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Problem definition : Merchant commodity and energy production assets operate in markets with
volatile prices and exchange rates. Plant closures adversely affect societal entities beyond the spe-
cific plant being shutdown such as the parent company and the local community. Motivated by
an aluminum producer, we study if mitigating these hard-to-assess broader impacts of a shutdown
is financially viable using the plant’s operating flexibility. Academic/Practical relevance: Our
social commerce perspective towards managing shutdown decisions deviates from the commonly
used asset value maximization objective in merchant operations. Identifying operating policies that
delay or decrease the likelihood of a shutdown without incurring a significant asset value loss sup-
ports socially-responsible plant shutdown decisions. Methodology: We formulate a constrained
Markov decision process to manage shutdown decisions and limit the probability of future plant clo-
sures. We provide theoretical support for approximating this intractable model using unconstrained
stochastic dynamic programs with modified shutdown costs and explore two classes of operating
policies. Our first policy leverages anticipated regret theory while the second policy generalizes
production-margin heuristics used in practice using machine learning. We compute the former and
latter policies using a least squares Monte Carlo method and combining this method with binary
classification, respectively. Results: Anticipated-regret policies possess desirable asymptotic prop-
erties absent in classification-based policies. On instances created using real data, anticipated-regret
and classification-based policies outperform practice based production-margin strategies. Significant
reductions in shutdown probability and delays in plant closures are possible while incurring small
asset value losses. Managerial implications: A plant’s operating flexibility provides an effective
lever to balance the social objective to reduce closures and the financial goal to maximize asset value.
Adhering to both objectives requires combining short-term commitments with external stakeholders
to avoid shutdown with longer-term internal efforts to reduce the probability of plant closures.

∗corresponding author
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1. Introduction

Commodity and energy production assets play a critical role in the supply of ethanol, aluminum,

copper, iron, and steel, and power from coal, natural gas, and renewable sources. In 2015, iron ore,

copper, and aluminum were respectively $225, $130, and $90 billion US dollars annual industries

(IMF 2015), and roughly $10 trillion US dollars will be invested in new power generation by 2040

(BNEF 2017). Based on work with a major base metal producer, we study the management of

permanent shutdown decisions in a merchant commodity and energy production asset.

For illustration, consider an aluminum production facility that takes as inputs bauxite, carbon,

and electricity, and produces aluminum to be sold into the wholesale market. Production is econom-

ical when the conversion spread between the aluminum price and the input prices is positive after

accounting for production costs. If this spread is negative the merchant may temporarily suspend

production. If a combination of production and suspension leads to losses it may be economical to

permanently shut down the plant. Analogous operational flexibility is common in other commodity

production assets, refineries and hydrocarbon crackers in the petro-chemical industry, and power

plants (Brennan and Schwartz 1985, Tseng and Barz 2002, Méndez et al. 2006, Cortazar et al.

2008, Adkins and Paxson 2011, Boyabatli et al. 2011, Kazaz and Webster 2011, Boyabatli 2015,

Nadarajah et al. 2016, Hekimoğlu et al. 2016, Boyabatli et al. 2017), including renewable energy

production, for example in biogas plants (Di Corato and Moretto 2011, Hochloff and Braun 2014).

A merchant producer can maximize the market value of the plant by adapting production, sus-

pension, and shutdown decisions over time to the evolution of uncertain market factors such as

prices of commodity and energy sources and exchange rates (Secomandi and Seppi 2014). While

this pure asset value perspective is popular, the cost of a permanent plant shutdown is hard to assess

as it may impact societal entities outside the specific plant being shut down, which could include

the parent company owning the plant and the local community. For example, metal producers (e.g.,

aluminum and steel) often own both a production plant and a power source, such as a dam, due

to the large amounts of power consumed during the production process. It is common for licenses

to operate plants and power sources to include social and economic criteria that the producer must

meet (e.g., maintaining local jobs). Abandoning a plant can make the producer default on these

obligations and the government to deny the renewal of operating licenses for the power source as

well as jeopardize licenses for assets in other regions. In addition, such a shutdown can cause loss of

employment and adverse publicity and result in political resistance from powerful unions and inter-

est groups (see Kasa 2000 for evidence of institutionalized links between unions and government).
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Given the gravity of a plant shutdown on society, companies deviate from a pure asset value per-

spective: several years of severely challenged profitability are typically needed to justify shutdown

to a labor union, but waiting to incur such losses before shutting down may be at odds with max-

imizing asset value. This focus on “social commerce” is evident, for instance, from the public web

pages of major producers of aluminum, coal, copper, oil, and gas, as well as, related stewardship

initiatives and ISO 26000 standards adopted by firms (Gazette-Mail 1999, Codelco 2011, ISO 2014,

ASI 2017, Hydro 2018, IPIECA 2019; see also Kleindorfer et al. 2005, Kaya 2016, Lee and Tang

2017, and references therein, for other examples of socially responsible operations and reporting re-

quirements). In sum, producers would benefit from models and methods to manage asset value and

the broader impact of plant closures in a principled manner under evolving market factors, which

include overproduction, unfavorable commodity prices, and volatility in the prices of production

inputs/outputs and exchange rates (BI 2016, Reuters 2018).

We define the shutdown probability of a plant’s operating policy at a given time as the proba-

bility of it closing down by this time. Each policy can thus be associated with a shutdown profile,

that is, its shutdown probability at each time period over a finite planning horizon. We formulate a

constrained Markov decision process (henceforth, social-commerce MDP or SC-MDP for short) to

maximize the plant’s market value subject to restrictions on the shutdown profile of its operating

policy that capture social preferences. Such restrictions could model agreements between the plant

and the local union to avoid shutdown for a few years by requiring the probability of shutdown to

equal zero in these years. Constraints on the shutdown profile could also model internal corporate

efforts to reduce the likelihood of a shutdown in early parts of the planning horizon and/or reducing

the shutdown probability at the end of this horizon. SC-MDP is a constrained version of the well-

known risk-neutral MDP formulation (henceforth referred to as the shutdown-neutral MDP) that

maximizes the asset value alone (Guthrie 2009). Indeed, optimal policies of the shutdown-neutral

MDP may have socially undesirable shutdown profiles. If the loss in asset value due to constraining

the shutdown profile in SC-MDP is small, then producers may be able to justify the operations of

the plant for a longer period of time on the basis of unaccounted social costs.

Solving a constrained MDP is in general significantly more challenging than its unconstrained

counterpart. In the specific case of SC-MDP, constraints limit the probability of shutdowns at future

stages, which is an effect that can intuitively be achieved by modifying the fixed shutdown cost in

the shutdown-neutral MDP. We thus explore if such a modified shutdown-neutral MDP can recover

an optimal policy of SC-MDP. We show that (static) shutdown cost modifications not adapted to the

evolution of the uncertain MDP state, while tractable, are not enough to recover an optimal policy
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of SC-MDP. On the other hand, we establish that state-dependent modifications suffice for fully re-

covering an optimal policy of SC-MDP (under mild assumptions) and we also characterize situations

when only partial recovery is possible. While our analysis lends conceptual support for pursuing

shutdown cost modifications, finding state-dependent modifications is computationally challenging

because the number of cost parameters that need to be tuned scales with the size of the MDP state

space, which is high dimensional when using realistic models for the evolution of uncertain factors.

We thus propose a low-dimensional state-dependent shutdown cost modification of the shutdown-

neutral MDP that can be interpreted from a social commerce perspective as trying to mitigate the

possibility that shutdown decisions could lead to regrettable social outcomes as future uncertainty

unfolds. Such a regrettable outcome would arise if a holding company closes a plant but economic

conditions turn out to be better than expected, which makes it clear that keeping the plant open

would have been advantageous. We highlight that this notion of regret is consistent with antic-

ipated regret (AR) theory (Bell 1982, Loomes and Sugden 1982, Zeelenberg 1999) in behavioral

economics. Formally, this leads to a stochastic dynamic program (SDP), dubbed the anticipated-

regret (AR) SDP, where the shutdown fixed cost is inflated by an anticipated-regret term that

accounts for the expected loss on future scenarios where a non-shutdown decision provides higher

utility than shutting down. We establish that the optimal policy of this SDP is consistent with SC-

MDP in asymptotic regimes where the social preferences are either shutdown-neutral or extremely

shutdown-averse (i.e., require zero shutdowns). We adapt a least squares Monte Carlo (LSM) heuris-

tic (Longstaff and Schwartz 2001, Glasserman and Yu 2004, Nadarajah et al. 2017) to overcome the

high-dimensionality of the AR SDP state space and compute policies.

In practice, production margin-based policies are popular to determine when to decide between

production and shutdown. Such policies choose to shut down when a sum of current and expected-

future production margins are below a threshold, which facilitates showing to external stakeholders

the challenged profitability leading to a potential shutdown decision. We formalize production mar-

gin policies used in industry and then combine approximate dynamic programming and machine

learning to improve them by incorporating social preferences toward plant closures. Specifically,

we create new policies using binary classification (Bishop 2006, chapter 4) where thresholds are de-

termined on training data (i.e., operating decisions) generated by simulating a shutdown-neutral

policy obtained using LSM. These thresholds are subsequently modified to account for shutdown

profile preferences. We refer to the resulting policy as the classification-based margin (CM) policy.

We perform a numerical study involving the operations of a real aluminum producer over a forty-

year time horizon. Our case study uses operational data from this producer and market data from
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the Nord Pool, London Metal Exchange (LME), and FOREX markets. We calibrate an eight-factor

stochastic model to capture the evolution of uncertainty, which includes electricity and aluminum

prices and exchange rates (Farkas et al. 2017). We use an LSM method to obtain a near optimal

Monte Carlo simulation estimate of the maximum asset value benchmarked against a dual upper

bound estimate (Brown et al. 2010). We also employ LSM to obtain a collection of AR and CM

policies for different social preferences including commitements to avoid shutdown for a few years

and reductions in the probability of shutdowns. We find that both policies can substantially improve

the shutdown profile compared to that of the shutdown-neutral policy for small asset value losses.

For instance, AR and CM policies can decrease the shutdown probability by 25% and, in addition,

delay shutdown decisions by an average of 4 years for a 4% loss in asset value. The CM policies

dominate the practice-based margin policies for managing the trade-off between shutdowns and asset

value, even though the latter rules exhibit good performance from a value maximization standpoint.

Insights from our numerical study inform the socially responsible management of shutdown de-

cisions in merchant production assets beyond aluminum smelting. First, socially responsible plant

closure decisions can also be financially responsible, that is, significant improvements in the shut-

down profile of a plant may be possible for small losses in asset value that are outweighed by unac-

counted social costs. Identifying such win-win situations requires producers to proactively manage

the shutdown profile of the plant’s operating policy. Second, both deterministic and probabilis-

tic social commerce objectives are useful when managing plant closures. While a (deterministic)

guarantee to avoid plant shutdowns is easier to communicate to external stakeholders, such a com-

mitment may only be feasible in the short-term. Intuitively, longer-term production guarantees

may lead to significant financial loss as it translates to production in financial unfavorable states,

which are more likely in the long run. Thus, constraining the shutdown profile of an operating pol-

icy is a necessary internal social objective to promote the long term viability of a plant. Finally,

AR and CM policies indicate that judiciously modifying the shutdown-cost of risk-neutral MDP

and the switching-thresholds of margin policies, respectively, are effective strategies to incorporate

social preferences into otherwise purely asset-value driven plant operating decisions.

Our work on managing the trade-off between shutdown probability and asset value adds to the

literature on merchant commodity and energy operations (Geman 2005, Lai et al. 2010, Berling and

Mart́ınez-de-Albéniz 2011, Devalkar et al. 2011, Wu et al. 2012, Nadarajah et al. 2015, Secomandi

2015, Thompson 2016, Devalkar et al. 2005, Nadarajah et al. 2017), and socially responsible opera-

tions (Kleindorfer et al. 2005, Lee and Tang 2017). Models of production assets as switching options

have been considered, for example, by Kulatilaka and Trigeorgis (2001), Tseng and Barz (2002),
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and Adkins and Paxson (2011). These papers model a temporary shutdown option. Brennan and

Schwartz (1985), Cortazar et al. (2008), Nadarajah and Secomandi (2017), and Yang et al. (2017)

consider switching options with permanent shutdown but focus on risk-neutral valuation and oper-

ations. The growing literature on socially responsible operations incorporates social considerations

into operations models but our social commerce view on shutdown decisions in merchant energy

production is new (see Lee and Tang 2017 and references therein). We also complement research in

this literature and merchant operations by introducing methods that are grounded in anticipated

regret theory and practitioner heuristics, as well as applying them to a real aluminum case study

using a state-of-the-art multi-commodity and multi-factor stochastic process (Farkas et al. 2017) .

Our analysis and methodology for approximating SC-MDP by modifying the cost of an (uncon-

strained) MDP contributes to the constrained MDP literature, where practical methods to solve

high-dimensional problems are limited (Dufour and Prieto-Rumeau 2013, 2014) and, in addition,

standard approaches for tackling low-dimensional problems, such as a lagrangian techniques (Alt-

man 1999), are not easily interpretable from a social commerce perspective. The use of AR theory

to obtain a tractable shutdown cost modification is thus novel and is consistent with experimental

research showing that AR is large for irreversible decisions and negligible for reversible decisions

(see, e.g., Tsiros and Mittal 2000). We note that our use of AR theory is also judicious as its alter-

natives such as prospect theory, rank-dependent expected utility, and induced preferences (Tversky

and Kahneman 1992, Eeckhoudt et al. 2005, Chapter 13, Bleichrodt and Wakker 2015) are not tai-

lored for comparing actions at a given state and thus entail more choices for implementation. For

instance, using prospect theory requires specifying weighting functions, value functions, and refer-

ence points (Tversky and Kahneman 1992, Bleichrodt and Wakker 2015).

