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A B S T R A C T

Thermal conductivity of carbon dioxide (CO2) is a vital thermophysical parameter that significantly affects
the heat transfer modeling related to CO2 transportation, pipelines design and associated process industries.
The current study lays emphasis on implementing powerful soft computing approaches to develop novel
paradigms for estimation of CO2 thermal conductivity. To achieve this, a massive database including 5893
experimental datapoints was acquired from the experimental investigations. The collected data, covering
pressure values from 0.097 to 209.763MPa and temperature between 217.931 and 961.05 K, were employed
for establishing various models based on multilayer perceptron (MLP) optimized by different back-propaga-
tion algorithms, and radial basis function neural network (RBFNN) coupled with particle swarm optimization
(PSO). Then, the two best found models were linked under two committee machine intelligent systems
(CMIS) using weighted averaging and group method of data handling (GMDH). The obtained results showed
that CMIS-GMDH is the most accurate paradigm with an overall AARD% and R2 values of 0.8379% and 0.9997,
respectively. In addition, CMIS-GMDH outperforms the best prior explicit models. Finally, the leverage tech-
nique confirmed the validity of the model and more than 96% of the data are within its applicability realm.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Taiwan Institute of Chemical Engineers. This is an

open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

The increased level of CO2 emissions in the atmosphere is regarded
as the primary issue of climate change [1�3]. As a result, the environ-
mental and industrial researches are often confronted with the famous
dichotomy: on one hand, the technological advancements must cater
the lifestyle and meet the practical needs, and on the other hand, the
emission of CO2 must be kept at low levels [4]. With the intention of
reducing greenhouse gas emissions, enormous efforts have been made
to adequately establish proper techniques for Carbon Capture and
Sequestration (CCS) in geological formations [5�9]. In addition, some
other technologies that aim at capturing CO2 at various stages from pro-
cesses such as combustion or gasification are increasingly getting atten-
tion from technical and environmental perspectives [4].

Being an attractive strategy for dealing with the industrial CO2

emissions, CCS is generally performed through chronological cutting-
edge approaches and technologies attributed to three classes, viz.
post-combustion capture; pre-combustion capture and oxy-fuel
combustion capture; CO2 transport and storage [10�12]. These
classes include various industrial units, land transportation using
pipeline, maritime transport by ship, and lastly injection or storage in
geological formations [13,14]. In the context of injecting CO2 in geo-
logical formations, enhanced oil recovery (EOR) techniques by inject-
ing miscible CO2 (with oil) have shown increased ultimate recovery
factors in various oil reservoirs. The CO2-oil system can easily reach
the miscibility condition during CO2 injection, leading to the
improvement of the microscopic displacement efficiency [15�20].

In addition, CO2 mainly in its supercritical (SC) state is gaining
great attention in numerous industrial sectors such as refrigeration,
dry cleaning, pharmaceuticals and food [21�23]. This noticeable
trend towards multi-application of CO2 is due to various factors,
namely its non-flammability, accessible simplicity at high purity, and
being inexpensive and non-toxic.

While performing simulations and design tasks related to differ-
ent fluids utilization such as CO2, nano-fluids and ionic liquids, vari-
ous vital thermophysical properties that describe the behavior and
the state of the fluids under different thermodynamic conditions
should be determined properly [10,24�33]. The proper knowledge
and assessment of these parameters are required for various
advanced thermal engineering applications such as the fabrication
and design of new energy systems [34], flow studies and modeling
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[31�33], transportation and lubrication processes [35]. In this con-
text, relevant experimental techniques and modeling approaches
exist in the literature regarding the investigation of thermal proprie-
ties of fluids [36�40].

Among thermophysical properties of a fluid, thermal conductivity
has a noticeable effect on heat transfer behavior [41,42]. For CO2, this
parameter is considered paramount in the mathematical formulation
of heat transfer modeling associated with the design of CO2 transpor-
tation pipelines [43]. It is worth noting that CO2 thermal conductivity
is needed under extensive pressure and temperature conductions
due to the particularity of CO2 transportation and its concerns
[43,44]. Due to this fact, accurate knowledge of this parameter is nec-
essary to ensure the proper design and correct flow conditions of CO2

during transportation.
Due to the cost and considerable time needed to determine CO2

thermal conductivity using lab measurements based on sophisticated
procedures such as steady-state hot-wire measurements of the dilute
gas, single-wire steady-state measurements and steady-state low-
density measurements [45,46], many researches have been con-
ducted to establish predictive models under different operational
conditions. Bahadori and Vuthaluru [43] established an explicit
model based on third order polynomial for correlating CO2 thermal
conductivity with pressure and temperature. Their correlation was
developed using experimental data covering temperature values
from 260 to 450 K and pressure values within the interval
10�70MPa. Jarrahian and Heidaryan [47] applied multiple regression
analysis method to develop a temperature and pressure dependent
correlation for estimating CO2 thermal conductivity. Their proposed
model was developed using 688 real datapoints gathered from prior
experimental studies, covering pressures from 7.41 to 209.68MPa
and temperatures from 311.25 to 960.68 K. Amooey [48] formulated
a minimization of the sum of square of errors to establish a predictive
model of CO2 thermal conductivity by considering density and tem-
perature as the input parameters. The model was developed using
600 experimental datapoints covering temperatures from 290 to
800 K and densities between 1 and 1200 kg/m3. Recently, Rostami et
al. [49] applied genetic programming (GP) to provide a predictive
correlation using 752 datapoints. Their correlation depends on tem-
perature, density and pressure. Another explicit correlation was pro-
posed by Rostamian and Lotfollahi [50] for predicting thermal
conductivity of vapor, liquid, and supercritical CO2 as a function of
density and temperature. The proposed correlation can be applied for
temperature and density values in the ranges of 250 to 1100 K and
0.3 to 1400 kg/m3, respectively. Table 1 illustrates the main mathe-
matical formulas of the aforementioned correlations, the number of
considered datapoints as well as the validity in terms of the covered
operational conditions. According to this table, with the simple form
of the correlations, some of them are developed with limited number
of datapoints. Besides, it can be seen from the applicability domains
that the lowest temperature value is equal to 250 K while very low
temperature values are not covered.

