and Health Sciences
at NTNU and the Central Norway Regional Health
Authority.

We thank the participants for their contribution to the study,
Ingunn Molde for her assistance during data collection and
Lars Veenendaal and Xiang-chun Tan for their help with data
collection software and hardware.

REFERENCES

Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N.,
Westen, S. C., et al. (2012). Exergaming and older adult cognition: a cluster
randomized clinical trial. Am. J. Prev. Med. 42, 109–119. doi: 10.1016/j.amepre.
2011.10.016

Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J.,
et al. (2013). Video game training enhances cognitive control in older adults.
Nature 501, 97–101. doi: 10.1038/nature12486

Babiloni, C., Del Percio, C., Arendt-Nielsen, L., Soricelli, A., Romani, G. L.,
Rossini, P. M., et al. (2014). Cortical EEG α rhythms reflect task-specific
somatosensory and motor interactions in humans. Clin. Neurophysiol. 125,
1936–1945. doi: 10.1016/j.clinph.2014.04.021

Baddeley, A. (2012).Workingmemory: theories, models, and controversies.Annu.
Rev. Psychol. 63, 1–29. doi: 10.1146/annurev-psych-120710-100422

Baltaci, G., Harput, G., Haksever, B., Ulusoy, B., and Ozer, H. (2013).
Comparison between Nintendo Wii Fit and conventional rehabilitation on
functional performance outcomes after hamstring anterior cruciate ligament
reconstruction: prospective, randomized, controlled, double-blind clinical trial.
Knee Surg. Sports Traumatol. Arthrosc. 21, 880–887. doi: 10.1007/s00167-012-
2034-2

Basak, C., Boot, W. R., Voss, M. W., and Kramer, A. F. (2008). Can training in
a real-time strategy video game attenuate cognitive decline in older adults?
Psychol. Aging 23, 765–777. doi: 10.1037/a0013494

Baumeister, J., Reinecke, K., Cordes, M., Lerch, C., and Weiß, M. (2010).
Brain activity in goal-directed movements in a real compared to a virtual
environment using the NintendoWii.Neurosci. Lett. 481, 47–50. doi: 10.1016/j.
neulet.2010.06.051

Bazanova, O. M., and Vernon, D. (2014). Interpreting EEG α activity. Neurosci.
Biobehav. Rev. 44, 94–110. doi: 10.1016/j.neubiorev.2013.05.007

Brox, E., Luque, L. F., Evertsen, G. J., and Hernández, J. E. G. (2011). ‘‘Exergames
for elderly: social exergames to persuade seniors to increase physical activity,’’
in Proceedings of the 5th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), (Dublin: IEEE), 546–549.

Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., and
McDonough, S. M. (2009). Optimising engagement for stroke rehabilitation
using serious games. Vis. Comput. 25, 1085–1099. doi: 10.1007/s00371-009-
0387-4

De Waele, C., Baudonnière, P., Lepecq, J., Huy, P. T. B., and Vidal, P. (2001).
Vestibular projections in the human cortex. Exp. Brain Res. 141, 541–551.
doi: 10.1007/s00221-001-0894-7

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Diamond, A. (2013). Executive functions. Annu. Rev. Psychol. 64, 135–168.
doi: 10.1146/annurev-psych-113011-143750

Eggenberger, P., Wolf, M., Schumann, M., and de Bruin, E. D. (2016). Exergame
and balance training modulate prefrontal brain activity during walking and
enhance executive function in older adults. Front. Aging Neurosci. 8:66.
doi: 10.3389/fnagi.2016.00066

Fujita, H., Kasubuchi, K., Wakata, S., Hiyamizu, M., and Morioka, S. (2016).
Role of the frontal cortex in standing postural sway tasks while dual-
tasking: a functional near-infrared spectroscopy study examining working
memory capacity. Biomed Res. Int. 2016:7053867. doi: 10.1155/2016/
7053867

Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997). High-resolution
EEG mapping of cortical activation related to working memory: effects of
task difficulty, type of processing and practice. Cereb. Cortex 7, 374–385.
doi: 10.1093/cercor/7.4.374

Höchsmann, C., Schüpbach, M., and Schmidt-Trucksäss, A. (2016). Effects of
exergaming on physical activity in overweight individuals. Sports Med. 46,
845–860. doi: 10.1007/s40279-015-0455-z

Jacobs, J. V., and Horak, F. B. (2007). Cortical control of postural responses.
J. Neural Transm. 114, 1339–1348. doi: 10.1007/s00702-007-0657-0

Jensen, O., Gelfand, J., Kounios, J., and Lisman, J. E. (2002). Oscillations in the α

band (9–12 Hz) increase with memory load during retention in a short-term
memory task. Cereb. Cortex 12, 877–882. doi: 10.1093/cercor/12.8.877

Jensen, O., and Tesche, C. D. (2002). Frontal theta activity in humans increases
with memory load in a working memory task. Eur. J. Neurosci. 15, 1395–1399.
doi: 10.1046/j.1460-9568.2002.01975.x

Kavanagh, R. N., Darcey, T. M., Lehmann, D., and Fender, D. H. (1978).
Evaluation of methods for three-dimensional localization of electrical
sources in the human brain. IEEE Trans. Biomed. Eng. 25, 421–429.
doi: 10.1109/TBME.1978.326339

Klem, G. H., Lüders, H. O., Jasper, H., and Elger, C. (1999). The ten-twenty
electrode system of the International Federation. The International
federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol.
52, 3–6.