The combination of LSM and machine learning classification methods in this paper adds to

the extant research that obtains heuristic policies to high-dimensional real option problems (see,

e.g., Glasserman 2004, Chapter 8, Cortazar et al. 2008, Carmona and Ludkovski 2010, Mazières and

Boogert 2013, Nadarajah et al. 2015, 2017) and the literature on decision rule approximations (Ben-

Tal et al. 2004, Georghiou et al. 2018). The LSM approach has regress-now (Longstaff and Schwartz

2001) and regress-later (Glasserman and Yu 2004, Nadarajah et al. 2017) variants that approximate

the SDP continuation and value functions, respectively. The computation of risk-neutral policies in

a commodity production application with a permanent shutdown decision has been approached by

Cortazar et al. (2008) using regress-now LSM and by Nadarajah and Secomandi (2017) using regress-

later LSM. The use of LSM for dual bounding (Haugh and Kogan 2004, Brown et al. 2010) in energy

production has been explored by the latter paper and Yang et al. (2017). Unlike these papers, we
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adapt LSM to account for the shutdown profile of operating policies. Our combination of regress-

later LSM with binary classification to learn margin-based policies, that is the CM policy, and its

modification to satisfy policy constraints are both new and add to the decision rule approximations

literature. Prior work in this literature has considered affine and piece-wise affine decision rules for

approximating stochastic optimization problems (see, e.g., Georghiou et al. 2018).

The rest of this paper is organized as follows. We formulate a model of a merchant production

plant and formalize the notion of shutdown profile in §2. We introduce polices based on shutdown

cost modifications in §3. We describe production margin-based policies in §4. We discuss our

numerical study and findings in §5 followed by conclusions in §6. Additional details regarding

proofs, model calibration, and algorithms are provided in an Online Supplement.

2. Merchant commodity and energy production operations

In this section we discuss the merchant operations of commodity/energy production assets. We

present in §2.1 a model for the operations of such assets that embed a permanent shutdown option.

To identify a specific operating policy, we describe the known asset value maximization perspective

in §2.2 and then introduce a social commerce perspective in §2.3.

2.1 Operating model

We consider a commodity and energy production facility operating over I time periods (stages).

This plant produces output and sells it into the wholesale market when prices are favorable, that

is, it operates in a merchant fashion. We model the plant’s operating problem as an MDP, where

at each stage i P I :� t0, . . . , I � 1u the plant could be open or permanently shutdown. Examples

of open states include in production, ramping up/down to a higher/lower production rate, and

temporary suspension. We denote the finite set of open states at stage i by Oi and assume that this

set includes at least the state corresponding to full production labeled O. The permanent shutdown

state is represented by C. The stage i operating status belongs to set Xi :� Oi Y tCu.

The full state of the production asset is composed of the operating (endogenous) state component

described above as well as a market information (exogenous) state component that affects the

operating cash flows. Let wi denote the vector of stochastic market factors at stage i driving the

evolution of market information (e.g., commodity/energy prices and exchange rates). We assume

the vector wi evolves in a Markovian manner and denote its support by Wi.

We assume that the plant is initially in an open state, that is, the known stage-0 state represented

by px0, w0q satisfies x0 P O0. A decision ai from the feasible action set Aipxiq executed at stage i P I

and state pxi, wiq P Xi�Wi results in an immediate reward ripxi, wi, aiq and a transition to a stage
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i� 1 operating state fipxi, aiq in set Xi�1. We define a terminal stage I where no action is allowed

and a terminal reward rIpxI , wIq is received; the pair pxI , wIq belongs to the terminal-stage state

space XI �WI . Since fipxi, aiq is an element of Xi�1 we use the next stage operating state as action

labels, that is, taking action ai � xi�1 at stage i and operating state xi results in a transition to the

stage i�1 operating status fipxi, xi�1q � xi�1. To account for the permanent nature of a shutdown

decision, we impose the following conditions on the action set and transition function: AipCq � tCu

and fipC,Cq � C for all i P I. A shutdown decision at stage i P I incurs a one time fixed cost,

which we model by requiring ripxi, wi,Cq � �Kpxi,Cq for all pxi, wiq P Oi�Wi and ripC, wi,Cq � 0,

where Kpxi,Cq is the strictly positive fixed cost of shutting down at an open state xi P Oi.

This operating model can be specialized to capture a fairly broad class of production assets

including coal and natural gas power plants, ethanol and biogas plants, and metal smelters. An

example application of this model can be found in §5, where we use it to describe the merchant

operations of a real aluminum plant as part of our numerical study.

2.2 Asset value maximization perspective

To make decisions in the operating model of §2.1, the plant manager requires a policy, which is a

collection of stage-specific decision rules. At a given stage i, a decision rule Aπi specifies a feasible

operating decision in Aipxiq for each state pxi, wiq P Xi � Wi. A policy π is then the collection

tAπi , i P Iu, and the set of all feasible policies is denoted by Π. The value of the production asset

when using a policy π P Π is the discounted sum of expected cash flows from using this policy over

the finite problem horizon. The policy that maximizes the asset value thus solves

max
πPΠ

E0

�¸
iPI

δiri px
π
i , wi, A

π
i px

π
i , wiqq � δIrI px

π
I , wIq

�
, (1)

where E0 denotes expectation with respect to a Markovian stochastic process describing the distri-

bution of wi given the stage 0 information w0 (see (8) for an example of such a process), δ P p0, 1s is

the discount factor, and xπi the random endogenous state reached in stage i by following policy π.

We refer to the operating policy solving (1) as the shutdown-neutral optimal policy and name it πSN.

It is well known that this policy is the solution of the following stochastic dynamic program (SDP):

V SN
I pxI , wIq � rIpxI , wIq, @pxI , wIq P XI �WI , (2a)

V SN,O
i pxi, wiq � max

aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V SN
i�1 pfipxi, aiq, wi�1q

�)
,

@pi, xi, wiq P I � Xi �Wi, (2b)

V SN
i pxi, wiq � max

!
V SN,O
i pxi, wiq,�K

pxi,Cq
)
, @pi, xi, wiq P I � Xi �Wi. (2c)
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Here V SN
i p�, �q denotes the shutdown-neutral value function at stages i in set I Y tIu. The value

function at the terminal stage is specified in (2a) using the terminal reward rIp�, �q. In (2b), we

define an intermediate value function V SN,O
i pxi, wiq that excludes the shutdown action at stage i.

Here Ei denotes expectation given stage i information wi. We define V SN
i pxi, wiq as the maximum

of V SN,O
i pxi, wiq and the shutdown cost in (2c), that is, this equation models the choice between

the shutdown action and the best open action selected in (2b).

2.3 Social commerce perspective

As discussed in §1, we model social preferences by associating a shutdown profile with each pol-

icy π P Π, defined as the collection of shutdown probabilities tPrpxπi � C |x0, w0q, i P I Y tIuu.

Note that the shutdown probability increases with the stage index as plant closures are irreversible.

Social preferences include agreements with stakeholders (e.g., unions) as well as internal efforts to

curb shutdowns. A common deterministic commitment with stakeholders is to avoid shutting down

the plant for the immediate T future years, which translates to requiring Prpxπi � C |x0, w0q � 0

for i P t1, . . . , T u. Internally, firms strive to delay and reduce the likelihood of shutdowns over the

planning horizon. Reducing the shutdown probability entails finding an operating policy π where

the probability at the end of the planning horizon PrpC;πq :� PrpxπI � C |x0, w0q is smaller than

the analogous probability PrpC;πSNq under the shutdown-neural policy. Delaying shutdowns on the

other hand requires emphasizing shutdown probability decreases at early stages greater than at later

stages. Shutdown delays could be measured by computing the expected time to shutdown along sam-

ple paths of uncertainty where a shutdown decision is chosen. Since Prpxπi � C, xπi�1 � C |x0, w0q

represents the probability that π will shut down exactly at stage i P I, the expected time to shut-

down of policy π can be formally defined as
°
iPI i �Prpxπi � C, xπi�1 � C |x0, w0q{PrpC;πq. Exam-

ples 1 and 2 illustrate the notions of shutdown probability reduction and delay, also highlighting

that achieving a balance between asset value and shutdown profile can be non-trivial. Specifically,

Example 1 shows that multiple policies can result in the same shutdown probability but different

asset value, while Example 2 presents a case where multiple policies have the same combination of

asset value and shutdown probability but delay shutdown differently.

Example 1 (Shutdown probability reduction). Consider the operations of a stylized plant that

can either produce or shut down over two periods i P I � t0, 1u. The cost of shutdown is equal to

2 at each stage. Figure 1(a) displays the reward (inside the rectangular box) from producing at

time 0 (now) as well as the two equally likely random rewards from producing at period 1 (future).

We ignore discounting for simplicity. The coordinates of the triples in Figure 1(a) contain the
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Figure 1: Production rewards, probabilities, and policies for examples 1 and 2.

(a) Example 1.
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decisions taken by the shutdown-neutral policy πSN and two heuristic policies πA and πB. The

optimal shutdown-neutral policy πSN produces in period 0 but shuts down in both states in period 1.

The value of this policy is 10 p� 12 � 2 � 0.5 � 2 � 0.5q and its shutdown probability is 100%. Next,

consider the policies πA and πB. Both policies have a shutdown probability of 50% and the values of

πA and πB are 8 p� 12�2 �0.5�6 �0.5q and 9 p� 12�4 �0.5�2 �0.5q, respectively. Thus, it is possible

to reduce shutdown probability by 50% for a 10% decrease in asset value using πB, but choosing πA

instead entails a 20% decrease in asset value to achieve the same shutdown probability reduction.

Example 2 (Shutdown delay). Consider a plant operating for three-periods with production

rewards and probabilities summarized in Figure 1(b). The shutdown cost at each stage equals 2. The

coordinates of the triples in Figure 1(b) contain the decisions taken by the shutdown-neutral policy

πSN and two heuristic policies πA and πB. The value of πSN is 10 and its shutdown probability is

100%. For both πA and πB, the shutdown probability and asset value are 50% and 8, respectively, but

these policies shutdown at different periods. The expected time to shutdown on sample paths where

πA chooses to shutdown is equal to 1 p� r0.5 � 1s{0.5q. The analogous measure for πB evaluates to

2 p� r0.25 � 2 � 0.25 � 2s{0.5q. Therefore, for a 20% decrease in asset value, both πA and πB reduce

shutdown probability by 50% but the latter policy delays shutdown by one more period on average.

Finding operating policies with improved shutdown profiles that do not result in losing significant

asset value is critical to the financial viability of partaking in social commerce. Conceptually, social

preferences on the shutdown profile of a policy can be modeled by adding bounds on the shutdown

probabilities at each stage to MDP (1):

max
πPΠ

E0

�¸
iPI

δiri px
π
i , wi, A

π
i px

π
i , wiqq � δIrI px

π
I , wIq

�
(3a)

s.t. Prpxπi � C |x0, w0q ¤ Ui, @i P I Y tIu. (3b)
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Here, upper bounds Ui on the shutdown probabilities are used to control the preferences to reduce

and delay shutdown decisions. If all these bounds are equal to 1, then MDP (3) reduces to the

shutdown-neutral MDP (1) which only focuses on maximizing asset value. If the first T � 1 bounds

are equal to zero and the remaining ones equal to one (i.e., Ui � 0 for i � 0, . . . , T and Ui � 1

for i � T � 1, . . . , I), then MDP (3) corresponds to the shutdown-neutral MDP (1) in which the

shutdown action C is removed from T future stages and allowed afterwards. This case corresponds to

a deterministic commitment to avoid shutdown for the first T years. The shutdown-averse extreme

of this trade-off includes policies with zero shutdowns. Among them, the one maximizing asset value

is obtained by setting Ui � 0 for each i in (3), that is, completely removing the shutdown action C.

This policy, labeled πSNztCu, can be determined by solving the following modified version of SDP (2):

V
SNztCu
i pxi, wiq � max

aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V

SNztCu
i�1 pfipxi, aiq, wi�1q

�)
,

@pi, xi, wiq P I � Xi �Wi. (4)

We exclude boundary conditions here and later SDPs as they are analogous to (2a).

Although the shutdown-neutral and zero-shutdown policies can be characterized, what is needed

in practice is the ability to define a collection of policies that offer different trade-offs between

shutdown profile and asset value so that managers can choose one that is acceptable, possibly taking

into account the non-financial costs of shutdown and other strategic considerations. To obtain these

policies, ideally we would solve our constrained MDP (3) for different choices of the bounds Ui.

However, the solution of constrained MDPs is in general considerably more challenging than MDPs

(Dufour and Prieto-Rumeau 2013, 2014). The challenge of solving our constrained MDP is more

acute as it is also high-dimensional under realistic models for the evolution of the uncertainty such

as the one used in our numerical study and described in §5.2.

3. Operating policies based on modified shutdown costs

SC-MDP strives to compute policies with smaller future shutdown probabilities than under πSN.

Intuitively, analogous improvements in the shutdown profile of πSN would result if plant closures

incurred higher fixed costs. Motivated by this observation, we analyze in §3.1 if an optimal pol-

icy of SC-MDP can be recovered by solving a variant of the shutdown-neutral MDP with modified

shutdown costs. In §3.2, we formulate a shutdown-averse SDP based on a tractable shutdown cost

modification scheme that can be interpreted from a social commerce perspective. In §3.3, we de-

scribe an LSM approach to tackle this SDP and compute policies.
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3.1 Analysis of shutdown cost modifications

Suppose the shutdown neutral optimal policy πSN does not satsify constraints (3b). Gradually

inflating the shutdown cost Kpxi,Cq in the shutdown-neutral MDP will lead to fewer plant closures

and result in these constraints being satisfied. While a feasible policy to SC-MDP can be constructed

in this manner, it is unclear if the resulting policy coincides with an optimal policy of SC-MDP.

We begin by analyzing the optimal policy of a variant of the shutdown-neutral SDP (2) where the

shutdown cost Kpxi,Cq is replaced by stage-dependent parameters tK̄
pxi,Cq
i P R, pi, xiq P IztIu�Xiu.

Example 3 shows that stage-dependent modifications may not recover an optimal policy of SC-MDP.