Data-driven techniques are increasingly exhibiting high perfor-
mance in modeling many complicated systems [35,51]. For CO2

related topics, these methods showed very interesting results when
modeling various parameters and phenomena such as CO2 solubility
in water [52], interfacial tension in impure CO2-brine systems [53],
minimum miscibility pressure of the CO2-crude oil system [54�56],
CO2 viscosity [57], CO2 solubility in ionic liquids [58] and CO2 injec-
tion-based EOR [16,20,59]. In recent years, some researchers have
investigated the ability of these data-driven techniques to model CO2

thermal conductivity. Shams et al. [60] modeled CO2 thermal conduc-
tivity by applying Least-Square Support Vector Machine (LSSVM). To
improve the performance of their ML technique, the authors applied
Coupled Simulated Annealing (CSA) for auto-tuning of the LSSVM
hyper-parameters. Their proposed hybridization was established
using 558 experimental datapoints. Tatar et al. [61] implemented
another hybridization by coupling Adaptive Neuro-Fuzzy Inference
System (ANFIS) with Particle Swarm Optimization (PSO) to establish
a predictive paradigm of CO2 thermal conductivity using 1042 experi-
mental data from the literature. Ahmadi and Baghban [62] proposed a
paradigm for estimating CO2 thermal conductivity based on a coupled
LSSVM and genetic algorithm (GA). In their investigation, the authors
considered 746 experimental datapoints for establishing the predic-
tive model. Rostamian and Lotfollahi [63] applied surface response
methodology to generate a CO2 thermal conductivity predictive
model by considering density, pressure and temperature as the input
parameters. However, in their study, an important part of the
employed data was not experimental but generated from the equa-
tion of Vesovic et al. [64]. A deep survey on these performed studies
based on soft computing techniques reveals that some of the pro-
posed models are limited in terms of the operational conditions and
the experimental datapoints utilized in their establishment. The liter-
ature survey reveals that modeling CO2 thermal conductivity is still
an open area of research.

The major aim of the present research is to establish accurate and
robust paradigms using advanced intelligent schemes for estimating
CO2 thermal conductivity under widespread temperature and pres-
sure conditions. To achieve this goal, multilayer perceptron (MLP)
optimized by different back-propagation techniques, and radial basis
function neural network (RBFNN) coupled with Particle Swarm Opti-
mization (PSO) were implemented as preliminary predictors. After-
wards, the two best found models were linked under two committee
machine intelligent systems (CMIS) using weighted averaging and
group method of data handling (GMDH). A massive experimental
database encompassing more than 5890 experimental datapoints
was collected from literature to develop these models. The experi-
mental data cover noticeable ranges of operational conditions, namely
pressure range of 0.097 to 209.763MPa, and temperature between
217.931 and 961.05K. The present work contributes significantly to the
fields of CO2 utilization and application of soft computing techniques in
engineering: (1) the size of the employed database is highly important,
and this makes the validity of the established model more pertinent; (2)
the employed experimental datapoints cover extensive operational con-
ditions; and (3) a new CMIS scheme was proposed for the first time by
combining someMLPmodels with GMDH.

The remainder of the included sections in this investigation are
outlined as follows. Section 2 presents the theoretical background
related to the implemented soft computing techniques as well as the
proposed CMIS models. Section 3 describes the collected experimen-
tal data employed in building the models. In Section 4, the results are
highlighted and discussed. The paper ends with Section 5, where the
main findings are illustrated.

2. Models

2.1. Multilayer perceptron neural network

Artificial neural network (ANN) is a well-developed and applied
soft computing technique. ANN is inspired from the neurological sys-
tem and its basic elements for handling the information [65]. This
technique is recognized to be very robust in emulating the outputs of
various complex systems after its learning phase based on prior
knowledge of a set of representative data [52]. An ANNmodel is asso-
ciated with a topology that encompasses neurons distributed in three
kinds of layers, namely input, hidden and output layers [65]. The data
are received from the input layer and transformed into higher-
dimension features in the hidden layer using predefined processing
steps, while the results of the model are delivered from the output
layer [65]. The neurons of a given layer are linked to their counter-
parts of the succeeding layer by means of weights. Moreover, bias
terms are frequently considered in the neurons of hidden and output
layers. The structure of an ANN allows a flexibility for learning the



Table 1
Summary of the prior correlations for estimating CO2 thermal conductivity.