Klimesch, W. (1999). EEG α and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain Res. Rev. 29, 169–195.
doi: 10.1016/s0165-0173(98)00056-3

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG α oscillations:
the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88. doi: 10.1016/j.
brainresrev.2006.06.003

Kraft, E. (2012). Cognitive function, physical activity, and aging: possible
biological links and implications for multimodal interventions. Neuropsychol.
Dev. Cogn. B Aging Neuropsychol. Cogn. 19, 248–263. doi: 10.1080/13825585.
2011.645010

Laver, K., George, S., Ratcliffe, J., Quinn, S.,Whitehead, C., Davies, O., et al. (2012).
Use of an interactive video gaming program compared with conventional
physiotherapy for hospitalised older adults: a feasibility trial. Disabil. Rehabil.
34, 1802–1808. doi: 10.3109/09638288.2012.662570

Makeig, S., Bell, A. J., Jung, T.-P., and Sejnowski, T. J. (1996). ‘‘Independent
component analysis of electroencephalographic data,’’ in Advances in Neural
Information Processing Systems, eds D. Touretzky M. Mozer and M. Hasselmo
(Cambridge MA: MIT Press), 145–151.

Mellecker, R., Lyons, E. J., and Baranowski, T. (2013). Disentangling fun
and enjoyment in exergames using an expanded design, play, experience
framework: a narrative review. Games Health J. 2, 142–149. doi: 10.1089/g4h.
2013.0022

Mullen, T. (2012). CleanLine EEGLAB Plugin. San Diego, CA: Neuroimaging
Informatics Toolsand Resources Clearinghouse (NITRC).

Niedermeyer, E., and da Silva, F. L. (2005). Electroencephalography: Basic
Principles, Clinical Applications, and Related Fields. Philadelphia: Lippincott
Williams and Wilkins.

Nutt, J. G., Horak, F. B., and Bloem, B. R. (2011). Milestones in gait, balance, and
falling.Mov. Disord. 26, 1166–1174. doi: 10.1002/mds.23588

Onton, J., and Makeig, S. (2006). Information-based modeling of event-
related brain dynamics. Prog. Brain Res. 159, 99–120. doi: 10.1016/s0079-
6123(06)59007-7

Oostenveld, R., and Oostendorp, T. F. (2002). Validating the boundary element
method for forward and inverse EEG computations in the presence of a hole in
the skull. Hum. Brain Mapp. 17, 179–192. doi: 10.1002/hbm.10061

Palmer, J. A., Kreutz-Delgado, K., and Makeig, S. (2006). ‘‘Super-gaussian mixture
source model for ICA,’’ in Independent Component Analysis and Blind Signal
Separation. eds J. Rosca, D. Erdogmus, J. C. Principe and S. Haykin (Berlin,
Heidelberg: Springer-Verlag), 854–861.

Palmer, J. A., Makeig, S., Kreutz-Delgado, K., and Rao, B. D. (2008). ‘‘Newton
method for the ICA mixture model,’’ in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), (Las Vegas,
Nevada), 1805–1808.

Palva, S., and Palva, J. M. (2011). Functional roles of α-band phase
synchronization in local and large-scale cortical networks. Front. Psychol. 2:204.
doi: 10.3389/fpsyg.2011.00204

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 May 2018 | Volume 12 | Article 102

https://doi.org/10.1016/j.amepre.2011.10.016
https://doi.org/10.1016/j.amepre.2011.10.016
https://doi.org/10.1038/nature12486
https://doi.org/10.1016/j.clinph.2014.04.021
https://doi.org/10.1146/annurev-psych-120710-100422
https://doi.org/10.1007/s00167-012-2034-2
https://doi.org/10.1007/s00167-012-2034-2
https://doi.org/10.1037/a0013494
https://doi.org/10.1016/j.neulet.2010.06.051
https://doi.org/10.1016/j.neulet.2010.06.051
https://doi.org/10.1016/j.neubiorev.2013.05.007
https://doi.org/10.1007/s00371-009-0387-4
https://doi.org/10.1007/s00371-009-0387-4
https://doi.org/10.1007/s00221-001-0894-7
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.3389/fnagi.2016.00066
https://doi.org/10.1155/2016/7053867
https://doi.org/10.1155/2016/7053867
https://doi.org/10.1093/cercor/7.4.374
https://doi.org/10.1007/s40279-015-0455-z
https://doi.org/10.1007/s00702-007-0657-0
https://doi.org/10.1093/cercor/12.8.877
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1109/TBME.1978.326339
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1080/13825585.2011.645010
https://doi.org/10.1080/13825585.2011.645010
https://doi.org/10.3109/09638288.2012.662570
https://doi.org/10.1089/g4h.2013.0022
https://doi.org/10.1089/g4h.2013.0022
https://doi.org/10.1002/mds.23588
https://doi.org/10.1016/s0079-6123(06)59007-7
https://doi.org/10.1016/s0079-6123(06)59007-7
https://doi.org/10.1002/hbm.10061
https://doi.org/10.3389/fpsyg.2011.00204
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Anders et al. Cortical Processing During Exergaming

Pfurtscheller, G., and Berghold, A. (1989). Patterns of cortical activation during
planning of voluntary movement. Electroencephalogr. Clin. Neurophysiol. 72,
250–258. doi: 10.1016/0013-4694(89)90250-2

Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., and
Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis
of electroencephalographic activity in research contexts. Psychophysiology 30,
547–558. doi: 10.1111/j.1469-8986.1993.tb02081.x

R Development Core Team. (2017). R: A Language and Environment for Statistical
Computing.Vienna, Austria: R Foundation for Statistical Computing. Available
online at: https://www.R-project.org

Rhodes, R. E., Blanchard, C. M., Bredin, S. S., Beauchamp, M. R., Maddison, R.,
and Warburton, D. E. (2017). Stationary cycling exergame use among inactive
children in the family home: a randomized trial. J. Behav. Med. 40, 978–988.
doi: 10.1007/s10865-017-9866-7

Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control
mechanisms in working memory: a possible function of EEG theta oscillations.
Neurosci. Biobehav. Rev. 34, 1015–1022. doi: 10.1016/j.neubiorev.2009.
12.006

Sauseng, P., Klimesch, W., Schabus, M., and Doppelmayr, M. (2005). Fronto-
parietal EEG coherence in theta and upper α reflect central executive functions
of working memory. Int. J. Psychophysiol. 57, 97–103. doi: 10.1016/j.ijpsycho.
2005.03.018

Skjæret, N., Nawaz, A., Morat, T., Schoene, D., Helbostad, J. L., and Vereijken, B.
(2016). Exercise and rehabilitation delivered through exergames in older adults:
an integrative review of technologies, safety and efficacy. Int. J. Med. Inform. 85,
1–16. doi: 10.1016/j.ijmedinf.2015.10.008

Slobounov, S., Hallett, M., Cao, C., and Newell, K. (2008). Modulation of cortical
activity as a result of voluntary postural sway direction: an EEG study.Neurosci.
Lett. 442, 309–313. doi: 10.1016/j.neulet.2008.07.021

Slobounov, S., Hallett, M., Stanhope, S., and Shibasaki, H. (2005). Role of cerebral
cortex in human postural control: an EEG study. Clin. Neurophysiol. 116,
315–323. doi: 10.1016/j.clinph.2004.09.007

Stanmore, E., Stubbs, B., Vancampfort, D., de Bruin, E. D., and Firth, J. (2017).
The effect of active video games on cognitive functioning in clinical and
non-clinical populations: a meta-analysis of randomized controlled trials.
Neurosci. Biobehav. Rev. 78, 34–43. doi: 10.1016/j.neubiorev.2017.04.011

Takakusaki, K. (2017). Functional neuroanatomy for posture and gait control.
J. Mov. Disord. 10, 1–7. doi: 10.14802/jmd.16062

Varghese, J. P., Beyer, K. B., Williams, L., Miyasike-daSilva, V., andMcIlroy, W. E.
(2015). Standing still: is there a role for the cortex? Neurosci. Lett. 590, 18–23.
doi: 10.1016/j.neulet.2015.01.055

Womelsdorf, T., Vinck, M., Leung, L. S., and Everling, S. (2010). Selective
theta-synchronization of choice-relevant information subserves goal-directed
behavior. Front. Hum. Neurosci. 4:210. doi: 10.3389/fnhum.2010.00210

Yan, J. H., and Zhou, C. L. (2009). Effects of motor practice on cognitive disorders
in older adults. Eur. Rev. Aging Phys. Act. 6, 67–74. doi: 10.1007/s11556-009-
0049-6

Zelinski, E. M., and Reyes, R. (2009). Cognitive benefits of computer
games for older adults. Gerontechnology 8:220. doi: 10.4017/gt.2009.08.04.
004.00

Zyda, M. (2005). From visual simulation to virtual reality to games. Computer 38,
25–32. doi: 10.1109/mc.2005.297

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Anders, Lehmann, Müller, Grønvik, Skjæret-Maroni, Baumeister
and Vereijken. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 May 2018 | Volume 12 | Article 102

https://doi.org/10.1016/0013-4694(89)90250-2
https://doi.org/10.1111/j.1469-8986.1993.tb02081.x
https://www.R-project.org
https://doi.org/10.1007/s10865-017-9866-7
https://doi.org/10.1016/j.neubiorev.2009.12.006
https://doi.org/10.1016/j.neubiorev.2009.12.006
https://doi.org/10.1016/j.ijpsycho.2005.03.018
https://doi.org/10.1016/j.ijpsycho.2005.03.018
https://doi.org/10.1016/j.ijmedinf.2015.10.008
https://doi.org/10.1016/j.neulet.2008.07.021
https://doi.org/10.1016/j.clinph.2004.09.007
https://doi.org/10.1016/j.neubiorev.2017.04.011
https://doi.org/10.14802/jmd.16062
https://doi.org/10.1016/j.neulet.2015.01.055
https://doi.org/10.3389/fnhum.2010.00210
https://doi.org/10.1007/s11556-009-0049-6
https://doi.org/10.1007/s11556-009-0049-6
https://doi.org/10.4017/gt.2009.08.04.004.00
https://doi.org/10.4017/gt.2009.08.04.004.00
https://doi.org/10.1109/mc.2005.297
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Paper III





ORIGINAL ARTICLE

The influence of motor tasks and cut-off parameter selection
on artifact subspace reconstruction in EEG recordings

Phillipp Anders1 & Helen Müller2 & Nina Skjæret-Maroni1 & Beatrix Vereijken1
& Jochen Baumeister2

Received: 19 December 2019 /Accepted: 22 August 2020
# The Author(s) 2020

Abstract
Advances in EEG filtering algorithms enable analysis of EEG recorded duringmotor tasks. Althoughmethods such as artifact subspace
reconstruction (ASR) can remove transient artifacts automatically, there is virtually no knowledge about how the vigor of bodily
movements affects ASRs performance and optimal cut-off parameter selection process. We compared the ratios of removed and
reconstructed EEG recorded during a cognitive task, single-leg stance, and fast walking using ASR with 10 cut-off parameters versus
visual inspection. Furthermore, we used the repeatability and dipolarity of independent components to assess their quality and an
automatic classification tool to assess the number of brain-related independent components. The cut-off parameter equivalent to the
ratio of EEG removed in manual cleaning was strictest for the walking task. The quality index of independent components, calculated
using RELICA, reached a maximum plateau for cut-off parameters of 10 and higher across all tasks while dipolarity was largely
unaffected. The number of independent components within each task remained constant, regardless of the cut-off parameter used.
Surprisingly, ASR performed better inmotor tasks comparedwith non-movement tasks. The quality index seemed to bemore sensitive
to changes induced by ASR compared to dipolarity. There was no benefit of using cut-off parameters less than 10.