Example 3. Consider the three-stage instance with a shutdown cost of K � 1 and the shutdown

probability bound vector U � pUiqi � p0, 0.5, 0.8q. At stage 1, two scenarios A and B are possible

with deterministic rewards from producing denoted by ra1 and rb1 , respectively. Conditioned on these

stage-1 scenarios, we have random stage-2 rewards r̃a2 and r̃b2 . Figure 2 illustrates the production

rewards and scenario probabilities. The optimal shutdown-neutral policy produces at stage 0 and

shuts down in both stage-1 scenarios. This policy has a value of 9 p� 10 � 1q and a shutdown

profile given by the vector p0, 1.0, 1.0q. The optimal SC-MDP policy produces in the shaded nodes

in Figure 2(a), has a value of 7.2 p� 10 � 0.4 � 1 � 0.6 � r�6 � 0.5 � 1 � 0.5 � 5sq, and the shutdown

profile p0, 0.4, 0.7q. We highlight that due to the probability bound U , this policy shuts down at stage

1 in scenario A but not in scenario B. This behavior cannot be replicated using a stage dependent

cost modification as explained next. Suppose we modify the stage 2 costs using the parameter K̄C
2 .

The stage 1 expected value of operating in scenario A p� �5 � maxt3,�K̄C
2 uq is greater than or

equal to the analogous value in scenario B p� �6 � 0.5 � maxt5,�K̄C
2 u � 0.5 � maxt�6,�K̄C

2 uq for

any stage-dependent shutdown cost modification that can be selected at stage 2 as shown in Figure

2(b). Therefore, no stage-dependent shutdown cost modification can alter this preference order, that

is, swap the stage-1 decision from shut down to operate in scenario B but not in scenario A. Thus,

there does not exist a stage-dependent cost modification that recovers an optimal SC-MDP policy.

Example 3 highlights value in adapting the shutdown cost modifications to the exogenous state

wi as this additional flexibility may facilitate recovering the SC-MDP optimal policy. Proposition

1 establishes that this is indeed the case. We denote an SC-MDP optimal policy by π� and by πD

an optimal policy obtained by solving the shutdown-neutral SDP (2) with modified shutdown fixed

costs. Further, we use K̄
pxi,wi,Cq
i to represent the state-dependent parameter that we use to replace

Kpxi,Cq in this SDP at stage i and state pxi, wiq.

Proposition 1. The following properties hold:
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Figure 2: Information on Example 3.

(a) Production rewards and probabilities.
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(b) Value of operating at stage 1.

(a) There exist state-dependent shutdown cost inflations tK̄
pxi,wi,Cq
i ¥ Kpxi,Cq, pi, xi, wiq P I �

Xi �Wiu such that the shutdown decisions taken by πD and π� coincide.

(b) Suppose for each pi, xiq P I � Xi the set of exogenous states where π� shuts down has

strictly positive probability. Then there exist state-dependent shutdown cost modifications

tK̄
pxi,wi,Cq
i P R, pi, xi, wiq P I � Xi �Wiu such that πD and π� are equivalent.

Part (a) establishes that inflating the shutdown cost in a state-dependent manner is sufficient

to ensure that πD takes exactly the same shutdown decisions as π�, which implies that πD and π�

have the same shutdown profile. When Xi � tO,Cu, that is production is the only non-shutdown

state, this result implies that πD � π�. However, if the set of non-shutdown states is richer (i.e.,

tO,Cu � Xi), part (a) guarantees only partial recovery of π� and it is possible to construct counter

examples where there is no state-dependent shutdown cost modification such that πD and π� em-

ploy the same shutdown and non-shutdown decisions. In this case, Part (b) provides a full recovery

result but requires non-zero likelihoods for shutdown at each future stage and allows shutdown cost

modifications to either inflate or deflate the shutdown-neutral SDP plant closure costs. Our find-

ings indicate that shutdown cost modifications provide a conceptual strategy to solve SC-MDP but

identifying a good shutdown cost modification is not simple, as it entails computing a function that

has the same dimension as the MDP value function.

3.2 Anticipated-regret SDP

We provide a low-dimensional and state-dependent shutdown cost modification that also has a social

commerce motivation. The idea is to inflate the shutdown fixed cost by a larger amount in stages

and states where there is a higher likelihood of this decision being suboptimal as future uncertainty

is revealed. Such an inflation would discourage a shutdown decision being regretted by internal

and external stakeholders as time progresses and is consistent with anticipated regret theory in

behavioral psychology (Loomes and Sugden 1982, Zeelenberg 1999). According to this theory, when
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choosing among multiple decisions, one accounts for the anticipated regret from the chosen decision

being worse than an alternative under realizations of future uncertainty. This regret has also been

shown to be significantly higher for irreversible decisions (Tsiros and Mittal 2000), which supports

our focus on shutdowns in our merchant production setting.

To formalize the above ideas, let Xpwi�1q denote a random variable defined at stage i as a func-

tion of the random stage i� 1 information state wi�1. Given a κ P R�, we define anticipated regret

of Xpwi�1q as Ei rmaxtXpwi�1q � κ, 0us. To build some intuition, suppose that κ represents the

shutdown cost and Xpwi�1q is the random utility from not shutting down the plant at a stage i oper-

ating state. The term Xpwi�1q�κ is then the excess of this utility over the shutdown cost κ, which

is the positive regret from shutting down on this specific realization of uncertainty. The maximum

of this term and zero captures the realizations of wi�1 where regret is strictly positive. Thus, antic-

ipated regret is the expected regret from shutting down along sample paths where regret is positive.

Example 4. Consider the same instance as in Example 3. At stage 1, let κ � 2 and define Xpw2q

as the sum of the known stage 1 and random stage 2 rewards. Then anticipated regret is zero in

scenario A p� maxt�5 � 3 � 2, 0u � 0q, while it is positive in scenario B p� 0.5 � maxt�6 � 5 �

2, 0u�0.5 �maxt�6�6�2, 0u � 0.5q. A decision maker that heavily weights anticipated regret would

switch to a non-shutdown decision in scenario B but never switch in scenario A. Thus, inflating

the shutdown cost using an anticipated regret term in the shutdown-neutral SDP will allow us to

obtain the optimal policy of SC-MDP in this example.

We use an anticipated regret term to modify the shutdown cost in the shutdown-neutral SDP

(2). This term depends on the triple tλ, ξ, ηu, which we abbreviate by Θ, and require that it satisfies

λ ¥ 0, ξ P p0, 1s, and η ¥ 1. We assume these parameters to be stage-independent but they can be

made stage-dependent at the expense of having to tune more parameters. The AR SDP is

V A,O
Θ,i pxi, wiq � max

aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V A

Θ,i�1 pfipxi, aiq, wi�1q
�)
,

@pi, xi, wiq P I � Xi �Wi, (5a)

ARΘ,ipxi, wiq � max
aiPAipxiqztCu

Ei
�

maxtripxi, wi, aiq � δV A
Θ,i�1pfipxi, aiq, wi�1q � η �Kpxi,Cq, 0u

�
, (5b)

V A
Θ,ipxi, wiq � max

!
V A,O

Θ,i pxi, wiq,�K
pxi,Cq � λξiARΘ,ipxi, wiq

)
, @pi, xi, wiq P I � Xi �Wi. (5c)

The structure of the optimization used to compute V A,O
Θ,i pxi, wiq from V A

Θ,i�1 in (5a) is identical

to the one used in the shutdown-neutral setting, that is, (2b). However, comparing (5c) and (2c)

shows that the shutdown cost is increased by λξiARΘ,ipxi, wiq in the former case, where the term

ARΘ,ipxi, wiq is based on a maximization of the anticipated regret across non-shutdown decisions.
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Specifically, the anticipated regret of a non-shutdown action ai P AipxiqztCu is computed with

respect to the sum of the immediate reward and the random discounted next stage value function,

ripxi, wi, aiq � δV A
Θ,i�1pfipxi, aiq, wi�1q, and the shutdown cost Kpxi,Cq scaled by η. The role of

ARΘ,ipxi, wiq can be interpreted as a way to dynamically increase the shutdown cost in a state-

dependent fashion using the value function.

Parameters λ and ξ model the preferences to reduce and delay shutdowns, respectively. Increas-

ing λ leads to a larger inflation of the shutdown cost due to the anticipated-regret term ARΘ,i.

Reducing ξ results in discounting ARΘ,i more heavily at later stages than at earlier stages, which

amounts to modeling the preference to delay shutdown. The constant η controls the set of states

where ARΘ,ipxi, wiq is positive and can thus cause a reversal of a shutdown decision. As η (¥ 1)

increases, the term ARΘ,ipxi, wiq will become positive at states where it was previously zero due to

the shutdown cost Kpxi,Cq in its definition being multiplied by η.

Proposition 2 establishes properties of the AR value function V A
Θ,ipxi, wiq and policy πA

Θ.

Proposition 2. (a) For any Θ � tλ, ξ, ηu such that λ ¥ 0, ξ P p0, 1s, and η ¥ 1, we have

V
SNztCu
i pxi, wiq ¤ V A

Θ,ipxi, wiq ¤ V SN
i pxi, wiq, @pi, xi, wiq P I � Xi �Wi;

(b) If Wi is compact for each stage i P I Y tIu, then for each ξ P p0, 1s, it holds that

lim
pλ,ηqÑ8

PrpC;πA
Θq � 0 and lim

pλ,ηqÑ8
V A

Θ,ipxi, wiq � V
SNztCu
i pxi, wiq.

Part (a) of Proposition 2 shows that the AR value function is bounded below and above, respectively,

by the shutdown-neutral value functions that incorporate and exclude the shutdown action. Part

(b) establishes that the shutdown probability associated with policy πA
Θ becomes zero as η and λ

are increased to sufficiently large values. In addition, it shows that the value of the latter policy

converges to the value of the policy πSNztCu, which is optimal among the set of all policies with

zero shutdown probability. Therefore, the anticipated-regret policy exhibits desirable asymptotic

behavior with respect to both shutdown probability and asset value. (We assume a compact set

of information states Wi, i P I Y tIu, in part (b) of Proposition 2 to avoid the technicalities that

arise when dealing with unbounded distributions.) The asymptotic behavior of the AR policy with

respect to ξ is intuitive. For ξ � 1, the policy is neutral to shutdown delay. As ξ decreases, the

shutdown cost is inflated lesser at later stages compared to earlier stages. When ξ Ñ 0, there is no

preference to delay shutdowns at stages other than stage 0, which translates to inflating only the

shutdown cost at this initial stage.
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3.3 Computing anticipated-regret policies

Optimal policies of the AR SDP (5) for different triples Θ provide a family of shutdown-averse

policies. However, solving this SDP is challenging as it suffers from the curses of dimensionality

typically associated with the shutdown-neutral SDP, which are a high-dimensional state space and

potentially hard to compute expectations (Powell 2011). In addition, it embeds the anticipated

regret term that contains more involved expectations. These curses of dimensionality indeed arise

when considering the aluminum production application described in §5.1 as the exogenous state

that we model is eight dimensional (see §5.2 for details on the price model). We consider the

regress-later least squares Monte Carlo (LSML) method for computing heuristic policies based on

low-dimensional approximations of the SDP value function (Glasserman and Yu 2004, Nadarajah

et al. 2017). Specifically, we adapt an LSML approach to compute shutdown-averse policies by

approximating the AR value function of SDP (5).

LSML computes a value function approximation (VFA) at each stage i P t1, . . . , Iu that is a lin-

ear combination of a given set of Bi basis functions Φi :� tΦi,bpwiq, b P Biu, where Bi :� t1, . . . , Biu.

The VFA at stage i and state pxi, wiq is
°
bPBi βi,xi,b Φi,bpwiq, where βi,xi,b denotes the b-th weight

of this linear combination. Possible choices for basis functions include polynomials, radial ba-

sis functions, and Laguerre polynomials of the information state (Longstaff and Schwartz 2001,

Mazières and Boogert 2013). At a high level, the LSML approach generates samples of the in-

formation state in Monte Carlo simulation and then combines backward recursion with regression

to compute the VFA weights. Hard-to-compute expectations are replaced by sample average ap-

proximations in this procedure. For a given Θ, the output of LSML is the VFA weight vectors

βA
i,xi

:� pβA
i,xi,1

, . . . , βA
i,xi,Bi

q for each stage i P t1, . . . , Iu and operating state xi P Xi, which approx-

imate V A
Θ,ipxi, wiq by

°
bPBi β

A
i,xi,b

Φi,bpwiq. An AR policy decision can be computed at stage i and

state pxi, wiq by first substituting the aforementioned VFA for V A
Θ,ipxi, wiq in the right hand side of

the AR SDP (5) and then solving the maximization over actions. Online Supplement B contains

the details of the LSML algorithm and describes its use for approximating the AR SDP (5) as well

as the shutdown-neutral SDPs (2) and (4).

By varying our choices of λ and ξ in the triple Θ, LSML can be used to obtain a family of polices

offering different trade-offs between asset value and shutdown profile in a tractable manner. We set a

value for the parameter η in Θ based on Proposition 2(b), that is, we remove η as a policy parameter

by fixing it before computing any AR policy. Specifically, we employ the following steps to choose

a large enough value for this parameter so that increasing λ eventually leads to a zero-shutdown

policy: (i) we compute the shutdown-neutral policy πSN, (ii) we simulate the inflation term ARΘ,i
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in (5b) for different η values, and measure at each stage the percentage of states where this term is

positive, and (iii) we select the smallest η value so that the coverage is 100% at each stage. Under

this choice, the AR policy converges very closely to a zero-shutdown policy as λ is increased.

4. Operating policies based on production margins

In this section, we describe policies that determine operating decisions based on production margins.

We first formalize a version of such policies used in practice and then improve on them by combining

approximate dynamic programming and machine learning classification methods.

Stakeholders often consider poor production margins as a factor when making shutdown deci-

sions. Production margin-based policies are appealing as they choose to shut down when produc-

tion margins are below a certain threshold. For example, a myopic margin-based policy would (i)

shut down the plant when the immediate production margin is less than the shutdown cost and

(ii) continue to produce otherwise. More formally, assuming that the plant is producing at stage

i and exogenous state wi, a shut down decision is selected if ripO, wi,Oq   �KpO,Cq. The short-

sighted nature of this policy can be overcome by modifying it to consider the sum of current and

discounted future production margins. A forward-looking policy that considers T expected-future

margins chooses to shut down at stage i and state pO, wiq if

prTi pwiq :� ripO, wi,Oq �

mintT,I�iu¸
j�1

δjEi rri�jpO, wi�j ,Oqs   �KpO,Cq, (6)

and continues to produce otherwise.