Correlation Mathematical formula Number of
datapoints used in
the development

Operational conditions Reported accuracy Applied modeling method Type of fluid

Bahadori and
Vuthaluru
[43]

LnðλÞ ¼ aþ b
P þ c

P2 þ d
P3 Not mentioned 260 K � T � 450 K AAD*=1.30% Third order polynomial CO2

where:
a ¼ 2:51177�ð4:61299Eþ3Þ

T þ ð1:5604Eþ6Þ
T2 �ð1:64868Eþ8Þ

T3

b ¼�ð6:78436E þ 2Þ þ ð5:94729Eþ5Þ
T �ð1:81369Eþ8Þ

T2 þ ð1:86064Eþ10Þ
T3

c ¼ ð2:064898E þ 4Þ�ð1:99667Eþ7Þ
T þ ð6:42367Eþ9Þ

T2 �ð6:8022Eþ11Þ
T3 10 MPa � P � 70 MPa

b ¼�ð1:09504E þ 5Þ þ ð1:08783Eþ8Þ
T �ð3:57549Eþ10Þ

T2 þ ð3:855Eþ12Þ
T3

λ is expressed in W/m.K

Jarrahian and
Heidaryan
[47]

λ ¼ A1þA2PþA3P3þA4LnðTÞþA5LnðTÞ2
1þA6PþA7LnðTÞþA8LnðTÞ2þA9LnðTÞ3

688 311.25 K � T � 960.68 K AAD=2.70% Multiple regression analysis SC��CO2

where
A1 = 1.49288E + 1; A2 = 2.62541E� 3;
A3 = 8.77805E� 6; A4 = � 5.11425;
A5 = 4.37711E� 1; A6 = 2.11405E� 5; 7.41 MPa � P � 209.68 MPa R2 **=0.994
A7 = � 4.73036E� 1; A8 = 7.36636E� 2;

and A9 = � 3.76340E� 3.
λ is expressed in mW/m.K

Amooey [48] λ ¼ A1þA2rþA3r2þA4r3T3þA5r4þA6TþA7T2ffiffi
T

p
where
A1 = � 1.05161E + 2; A2 = 9.00700E� 1;
A3 = 7.00000E� 4; A4 = 3.50000E� 15;
A5 = 3.76000E� 10;
A6 = 7.50000E� 1; and A7 = 1.70000E� 3λ
is expressed in mW/m.K

600 290 K � T � 800 K1 kg
m3 �r�

1200 kg
m3

AAD=2.74% Minimization of the sum of
square of errors

SC��CO2

Rostami et al.
[49]

P < 20 MPa λ ¼ 0:0936 � T�0:448 � P þ
0:0739 � r�0:244 � LnðrÞ�10:8

�P
Tþ0:00753 � P2 þ 1:85 � 10�5 � r2

þ94:7 �r
T�P�16:7λ is expressed in

mW/m.K

752 293.65 K � T � 961.05 K 0.1
MPa � P � 127.8 MPa0:7 kg

m3 �
r�1145 kg

m3

AAD=2.31%
R2=0.997

Genetic programming SC��CO2

P � 20 MPa λ = 0.0575 £ T + 0.0151
£ P + 0.0372 £ r + 4.96 £ 10�5

£ Ln(Ln(r))� 0.00695
£ Ln(P) + 1.41 £ 10�5

£ T2 + 7.2 £ 10�8

£ r3 + 1.78λ is expressed
in mW/m.K

Rostamian and
Lotfollahi [50]

λ ¼ A1þA2
T þ

A3
T2:5

þA4rþA5r2:5T2:5þA6r3

1þA7
T þ

A8
T2:5

þA9
T3
þA10

ffiffiffiffiffi
rT

p 2319 250 K � T � 1100K AAD=1.98% Error minimization using
Nedler-Mead
optimization method

Liquid, vapor and SC��CO2

where
A1 = � 29.9717451505165E + 15;
A2 = 9.65637447009372E + 18;
A3 = � 13.8288944829492E + 21;
A4 = � 21.1152877719961E + 12;
A5 = 9.26006733304733;
A6 = � 30.7171646680127E + 6;
A7 = � 408.256276723566E + 15;
A8 = 130.491020289031E + 18;
A9 = � 13.4237924607890E + 21;
and A10 = 60.9547298940653E + 9.
λ is expressed in mW/m.K

0:3 kg
m3 �r�1400 kg

m3 R2=0.995

* Average Absolute Deviation.
** Coefficient of Determination.
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information and a pertinence for identifying the relationship describ-
ing the system. Multilayer perceptron (MLP) and radial basis function
neural networks (RBFNN) are among the well-formulated ANN types
for the modeling tasks. These two types differ in their topologies and
learning procedures [35,66].

An MLP model can include one or more hidden layers according to
the system’s complexity. In this context, one hidden layer is generally
deemed adequate for modeling low-complexity systems, whereas
more than one hidden layer is mandatory for complex systems [54].
Trial and error is the commonly considered technique to investigate
the proper number of hidden layers and their covered neurons [65].
For each of the hidden layers, a nonlinear activation function is
implemented to map the data in higher dimension space and capture
the complexity of the system accordingly. The frequently applied
activation functions in the hidden layers are shown below:

Logsig : f xð Þ ¼ 1
ex þ 1

ð1Þ

Tansig : f xð Þ ¼ ex�e�x

ex þ e�x
ð2Þ

The output of the MLP is gained from the output layer by applying
generally a linear function known as Pureline. The latter is expressed
as:

g xð Þ ¼ x ð3Þ
To build an accurate predictive MLP model, it should go through

the training phase. The objective of this step is to investigate the
appropriate bias and weights that generate the best performances
[67]. The so-called back-propagation approaches are applied for this
purpose. Levenberg-Marquardt Algorithm (LMA), Scaled Conjugate
gradient (SCG), Bayesian Regularization (BR), and Resilient Backpro-
pagation (RB) are among the well-known optimization techniques
for improving the MLP learning procedure. Therefore, the aforemen-
tioned algorithms were applied in the present work. Optimization
tasks related to MLP and the learning algorithms were performed
using MATLAB�. More details about these algorithms can be found in
previous works [16,35,68].
2.2. Radial basis function neural network (RBFNN)

Radial basis function neural network (RBFNN) is another rigor-
ous and reliable ANN type. The topology of RBFNN contains only
one hidden layer [69,70], represented by its nodes (Nh) which
include bias terms (Nb). Besides, a radial basis function (RBF) is
applied in each hidden node to transform the data and recognize
the system. The applied RBFs are characterized by their centers
and width. Gaussian function is the most implemented RBF in this
kind of ANN [65]. It is formulated based on its center (ck) and the
spread coefficient (s2).

During the processing steps, the Euclidian norm is applied to
assess the distance of a vector (x) from the center (ck) of the Gaussian
function. Accordingly, the following expression is obtained:

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

xi�cikð Þ2
vuut ð4Þ

where D denotes the dimension of the system and cik represents the
centers. Combining the above equation with the Gaussian RBF, the
following formula is gained:

’ rkð Þ ¼ exp
PD

i¼1 xi�cikð Þ2
2s2

" #
ð5Þ

where the parameter s2 represents the spread coefficient of the f
Gaussian RBF.
The outcome from the RBFNN output layer is obtained as shown
below:

y ¼
XNh

i¼1

wi’i rð Þ þ bi; i ¼ 1; . . . ;Nh ð6Þ

where bi represents the bias term, Nn is the number of the hidden
layer’s neurons, and wi is the connecting weight between the hidden
node i and the output layer.

To improve the reliability of RBFNN, we have applied particle
swarm optimization (PSO) for investigating the RBFNN control param-
eters, namely the spread coefficient and the number of nodes. More
details about PSO can be found in the published literature [71,72].
2.3. Committee machine intelligent system (CMIS)

In most of the published works related to modeling tasks based on
soft computing techniques, an evaluation of the prediction perfor-
mance is done, and the most reliable prediction is kept as the main
representative paradigm for the studied phenomenon. Nevertheless,
for the purpose of improving the prediction accuracy, the most reli-
able implemented soft computing models can be combined under a
unified paradigm by means of the so-called Committee Machine
Intelligent System (CMIS). The first combination scheme was devel-
oped by Nilsson [73]. In recent years, the linear linking technique is
widely applied for developing CMIS models [35,74]. However, in the
present work, a new scheme based on group method of data handling
(GMDH) is proposed for building CMIS model.
2.3.1. Linear linking (CMIS-Linear)
A CMIS based on the linear combination of the models is estab-

lished by means of weighted average method with an appended bias
factor [75].
2.3.2. Group method of data handling linking (CMIS-GMDH)
Group Method of Data Handling (GMDH) is an ANN type which pro-

cesses the information in a polynomial form [76]. GMDH encompasses
nodes configurated in the form of layers, allowing the interaction
between the input parameters in a progressivemanner. The earliest ver-
sion of GMDH that was proposed by Ivakhnenko [77] is based on a qua-
dratic polynomial scheme applied to the nodes of the previous layer.
However, this version presented some accuracy shortcomings, and
hence, an improved form called hybrid GMDH was proposed [78]. The
hybrid version can consider higher order polynomials and enables inter-
actions between nodes pertaining to various layers [79]. The main for-
mula that describes the hybrid version is shown below:

y ¼ aþ
XD
i¼1

XD
j¼1

. . .
XD
k¼1

dij...kx
n
i x

n
j . . . x

n
kn ¼ 1;2; . . . ; 2l ð7Þ

In this equation, a is the bias term, y, xi, xj, . . . xk represent the
output and the inputs of the model, respectively; dij. . .k are the poly-
nomial coefficients; l and D correspond to the numbers of layers and
input parameters, respectively.

In addition, partial polynomials with specified orders are applied to
link the nodes and to form other intermediate variables (O1, O2,. . .). The
following equation illustrates an example based on quadratic polynomial:

OGMDH ¼ c0 þ c1xk þ c2xk þ c3xkxj þ c4x2k þ c5x2j ð8Þ

The coefficients in the above equation are calculated using the
least square method (LSM). To this end, the following equation is
obtained:

D
2
j ¼

XNt

z¼1

tz�yGMDH
z

� �2
j ¼ 1;2; . . . ;

D
2

� �
ð9Þ
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where D and Nt refer to the number of input parameters and training
datapoints, respectively, and tz and yz denote the targets and the GMDH
predictions, respectively. The subscript z is the index of the output.

Afterwards, the matrix form is considered to resolve the problem
[80]:

y ¼ CTX ð10Þ
The LSM results in the final solution as shown below:

CT ¼ yXT XXT� ��1 ð11Þ
where y = {y1,y2,. . ., yD}, C = {c0,c1,c2,c3,c4,c5}, and D denotes the num-
ber of input parameters.