Keywords Artifact . Data processing . Electroencephalography

1 Introduction

Electroencephalogram (EEG) is one of the most usedmethods
to record activity of the brain in both clinical and applied
research (e.g. epilepsy and exergaming, e.g. Acharya et al.
[1] and Anders et al. [2]). Recent developments in both hard-
ware and software, such as active electrodes [3] and advanced
filter algorithms [4] make it possible to record usable EEG,
while participants perform tasks involving physical move-
ments or even in real-world environments. This offers neuro-
scientists a plethora of novel research designs, such as the
concurrent measurement of brain activity during the execution
of motor tasks, instead of having to rely on pre-post EEG

comparisons or minimal participant behavior, thereby en-
abling the development of more natural behavior models [5].

However, the analysis of brain activity measured
while participants perform motor tasks remains challeng-
ing due to the lower signal-to-noise ratio compared
with, e.g., resting state analyses. EEG recordings are
typically contaminated with non-brain related signals
such as eye blink artifacts, artifacts due to impedance
changes caused by a relative shift between the electrode
and the skull, and artifacts due to electrical activity
produced by facial and skeletal muscles. In general,
the likelihood of the occurrence of the latter two types
of artifacts increases with the vigor of the motor task.

A commonly applied strategy to isolate stereotypical noise
sources such as eye blinks or repetitive motion artifacts is the
use of independent component analysis (ICA) [6]. In ICA, an
inverse model is used to reveal the independent components
(ICs), that is, the sources of the cortical activity. ICs can then
be classified as functional, non-functional, or a mixture of
both. In order to create the inverse model used for the calcu-
lation of ICs, the EEG data needs to be cleaned, i.e., long-term
signal non-stationarities [7] and large transient and non-
repetitive artifacts [8] need to be removed.
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Traditionally, EEG experts with experience in data
cleaning remove transient artifacts and noise-contaminated
channels through visual inspection [2, 9]. A major disadvan-
tage of the current state-of-the-art manual artifact removal
process is the loss of data. If an artifact is present in one
channel, data from corresponding time series in all other chan-
nels has to be removed as well. This problem has become even
more pronounced with the advent of high-density EEG sys-
tems (> 128 channels), since the likelihood for electrode shifts
which cause the rejection of data increases with the number of
EEG channels. Furthermore, manual cleaning of EEG data
using visual inspection is not fully reproducible and time-
consuming and requires extensive experience.

The recent advances in EEG processing algorithms [7] pa-
ve the way towards an automated and standardized method to
remove artifacts. From a practical perspective, automatic pre-
processing would speed up data processing as it would serve
as a replacement, either in full or in part, of time-intensive
manual artifact removal. This advantage becomes even more
pronounced when EEG datasets are of long duration or are
recorded using high-density EEG systems.

An important step towards automated and reproducible
EEG preprocessing in research is the development of recent
filter algorithms that originated in the field of brain-computer-
interfaces (BCIs). One promising example is the artifact sub-
space reconstruction (ASR) [10]. ASR creates a robust covari-
ance matrix based on the cleanest parts of an EEG recording.
Subsequently, principal component analyses are performed in
a sliding window of 1 second. A window is rejected if the
standard deviation of a principal component exceeds the stan-
dard deviation of the automatically chosen cleanest part of the
EEG recording multiplied by a tunable cut-off parameter (k).
A rejected window is then reconstructed using the covariance
matrix. A more detailed description of ASR can be found in
[11–14].

The degree of reconstruction in ASR is influenced by the
selected cut-off parameter k. However, selection of appropri-
ate cut-off parameters is challenging as the literature back-
ground is sparse and studies typically underreport cut-off pa-
rameters used in their processing pipelines. A rare exception
are the studies of Chang et al. [11, 14] on EEG data recorded
while participants performed a simulated driving task. They
found that cut-off parameters between 10 and 100 or 20–30,
respectively, and delivered the best results in terms of eye
artifact removal and conservation of brain activity. No studies
are currently available in which participants performed more
vigorous motor tasks during EEG recordings. It is therefore
not known whether ASR can be used in such tasks and how
they affect which ASR cut-off parameters are appropriate.

Following the identified gaps in our knowledge, the aim of
the current study was to investigate how movement vigor and
choice of cut-off parameters in ASR affect properties of the
EEG data. To this end, we (1) assessed the ratio of EEG data

removed or reconstructed in sensor-space for three tasks that
required different amounts and vigor of movement when
using an automated preprocessing pipeline including ASR
using 10 different cut-off parameters, compared to manually
cleaned EEG data using visual inspection, (2) evaluated the
reproducibility and dipolarity of the resulting ICs, and (3)
assessed whether either of these qualities were affected by
the cut-off parameter or the task. Furthermore, we assessed
the number and quality of functional ICs depending on the
task and the cut-off parameter used.

2 Methods

2.1 Sample population

To assess the effect of task on the artifact removal perfor-
mance of ASR, we used recorded EEG instead of simulated
EEG in order to test the algorithms under conditions as close
to reality as possible. A convenience sample of five healthy
young participants (all female; age: 23.2 ± 2.58 years, height:
172.4 ± 3.13 cm, weight: 63.8 ± 4.38 kg) was recruited.

All procedures performed in this study were in accordance
with the ethical standards of the institutional review board of
the University of Paderborn and with the 1964 Helsinki dec-
laration and its later amendments. All participants provided
informed consent prior to data collection.

2.2 Procedure

We recorded continuous EEG data during three tasks that
required different amounts of movement. All participants per-
formed the tasks in the same order.