The aforementioned simple production margin policies use the fixed cost KpO,Cq as the threshold

to switch between full production and shutdown. This threshold choice is somewhat ad hoc and,

in addition, does not incorporate the effect of shutdown profile constraints in (3b). Moreover, it is

unclear how these policies can be extended to account for the full flexibility of the plant, that is,

incorporate operating states other than full production. We address these issues next by presenting

a more principled approach that first learns thresholds in an attempt to “mimic” the shutdown-

neutral policy and then modifies them to account for the shutdown profile constraints.

Suppose momentarily that the only operating state is full production O. For each stage i P I,

we define a threshold Υi P R on the cumulative margin prTi pwiq below which the decision switches

from full production to shutdown. This threshold is computed as follows. First, we simulate the

shutdown-neutral policy πSN defined in §2.2 along sample paths twpi , pi, pq P I Y tIu � Pu of the

uncertain information state generated in Monte Carlo simulation (πSN can be approximated using

LSML as discussed in §3.3 and Online Appendix B). Second, at each stage i P I, we compute for each
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of the samples p P P the cumulative margin prTi pwpi q and an action label from the shutdown-neutral

policy πSN, which is either to continue full production (i.e. O) or shutdown (i.e. C). Finally, based

on these two labels, we partition the sample paths at each stage into two classes. The value of the

threshold Υi is chosen as the cumulative margin value that best discriminates between (or separates)

these two classes. Hence, identifying the shutdown threshold is equivalent to solving a binary

classification problem where prTi pwiq P R is the explanatory variable and xi�1 P tO,Cu is the outcome

class (Bishop 2006). In general, it may not be possible to find a threshold that perfectly separates

the “produce” and “shutdown” classes, in which case, it is standard to minimize misclassification

error to compute the threshold, where error is measured using a loss function. Common choices in

machine learning include hinge, squared, and logarithmic loss functions (Rosasco et al. 2004).

The above classification procedure can be extended to handle multiple operating states. To ease

exposition, we focus on the case of two operating states, that is, O :� tO,Su, where S denotes a

temporary suspension of production. Suppose the plant is open at stage i (xi � O) and can transi-

tion to state xi�1 P tO,S,Cu. We simulate the shutdown-neutral policy πSN at stage i over multiple

sample paths of the uncertain information state p P P and compute the cumulative margin prTi pwpi q
as before, but divide the sample paths using three action labels corresponding to the shutdown-

neutral policy choosing to continue full production O, suspend production S, and shutdown C.

Implementing a production margin policy entails finding two thresholds ΥipO, Sq and ΥipO,Cq to

determine when the plant switches from full production to suspension and shutdown, respectively.

We proceed to define these thresholds by converting the multi-class classification problem over the

three action labels in set tO, S,Cu into several binary classification problems between pairs of such

classes, which are tO, Su, tS,Cu, and tO,Cu. This is a well-known strategy in machine learning

(see, e.g., Bishop 2006, ch. 4). Applying a binary classification procedure to each pair would result

in three different thresholds, that is, one more than the required number of thresholds. We resolve

this issue by assuming an adjacency structure over the cumulative margins associated with action

labels as illustrated in Figure 3(a). Specifically, cumulative margins associated with the action la-

bels O and S as well as S and C are assumed adjacent, while those associated with O and C are

non-adjacent. In other words, the action labels have a weak ordering with respect to the cumulative

margin. Then applying binary classification to tO,Su and tS,Cu gives us the thresholds ΥipO, Sq

and ΥipO,Cq, respectively.

Finally, we modify the shutdown thresholds tΥipO,Cq,ΥipS,Cq, i P Iu, which mimic the shutdown-

neutral policy, to account for shutdown profile preferences as illustrated in Figure 3(b). Decreasing

the value of these thresholds (blue curve) by a constant at each stage results in a set of downward-
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Figure 3: Illustration of threshold computation using binary classification with states in set tO, S,Cu
and subsequent modification of thresholds to model shutdown profile preferences.

(a) Classification using cumulative margin thresholds. (b) Threshold modification using α and pξ.

0 5 10 15 20

shifted thresholds (orange curve), which will result in a policy with a smaller shutdown probability.

In other words, the threshold levels at each stage are proportional to the shutdown probability at

that stage when using a production margin policy, thus providing a lever to shape the shutdown

profile. As a consequence, preferences to delay shutdown decisions can be emphasized by decreasing

thresholds by a larger value at earlier stages in the horizon and less aggressively at later periods,

which involves modifying the original shutdown probability thresholds (blue curve) and obtaining

a shifted and tilted set of thresholds (green curve). Formally, given a “shift” parameter α ¥ 0 and

a “tilt” parameter pξ P p0, 1s, we define the modified shutdown thresholds as follows:

Υα,pξ
i pO,Cq :�ΥipO,Cq � αpξi, @i P I,

Υα,pξ
i pS,Cq :�ΥipS,Cq � αpξi, @i P I,

and leave unchanged the non-shutdown thresholds, e.g. ΥipO, Sq. The parameter α represents the

magnitude of a downward-shift in the thresholds related to shutdown actions, while pξ tilts the

threshold curve to account for shutdown delay. We vary the values of α and pξ in Monte Carlo simu-

lation to obtain a family of policies with different shutdown profile preferences. We first fix pξ equal

to a constant, and then perform a line search on α to identify its smallest value for which the shut-

down probability of the corresponding production margin policy satisfies the bound UI in SC-MDP

(3b). This modification of pξ implies values for the Ui bounds at intermediate stages. Modifications

to this procedure are possible, for instance, one could do a grid search over both α and pξ, if needed.

Overall, we have generalized practice-based production margin policies to use thresholds com-

puted in a principled manner while accounting for shutdown profile preferences and maintaining

their intuitive margin structure. The ideas discussed above can be extended to multiple operating

states by (i) assuming a weak ordering on operating states, and (ii) computing thresholds between

adjacent states alone.
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5. Numerical study

We next numerically evaluate the performance of our methods. In §5.1, we introduce a case study

of a real aluminum producer, which serves as our application for this evaluation. In §5.2, we

describe the stochastic process used for modeling the evolution of uncertainty. In §5.3, we define the

aluminum production instances used for our experiments and the associated computational setup.

In §§5.4-5.6, we discuss our findings related to methodological performance, the role of different

social commerce objectives, and the robustness of insights to parameter changes.

5.1 Aluminum production case study

Our case study is based on a real aluminum producer. Shutting down an aluminum production plant

(often referred to as a smelter) or temporarily suspending its production are strategic decisions that

are re-evaluated on an annual basis. Assessing the shutdown profile thus requires planning over a

long time horizon. Our instance considers a forty-year horizon (i.e., I � 40) where each stage i

corresponds to a year and decisions are made from i � 0 (present) to I � 1 � 39.

Aluminum production relies on an energy intensive electrolysis process that takes as inputs

alumina from bauxite, carbon, and electricity, and produces aluminum as its main output. The

aluminum producer is vertically integrated and owns bauxite mines and carbon plants. Therefore,

capturing the uncertainty in alumina and carbon prices is not critical, whereas modeling the volatile

electricity and aluminum prices is important. In addition to price risk, the producer faces exchange

rate risk because aluminum is sold globally in US dollars (USD), electricity is purchased in Euro

(EUR) from the Nord Pool electricity market, and the operating costs are incurred in Norwegian

Krone (NOK), that is, the local currency. Assuming cash flows are measured in USD, the production

spread is exposed to volatile EUR-USD and NOK-USD exchange rates. Thus, we model four sources

of uncertainty in the set
 
PAl
i , PEl

i , PEUR-USD
i , PNOK-USD

i

(
denoting, respectively, aluminum price,

electricity price, and the two exchange rates. We capture the dynamics of prices and exchange rates

using eight stochastic factors wi discussed in §5.2.

The specific aluminum plant we model has a shutdown state (C) and open states corresponding

to (i) production at full load (O), which we normalize to an output of 1 metric tonne of aluminum;

and (ii) temporary suspension. We denote by Sm the m-th consecutive year of suspension, where

m is restricted to at most 3, that is, m P t1, 2, 3u. Intermediate production capacity options are not

modeled in this case since the electrolysis cells within a smelter operate in a near continuous fashion,

that is, these cells can only be turned off for a few hours. A prolonged shut off results in cell damage

and expensive repairs before a restart (see, e.g., Øye and Sørlie 2011). Thus, Oi � tO, S1,S2, S3u
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for each i P Izt0u. We assume that the plant must be either in production or shutdown at the end

of the planning horizon.

Figure 4: State-action set, reward function, and production state transitions in the aluminum
production case study.

State [xi] Decision [ai] Reward [ripxi, wi, aiq]

O

O rOpwiq

S1 �KpO,S1q

C �KpO,Cq

Sm, m P t1, 2, 3u

O rOpwiq �KpSm,Oq

Sm�1 (if m   3) �KpSm,Sm�1q

C �KpSm,Cq

C C 0

𝑶

𝑪

𝑺𝟏

𝑺𝟐

𝑺𝟑

Figure 4 illustrates the set of feasible actions Aipxiq at a given operating state xi P Xi, the re-

sulting reward, and a diagram indicating the next stage operating state. Here Kpxi,xi�1q represents

the fixed operating and/or maintenance cost associated with a state transition from xi to xi�1. The

function rOpwiq denotes the profit from producing aluminum and is defined as

rOpwiq :� p1 � τq
�
PAl
i p1 � γAlq � cUSD � cNOK PNOK-USD

i � ρPEl
i PEUR-USD

i

�
, (7)

where τ is the corporate tax rate; γAl the aluminum premium, which is the surcharge a buyer pays

for taking delivery of aluminum; cUSD and cNOK the production fixed costs incurred in USD and

NOK, respectively; and ρ the rate of electricity consumption in the aluminum production process.

We have fixed costs in both USD and NOK because they include components of the electrolysis and

casting costs in each of these currencies.

5.2 Model of price and exchange rate dynamics

As discussed in §5.1, the exogenous market information in our SDP consists of the factors driving

four sources of uncertainty: aluminum price, electricity price, and two exchange rates (EUR-USD

and NOK-USD). A stochastic process to model the evolution of these sources of uncertainty can

be calibrated using information from financially traded contracts. Futures contracts on (primary)

aluminum are traded at the LME in US dollars with monthly maturities going out to 10 years. The

aluminum contract with a 3-month maturity is the most liquid. Currency futures are traded in the

FOREX market with monthly maturities up to 3 years. In contrast to aluminum and currencies,

power is traded in regional markets. In the Nord Pool market, which covers Scandinavia and part

of northern Europe, power forward contracts are denominated in Euro and extend out to 10 years.

Negative prices present in the electricity spot markets are not a feature seen in these longer term
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contract prices. Moreover, none of the aforementioned contracts have maturities that cover our

planning horizon of 40 years.

Figure 5: Front month futures prices for power and aluminum and exchange rates for EUR-USD
and NOK-USD between 2009 and 2015.
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We capture the dynamics of the four sources of uncertainty using an eight-factor continuous-time

price model, where each source is driven by short term and long term factors. All the eight factors

are correlated. This choice addresses the lack of traded contracts for the entire planning horizon and

captures the clear short and long term trends observed in market data, which we illustrate in Figure

5 using only the front month contracts from the broader data set used for calibration. In particular,

we denote the short and long term factors by the vectors Y ptq �
�
Y El
t , Y Al

t , Y EUR-USD
t , Y NOK-USD

t

�
and Zptq �

�
ZEl
t , ZAl

t , ZEUR-USD
t , ZNOK-USD

t

�
, respectively. These factors evolve according to the

following stochastic differential equations:

d

�� Y ptq

Zptq

�� �

�� �KypY ptq � Zptqq

µz �KzZptq

�� dt�
�� Σ

1{2
y 0

Σ
1{2
yz Σ

1{2
z

�� d
�� Wyptq

Wzptq

�� , (8)

where Ky and Kz represent the speeds of mean reversion and are assumed to be diagonal (4�4)

matrices, µz is the long term drift, Σ
1{2
y , Σ

1{2
z , and Σ

1{2
yz are diffusion matrices, and Wy and Wz

are each independent four-dimensional standard Brownian motions. The short term factors in this

model revert to the long term factors. Moreover, the short term factors are related to the prices

and exchange rates by P kt � exp
�
Y k
t � ψkptq

�
, for k P J , where ψp�qptq is a function that captures
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seasonality (see Online Supplement C for details). Our model can be seen as a multi-commodity

extension of the one in Schwartz and Smith (2000), where we added a cross-commodity correlation

structure, and a special case of the process in Farkas et al. (2017). Under this specification, the

information state is wi � pYi,k, k P J q Y pZi,k, k P J q, where Yi,k and Zi,k, respectively, denote the

k-th short and long term factor values at the beginning of stage i. Moreover, Wi � R8
�.

Calibrating our multi-asset and multi-factor stochastic process requires several steps (see On-

line Supplement C for details). We collected futures contract data with multiple maturities for

aluminum, power, and exchange rates from the LME, Nord Pool, and FOREX markets, respec-

tively. We used interpolation and spline smoothing to ensure that data across different sources were

consistent. We then employed a multi-stage Kalman filter process to estimate parameters. Our

calibrated model provides a statistically sound representation of market data and allowed us to gen-

erate sample paths of the sources of uncertainty in Monte Carlo simulation needed to implement

our algorithms as well as estimate the asset value and shutdown profile of a policy.

5.3 Instances and computational setup

We define our reference instance using the stochastic process calibration described in §5.2 and real

operational data from an aluminum producer, which includes parameter values of the reward func-

tion (7), the operations and maintenance costs, and the discount factor. We summarize this informa-

tion in Table 1. We define the terminal reward function at a production state by extending the prob-

lem horizon beyond the actual planning horizon, which is standard. Specifically, we choose rIpO, wIq

to represent the value of a plant that operates for 20 years starting from stage I and state pO, wIq

using an LSM approach. We employ the same terminal condition across all methods for consistency.

Table 1: Parameters defining the reference aluminum production instance.