In the present work, the hybrid version of GMDHwas applied to build
the CMIS-GMDH. It should be mentioned that the initial nodes of
GMDH were the best found paradigms.
3. Data acquisition and preparation

To establish accurate predictive models for estimating CO2 thermal
conductivity, an extensive experimental database including 5893 data-
points was collected from various literature [45,46,81�89]. A detailed
description of the collected data is illustrated in Tables 2 and 3. Tempera-
ture (T) expressed in K and pressure (P) expressed inMPa are the consid-
ered input parameters for establishing the models, while the output is
the CO2 thermal conductivity (λCO2 ) expressed in (mW/m.K). According
to the information in Table 2, the collected experimental data covered
wide operational conditions with temperature values from 217.93K to
961.05K and pressures varying from 0.097MPa to 209.763MPa. It is
worth mentioning that this reported literature data was converted into
readily available data by unifying the units of the different variables and
conversion into one csv file. The latter was imported automatically into
the codes of the considered data-driven techniques.

Before proceeding to the learning phase of the proposed soft com-
puting approaches, the collected data were normalized between �1
and 1 using the expression below:

xni ¼
2 xi�xminð Þ
xmax�xminð Þ�1 ð12Þ

where xni is the normalized value of xi, xmax and xmin are the maxi-
mum and minimum values of the variable x (corresponding to λCO2 , T
and P), respectively.

After the normalization, the database was divided randomly into
training (80% of the experimental datapoints) and testing (the
Table 2
Summary of the gathered data.

Data Max Avg. Min Standard deviation (SD)

T (K) 961.05 421.60 217.93 150.15
P (MPa) 209.763 20.0119 0.097 22.9104
Thermal Conductivity
(mW/m.K)

198.79 59.8571 10.82 41.9814

Table 3
Details about the gathered data.

Reference Thermal Conductivity (mW/m.K) P (MPa)

[83] 16.5�177.5 0.1�127
[85] 16.4�179 0.1�120
[89] 16.32�194.68 0.1�209
[87] 17.12�41.75 0.497�1
[82] 10.82�198.79 0.097�6
[86] 17.44�99.9 0.3�24.
[46] 24.22�61.57 1.83�30
[84] 17.73�28.74 0.67�6.
[81] 17.38�29.2 0.601�5
[88] 15.30�190.60 3.11�48
remaining 20%) sets. The training set was utilized for building the
models and the testing set was used for checking their accuracy with
unseen real data. It is worth mentioning that this dataset apportion-
ing shows typically extremely good outcomes [35,76,78,90�92]. The
models were run several times with this partitioning of the data, and
the best models are exhibited in the following section.

4. Results and discussion

4.1. Implementation procedure

As mentioned in the previous sections, the aim of the proposed
soft computing schemes is to build accurate models for estimating
CO2 thermal conductivity (λCO2 ) under various operational conditions.
Therefore, the following equation is considered:

λCO2 ¼ f T ; Pð Þ ð13Þ
During the training phase of different soft computing methods,

mean square error (MSE) was the considered fitness function to
assess the reliability of the approaches. MSE is expressed as shown
below:

MSE ¼
PN

i¼1 λiexp�λipre
� �2

N
ð14Þ

where λi denotes CO2 thermal conductivity, N is the number of train-
ing datapoints and the subscripts pre and exp refer to the predicted
values and the experimental measurements, respectively.

For the case of MLP, trial and error technique was applied to
investigate the appropriate structures for each considered algorithm.
The inputs as well as the outputs are provided during the training
phase. The network then processes the inputs and matches them up
to the specified outputs. Errors will then be propagated back across
the system, and the weights and bias of the network will be regulated
and adjusted iteratively. This process is constantly repeated until a
stopping condition is fulfilled. The resulting paradigms are denoted
MLP-LMA, MLP-BR, MLP-SCG and MLP-RB, respectively. The best
found structure in each of the aforementioned MLP models includes
three hidden layers with Tansig as activation function in each of
them. Moreover, Pureline was the considered transfer function in the
output layer of these models. The number of neurons in these hidden
layers are 12, 11 and 9, respectively.

For RBFNN, PSO was applied to optimize its control parameters.
The optimization results revealed that the appropriate number of
neurons and spread coefficient are 162 and 0.1936, respectively. The
resulting hybridization is symbolized RBFNN-PSO.

After accomplishing the establishment of the ANN models, a per-
formance comparison was done, and the two fittest models were
used for implementing two other paradigms, namely CMIS-Linear
and CMIS-GMDH. It is worth noting that the procedure described in
Section 2 was adapted for developing these schemes.

The workflow illustrated in Fig. 1 briefly summarizes the steps in
the model implementation.
T (K) Number of datapoints

.8 293.65�960.85 536
298.15�951.15 193

.763 298.166�348.29 248
5.1 298.89�428.05 77
8.702 217.931�757.014 4389
56 301.25�349.52 92
.6 380.92�474.31 46
66 305.32�426.19 90
.92 301.34�303.59 22
.7043 298.125�308.07 200



Fig. 1. The flowchart of the implementation procedure.
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4.2. Statistical and graphical evaluation

Various statistical criteria were applied for assessing the reliability
of the proposed models to predict CO2 thermal conductivity. These
statistical indices are expressed as follows:

1. Average Absolute Relative Deviation (AARD)

AARD% ¼ 1
N

XN
i¼1

���� λiexp�λipredλiexp

����� 100 ð15Þ
2. Root Mean Square Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

λiexp�λipred
� �2

vuut ð16Þ
Table 4
3. Standard Deviation (SD)

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

XN
i¼1

λiexp�λipred
λiexp

 !2
vuut ð17Þ
Performance evaluation of the implemented models.