The first task was a seated working memory n-back task,
with 10 sets of 30 stimuli of 2 s each. The participants looked
at a computer display presenting a 3 by 3 dot matrix. If the
current pattern was the same as the pattern three pictures be-
fore, they had to press a button with their right thumb. If not,
the participant had to press a button with their left thumb.

The second task consisted of 20 alternating single-leg
stance phases held for 30 s each, with a break of 10 s between
consecutive stance phases.

The third task consisted of two repetitions of a fast forward
and backward walking task of 5.5 min each, using the Witty
SEM (Microgate Slr, Bolzano, Italy). Five LED lamps were
mounted on tripods and placed at 0°, ± 22.5°, and ± 45° from
the participant’s point of view at a distance of 2.5 m. When
one of the five LED lamps was switched on, the participants
were asked to walk swiftly, not run, towards the lit LED lamp
and to cover the light using their right hand before walking
backwards to their starting position. This process was repeated
until the end of the task. Both repetitions were combined into
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one EEG recording and treated as a single recording in further
analyses.

2.3 Data acquisition

Brain activity was recorded at 500 Hz using an EEG system
consisting of a 64 channel Ag/AgCl active wet electrode elastic
cap (Easycap, Herrsching, Germany) in an extended 10–20 elec-
trode layout [15] and a wireless amplifier (Live Amp, Brain
Products GmbH, Gilching, Germany) placed in a backpack to
relief stress from the cables. The impedance was kept below
25 kΩ, in accordance with the manufacturer’s recommendations.

In order to ensure comparability of dipole locations be-
tween conditions, the electrode cap was not moved or manip-
ulated between conditions. Furthermore, no gel was reapplied
to the electrodes after participant preparation.

2.4 Preprocessing

Data processing was performed in EEGLAB 14.1.1b [16], a
toolbox for Matlab (Mathworks Inc., Nantick, MA).

In order to remove sinusoidal noise at 50 Hz and their
harmonics, the CleanLine plug-in [7] was used. A band-pass
filter with limiting frequencies of 3 and 30Hz [17] was used to
remove disturbances caused by both direct current drift and
higher frequency disturbances such as electrical activity
caused by the innervation of skeletal muscles.

After the removal of line noise and band limitation, all EEG
data was copied to obtain 11 identical datasets, which were
subsequently processed separately.

In one dataset, after re-referencing to average and
downsampling to 250 Hz, an EEG expert removed noise con-
taminated channels and transient, non-stereotypical artifacts
using visual inspection.

The remaining 10 datasets were preprocessed using the arti-
fact subspace reconstruction [10] implemented in the
clean_rawdata plug-in [12] separately for each task and partici-
pant. Channels were removed when poorly correlated (r< 0.85)
to neighboring channels or when non-transient noise exceeded 4
SDs. ASR then reconstructed time windows contaminated with
transient artifacts that exceeded k SDs based on the automatically
chosen reference data or removed timewindowswhenmore than
25% of the remaining channels exceeded the threshold cut-off
parameter. The cut-off parameter k was set to 1, 2, 5, 10, 20, 50,
100, 200, 500, and 1000, respectively. The cut-off parameters
were chosen to cover the same range as in [11, 14]. Due to the
expected computation time, we opted to use cut-off parameters
that would result in equal intervals between values on a logarith-
mic scale. The available random-access memory for ASR was
limited to 8GB on a 16GB computer to ensure equal availability
for all iterations of automatic preprocessing. The 10 automatical-
ly processed datasets were subsequently re-referenced to average
and downsampled to 250 Hz.

Subsequently, the following processing steps were applied
to all 11 datasets in preparation for source space analysis:

Data of removed channels was interpolated using the
EEGLAB function pop_interp in order to avoid bias towards
a hemisphere with more remaining channels. This does not
change the number of resulting ICs, as the rank of the matrix
remains unchanged.

Spatiotemporal sources of brain activity were calculated by
using an adaptive mixture independent component analysis
(AMICA) [18, 19]. The locations of the spatiotemporal
sources were determined by the dipfit plug-in for EEGLAB
[20] based on a boundary element model [21, 22]. The
fitTwoDipoles plug-in [23] was used to account for bilaterally
symmetrical ICs.

ICs were classified into seven categories, namely “brain,”
“muscle,” “eye,” “heart,” “line noise,” “channel noise,” and
“other,” using the IClabel plug-in [24]. We chose this classi-
fication algorithm based on classification performance and
computation time.

2.5 Quality assessment of the results in source-space

In order to assess reproducibility of ICs across participants, we
used the EEGLAB plug-in RELICA [25]. In RELICA,
BeamICA [26], a less computationally expensive ICA com-
pared with AMICA, allows for bootstrap statistics, which pro-
vides a quality index for all discovered ICs. BeamICA was set
to use “point-by-point” mode with 50 iterations. The quality
index is a measure for the dispersion of resulting ICs and can
thereby be used to assess the reproducibility of ICs in terms of
their localization. Subsequently, source localization as de-
scribed above was applied to calculate the dipolarity of the
ICs, as brain-related ICs are dipolar [8]. Dipolarity is a mea-
sure for how well the estimated dipole explains the original
data. It describes the percentage to which a scalp map of an
independent component can be explained by the scalp projec-
tion of a single equivalent dipole [4, 27]. The resulting
dipolarity and quality index coordinates were used to classify
the ICs into four categories (I, II, III, and the “forbidden re-
gion”), as described in [25]. ICs in category I are highly dipo-
lar and reproducible (dipolarity > 0.85 and a quality index >
0.95). ICs in category II are a combination of brain signal and
artifacts or a mixture of multiple cortical processes (dipolarity
≤ 0.85 and quality index > 0.95). ICs in category III are an
inseparable mixture of artifacts and brain signals (quality in-
dex ≤ 0.95). ICs in the last category, the so-called “forbidden
region,” have high dipolarity but low-quality index (dipolarity
> 0.75 and quality index of < 0.45).