Name Value Unit Name Value Unit

τ 25% - KpO,S1q 600 USD/mt

γAl 5% - KpO,Cq 1200 USD/mt

cUSD 520 USD/mt KpSm,Cq 600 USD/mt

cNOK 6110 NOK/mt KpSm,Oq 600 USD/mt

ρ 14 MWh/mt KpSm,Sm�1q 0 USD/mt
δ 0.971 -

By modifying the reference instance described above, we created an extended instance set to

study the performance of our methods when operational and market parameters change. We in-

creased/decreased the costs cUSD and cNOK, which are the only two parameters in the reward func-

tion (7) that are directly related to plant operations. We changed these costs by �15% to obtain

instances OP1-OP4 in Table 2 because these perturbations resulted in asset value changes of �40%,
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which seem reasonable upper bounds on the changes that can be expected in practice. We also

considered significantly changing the volatility estimates of both the short and long term factors for

aluminum and power by �30% to obtain instances MP1-MP4 in Table 2. Power price volatilities

vary by region while LME is the primary market for assessing aluminum volatility. Our aluminum

price volatility change is consistent with historic data: Brunetti and Gilbert (1995) examined the

monthly volatility of LME-traded metals, including aluminum, over a 24-year period and �30% is

representative of the maximum variations they observe.

We next describe our computational setup. To compute AR (i.e., anticipated-regret) policies, we

used LSML as described in §3. We also used LSML to compute heuristic versions of the shutdown-

neutral policy πSN and the zero-shutdown policy πSNztCu which include and exclude the shutdown

option, respectively. We find the switching thresholds of the classification based margin policies

(i.e., CM policies) while computing the LSML VFA for πSN. We chose the LSML basis functions to

be the following set of third-degree polynomials of the eight stochastic factors discussed in §5.2: 
Φi,bpwiq

(Bi

b�1
�
 
1, Yi,k, Zi,k, Yi,k1Yi,k2 , Zi,k1Zi,k2 , Yi,kZi,k,

Yi,k1Yi,k2Yi,k3 , Zi,k1Zi,k2Zi,k3 , Yi,kZ
2
i,k, Y

2
i,kZi,k

�� k, k1, k2, k3 P J
(
.

Based on experimentation, we chose the number of regression samples and inner samples in LSML

(see Algorithm 1 in Online Supplement B) equal to 20,000 and 200, respectively. We estimated the

asset value under each policy in Monte Carlo simulation using 20,000 sample paths. For consistency,

we ensured that the same sample paths were used across policy evaluations. We also estimated

(dual) upper bounds in Monte Carlo simulation using the LSML VFA (see Online Supplement D

for details). We implemented the binary classification scheme needed to obtain CM policies with

both hinge and squared loss functions, and found them to perform almost identically. We thus only

report results related to the squared loss case.

We implemented all the algorithms using Matlab R2016b and executed them on a server

equipped with two Intel Xeon E5-2660v3 processors with 10 cores each and a shared memory of 128

GB RAM. Obtaining families of policies offering different asset value and shutdown profile trade-

Table 2: Changes in operational and market parameters of the reference instance to obtain the
extended instance set.

Label Instance description Label Instance description

OP1 Cost cUSD is raised by 15% MP1 Power volatility is raised by 30%
OP2 Cost cUSD is reduced by 15% MP2 Power volatility is reduced by 30%
OP3 Cost cNOK is raised by 15% MP3 Aluminum volatility is raised by 30%
OP4 Cost cNOK is reduced by 15% MP4 Aluminum volatility is reduced by 30%
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offs required significant computation. We distributed the computational load across the 20 cores in

our server to significantly reduce the run time to obtain trade-off curves. Specifically, when using

20,000 sample paths on a single core, estimating the LSML VFA weights consumed about 18 min-

utes for each of the two shutdown-neutral policies and 22 minutes on average for the AR policy for

each value of λ and ξ. Computing the asset value estimate of one of these policies required roughly

the same running time as estimating the VFA, and estimating a dual bound took about 16 min-

utes on average. Computing the expected margins in the production margin-based heuristics used

in practice and our extensions thereof required 4 minutes. Fitting the CM thresholds (including

the LSML run) as discussed in §4 entailed an additional 18 minutes of CPU time. Updating these

thresholds for a given UI and pξ took less than 10 seconds on average.

5.4 Shutdown probability and asset value trade-off

We consider the reference instance described in §5.3. The asset value estimates for the policies πSN

and πSNztCu are within 2.0% and 2.6% of their respective dual bound estimates (standard errors of

asset value and dual bound estimates are at most 1.23% and 0.10%, respectively). That is, our LSML

shutdown-neutral policies are near optimal. The asset value estimate of πSN equals 4902 USD/mt

and will henceforth be referred to as maximum asset value. The πSN shutdown probability is 39.2%.

We assess the performance of different policies along the shutdown probability dimension, that

is, we temporarily neglect the preference to delay shutdown by fixing ξ � 1 in LSML and pξ � 1 in the

threshold shifting procedure at the end of §4. Figure 6 displays the trade-offs between asset value

and shutdown probability for the policies discussed in §§3-4. Each asset value estimate is expressed

as a percentage of the maximum asset value (standard errors of the asset value and shutdown

probability are at most 1.24% and 0.35%, respectively), which is the πSN asset value denoted by an

asterisk in Figure 6 and labeled SN. The AR policies were computed by varying λ from 0 to 10 to

obtain policies that range between the shutdown-neutral policy and the zero-shutdown policy.

We find that the AR approach performs well and achieves substantial shutdown probability

reductions for small asset value losses. For asset value losses of 2% and 4%, the shutdown probability

is reduced by 26% and 40%, respectively, which are significant reductions considering that πSN closes

the plant on roughly 39% of the scenarios. Consistent with Proposition 2, the AR policies converge

to πSNztCu, which is the optimal zero-shutdown asset value, when λ is large enough and η is chosen

as discussed at the end of §3.3. Indeed, avoiding shutdowns altogether leads to significant asset

value loss. Specifically, the asset value estimate of πSNztCu is only 75.4% of the maximum asset

value (i.e., the asterisk labeled SNztCu in this figure). For a typical plant with capacity of 200,000

mt, a 10% loss in asset value translates to roughly 100 million USD. Thus, shutdown flexibility
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Figure 6: Trade-offs in asset value and shutdown probability.
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has substantial value but its use can be limited without significant value loss, which bodes well for

social commerce, that is, unaccounted social costs amounting to a small fraction of the maximum

asset value can justify using operating policies that reduce the likelihood of future shutdowns.

The production margin-based policies were tested using one or two expected-future margins, in

addition to the current margin, which entails choosing T P t1, 2u. The shutdown probabilities Ui,

i P I Y tIu, were set to the same value U which was varied from 40% to 0%. The best asset value

achieved by the practice-based policies (dotted lines) when T equals 2 is only around 1.3% less than

the maximum asset value, but it is 4.8% less when T equals 1. Both practice-based policies decrease

shutdown probability in an inefficient manner. We instead find that the CM method outperforms

the practice-based methods and is more robust, that is, the asset value and shutdown probability

trade-off curves produced by CM for T equal to one and two are almost identical. The performance

of CM is comparable to AR for small asset value losses but slightly worse for larger losses, which

suggests that the favorable asymptotic properties of AR policies translate into good performance of

these policies in non-asymptotic settings as well. For example, the shutdown probability is reduced

by 25% in the CM and AR polices for asset value losses of 2.2% and 1.8%, respectively. We focus

on the AR and CM policies in the rest of the numerical analysis as their performance is similar for

small asset value losses but outperform the practice-based heuristics.

5.5 Evaluation of social commerce objectives

We begin by comparing the social commerce preferences to reduce shutdown probability and delay

shutdown decisions. One may expect that delaying shutdown decisions also reduces the shutdown

probability at the end of the horizon. However, this intuition may not be true because delaying/re-

ducing shutdowns also affects asset value. Therefore, in Figure 7 we display the trade-off between
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shutdown probability reduction and shutdown delay for fixed asset value losses. Shutdown probabil-

ity reduction (x-axis), expected shutdown delay (y-axis), and asset value loss (legend) are measured

relative to the respective values of 39.2%, 26 years, and 4902 $/mt, respectively, of πSN. To obtain

this figure, we considered ξ P t1, 0.99, 0.98, 0.97, 0.95u for AR policies and pξ P t1, 0.98, 0.95, 0.93, 0.9u

for CM policies with T equal to 2. For each ξ and pξ, we computed profiles akin to the ones in Figure

6 so that we could choose AR and CM policies that matched a target asset value within 0.3%.

Figure 7: Trade-offs in shutdown probability decrease and shutdown delay for AR and CM policies.
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Figure 7 suggests that shutdown delay and shutdown reduction are substitute social commerce

preferences competing for a fixed asset value loss and thus cannot be improved simultaneously. For

example, for an asset value loss of 6%, AR could delay shutdowns by 6 years on average and decrease

the shutdown probability of 23%, or delay shutdowns by an average of only 3 years and capture

a larger shutdown probability decrease of 44%. To understand this behavior, recall that requiring

larger values for either expected shutdown delay or shutdown probability reduction entails an asset

value loss relative to πSN. Thus, for a given budget of asset value loss, increasing expected shutdown

delay amounts to allocating a larger fraction of this loss budget to the shutdown delay preference,

which then makes the remaining budget smaller and only allows for a lower shutdown probability

reduction. Furthermore, the concavity of most trade-off curves in Figure 7 suggests diminishing

returns: higher average shutdown delays imply a higher marginal increment in shutdown probability,

and vice versa. The trade-offs originating from AR slightly dominate the CM ones, that is, for the

same asset value and shutdown probability, AR policies delay shutdown by roughly one additional

year on average relative to the CM policies. As one would expect, it appears harder to manage the

preference to reduce and to delay shutdown decisions substantially for smaller asset value losses.

Both social commerce preferences discussed above are based on modifying shutdown probabili-
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ties. An alternative, as discussed in §2.3, would be to provide a deterministic commitment (DC) to

not shutdown the plant for a predefined number of years. Next, we investigate when DCs are prac-

tical. Policies encoding DCs can be computed analogously to πSN using LSML but removing the

shutdown action for the first T years. We consider values for T in set t2, 5, 6, 8, 10u. We compare

a DC policy for a given T with an AR policy that has the same expected time to shutdown, that is,

these policies differ only in asset value and shutdown probability. Indeed, under favorable price con-

ditions, DC and AR policies are similar because the likelihood to shutdown is small in the short-term.

This is the case for our baseline instance where the starting price for aluminum is 1800 USD/mt.

LME aluminum prices, however, have been below 1400 USD/mt many times in the last 20 years

(e.g., 1291 USD/mt in 2003 and 1330 USD/mt in 2009). For an initial aluminum price of 1400 US-

D/mt, shutdown in the first few years is more likely and establishing agreements not to shut down

is especially relevant. Table 3 compares DC and AR policies for an initial aluminum price of 1400

USD/mt. The shutdown-neutral asset value in this instance is equal to 559 USD/mt. DC policies

lose significantly more asset value than AR policies to achieve the same shutdown delay, especially

when the commitment exceeds 5 years. AR policies also outperform DC policies along the shutdown

probability dimension. This difference is due to DC policies having to avoid shutdown in all possi-

ble scenarios in the first T periods, including those where the plant would incur large losses, while

AR policies have the flexibility to shutdown in such financially adverse scenarios. Figure 8 visually

illustrates this effect by displaying the asset value distribution histograms for DC and AR policies re-

stricted to sample paths where at least one of these policies shuts down. Clearly, the AR asset value

distribution has considerable mass to the right of the DC asset value distribution. In sum, DCs of a

few years are practical as they provide certainty regarding no shutdowns but extending such guaran-

tees for several years can lead to major asset value losses. Thus, a combination of DCs and bounds

on the shutdown probability appears necessary to balance social and financial objectives of the plant.

Table 3: Comparison of DC and AR policies with the same shutdown delay.

Commitment of T years

Policy 2 5 6 8 10

% asset value
DC 100.0 98.5 94.9 83.0 70.1
AR 100.0 99.7 97.6 86.0 78.6

Shutdown %
DC 53.0 53.5 51.8 50.1 48.6
AR 53.0 51.9 50.4 46.1 44.3

5.6 Comparative statics and robustness

We finally consider the performance of AR and CM on the extended instance set, that is, OP1-

OP4 and MP1-MP4 defined in Table 2 by varying operational costs and market volatilities of the
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Figure 8: Asset value distributions associated with DC and AR policies for T equal to six and ten.

(a) Six year deterministic commitment. (b) Ten year deterministic commitment.

reference instance (labeled REF).

Table 4 reports results that examine the asset value and shutdown probability trade-off for

policies with ξ � pξ � 1 similar to Figure 6. Specifically, for decreases in shutdown probability

equal to 10%, 20%, 30%, and 40%, this table shows the asset value loss expressed as a percentage

of the maximum asset value. We find that AR and CM incur similar asset value losses to achieve

a target shutdown probability reduction on the extended instance set, with the former method

performing slightly better than the latter method. For example, both methods reduce shutdown

probability by 10% and 20% in most instances for asset value losses, respectively, below 1% and

2%. A larger shutdown probability reduction of 40% entails average losses of 4.7% and 5.7% when

using AR and CM, respectively. Changing the fixed cost cNOK leads to larger fluctuation than

cUSD in the asset value loss incurred to achieve a shutdown probability reduction, and the largest

across the extended instance set. For example, reducing the shutdown probability by 40% requires

Table 4: Asset value loss as a percentage of the maximum asset value for 10%, 20%, 30%, and 40%
decreases in shutdown probability when using AR and CM with T equal to 2.

Shutdown probability decrease

10% 20% 30% 40%

Instance AR CM AR CM AR CM AR CM

REF 0.7 0.9 1.1 1.6 2.7 3.0 4.0 5.0

OP1 1.0 1.3 1.6 2.8 4.4 5.3 6.4 8.3
OP2 0.5 0.5 0.8 1.0 1.9 2.1 2.7 3.2
OP3 1.2 1.7 3.0 3.9 5.3 7.4 9.3 12.3
OP4 0.2 0.4 0.6 0.6 1.2 1.2 1.8 2.0

MP1 0.7 1.0 1.8 1.9 3.1 3.9 5.2 6.2
MP2 0.3 0.7 1.0 1.4 2.0 2.5 3.7 4.2
MP3 0.2 0.7 0.8 1.2 1.7 2.0 2.6 3.2
MP4 0.8 1.2 1.9 2.2 3.3 4.0 6.2 7.3

Average 0.6 0.9 1.4 1.9 2.8 3.5 4.7 5.7
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a roughly 9–12% asset value loss in OP3 while the analogous loss is less than 2% for OP4. This

difference in impact can be attributed to cNOK appearing in the reward function multiplying the

exchange rate PNOK-USD
i , which is random, while cUSD features on its own. The higher impact of

the cost cNOK is consistent with the industry focus on local costs. Changing the power (an input)

price and aluminum (an output) price volatilities has opposite effects. Specifically, the asset value

loss to achieve a target shutdown-probability reduction becomes smaller as power and aluminum

volatilities, respectively, decrease (compare MP2 with MP1) and increase (compare MP3 with MP4).

