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Abstract— A smart city with huge numbers of physical 

(e.g., sensors and actuators) and non-physical (e.g., external 

databases) data sources will continuously produce high 

amounts of massive city-data. Distributed data storage across 

the city may store the produced city-data. City managers 

through different update mechanisms may send the produced 

city-data from distributed data storage to centralized data 

storage (e.g., Cloud data storage). Hence, the data discovery 

issues are in a vital position in the smart city concepts because 

the produced city-data may exist in different data storage 

platforms from distributed to centralized data. In this paper, 

we will first present our proposed Distributed-to-Centralized 

Information and Communications Technology (D2C-ICT) 

architecture for the Zero Emission Neighborhoods (ZEN) 

center. This proposed D2C-ICT architecture can provide 

multiple facilities from the joined benefits of distributed and 

centralized technologies in smart cities. Second, we will show 

how the Multi-Attribute Utility Theory (MAUT) cost model 

can be beneficial to find the appropriate data for building city 

services across the different storage platforms on the city scale 

as well as can be applied in the ZEN center and its pilots. 
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I. INTRODUCTION AND MOTIVATION 

Data are fundamental feed components for services in 
smart cities and perform an essential role in the smart cities’ 
improvement. Smart cities produce numerous city data from 
physical and non-physical data sources. Selecting among 
data is a crucial and complicated issue in this context, as city 
services are often dependent on appropriate data. To be able 
to choose relevant data for city services, there are many 
different data discovery solutions to estimate the 
performance measurement of the produced city-data and 
related their ICT system in smart cities. The performance 
measurement solution will be more complicated: i) once data 
can exist in the different data storage platforms from smallest 
to large scale of the city; ii) sometimes having the same data 
stored in two or more separate data storage platforms.  

According to the complexities, as mentioned above, 
several cost models can be defined to measure the 
performance and efficiency of the produced city-data and 
related their ICT system through different ICT Key 
Performance Indicators (ICT-KPIs). The cost model may 

help to find an appropriate date in the large-scale ICT 
networks of smart cities across different local data storage 
from neighborhoods to city and Cloud data storage platform. 

II. RELATED WORK 

Several proposals about designing ICT architecture for 
smart cities exist, including Centralized [1], DC2C-ICT [2-
5], and D2C-ICT [6] architecture. More details about ICT 
architectures are described in [34]. However, there are still 
open challenges through designing an efficient D2C-ICT 
architecture for smart cities through the different city and 
ICT requirements such as data management  [1, 7, 33] and 
software services management [7]. 

With the focus on accessing the city-data, the Cloud 
storage platform as a centralized platform may provide 
facilities to store and access all city-data in the centralized 
platform [1]. However, D2C-ICT architecture provides 
benefits to store and access the produced city-data in the 
local data storage across the city [8]. If in case it is necessary 
concerning the data privacy issues and business 
requirements, all or some of the city-data will move from the 
local data storage in the city to the Cloud storage platform in 
most of the cases out of the city. 

Due to data may store in different data storage platform 
from distributed to centralized ICT networks of smart cities, 
there is a need to define the performance measurement 
techniques. These techniques may be useful for data 
discovery in large-scale ICT networks of smart cities from 
distributed to centralized storage platform. Recently, several 
techniques are suggested, including quality measurement [9, 
10], KPIs measurement [11-13], and cost models (cost 
estimation models) [14, 15]. In centralized ICT architecture, 
all performance measurement techniques acquire in the 
Cloud computing environment [1, 11, 12]. In the D2C-ICT 
architecture, there is a need to define how the performance 
measurement techniques can be applied across distributed to 
centralized ICT networks of smart cities. Recently, a set of 
KPIs as defined in [13] through Fog-to-Cloud ICT 
architecture. These KPIs can measure the most appropriate 
resources for data and service management. 

Considering the reasons above, we use a MAUT cost 
model for data discovery through our proposed D2C-ICT 
architecture for smart cities [6, 7, 16]. 



 

 

III. PERFORMANCE MEASUREMENT MODELS FOR DATA 

DISCOVERY IN SMART CITIES 

Quality measurement, ICT KPIs measurement, and cost 
(cost estimation) models are some examples of these data 
discovery solutions in the smart cities as described below. 

A. Quality Measurement 

Quality is described as the result of the judgment of the 
perceived composition of an entity concerning its desired 
composition [17]; in other words, how close it is to the ideal 
instance of it; and as fitness for use, with specific 
consideration for data integration tasks [35]. Data quality 
definition is still non-agreement on a single description. 
However, mainly data quality challenges imposed by 
mistaken data entry, missing information, or other invalid 
data [18]. If data value reaches an appropriate level, it will be 
stored in your storage platform. Oppositely, the data must be 
discarded or changed [19]. 