2.6 Statistical analyses

Because the data was non-normally distributed, Kruskal-
Wallis tests by ranks were used in R [28] to assess the effects
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of task and cut-off parameter on the quality indices and
dipolarity, the number of ICs classified as brain related and
the certainty of the classification as brain-related ICs.
Wilcoxon’s signed-rank tests were used as follow-up in case
of significance. The resulting p-values after the Wilcoxon’s
signed-rank tests were corrected for multiple comparisons
using Benjamini and Hochberg’s [29] method. The level for
significance was set to p < 0.05.

3 Results

Below, we first present the ratio of data removed and recon-
structed for each task using ASR compared with the amount
of data removed using visual inspection. Secondly, the
dipolarity and reproducibility measured using the quality in-
dex calculated by RELICA for each task and cut-off parameter
is presented. Thirdly, we present the classification results of
ICs using IClabel.

3.1 Ratio of data removed and reconstructed using
ASR

As to be expected, lower cut-off parameters led to higher
removal and reconstruction ratios. The walking task showed
the highest overall removal ratio after visual inspection com-
pared with single-leg stance task and the working memory
task.

Figure 1 shows the ratio of removed and reconstructed
EEG data in sensor-space for ASR cut-off parameters ranging
from 1 to 1000 for each of the three tasks. Each line represents
one participant performing one task. The dots indicate the
intersection of each line with the respective ratio of manually
removed data after visual inspection by an EEG expert. Linear
interpolation was used to estimate the ratio of removed and
reconstructed data in between calculated data points.

All curves showed a similar shape, except the curve of one
participant performing the n-back task (dashed line). This was
likely caused by a sudden onset of excessive noise in channel
CP4 after 311 s of 600 s, resulting in larger ratios of data
reconstructed. Excluding this task for this participant, the
resulting ranges of cut-off parameters across participants were
7–14 for the walking task, 5–40 for the single-leg stance task,
and 10–45 for the working memory n-back task.

The intersection of the ratio of manually removed data after
visual inspection and the ratio curve of automatically
preprocessed data using ASR for the single-leg stance task
was at a cut-off parameter equal to 5 for one participant. For
the other participants, the intersections in this task were locat-
ed in the range between 20 and 40.

As indicated, ASR removes and reconstructs EEG data
based on the input parameters. As can be seen in Fig. 1, no
EEG data was reconstructed when using cut-off parameters

larger than 100. The flat lines parallel to the x-axis for the
range above 100 show the amount of data removed without
being reconstructed by ASR. Based on this, we present results
for cut-off parameters between 5 and 100 only in Figs. 2 and 3,
in order to enhance readability.

3.2 Dipolarity and quality of independent
components

The quality indices calculated for each task and across all cut-
off parameters using the RELICA plug-in for ICs with a
dipolarity of > 0.85 increased until it reached a plateau at a
cut-off parameter of 10 (solid lines in Fig.2). The total number
of all ICs and the remaining ICs after removing ICs with a
dipolarity of < 0.85 can be seen in Fig. 3. Quality index curves
for all tasks showed roughly the same general behavior. The
standard errors were comparable in size across all cut-off pa-
rameters and tasks. The highest quality indices were recorded
for the walking task, followed by the n-back task, and the
single-leg stance task. Dipolarity, on the other hand, only
showed a slight increase towards higher cut-off parameters
(dashed lines in Fig.2). The dipolarity and quality indices of
the subset of ICs with a dipolarity of 0.85 or higher and
preprocessed using ASR with cut-off parameters of one and
two were significantly lower than the remaining ICs
preprocessed with cut-off parameters of > 2 (all p’s < 0.001,
except for k = 2 versus 5 and 10: p < 0.01 and p < 0.005, re-
spectively). Furthermore, the dipolarity of ICs discovered in the
fast-walking task was significantly lower (p < 0.05) compared
with the ICs in both other tasks. Furthermore, the quality indi-
ces of ICs discovered in EEG recorded during the walking task
were significantly higher than the quality indices of ICs of the
remaining tasks (both p’s < 0.001, see Fig. 2). The resulting
quality indices for ICs based on data processed using cut-off
parameters of one or two were significantly lower compared
with IC-based preprocessed using the remaining cut-off param-
eters (all p’s < 0.001, except for k = 2 versus 5: p < 0.005).

The majority of ICs were sorted in category III [25], indi-
cating that there is inseparable noise mixed into the ICs. Only a
few ICs were sorted as category I (both quality index and
dipolarity above retention threshold) or category II (either arti-
fact or a mix of two or more processes). We found 21 ICs in the
“forbidden region,” where dipolarity is larger than 0.75 but the
quality index below 0.45. As BeamICA did not deliver consis-
tent results in any of the tasks for the manually cleaned data,
resulting in quality indices of 0, these are not included in Fig. 2.

3.3 Classification of independent components

Compared with manual cleaning, using ASR to clean the data
resulted in more ICs due to fewer removed channels, as can be
seen in Fig. 4 (black dots).
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The automatic classification of ICs into functional or
brain-related ICs and non-functional ICs revealed no
difference in the number of brain-related ICs for either
cleaning method (red dots). As expected, the number of
ICs classified as brain activity by the IClabel plug-in
was significantly lower in the walking task compared
with the other conditions (both p’s < 0.001). There was
no clear trend whether the cut-off parameter influenced
the number of discovered brain-related ICs in this
dataset, which was confirmed by the non-significant re-
sult of the Kruskal-Wallis test (χ2 = 1.7163, df = 10, p =
0.9981).