The observed behavior is consistent with the distribution of aluminum and power prices becoming

more skewed as volatilities increases such that larger price values are more likely. Since aluminum

is an output, such skewness results in more profit, while the same effect on power prices increases

cost and reduces profit. This relationship between skewness and volatility is known for stochastic

processes with log-normally distributed factors.

Table 5 analyzes both shutdown reduction and shutdown delay on the extended instance set.

For fixed asset value losses, we determined trade-off curves for AR and CM analogous to those dis-

played in Figure 7. In particular, we consider the two extreme ends of each trade-off curve, which

correspond to policies computed with (i) ξ � pξ � 1, and (ii) ξ � 0.95 for AR and pξ � 0.90 for CM

(as in Figure 7). The shutdown probability reduction is expressed as a percentage of the shutdown-

neutral probability computed for the same instance and the average shutdown delay is reported in

number of years and displayed within parenthesis. Both AR and CM emerge as robust methods to

balance the asset value and the shutdown profile. Moreover, for a fixed asset value, shutdown prob-

ability reduction and shutdown delay are substitutes on all instances in the extended instance set.

The AR policies manage this substitution slightly better than CM policies on average. The sensi-

tivity of results to changes in fixed costs and market volatilities are analogous to those observed in

Table 4. For asset value losses of 3% and 6%, shutdown decisions can be delayed by 4–5 years on

average across the instances by incurring a larger shutdown probability later in the horizon.

While shutdown probability reduction and shutdown delay are indeed sensitive to operational

and market parameters, our findings underscore that shutdown decisions can be significantly de-

layed or made less likely for small asset value losses. These findings are also robust when the plant

has intermediate production options, a feature not needed in the aluminum setting as discussed in

§5.1. Specifically, the main social commerce trade-off and related insights already discussed continue

to hold when we artificially added intermediate production options to the aluminum instances.
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Table 5: Shutdown probability reduction (%) and average shutdown delay (years) for fixed asset
value losses when using AR and CM policies with delay-neutral and delay-averse preferences.

Asset value loss

3% 6%

AR CM AR CM

delay- delay- delay- delay- delay- delay- delay- delay-
Instance neutral averse neutral averse neutral averse neutral averse

REF 31.6 (0.5) 16.7 (4.2) 30.0 (0.4) 13.2 (3.7) 48.5 (0.9) 22.9 (6.3) 45.2 (1.3) 22.9 (5.4)

OP1 27.3 (0.9) 13.0 (3.2) 20.0 (0.4) 7.3 (2.6) 39.0 (1.2) 19.7 (5.4) 32.5 (1.2) 13.8 (4.6)
OP2 42.9 (0.5) 19.8 (4.9) 40.0 (0.4) 20.5 (4.0) 60.6 (0.4) 31.2 (8.0) 57.5 (1.2) 39.7 (6.3)
OP3 20.4 (1.0) 12.5 (3.2) 15.9 (0.6) 6.0 (2.4) 32.2 (1.3) 15.8 (4.3) 26.0 (1.1) 9.8 (3.8)
OP4 54.6 (0.2) 25.3 (5.7) 49.2 (0.2) 32.6 (4.3) 76.6 (-0.5) 51.2 (8.4) 71.1 (2.3) 60.6 (6.0)

MP5 30.3 (0.6) 14.7 (3.7) 25.6 (0.3) 10.0 (3.2) 43.8 (0.9) 21.3 (6.1) 40.4 (1.1) 19.1 (5.2)
MP6 36.5 (0.6) 17.3 (4.1) 31.9 (0.5) 14.9 (3.7) 53.3 (0.8) 25.1 (7.0) 47.4 (1.4) 29.2 (5.9)
MP7 42.6 (1.1) 21.2 (4.9) 36.7 (1.2) 19.5 (4.5) 62.3 (1.4) 31.7 (8.5) 55.1 (2.3) 39.5 (7.1)
MP8 28.8 (0.4) 14.0 (3.5) 24.6 (0.2) 10.5 (3.3) 41.4 (0.7) 19.1 (5.3) 36.1 (0.7) 16.0 (4.6)

Average 35.0 (0.6) 17.2 (4.2) 30.4 (0.5) 14.9 (3.5) 50.8 (0.8) 26.4 (6.6) 45.7 (1.4) 27.8 (5.4)

6. Conclusions

Motivated by an aluminum producer, we studied the management of permanent shutdown decisions

in merchant commodity and energy production assets from a social commerce perspective, which de-

viates from the popular asset value maximization approach. We formulated a constrained MDP to

maximize the asset value subject to constraints on the shutdown profile, that is, we imposed bounds

on the shutdown probability of an operating policy at each period to capture the preferences to

delay and reduce the likelihood of a plant shutdown. We established that modifying the shutdown

cost of the shutdown-neutral SDP in a state-dependent manner provides a conceptual strategy to

tackle the constrained MDP but computing such cost modifications is challenging. We thus propose

a low-dimensional cost modification based on anticipated regret theory, as well as, an LSM approach

to compute policies. We also extended production margin-based heuristics used in practice by com-

bining LSM and binary classification methods in machine learning. We found on realistic aluminum

production instances that both policies can improve the shutdown profile substantially for small as-

set value losses. Production margin heuristics used by practitioners instead incur larger asset value

losses to achieve these improvements. Our results highlight that social commerce appears financially

viable, that is, shutdown decisions can be significantly delayed or avoided when unaccounted social

costs amount to a few percent of the plant’s maximum asset value. Moreover, adapting a plant’s

operating flexibility emerges as an effective lever to achieve socially-responsible shutdown decisions.

31

 Electronic copy available at: https://ssrn.com/abstract=3034869 



References

Adkins, R., D. Paxson. 2011. Reciprocal energy-switching options. The Journal of Energy Markets 4(1)
91–120.

Altman, Eitan. 1999. Constrained Markov decision processes, vol. 7. CRC Press.

ASI. 2017. Aluminium stewardship initiative standards. https://aluminium-stewardship.org/asi-
standards/. Accessed on April 17, 2018.

Bell, David E. 1982. Regret in decision making under uncertainty. Operations research 30(5) 961–981.

Ben-Tal, A., A. Goryashko, E. Guslitzer, A. Nemirovski. 2004. Adjustable robust solutions of uncertain linear
programs. Mathematical Programming 99(2) 351–376.

Berling, P., V. Mart́ınez-de-Albéniz. 2011. Optimal inventory policies when purchase price and demand are
stochastic. Operations Research 59(1) 109–124.

BI. 2016. Business Insider. Alcoa plans to close largest U.S. aluminum smelter amid tumbling prices. Accessed
on August 17, 2017.

Bishop, C. 2006. Pattern Recognition and Machine Learning . Springer, New York, NY, USA.

Bleichrodt, Han, Peter P Wakker. 2015. Regret theory: A bold alternative to the alternatives. The Economic
Journal 125(583) 493–532.

BNEF. 2017. New energy outlook 2017. Tech. rep., Bloomberg New Energy Finance (BNEF).

Boyabatli, O. 2015. Supply management in multiproduct firms with fixed proportions technology. Manage-
ment Science 61(12) 3013–3031.

Boyabatli, O., P. R. Kleindorfer, S. R. Koontz. 2011. Integrating long-term and short-term contracting in
beef supply chains. Management Science 57(10) 1771–1787.

Boyabatli, O., Q. D. Nguyen, T. Wang. 2017. Capacity management in agricultural commodity processing
and its application in the palm industry. Manufacturing & Service Operations Management 19(4)
551–567.

Brennan, M. J., E. S. Schwartz. 1985. Evaluating natural resource investments. The Journal of Business
58(2) 135–157.

Brown, D. B., J. E. Smith, P. Sun. 2010. Information relaxations and duality in stochastic dynamic programs.
Operations Research 58(4) 785–801.

Brunetti, C., C. L. Gilbert. 1995. Metals price volatility, 1972–95. Resources Policy 21(4) 237–254.

Carmona, R., M. Ludkovski. 2010. Valuation of energy storage: An optimal switching approach. Quantitative
Finance 10(4) 359–374.

Codelco. 2011. Community development. https://www.codelco.com/community-development/
prontus codelco/2011-07-08/152316.html. Accessed on March 30, 2019.

Cortazar, G., M. Gravet, J. Urzua. 2008. The valuation of multidimensional American real options using the
LSM simulation method. Computers & Operations Research 35(1) 113–129.

Devalkar, S. K., R. Anupindi, A. Sinha. 2005. Dynamic risk management of commodity operations: Model
and analysis. Manufacturing & Service Operations Management 20(2) 317–332.

Devalkar, S. K., R. Anupindi, A. Sinha. 2011. Integrated optimization of procurement, processing, and trade
of commodities. Operations Research 59(6) 1369–1381.

Di Corato, L., M. Moretto. 2011. Investing in biogas: Timing, technological choice and the value of flexibility
from input mix. Energy Economics 33(6) 1186–1193.

Dufour, F., T. Prieto-Rumeau. 2013. Finite linear programming approximations of constrained discounted
markov decision processes. SIAM Journal on Control and Optimization 51(2) 1298–1324.

Dufour, F., T. Prieto-Rumeau. 2014. Stochastic approximations of constrained discounted markov decision
processes. Journal of Mathematical Analysis and Applications 413(2) 856–879.

Eeckhoudt, Louis, Christian Gollier, Harris Schlesinger. 2005. Economic and Financial Decisions Under
Risk . Princeton University Press.

32

 Electronic copy available at: https://ssrn.com/abstract=3034869 

https://aluminium-stewardship.org/asi-standards/
https://aluminium-stewardship.org/asi-standards/
https://www.codelco.com/community-development/prontus_codelco/2011-07-08/152316.html
https://www.codelco.com/community-development/prontus_codelco/2011-07-08/152316.html


Farkas, W., E. Gourier, R. Huitema, C. Necula. 2017. A two-factor cointegrated commodity price model with
an application to spread option pricing. Journal of Banking and Finance 77(1) 249–268.

Gazette-Mail. 1999. Arch Coal to close Dal-Tex by August. https://www.wvgazettemail.com/news/
special reports/arch-coal-to-close-dal-tex-by-august/article f40f7c2b-c14a-5242-

9032-a1dbf525ee77.html. Accessed on March 30, 2019.

Geman, H. 2005. Commodities and Commodity Derivatives: Modeling and Pricing for Agriculturals, Metals
and Energy . John Wiley & Sons, West Sussex, UK.

Georghiou, Angelos, Daniel Kuhn, Wolfram Wiesemann. 2018. The decision rule approach to optimization
under uncertainty: methodology and applications. Computational Management Science .

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering . Springer, New York, NY, USA.

Glasserman, P., B. Yu. 2004. Simulation for American options: Regression now or regression later? H. Nieder-
reiter, ed., Monte Carlo and Quasi-Monte Carlo Methods 2002 . Springer-Verlag, Berlin, Germany,
213–226.

Guthrie, G. A. 2009. Real Options in Theory and Practice. Oxford University Press, NY, USA.

Haugh, M. B., L. Kogan. 2004. Pricing American options: A duality approach. Operations Research 52(2)
258–270.
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Managing Shutdown Decisions in Merchant Commodity

and Energy Production: A Social Commerce Perspective

(Online Supplement)

A. Proofs

Lemma 1 is used to prove Proposition 1.

Lemma 1. There exists an optimal SC-MDP policy π� such that for each pi, xi, wiq P I �Xi�Wi,
if πSN

i pxi, wiq � ai �� C, then π�i pxi, wiq � ai.

Proof. We prove that the optimal shutdown-neutral and SC-MDP policies choose to operate at the
same states. We then argue that the specific operating decisions taken by these policies is the same.

The proof proceeds by contradiction, that is, if the statement was false, we will exhibit a
new feasible SC-MDP policy π�� with higher expected value than π�. Suppose there exists some
pi, xi, wiq P I � Xi �Wi in which πSN

i pxi, wiq �� C but π�i pxi, wiq � C. In other words, there exist
stage i states O1

i � Xi �Wi in which the shutdown neutral policy operates but π� instead shuts
down. Without loss of generality, we assume that O1

i has positive probability, i.e., PrpO1
i q ¡ 0. We

denote by O2
i :� pXi �WiqzO1

i and by pxj , wjq|O1
i the states reached at stage j ¥ i conditional on

the stage i state belonging to O1
i . We define a new policy π�� by combining πSN and π� as follows:

π��j pxj , wjq :� πSN
j pxj , wjq for j ¥ i and states pxj , wjq|O1

i , and π��j pxj , wjq :� π�j pxj , wjq otherwise.
The MDP bounds Uj , j P I, are satisfied by π��. In fact, for j   i, π� and π�� coincide, thus the
probability bound Uj is respected since π� is feasible to SC-MDP. For j ¥ i, we can decompose the
shutdown probability of π�� as follows (we omit the conditioning on px0, w0q):

Prpxπ
��

j � Cq � Prpxπ
��

j � C
��O1

i q � PrpO1
i q � Prpxπ

��

j � C|O2
i q � PrpO2

i q (11a)

� Prpxπ
��

j � C
��O1

i q � PrpO1
i q � Prpxπ

�

j � C|O2
i q � PrpO2

i q (11b)

¤ Prpxπ
�

j � C
��O1

i q � PrpO1
i q � Prpxπ

�

j � C|O2
i q � PrpO2

i q (11c)

� Prpxπ
�

j � Cq (11d)

¤ Uj , (11e)

where (11b) holds because π� and π�� coincide in O2
i , (11c) is a consequence of Prpxπ

�

j � C|O1
i q � 1

by definition of O1
i , i.e., in states pxj , wjq|O1

i the policy π� shuts down at stage i, and (11e) holds
as π� is feasible. Moreover, π�� having strictly greater expected value than π� follows directly from
V SN,O
i pxi, wiq ¡ �K on a set with positive mass pxi, wiq P O1

i (since πSN operates in states O1
i ),

which contradicts π� being optimal SC-MDP policy.
In addition, the specific operating (i.e., non-shutdown) actions taken by πSN and π� coincide.