AARD (%) R2 RMSE SD

Training data MLP-LMA 1.2213 0.9991 1.0608 0.0003
MLP-BR 1.2845 0.9987 1.2495 0.0004
4. Coefficient of Determination (R2)

R2 ¼ 1�
Pn

i¼1 λi exp�λi pred
� �2

Pn
i¼1 λi exp�λi pred

� 	2 ð18Þ
MLP-SCG 2.3963 0.9897 3.4930 0.0018

MLP-RB 2.7941 0.9915 3.1677 0.0021
RBF-PSO 2.6195 0.9896 3.5534 0.0019
CMIS-LINEAR 1.2347 0.9986 1.1779 0.0003
CMIS-GMDH 0.8372 0.9997 0.6966 0.0002

Test data MLP-LMA 1.5759 0.9987 1.2025 0.0005
MLP-BR 1.4581 0.9979 1.5636 0.0004
MLP-SCG 2.7468 0.9918 3.2603 0.0023
MLP-RB 2.8965 0.9789 5.2664 0.0026
RBF-PSO 2.9461 0.9881 3.7283 0.0025
CMIS-LINEAR 1.1537 0.9881 0.9127 0.0002
CMIS-GMDH 0.8407 0.9997 0.6836 0.0002

All data MLP-LMA 1.2922 0.9990 1.0906 0.0004
MLP-BR 1.3193 0.9986 1.3183 0.0004
MLP-SCG 2.4664 0.9900 3.4477 0.0019
MLP-RB 2.8146 0.9887 3.6843 0.0022
RBF-PSO 2.6848 0.9893 3.5891 0.0021
CMIS-LINEAR 1.2185 0.9991 1.1248 0.0003
CMIS-GMDH 0.8379 0.9997 0.6941 0.0002
where λiexp and λipred represent the experimental and predicted CO2

thermal conductivity, respectively. λ is the average thermal conduc-
tivity of CO2, and N is the number of samples.

The evaluation of the proposed ANN models including MLP opti-
mized with LMA, BR, SCG and RB, and RBFNN-PSO using these indices is
depicted in Table 4. In this table, the evaluation is reported separately for
training and testing sets and also for the whole utilized database. As
seen in Table 4, MLP-LMA outperforms the other MLP models as well as
RBFNN-PSO. MLP-LMA exhibited AARD% values of 1.2213%, 1.5759% and
1.2922 for the training set, testing set and overall data, respectively.
According to Table 4, the established ANN models can be ranked in the
following descending order: MLP� LMA > MLP� BR > MLP� SCG >

RBFNN� PSO > MLP� RB. Therefore, the two best models, i.e. MLP-LMA
andMLP-BRwere kept for developing the two CMIS schemes.
Fig. 2 illustrates the structures of the proposed CMIS-Linear and
CMIS-GMDH models. Furthermore, the mathematical formulations of
these CMIS are shown below:

� CMIS-Linear:

λCO2 ¼ a0 þ a1 �M1 þ a2 �M2 ð19Þ
where the coefficients a0 =�0.0290, a1 = 0.7835, and a2 = 0.2169
were obtained by regression, and M1 and M2 refer to the MLP-LMA
and MLP-BR models, respectively.

� CMIS-GMDH:

λCO2 ¼ �0:016363 þ 2:187283 � N�1:186711 �M1

�0:817671 �M1 � N þ 0:396172 � N2

þ 0:421492 �M2
1 ð20Þ



Fig. 2. CMIS-Linear and CMIS-GMDHmodels proposed in this study.
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where M1 refers to the MLP-LMA model and N is expressed as fol-
lows:

N ¼ 0:015045 þ 0:443216 �M2 þ 0:5565212 �M1

�0:029334 �M1 �M2 þ 0:013144 �M2
2 þ 0:016189

�M2
1 ð21Þ

M2 represents the MLP-BR model.
The statistical evaluation of these CMIS models is demonstrated in

Table 4. By comparing the performance of these paradigms against
various ANN models, it can be deduced that the proposed CMIS
schemes provide better prediction abilities. In addition, a detailed
analysis of the reported information in Table 4 reveals that the newly
proposed CMIS-GMDH outperforms CMIS-Linear. CMIS-GMDH
achieved an overall AARD% value of 0.8379% and a total coefficient of
determination (R2) equal to 0.9997. Therefore, CMIS-GMDH is the
model further used in this paper.

To extend the performance analysis of CMIS-GMDH, various
graphical plots such as cross plot, error distribution diagrams and
cumulative frequency of AARD% were illustrated for the visual evalu-
ation. Cross plots show the distribution of model’s prediction nearby
the line X = Y that emulates the perfect case. Existence of a great por-
tion of the predictions nearby this line demonstrates the reliability of
the paradigm. Error distribution diagrams exhibit the distribution of
the relative error denoted in the predictions of the model versus the
real output or as a function of the independent variables. Low relative
errors in these distributions represent an indication of the high accu-
racy of the model. Cumulative frequency diagrams of AARD% depict
different portions of the data predicted according to a specified
AARD% value.