No ICs were classified as line noise since the CleanLine
plug-in was used to remove line noise, as well as a bandpass
filter with an upper edge frequency of 30 Hz.

IClabel classified more ICs as “other noise” when cut-off
parameters of k = 1, 2, and 5 where used comparedwith higher
ASR cut-off parameters or manual cleaning. This result seems
to be due to fewer ICs being classified as “muscle” (orange
dots). The number of ICs classified as “eye”-related (light
green) seems to be largely unaffected by the cut-off parameter
and cleaning method.

Furthermore, the certainty of the classification is based on
the mean probability value that can be interpreted as a measure
of classifier confidence in the discrete classification as brain-

related IC [24, 30] seems to be unaffected by both the method
of cleaning used and the cut-off parameter used in automatic
cleaning (red crosses).

However, the certainty of the classification as brain-related
IC was affected by the type of task, and significantly lower in
the walking task than in the other two tasks (both p’s < 0.001).
Furthermore, the classification certainty of brain-related ICs in
the n-back task was significantly lower compared with the
single-leg stance (p < 0.05).

4 Discussion

The present study investigated the effect of ASR cut-off pa-
rameters on characteristics of EEG data recorded under three
different tasks (n-back task, single-leg stance, and short bursts
of fast walking). The effect of task and cut-off parameter was
assessed using (1) the ratio of data removed or reconstructed
using ASR in sensor-space, (2) the dipolarity and reproduc-
ibility of ICs as assessed by RELICA, and (3) the classifica-
tion of ICs using IClabel. This knowledge is needed, particu-
larly when motor tasks are employed with higher likelihood
for causing movement artifacts such as in postural control or
walking tasks.
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Fig. 1 Mean ratio and range of removed and recovered data using ASR
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each participant. The dashed gray line represents EEG of a single partic-
ipant during the n-back task
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ASR, as a preprocessing step before ICA, delivered the best
results in terms of reproducibility and dipolarity in EEG re-
corded during bursts of fast walking compared with EEG re-
corded during a cognitive task and single-leg stance. The
number and certainty of the classification as brain-related
ICs were unaffected by the choice of cut-off parameter across
all tasks. The cut-off parameters resulting in the same ratio of
data removed and reconstructed as in manual cleaning using
visual inspection revealed a lower range of equivalent cut-off
parameters in the walking task compared with the cognitive
and single-leg stance task.

4.1 Ratio of data removed and reconstructed using
ASR

Tasks more likely to cause movement artifacts seem to require
lower cut-off parameters for ASR, when compared with the
ratio of removed data during manual cleaning, as shown in
Fig. 1. The ranges of cut-off parameters determined by the
comparison to manually cleaned data for the single-leg stance
task and the n-back task (Fig. 1) show rough agreement with
recent literature. Mullen et al. [12] used cut-off parameters

between 5 and 7. However, their application of ASR was in a
BCI system using dry electrodes. Chang et al. [11] recom-
mended to use cut-off parameters between 10 and 100 which
was later adjusted to cut-off parameters between 20 and 30
[14]. These results were based on EEG recorded while
performing a simulated driving task. Our results show that a
human rater would remove a similar percentage of EEG as
ASR with previously recommended cut-off parameters in the
single-leg stance task and the n-back task. The range of cut-off
parameters in the walking task was lower than the recommen-
dations in recent literature. A possible explanation could be
differences in the level of movement artifact contamination
compared with the EEG used in [11, 14]. The walking task in
our study might show higher levels of contamination as walk-
ing is a more vigorous task compared to simulated driving.

4.2 Dipolarity and reproducibility of independent
components

Surprisingly, significantly higher quality indices were ob-
served for ICs in the walking task. This indicates the best
reproducibility of ICs using EEG from this task. This finding
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was not anticipated since the walking task was the most con-
taminated with movement artifacts. The single-leg stance task
showed the lowest quality indices, despite being the task with
presumably the second lowest likelihood for causing artifacts.
A possible explanation for this result might be that ASR partly
removed brain-related activity in addition to removing noise
and artifacts, since alpha waves were the most prominent fea-
ture in the EEG from this task.

The high plateau for all quality indices for cut-off parame-
ters higher than 10 indicates that the quality of ICs is nega-
tively affected by more aggressive cut-off parameters. This
supports the findings of Chang et al. [14] that cut-off param-
eters of less than 20 are not advisable and resulted in signifi-
cantly lower quality indices and dipolarity across tasks.

Interestingly, dipolarity was not affected as severely as the
quality index by the choice of cut-off parameters. A conse-
quence of this is that dipolarity alone might not be the optimal
tool to determine whether an IC is brain-related and of high
quality or not. Although computationally expensive, RELICA
can potentially serve as a more dependable assessment tool for
quality assurance of source-space results.

The overall quality of ICs was lower than those of
Artoni et al. [25]. Our results are likely related to the
amount of movement and the thereby induced artifacts.
However, the cognitive task had no, or a very limited
amount, movement. The reason for the difference in the
quality index may be related to Artoni et al. using
event-related potentials in their experiment whereas we
used continuous EEG recordings.

Contrary to the findings of Artoni et al. [25], we found ICs
in the “forbidden region.” They hypothesized that highly di-
polar ICs cannot have extremely low-quality indices. Most
ICs in the “forbidden region” (17 out of 21) were calculated
using EEG preprocessed with ASRwith a cut-off parameter of
10 or less. Twelve of those ICs used a cut-off parameter of 1.
This indicates that low cut-off parameters may reduce the
quality indices but do not affect the dipolarity of ICs. The
single-leg stance task was the most prominent task in the “for-
bidden region,” with 15 of the 21 ICs. It seems possible that
ASR, when used with cut-off parameters below the recom-
mended range (k < 20) [14], can have a negative effect on
the reproducibility of ICs. This assumption is supported by

Fig. 3 The number of ICs for
each task identified by BeamICA.
Teal dots represent all ICs, and
red dots represent ICs with a
dipolarity of > 0.85. The vertical
bars indicate the standard error of
the measurements
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the significant difference between ICs preprocessed with cut-
off parameters of one or two compared with the remaining
cut-off parameters used.