If this wasn’t true, we could define a new feasible policy π�� with higher value than π� where π��

coincides with πSN on the non-shutdown states in which π� deviates from πSN. The higher value of
such a policy follows from the fact that the shutdown-neutral policy πSN maximizes value.

Proof of Proposition 1. Part (a). The SDP with state-dependent shutdown cost modification is:

V D
I pxI , wIq � rIpxI , wIq, @pxI , wIq P XI �WI , (12a)

V D,O
i pxi, wiq � max

aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V D
i�1 pfipxi, aiq, wi�1q

�)
,

@pi, xi, wiq P I � Xi �Wi, (12b)

V D
i pxi, wiq � max

!
V D,O
i pxi, wiq,�K̄

pxi,wi,Cq
i

)
, @pi, xi, wiq P I � Xi �Wi. (12c)
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Since this cost modification only inflates the shutdown cost, i.e., K̄
pxi,wi,Cq
i ¥ Kpxi,Cq, the value func-

tions in SDP (12) can only decrease compared to the shutdown neutral SDP, i.e. V D,O
i pxi, wiq ¤

V SN,O
i pxi, wiq, @pi, xi, wiq P I � Xi �Wi. At stage i, we define three sets of states:

1. O1
i :� tpxi, wiq P Xi �Wi : πSN

i pxi, wiq � π�i pxi, wiq � ai �� Cu, the good states;

2. O2
i :� tpxi, wiq P Xi �Wi : πSN

i pxi, wiq � C, π�i pxi, wiq �� Cu, the swap states;

3. O3
i :� tpxi, wiq P Xi �Wi : πSN

i pxi, wiq � π�i pxi, wiq � Cu, the bad states.

Notice that Lemma 1 ensures Xi �Wi � O1
i Y O2

i Y O3
i , for every i P I, that is, πSN

i pxi, wiq �� C
and π�i pxi, wiq � C cannot happen. Proceeding backward for i � I � 1, . . . , 0, for each wi PWi, we

define the modified shutdown costs K̄
pxi,wi,Cq
i at stage i and state pxi, wiq P Xi �Wi as:

K̄
pxi,wi,Cq
i :�

$'&'%
Kpxi,Cq � V SN,O

i pxi, wiq � V D,O
i pxi, wiq if pxi, wiq P O1

i ;

�V D,O
i pxi, wiq � 1 if pxi, wiq P O2

i ;

Kpxi,Cq if pxi, wiq P O3
i .

(13)

By defining the shutdown cost as above, the shutdown actions taken by an optimal policy πD of
SDP (12) at every stage and state will always match those taken by π�. In fact:

1. if pxi, wiq P O1
i , then we know that V SN,O

i pxi, wiq ¥ �Kpxi,Cq, but the same is not necessarily

true for V D,O
i pxi, wiq since V D,O

i pxi, wiq ¤ V SN,O
i pxi, wiq. The cost inflation in (13) ensures

that V D,O
i pxi, wiq ¥ �K̄

pxi,wi,Cq
i for all states pxi, wiq P O1

i , i.e., πD chooses to operate.

2. if pxi, wiq P O2
i , V

D,O
i pxi, wiq ¤ V SN,O

i pxi, wiq   �Kpxi,Cq for pxi, wiq P O2
i but we want the

policy πD to swap the πSN decision from shutdown to operate, which requires the shutdown

cost to be K̄
pxi,wi,Cq
i ¡ �V D,O

i pxi, wiq. The cost inflation in (13) ensures this inequality holds.

3. if pxi, wiq P O3
i , since V D,O

i pxi, wiq ¤ V SN,O
i pxi, wiq   �Kpxi,Cq and both πSN and π� shut

down, there is no need to inflate the shutdown cost and we keep K̄
pxi,wi,Cq
i � Kpxi,Cq.

Part (b). In the following, we construct a shutdown cost modification (not necessarily a cost
inflation) such that the shutdown actions from SDP (12) are the same as π� as in Part (a) and, in
addition, the non-shutdown actions from the two policies also coincide. Specifically, we provide a
cost modification that respects the π� shutdown decisions and such that

Ei
�
V D
i�1 pxi�1, wi�1q

�
� Ei

�
V SN
i�1 pxi�1, wi�1q

�
(14)

for each pi, wiq P I �Wi and xi�1 P Xi�1. This policy would imply the desired result since

V D,O
i pxi, wiq � max

aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V D
i�1 pfipxi, aiq, wi�1q

�)
(15a)

� max
aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V SN
i�1 pfipxi, aiq, wi�1q

�)
� V SN,O

i pxi, wiq, (15b)

for each pi, xi, wiq P I � Xi �Wi, meaning that the non-shutdown actions from SDP (12) coincide
with those from the shutdown-neutral SDP (2), which in turn coincide with those taken by π� due
Lemma 1. We prove this statement by induction. At the last decision stage I � 1, (14) is trivial
to verify since for each pxI , wIq P XI �WI we have V D

I pxI , wIq � rIpxI , wIq � V SN
I pxI , wIq, thus

it holds that EI�1rV
D
I pxI , wIqs � EI�1rV

SN
I pxI , wIqs (there is no cost modification involved at this

stage). We now assume the statement is true from stage i to I, and prove it for i� 1.

Step 1. To ensure the shutdown actions of π� are preserved, we inflate the shutdown cost K̄
pxi,wi,Cq
i

for states pxi, wiq P O1
i YO2

i as in Part (a) of the proof, i.e., using equation (13).
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Step 2. For each state xi P Xi, we define the two sets OA
i pxiq :� twi PWi : pxi, wiq P O1

i YO2
i u and

OB
i pxiq :� twi PWi : pxi, wiq P O3

i u, representing slices of O1
i YO2

i and O3
i , respectively, for fixed xi.

Step 3. Consider xi P Xi and wi P OA
i pxiq. After executing the cost modification in Step 1, we have

V D
i pxi, wiq ¤ V SN

i pxi, wiq because: (i) V D,O
i pxi, wiq � V SN,O

i pxi, wiq by the induction hypothesis,
and (ii) the stage-i shutdown cost for exogenous states in OAi pxiq has been inflated. Therefore,
Ei�1rV

D
i pxi, wiq|OA

i pxiqs ¤ Ei�1rV
SN
i pxi, wiq|OA

i pxiqs. The idea is to balance this reduction in

expected value using the states OB
i pxiq, where we have V SN,O

i pxi, wiq ¤ �Kpxi,Cq, i.e., the shutdown
neutral policy shuts down and �Kpxi,Cq determines the value function. By deflating the shutdown
cost when the exogenous state belongs to OB

i pxiq, the optimal action of SDP (2) would not be

altered but the value function would increase. For wi P OB
i pxiq, we define K̄

pxi,wi,Cq
i as follows:

K̄
pxi,wi,Cq
i :� Kpxi,Cq � αipxiq (16a)

αipxiq :�
�
E
�
V SN
i pxi, wiq |OA

i pxiq
�
� E

�
V D
i pxi, wiq |OA

i pxiq
�� PrpOA

i pxiqq

PrpOB
i pxiqq

(16b)

where αipxiq is non-negative and well-defined due to PrpOB
i pxiqq ¡ 0 by assumption. Finally, (14)

holds at i� 1 and pxi, wi�1q PWi�1 � Xi using (16) because

Ei�1

�
V D
i pxi, wiq

�
� Ei�1

�
V D
i pxi, wiq|OA

i pxiq
�

PrpOA
i pxiqq � K̄

pxi,wi,Cq
i PrpOB

i pxiqq (17a)

� Ei�1

�
V SN
i pxi, wiq|OA

i pxiq
�

PrpOA
i pxiqq �Kpxi,Cq PrpOB

i pxiqq (17b)

� Ei�1

�
V SN
i pxi, wiq

�
(17c)

where (17b) is obtained by replacing K̄
pxi,wi,Cq
i with its expression in (16), and simplifying.

Proof of Proposition 2. Part (a). Our proof is based on backward induction. At the last stage I,
the following inequalities trivially hold as equalities because the terminal conditions are the same
in each SDP:

V
SNztCu
I pxI , wIq � V A

Θ,IpxI , wIq � V SN
I pxI , wIq � rIpxI , wIq, @pxI , wIq P XI �WI . (18)

Assume that analogous inequalities hold from stages i � 1 through stage I. Consider stage i and

the inequalities V
SNztCu
i�1 pxi�1, wi�1q ¤ V A

Θ,i�1pxi�1, wi�1q ¤ V SN
i�1pxi�1, wi�1q for all pxi�1, wi�1q P

Xi�1 �Wi�1, which hold by the induction hypothesis. Using these inequalities, we obtain for each
state pxi, wiq P Xi �Wi and non-shutdown action ai P AipxiqztCu, the following relationships:

ripxi, wi, aiq � δEi
�
V

SNztCu
i�1 pfpxi, aiq, wi�1q

�
¤ ripxi, wi, aiq � δEi

�
V A

Θ,i�1pfpxi, aiq, wi�1q
�

¤ ripxi, wi, aiq � δEi
�
V SN
i�1pfpxi, aiq, wi�1q

�
.

Taking a maximum over the non shutdown actions preserves this ordering, that is,

V
SNztCu
i pxi, wiq ¤ V A,O

Θ,i pxi, wiq ¤ V SN,O
i pxi, wiq, @pxi, wiq P Xi �Wi.

Using V
SNztCu
i pxi, wiq ¤ V A,O

Θ,i pxi, wiq we get

V
SNztCu
i pxi, wiq ¤ max

!
V A,O

Θ,i pxi, wiq,�K
pxi,Cq�λξiARΘ,ipxi, wiq

)
� V A

Θ,ipxi, wiq, @pxi, wiq P Xi�Wi.

To prove V A
Θ,ipxi, wiq ¤ V SN

i pxi, wiq we notice that the penalty term ARΘ,ipxi, wiq is always positive.
This implies that

�Kpxi,Cq � λξiARΘ,ipxi, wiq ¤ �Kpxi,Cq, @pxi, wiq P Xi �Wi. (19)
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Combining V A,O
Θ,i pxi, wiq ¤ V SN,O

i pxi, wiq with (19) results in

V A
Θ,ipxi, wiq � max

!
V A,O

Θ,i pxi, wiq,�K
pxi,Cq � λξiARΘ,ipxi, wiq

)
¤ max

!
V SN,O
i pxi, wiq,�K

pxi,Cq
)
� V SN

i pxi, wiq, @pxi, wiq P Xi �Wi.

Part (b). We fix ξ P p0, 1s. To prove the limiting results, it suffices to show that the shutdown-
neutral value function with no shutdown and the anticipated regret value function coincide for
any strictly positive lambda λ and large enough η. This result implies that for a given λ ¡ 0,

lim
ηÑ8

V A
Θ,ipxi, wiq � V

SNztCu
I pxi, wiq. Moreover, since the value functions coincide, the associated

optimal policies are also equal, which implies that the shutdown probability under the anticipated
regret policy is zero, that is, lim

ηÑ8
PrpC;πA

Θq � 0 for any λ ¡ 0.

We proceed to show that for every λ ¡ 0, there exists η�i ¥ 1 (we suppress the dependence of η�

on λ) such that V A
Θ,ipxi, wiq � V

SNztCu
i pxi, wiq for all pxi, wiq P Xi�Wi and η ¥ η�i . The statement is

proved by backward induction. At stage I, the equality trivially holds for any η and λ as in (18). As-
suming that analogous equalities and values for η exist for stages i�1 to I, we establish this property

at stage i. The equality V A
Θ,i�1pxi�1, wi�1q � V

SNztCu
i�1 pxi�1, wi�1q for all pxi�1, wi�1q P Xi�1 �Wi�1

is true by the induction hypothesis for η ¥ η�i�1. Note that V A
Θ,i�1pxi�1, wi�1q � V

SNztCu
i�1 pxi�1, wi�1q

implies that V A
Θ,i�1pxi�1, wi�1q � V A,O

Θ,i�1pxi�1, wi�1q because the shutdown decision does not deter-

mine the value function. Based on these relationships we replace V A
Θ,i�1pxi�1, wi�1q in the right

hand side of the anticipated regret SDP step (5c) with V
SNztCu
i pxi, wiq and also use the definition

of ARΘ,ipxi, wiq to obtain

V A
Θ,ipxi, wiq � max

!
V

SNztCu
i pxi, wiq,�K

pxi,Cq � λξi max
aiPAipxiqztCu

Ei
�

maxtripxi, wi, aiq (20)

�δV
SNztCu
i�1 pfipxi, aiq, wi�1q � η �Kpxi,Cq, 0u

�)
.

Since Wi is compact at each stage by assumption, there exists an L P R� such that ripxi, wi, aiq ¥
�L for all pi, xi, wi, aiq P I � Xi � Wi � Aipxiq and rIpxI , wIq ¥ �L for all pxI , wIq P XI �
WI . An immediate consequence is that the optimal value function is bounded below, that is,

V
SNztCu
i pxi, wiq ¥ �LpI � i � 1q for all pi, xi, wiq P I � Xi � Wi. To prove that V A

Θ,ipxi, wiq �

V
SNztCu
i pxi, wiq are equal if η is large enough, we show that shutdown will not be chosen in equation

(20) by using the following chain of inequalities for all pxi, wiq P Xi �Wi:

�Kpxi,Cq � λξi max
aiPAipxiqztCu

Ei
�
max

 
ripxi, wi, aiq � δV

SNztCu
i�1 pfipxi, aiq, wi�1q � η �Kpxi,Cq, 0

(�
¤ �λξi max

aiPAipxiqztCu

Ei
�
ripxi, wi, aiq � δV

SNztCu
i�1 pfipxi, aiq, wi�1q � η �Kpxi,Cq

�
(21a)

¤ �λξi p�L� δLpI � iq � ηKq (21b)

  �L� δLpI � iq (21c)

¤ max
aiPAipxiqztCu

!
ripxi, wi, aiq � δEi

�
V

SNztCu
i�1 pfpxi, aiq, wi�1q

�)
(21d)

� V
SNztCu
i pxi, wiq. (21e)

The first inequality (21a) is obtained by dropping the first term �Kpxi,Cq ¤ 0 and employing the
relation E rmaxtX, 0us ¥ E rXs; the second (21b) by replacing the reward function and the value
function terms by their lower bounds based on the compactness of Wi, and the shutdown cost by
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K � mintKpxi,Cq : xi P Xi, i P Iu ¡ 0; the third (21c) by choosing η ¡ η�i � pλξi � 1qpL � δLpI �

iqq{pλξiKq; the fourth (21d) from noticing that ripxi, wi, aiq ¥ �L and V
SNztCu
i�1 pfpxi, aiq, wi�1q ¥

�LpI � iq; and the final equality (21e) by using the definition of V
SNztCu
i pxi, wiq. Our claim thus

holds at stage i and it is also true at all stages by the principle of mathematical induction.