In Big Data environments perspective, the different 
quality level of collected data exists. Distinct types of data 
analysis techniques may process the collected data. Also, 
various applications/services may request data with different 
level qualities. Therefore, the paper [20] offered some data 
preprocessing techniques to improve data quality level in big 
data systems, as shown below:  
 Integration: Data integration is a kind of combined 
technique for data residing in different sources. Traditional 
data integration approaches are used in a traditional database, 
as shown in two main categories as follows: 
o Data Warehouse (also known as ETL): This category 
has three main steps, as shown below:  

– The extraction step connects to the sources for 
choosing and collecting the relevant data for further 
analysis processing.  
– The transformation step aims at converting the 
obtained data into a united format through some 
designed rules of application.  
– The loading step receives the obtained data first. 
Then the obtained data will be sent to the storage 
platform for temporary or permanent storage.  

o Data Federation: This method provides a virtual 
database to make a query and aggregate data from 
different sources. In addition, the virtual database has a 
container of information or metadata, which includes the 
actual data and its location. 

 Cleansing: The data cleansing techniques aim to recognize 
inaccurate, incomplete, or unreasonable data through a 
specific process. This process leads to the improvement of 
the quality level of data by discarding or changing 
inappropriate data. The cleansing techniques have five main 
steps, as shown below: 
o To describe and identify the type of errors;  
o To explore and distinguish examples of error;  
o To correct errors;  
o To register the type of errors;  
o To correct data entry procedures to minimize errors. 

 Redundancy elimination: The data redundancy elimination 
techniques aim to remove redundant datasets. The redundant 

data makes an unpleasant effect on data transmission, data 
storage, data processing, etc. 

IoT devices may generate data with different formats in 
smart cities. These data have a different level of quality. 
There are several views to measure data quality in smart 
cities. In one’s view, applications and services are 
responsible for measuring data quality in the smart city [21]. 
There are two main views to measure the quality of 
applications, services, and products, including Quality of 
Service (QoS) and Quality of Experience (QoE), as shown 
below: 
 The QoS refers to the characteristics of a service. QoS may 
satisfy the stated and implied needs of the use of the service 
[22]. These characteristics are quantitative measurements of 
the performance of the service. 
 The QoE is based on the experience of the users and how 
they appraise the quality, e.g., user’s feedback [23, 24]. 

B. ICT KPIs 

Performance indicators or KPIs are a type of performance 
measurement. In general, KPIs evaluate the performance of 
an organization or a particular activity in which it engages 
[25]. In the smart city, if services are one of the main 
products of smart cities, the performance of the services can 
be measured through a set of KPIs in smart cities. Therefore, 
a characteristic that is deemed essential for the service and 
data will be referred to as KPIs. A KPI is a quantifiable 
metric that shows the performance of the service or data. 

There are two main categories to measure KPIs through 
centralized and distributed-to-centralized technology in smart 
cities. Those KPIs are Cloud computing KPIs and 
distributed-to-centralized KPIs as discussed below: 

1) Cloud Computing offers an extended context for 
service-oriented business and ICT [11]. Different KPIs [24, 
26] are defined to measure success in Cloud computing 
environments [12]. Those KPIs [26] are based on important 
performance measurements and aspects of consideration 
when selecting a Cloud computing provider service, as well 
as definitions on how to measure them. 

2) Edge Computing expands the Cloud computing 
facilities to the edge of the network, near to end-users, 
bringing the low level of latency and a large amount of 
bandwidth [27]. Different distributed technologies are used 
in Edge computing to extend Cloud technologies capabilities 
at the edge of the network. Edge computing aims to bring 
computation offloading toward the edge of networks [27]. 
Different KPIs [26] can be defined in the smart city literature 
for measuring the performance of the produced data to run 
the applications on them. 

C. Cost Models 

Cost estimation models used to estimate the costs of a 
product or project in general [26, 28]. The results of the 
models have approved the usage of a product or project. In 
addition, the results are also factored into business plans, 
budgets, and other financial planning and tracking 
mechanisms. There are several mathematical algorithms or 
parametric equations to estimate these costs [26]. 



 

 

In [26], we review ten different cost models. We realized 
that each cost models and selection methods have their 
strengths and weaknesses, and the best one depends on these 
properties and the users’ demands. The properties that are 
used to compare different solutions are computational 
complexity, user input, adaptivity, etc. [26]. 