Unfortunately, it was not possible to calculate quality indi-
ces of ICs that were based on manually cleaned data using
RELICA. To further investigate whether this was related to
eye blinks or remaining movement artifacts, we used the
RELICA plug-in on manually cleaned and artifact-free seated,
open-eyes baseline data from a previous study [6]. Despite
this dataset not containing any movement contamination but
only artifacts due to eyeblinks, we arrived at similar results. It
was possible to obtain plausible resulting values from
RELICA after removing the eyeblink artifacts from either
EEG data set using ASR, ruling out the possibility that manual
cleaning with resulting boundaries between the remaining
EEG caused the issue. Although we cannot answer for sure
what may have caused RELICA to perform unsatisfactory in
manually cleaned EEG data, it seems reasonable to assume
that the prominent eyeblink artifacts in both cases had an
important role in its inability to deliver quality indices.

4.3 Classification of independent components

The number of functional ICs classified by IClabel in each task
remained constant regardless of the cut-off parameter used. This
indicates that ASR does not lead to an artificial increase of brain-
related ICs. Significantly more ICs were classified as functional in
the n-back task and the single-leg stance task compared to the
walking task. This might be due to the level of movement artifact
contamination that remained in the EEG after cleaning. For the
walking task,more ICswere needed tomodel the remaining noise,
hence leaving fewer ICs available for functional processes.

The classification of noise sources was influenced by cut-off
parameters less than 10 across all three tasks. Hence, it can be
assumed that ASR, when used with cut-off values below 10,
alters the noise patterns in the EEG, so that they cannot be dis-
tinguished by the automatic IC classification tool IClabel. This
led to more ICs being classified as “other noise” instead of being
distinguished into specific classes of noise. This effect was most
notable in the class of “muscle” ICs. Therefore, it seems reason-
able to assume that strong high-frequency broadband activity
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Fig. 4 Independent components for EEG data preprocessed using ASR
with cut-off parameters ranging from 1 to 1000 and manually cleaned
EEG data. Spatiotemporal features were calculated using an adaptive
mixture-independent component analysis. Total number of independent
components (black) and independent components classified into seven

categories using IClabel (red, “brain”; blue, “other noise”; other colors,
“muscle,” “eye,” “heart,” “line noise,” and “channel noise”). The bars
indicate the standard error. The crosses indicate the certainty of the clas-
sification of independent components as brain-related
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used to classify ICs as “muscle”-related was affected by the
reconstruction of the signal by ASR [24]. The number of func-
tional ICs remained constant, suggesting that ASR preserves
functional ICs across cut-off parameters. Further research is
needed to further support this interpretation.

4.4 Next steps

Manual cleaning is likely to remove EEG linked to high in-
tensity movements, whereas ASR reconstructs them. A poten-
tial implication of this is a bias either due to systematic remov-
al of EEG or due to the reconstruction of EEG. Especially in
mobile brain/body imaging applications [5], EEG recorded
during movements is of high interest and an important topic
for future research. There are still many unanswered questions
such as which parameters can be used to automate the selec-
tion of cut-off parameters used in ASR and whether there is a
bias introduced by the reconstruction of data.

Our results based on two motor tasks and one cognitive task
indicate that it may not be possible to provide general recom-
mendations for the choice of ASR cut-off parameters across
different types of tasks performed while measuring brain activ-
ity. However, detecting the plateau in quality indices calculated
using RELICA might be a good candidate for the parameteri-
zation of the selection of ASR cut-off parameters. Despite being
computationally expensive, a data-driven approach for the se-
lection process of cut-off parameters would be beneficial for the
development of automatic processing pipelines.

4.5 Limitations

Using real-world data for analyzing filtering algorithms comes
with the caveat that there is no gold standard for EEG prepro-
cessing. However, it is important to compare the results of a
common preprocessing practicewith newly developed automatic
preprocessing algorithms as in the current study, in order to get a
better understanding of the behavior of the latter. In addition,
quantifiable quality features of the EEG were used to assess the
effect of the cut-off parameter used in ASR. A further limitation
is that the list of tasks included in this study is not exhaustive and
we only used one particular type of EEG system. Thus, the
results may vary for other motor tasks with different composi-
tions of noise or different EEG amplifiers and electrodes.
Nevertheless, this is the first study to investigate the effect of
movement tasks, showing differences in reproducibility and
dipolarity depending on the cut-off parameter used. This knowl-
edge is important for, and may inspire, future research.

5 Conclusion

Artifact subspace reconstruction appears a valuable tool for the
automatic cleaning of EEG data recorded while performing

motor tasks when used as a preprocessing step for an indepen-
dent component analysis. We showed that the dipolarity and the
reproducibility of independent components reached a combined
maximum when cut-off parameters of 10 or higher were used in
EEG data recorded from real participants. The number of func-
tional ICs classified by an automatic tool remained constant,
regardless of the cut-off parameter used. However, in EEG with
low levels of movement induced artifacts, we observed lower
combined reproducibility and dipolarity compared with more
contaminated data, indicating that ASR might be less suitable
for non-contaminated EEG datasets. Furthermore, ASR with
cut-off parameters lower than 10 produced ICs with high
dipolarity and low reproducibility.
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