Fig. 3 illustrates the scatter plot of the outputs of CMIS-GMDH
model versus the corresponding measured λCO2 for the entire data-
points. In addition, subplots of Fig. 4 show zoom-in into the cross
plot of Fig. 3 to display the data overlap for various intervals of
λCO2 :The predictions of CMIS-GMDH for both training and testing
sets, and for the whole intervals of λCO2 , lie close to the unit-slope
line, showing the approach’s accuracy. Moreover, the relative devia-
tions of the outcomes obtained via CMIS-GMDH versus correspond-
ing real CO2 thermal conductivity values are shown in Fig. 5. As
illustrated, the outcomes of the newly implemented paradigm
(CMIS-GMDH) have maximum deviation of 9.60% from real λCO2 data.

The cumulative frequency of CMIS-GMDH versus AARD% for the
prediction of λCO2 is displayed in Fig. 6. This figure reveals that the
proposed model predicts λCO2 of more than 70% of the datapoints
with absolute relative deviation of less than 1%, and for 90% of the
data, the absolute relative deviation is less than 2%.

The 2D and 3D contour map depictions of relative error of the pro-
posed CMIS-GMDH model are shown, respectively, in Figs. 7 and 8
versus the independent input parameters, namely pressure and tem-
perature. Based on the color changes, it can be deduced that CMIS-
GMDH model has very satisfactory performance for different ranges
(i.e. low, medium and high) of pressure and temperature. Further-
more, these figures verify that a huge portion of the model’s predic-
tions has very low absolute relative error.

The performance evaluation reported in Table 4 and Figs. 3�8
confirms that the implemented approach remarkably exhibits excel-
lent prediction abilities.
4.3. Comparison of CMIS model with prior correlations

The statistical assessment is conducted to examine the accuracy of
the implemented CMIS-GMDH, compared to the best prior correla-
tions, namely those of Bahadori and Vuthaluru [43], Jarrahian and
Heidaryan [47] and Rostami et al. [49]. The value of statistical indices
of these correlations and CMIS-GMDH model are stated in Table 5. It
is worth mentioning that in order to ensure the comparison fairness,
only the datapoints respecting the correlations’ applicability condi-
tions were considered from the utilized data. Accordingly, it can be
seen from Table 5 that the prior models are somewhat limited from
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Fig. 3. Scatter plot of the outputs of CMIS-GMDH model versus the corresponding measured CO2 thermal conductivity for training data set (4714 points) and testing data set (1180
points).
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Fig. 4. Detailed scatter plots of the outputs of CMIS-GMDH model versus the corresponding measurements for different intervals of CO2 thermal conductivity values: (a)
10.82�50mW/m.K; (b) 50�100mW/m.K; (c) 100�150mW/m.K; (d) 150�198.79mW/m.K.
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the applicability perspective, where Rostami et al. [49] correlation cov-
ers the greatest number of datapoints, namely 4543 datapoints, with
applicable operational conditions, while Bahadori and Vuthaluru [43]
correlation is deemed appropriate in only 1219 experimental data-
points. As demonstrated in Table 5, the prior approaches showed mod-
erate to good performance, where the worst AARD% value was
achieved by Rostami et al. [49] correlation. It is evident from Table 5,
that CMIS-GMDH surprisingly exhibits higher accuracy and outper-
forms all the existing explicit paradigms for the estimation of CO2 ther-
mal conductivity. It is worth mentioning that the improvement in the
predictions of CO2 thermal conductivity shown by the implemented
CMIS-GMDH model can be explained by the concept of this approach
which ensures the proper interactions between the best models and
their linking in a single and robust scheme, and hence, it provides an
efficient strategy for dealing with big data. Besides, it can be added that
the proposed CMIS-GMDH model covers wider range of operational
conditions compared with the existing correlations and also the prior
intelligent schemes such as those proposed by Shams et al. [60]
(LSSVM-CSA), Tatar et al. [61] (ANFIS-PSO) and Ahmadi and Baghban
[62] (LSSVM-GA). In this context, although these existing soft comput-
ing-based paradigms achieved satisfactory prediction performance (the
worst AARD value was 2.63448%, exhibited by Tatar et al. [61] model),
all of them were resulted from a limited number of experimental data-
points (558, 1042 and 746 points for Shams et al. [60], Tatar et al. [61]
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and Ahmadi and Baghban [62], respectively) compared to our proposed
CMIS-GMDHmodel (5893 points).

4.4. Validity of CMIS-GMDH model in terms of the operational
conditions

In this step of evaluation, the trend of outcomes of CMIS-GMDH
with respect to pressure and temperature is investigated based on var-
ious experimental samples. Subplots (a), (b) and (c) of Fig. 9 display
the emulated CO2 thermal conductivity by CMIS-GMDH and the real
experimental values versus pressure at constant (or almost constant)
temperature values. Clearly, the proposed CMIS-GMDH demonstrates
an excellent fit with the experimental data under different operational
conditions, implying the integrity and the appropriateness of the
implemented CMIS-GMDH in terms of physical interpretation.

4.5. Applicability domain of the CMIS-GMDH model and the quality of
the experimental data

In the last step of this work, the well-known Leverage approach
was performed to define the applicability realm of the proposed
CMIS-GMDH and to distinguish the suspected experimental meas-
urements from the employed database. The method provides a mea-
sure of the distance between the datapoints and the data used in the
training phase [93]. The Leverage technique is based on the so-called
Hat matrix, which is gained using [94,95]:

H ¼ X XTX
� ��1

XT ð22Þ
where X is a N£D matrix. N and D are the number of samples and
variables, respectively; and XT is the transpose of the matrix. The
diagonal elements of H represent the hat (hi) known as leverages,
which show the distance of the data from the centroid of X [93].