B. LSML algorithm

We describe in this section the LSML procedure briefly discussed in §3.2 of the paper. We primarily
focus on tackling the anticipated-regret SDP (5) but point out at the end of this section minor
changes that can be made to approximate the shutdown-neutral SDPs (2) and (4).

Algorithm 1: LSML

Inputs: Set of information state sample paths twpi , pi, pq P I Y tIu � Pu, number of sample
average approximation samples N , and set of basis function vectors tΦi, i P t1, . . . , Iuu.

Initialization: For each xI P XI , compute estimates vA
I pxI , w

p
I q :� rIpxI , w

p
I q for p P P and

perform a least squares regression on these VFA estimates using basis functions ΦI to
determine the vector of VFA weights βA

I,xI
.

For each i � I � 1 to 1 do:
For each xi P Xi do:
1. For each p P P do:

(a) Sample N stage i� 1 information state samples conditional on wpi : tw̄
p,n
i�1, n P N u.

(b) Compute the VFA estimates

vA,O
i pxi, w

p
i q :� max

aiPAipxiqztCu

"
ripxi, w

p
i , aiq � δ

¸
bPBi�1

βA
i�1,fipxi,aiq,b

�
1

N

¸
nPN

Φi�1,bpw̄
p,n
i�1q

�*
;

vA
i pxi, w

p
i q :� max

!
vA,O
i pxi, w

p
i q,�K

pxi,Cq � λξiyARΘ,ipxi, w
p
i q
)
.

2. Perform a least squares regression on the VFA estimates in set tvA
i pxi, w

p
i q, p P Pu using

basis functions Φi to determine the vector of VFA weights βA
i,xi

.

Outputs: Vectors of VFA weights βA
i,xi

for each pi, xiq P t1, . . . , Iu � Xi.

Algorithm 1 summarizes the LSML steps to approximate the anticipated-regret SDP (5). Let
βA
i,xi

:� pβA
i,xi,1

, . . . , βA
i,xi,Bi

q be the VFA weight vector for stage i P t1, . . . , Iu and operating state
xi P Xi. To ease notation, we do not subscript terms in LSML by Θ. The inputs to LSML are a set
of P information state sample paths twpi , pi, pq P IYtIu�Pu generated in Monte Carlo simulation,
where P :� t1, . . . , P u; the number of samples N used to construct sample average approximations
of expectations; and a set of VFA basis functions. LSML initializes the terminal stage VFA weight
vector βA

I,xI
by regressing the basis functions ΦI on evaluations of the terminal reward function for

each xI P XI . At each stage i P I, starting from stage I � 1 and moving backward to stage 1, and
for each operating state xi P Xi it executes Steps 1 and 2.

• In Step 1(a), for each sample path p P P, LSML generates N stage i � 1 information state
samples conditioned on wpi . We denote the n-th such sample by w̄p,ni�1 and the set of these
samples by tw̄p,ni�1, n P N u, where N :� t1, . . . , Nu.

• In Step 1(b), it computes estimates vA
i pxi, w

p
i q of the stage i AR value function V A

Θ,ipxi, w
p
i q

by applying to the right hand sides of (5a) and (5c) the known stage i � 1 VFA and sample
average approximations of expectations based on the samples generated in the previous step.
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Specifically, LSML computes vA,O
i pxi, w

p
i q by replacing EirV A

Θ,i�1pfipxi, aiq, wi�1qs in the right
hand side of (5a) by the sample average approximation¸

bPBi�1

βA
i�1,fipxi,aiq,b

�
1

N

¸
nPN

Φi�1,bpw̄
p,n
i�1q

�
,

and obtains vA
i pxi, w

p
i q by substituting for V A,O

Θ,i pxi, wiq and ARΘ,ipxi, w
p
i q in the right hand

side of (5c), respectively, with vA,O
i pxi, w

p
i q and the sample average approximation

yARΘ,ipxi, w
p
i q :� max

aiPAipxiqztCu

1

N

¸
nPN

max
!
Q̂pxi, w

p
i , ai, w̄

p,n
i�1q � η �Kpxi,Cq, 0

)
, (22)

where Q̂pxi, w
p
i , ai, w̄

p,n
i�1q :� ripxi, w

p
i , aiq � δ

°
bPBi�1

βA
i�1,fipxi,aiq,b

Φi�1,bpw̄
p,n
i�1q.

• In Step 2, LSML performs a least squares (2-norm) regression on these estimates to determine
the vector of VFA weights βA

i,xi
.

The outputs of LSML are the vectors of VFA weights βA
i,xi

for each stage i P t1, . . . , Iu and

operating state xi P Xi. Given such VFA weights, the action aA
i pxi, wiq taken by the anticipated

regret policy at stage i and state pxi, wiq is defined as

aA
i pxi, wiq :�

$'&'%
C, if vA,O

i pxi, wiq   �Kpxi,Cq � λξiyARΘ,ipxi, wiq,

argmax
aiPAipxiqztCu

"
ripxi, wi, aiq � δ

¸
bPBi�1

βA
i�1,fipxi,aiq,b

�
1

N

¸
nPN

Φi�1,bpw
n
i�1q

�*
, otherwise,

where the sample average approximations are constructed using N next stage information state
samples pwni�1, n P N q conditioned on wi.

Algorithm 1 can also be used with minor changes to approximate the shutdown-neutral SDPs (2)

and (4). Specifically, computing a sample average approximation of the regret term yARΘ,ipxi, w
p
i q

as in (22) is not needed for the shutdown-neutral SDPs, thus, this term is replaced by zero.

C. Calibration of the price and exchange rate dynamics

For all commodities, we considered futures prices for weekly trading dates from November 18th
2008 to December 30th 2015. Aluminum and exchange rate futures contracts have physical/finan-
cial delivery at the end of the contract duration (that is, at maturity). We collected aluminum
futures prices from Bloomberg for maturities extending out 1, 3, 6, 9, 12, 15, 18, 21, 24, and 36
months. Exchange rate futures for EUR-USD and NOK-USD on Bloomberg were only available
for the months of March, June, September, and December. We applied standard linear interpola-
tion to these rates and obtained a term structure curve with maturities that match the ones for
aluminum contracts (Guthrie 2009, §12). Nord Pool power contracts were obtained from the in-
formation provider Montel (see www.montel.no). The power delivery duration of these contracts
were monthly, quarterly, or yearly with trading dates extending out to 6 months, 8 quarters, and 3
years, respectively. In contrast to aluminum and exchange rate futures contracts, power contracts
deliver electricity continuously during an interval of time. For example, the first and second near-
est quarterly contracts traded in August 2015 delivered power during, respectively, the entire 4th
quarter (Oct-Dec) of 2015 and 1st quarter (Jan-Mar) of 2016. Power futures contracts of different
lengths can overlap, for instance, the nearest monthly and quarterly contracts. To obtain implied
power futures prices of contracts that deliver only at maturity, we used the smoothing approach of
Benth et al. (2007) (see Fleten and Lemming 2003 for an alternative smoothing technique), which
determines a smooth polynomial spline that replicates the observed market prices for each trading
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date. This synthetic curve contains power futures contract prices that are consistent with the ones
for aluminum and currency exchange rates.

We calibrated the parameters of the stochastic process (8) by applying a Kalman filter (Hamil-
ton 1994, Chapter 13) to match the model-implied log-futures prices with the data by maximizing
the log-likelihood function. The transition and measurement equations correspond to Farkas et al.
(2017) equations (6)-(8) and (15)-(16), respectively. The integral terms involving matrix expo-
nentials were evaluated numerically using the reductions to new matrix exponentials described in
Carbonell et al. (2008). Due to the large number of unknown parameters, we followed a multi-step
calibration process where parameters estimated in a given step are kept fixed in future steps, which
is common (see, e.g., Farkas et al. 2017). These steps are the following:

1. We estimated electricity price seasonality ψElptq by regressing the function χ1 cos p2πtq �
χ2 sin p2πtq on the log-futures data (Paschke and Prokopczuk 2009, Farkas et al. 2017).
We set the seasonality for aluminum and exchange rates, that is ψAlptq, ψEUR-USDptq and
ψNOK-USDptq, to zero as we observed no empirical evidence of seasonal effects.

2. We calibrated single-commodity 2-factor versions of model (8) for each commodity with a sin-
gle correlation between short and long term factors. We estimated µz, the short and long term
risk premia λy and λz, respectively, the diagonal terms of Ky, Kz and ρy,z, and the variance
of the measurement error. The value of µz for currencies was not statistically significant and
was set to zero. We noticed that the volatility estimates were unrealistically high. Hence σy
and σz were replaced with data estimates directly from historical data.

3. We calibrated the cross-commodity correlation structure, that is, matrices ρy, ρz and ρyz
keeping all previous estimates fixed. Doing this reduced the number of free variables to 24,
which we could handle in the maximum likelihood estimation.

Below we report the parameter estimates where statistical significance at 1%, 5% and 10% are
indicated by superscripts ���, �� and at �, respectively. The order of the commodities in the vectors
and matrices is power, aluminum, EUR-USD rate and NOK-USD rate.

K̂y �

�
���

1.904��� 0 0 0
0 0.067��� 0 0
0 0 0.011��� 0
0 0 0 0.010

�
��� , K̂z �

�
���

0.055��� 0 0 0
0 0.184��� 0 0
0 0 0.001 0
0 0 0 0.005

�
���

µ̂ �

�
���

0.19�

1.41���

0
0

�
��� , σ̂y �

�
���

0.26
0.12
0.08
0.13

�
��� , σ̂z �

�
���

0.11
0.09
0.18
0.15

�
��� , χ̂1 �

�
���

0.21
0
0
0

�
��� , χ̂2 �

�
���

0.03
0
0
0

�
���

ρ̂y �

�
���

1 0.79��� 0.63��� 0.65���

0.79��� 1 0.72��� 0.79���

0.63��� 0.72��� 1 0.83
0.65��� 0.79��� 0.83 1

�
��� , ρ̂z �

�
���

1 0.80��� 0.68��� �0.73�

0.80��� 1 0.75��� �0.72
0.68��� 0.75��� 1 �0.79���

�0.73� �0.72 �0.79��� 1

�
���

ρ̂yz �

�
���

0.25��� 0.76��� 0.71��� �0.68���

0.81��� 0.27��� 0.77��� �0.73�

0.61��� 0.73 0.02��� �0.55
0.65��� 0.83��� 0.65��� �0.09���

�
��� λ̂y �

�
���
�0.79���

�0.59���

�0.28���

�0.50���

�
��� , λ̂z �

�
���

0.74���

�0.14
3.49��

�3.24�

�
���

Most of the estimates above are statistically significant. There is strong positive correlation
between the short term factors of all commodities and some negative correlation in the long term
factors, in particular between the first three assets and NOK-USD. The estimated covariance matrix
Σ was computed as:
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Σ �

�
diagpσyq 0

0 diagpσzq

� �
ρy ρyz
ρTyz ρz

� �
diagpσyq 0

0 diagpσzq

�
.

This matrix is in general not positive semi-definite (PSD), which is a property needed to generate
multivariate random draws. Nonetheless, after our calibration Σ was very close to being PSD
(the negative eigenvalues are smaller than 10�2). Therefore, to gain the desired PSD property,
we computed the nearest PSD matrix to Σ by minimizing the Frobenius norm of the difference
(Higham 1988). This can be seen as a small perturbation of Σ. Finally, the initial values for
the eight factors used in the analysis are based on representative spot and 1-year futures prices

observed during the first quarter of 2017 and are, respectively, Y0 � log
�
35, 1800, 1.10, 0.12

�J
and

Z0 � log
�
33, 1900, 1.25, 0.15

�J
.

D. Dual bound on the asset value

To obtain a dual (upper) bound on the shutdown-neutral asset value, we use the information
relaxation and duality framework of Brown et al. (2010). This approach relies on relaxing the non-
anticipativity constraints embedded in the SDP, and penalizing knowledge of future information
at time i P I using a penalty function qi pfpxi, aiq, wi, wi�1q. A feasible dual penalty qi satisfies
Erqi pfpxi, aiq, wi, wi�1q

��wis ¤ 0. The dual bound estimation process relies on H Monte Carlo
samples of uncertainty twhi , pi, hq P I Y tIu � t1, . . . ,Huu. We solve the following deterministic
dynamic program on each sample path h:

UhI pxIq � rIpxI , w
h
I q, @xI P XI ,

Uhi pxiq � max
aiPAipxiq

!
ripxi, w

h
i , aiq � qi

�
fpxi, aiq, w

h
i , w

h
i�1

	
� δ Uhi�1 pfpxi, aiqq

)
, @pi, xiq P I � Xi,

for all h P t1, . . . ,Hu, where qi is a feasible penalty. A dual bound on the option value is then
obtained as the sample average

°
h U

h
0 px0q{H. It is well known (Brown et al. 2010) that given a

VFA V̂ip�q, a feasible dual penalty can be defined for pxi�1, hq P Xi�1 � t1, . . . ,Hu as follows:

qi

�
xi�1, w

h
i , w

h
i�1

	
� δ

!
V̂i�1

�
xi�1, w

h
i�1

�
� E

�
V̂i�1 pxi�1, wi�1q |w

h
i

�)
.

We employed this penalty function in the computation of the dual bounds.
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