In addition, the standard residual (SR) is a useful parameter for
implementing this technique. It corresponds to simple residual “R”
(i.e. the difference between the real and the model predicted values)
divided by their estimated standard deviation. The parameters R and
SR are calculated as follows [96]:

Ri ¼ λiexp�λipred ð23Þ

SRi ¼
Riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE Rið Þ � 1�hið Þ
p ð24Þ

where MSE denotes Mean Squared Error.
r CMIS-GMDH: variation of relative error versus pressure and temperature.



Fig. 8. Contour map representation of relative error in the 3D continuous map for CMIS-GMDH: variation of relative error versus pressure and temperature.
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The two main parameters in the Leverage approach, namely SR
and the hat are exploited in graphical form which is known as Wil-
liam’s plot that depicts the applicability domain of the model. To this
end, a warning Leverage limit (H*) is obtained as: 3ðDþ1Þ

N ; and for the
CMIS-GMDH model, H* is equal to 0.0015. It can be stated that the
model is statistically valid if a significant part of the predictions is
located within the ranges of 0 � H � H* and� 3 � R � 3. In addition,
some statistical terms can be obtained from this approach and the
resulting plot: suspected data are located within the section with R
greater than 3 or less than �3 regardless of the associated H value;
out of Leverage data are within the domain H* � H and� 3 � R � 3.
William’s plot is sketched in Fig. 10. Obviously, having a great part of
the datapoints within the ranges 0 � H � 0.0015 and� 3 � R �
3 demonstrates that the evolved approach is statistically confirmed.
Furthermore, only small portion of the experimental datapoints
(3.46%) are noticed out of the applicability domain.

5. Conclusions

Throughout this investigation, enormous attempts have been put
forward to implement new accurate paradigms for predicting CO2

thermal conductivity under various temperature and pressure condi-
tions. To achieve this, a massive representative experimental
Table 5
Comparison of the model performance with recent models.

CMIS-GMDH Bahadori and Vutha

AARD (%) 0.8379 3.286
Max ARD (%) 9.60 56.66
R2 0.9997 0.9624
RMSE 0.6941 3.0565
SD 0.0002 0.0017
Number of applicable points 5893 1219
database was gathered from the published researches and was fed
into various soft computing schemes to evolve and test their reliabil-
ity. The database includes 5893 experimental measurements of CO2

thermal conductivity. The included soft computing techniques were
MLP optimized with LMA, BR, SCG and RB; RBFNN coupled with PSO,
and finally two committees of models were used to combine the two
best found ANN paradigms into two single models, namely CMIS-Lin-
ear and CMIS-GMDH. The following conclusions can be drawn on the
basis of the results achieved:

1. The proposed models cover extensive operational conditions
and can be applied to temperature and pressure values in the
ranges of 217.931 to 961.05 K and 0.097 to 209.763MPa,
respectively.

2. Based on the statistical evaluations, the values of CO2 thermal
conductivity obtained by the implemented approaches yield
very satisfactory agreement with the real measurements.

3. Among the proposed ANN models, MLP-LMA and MLP-BR pre-
sented the best agreement with the experimental data, and
hence, they were combined under CMIS-Linear and CMIS-
GMDH.

4. The proposed CMIS paradigms exhibited better performance
compared with the ANNmodels.
luru [43] Jarrahian and Heidaryan [47] Rostami et al. [49]

3.5409 3.8918
61.1083 76.6777
0.9527 0.9670
2.9 8.1735
0.0042 0.0071
2621 4543



Fig. 9. Experimental CO2 thermal conductivity and predictions of CMIS-GMDH versus pressure at constant (or almost constant) temperature values: (a) data from Le Neindre (1972)
[85]; (b) data from Millat et al. (1987) [84]; and (c) data from Leneindre et al. (1973) [83].
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Fig. 10. The William’s plot of CO2 thermal conductivity dataset for CMIS-GMDH model
(5689 points are valid; 124 points are suspected, and 80 points are out of leverage).
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5. CMIS-GMDH was deemed the best developed model with an
overall AARD% value of 0.8379% and a coefficient of determina-
tion (R2) equal to 0.9997.

6. The existing correlations and models fail to cover the whole
considered database of CO2 thermal conductivity.

7. The implemented CMIS-GMDH outperforms all the existing
explicit correlations in the prediction of CO2 thermal conductiv-
ity.

8. The trends of the resulting outcomes from the CMIS-GMDH
model are logical in terms of pressure and temperature.

9. The Leverage approach revealed the statistical validity of the
model and the employed data, where more than 96% of the
considered experimental datapoints lie in the applicability
domain of CMIS-GMDH.

10. The best-found predictive model can be utilized by means of
the provided Excel macro to estimate the thermal conductivity
of CO2 (Appendix A).
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Appendix A. CMIS-GMDH implemented model

To apply the established CMIS-GMDH paradigm, please open the
macros titled ''CO2_TC_calculator.xlsm''.

Note: The macros must be activated in your Excel. The program
predicts the CO2 thermal conductivity by specifying the values of
pressure (MPa) and temperature (K) and clicking on the calculate
button.
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