IV. DATA DISCOVERY THROUGH OUR PROPOSED D2C-
ICT ARCHITECTURE FOR SMART CITIES 

A. From Decentralized-to-Centralized ICT (DC2C-ICT) 
Architecture to D2C-ICT Architecture 

In our previous studies, we first designed the 
Decentralized-to-Centralized ICT architecture based on Fog-
to-Cloud technologies [3]. The proposed Decentralized-to-
Centralized ICT architecture has facilities to manage data 
from sensors to Cloud technologies. Note that this 
architecture is only designed to manage physical data sources 
(sensors and actuators) in smart cities. Plus, the Fog layers 
can only communicate with each other through Cloud 
technology. Next, we designed a fully hierarchical D2C-ICT 
architecture for smart cities based on using Fog, cloudlet, and 
Cloud technologies [6]. This D2C-ICT architecture is able to 
organize non-physical data sources as well as physical data 
sources in smart cities. Some examples of the non-physical 
data sources in the city are external data consumer databases 
and third-party application databases. Therefore, D2C-ICT 
architecture can organize all physical and non-physical city 
data sources across different distributed-to-centralized 
technologies. In addition, D2C-ICT architecture can manage 
all city- and non-city data sources in centralized 
technologies. Finally, the distributed layers can communicate 
with each other through cloudlet technologies, and the 
distributed layers can communicate with Cloud and 
distributed technologies through Cloud technologies. 

B. MAUT Cost Model 

The stated criteria compare different cost model 
approaches that are presented in [26]. The basis of the 
comparison is divided into six columns, as described in [26], 
including approach name, computational complexity, user 
input, comparison, adaptivity, and strict constraints. Finally, 
we found that the MAUT [14] cost model is a suitable option 
for our performance measurement through our proposed 
D2C-ICT architecture for smart cities [26]. 

The MAUT cost model is an approach to solving multi-
attribute/criteria decision or optimization problems using 
utility functions to rate the different KPIs [14]. It works 
almost the same way as the linear programming approach in 
the Simple Cloud Provider Selection (SCPS) algorithm [24], 
but it differs in how it calculates the scores of each attribute. 
It includes two extra steps, the first being the identification of 
the values of the KPIs themselves, and the second being the 
assigning of utility values to the KPI values identified. Like 
in the linear programming approach, preference weights are 
set, and the score for each solution is calculated by 
multiplying the utility value of each objective in the solution 
with its weight and summing up the results for each 
objective. An example of the MAUT function is shown in 

Formula 1, where each KPI and its measurement passed 
through a utility function ui(x) and multiplied by its weight 
wi. An example of a user-defined utility function is shown in 
Formula 2, which maps latency measurements to utility 
values. The utility functions could be any function that takes 
in measurement and returns a utility score between 0 and 
100, where 100 is the optimal utility. 

                              taken from [14]                                 

                 taken from [14]                                                                

As both services and data can have several KPIs, if the 
selection is dependent on more than one KPI, it makes the 
problem of selecting among these a multi-criteria decision 
problem. If you have a single criterion when selecting, the 
selection is trivial in many cases. For example, deciding to 
buy a car, if the only criterion is the price, then you pick the 
cheapest one. If you introduce two criteria, like price and 
comfort, it is suddenly not that easy. As there exists no value 
relation between the two criteria, how much more you are 
willing to spend on more comfort is highly individual. The 
difficulty arises because these problems give rise to a set of 
trade-off optimal solutions (also known as Pareto-optimal 
solutions), instead of a single optimal or a set of equally 
optimal solutions [29]. An optimal trade-off solution is a 
solution that is not dominated by another alternative. Being 
dominated means that there exists an alternative that is better 
on every criterion (strongly dominant). Fig. 1 shows an 
example of trade-off optimal solutions, and a single 
dominated alternative d, where d has a higher cost and lower 
comfort than solution A and B. 

 

Fig. 1. Five trade-off optimal solutions [29] 

There are two main approaches to selecting among these 
alternatives. The first involves finding all the trade-off 
optimal solutions and then selecting one in the set of trade-
off optimal solutions. This is an approach fit for human 
decision-makers that use their intuition and knowledge to 
choose among a smaller set of alternatives. The other 
approach is called scalarization [29], which is an approach to 
convert the multi-criteria decision problem into a single-
criteria decision problem, which is easy to solve and can be 
easily be automated. This approach, as the cost model, takes 
in a set of KPI measurements for the alternatives and 
produces a ranking of the alternatives. That ranking can then 



 

 

be used to select from, by picking the best-ranked alternative. 
Fig. 2 shows an example of a cost model used for three 
alternative cars with cost and comfort KPIs. After ranking 
and scoring the alternatives with a cost model, the one with 
the highest score is chosen. 

 
Fig. 2. Three alternatives with their KPIs [29]  

V. USE CASE FOR DATA DISCOVERY: ZEN CENTER 

The ZEN center contains eight different pilot projects in 
diverse cities in Norway [30]. The ZEN ICT architecture 
must be capable of including multiple ICT 
applications/services/tools for the researchers and partners 
concerning their business demands. Therefore, various data 
sources must cooperate to build ZEN services/tools.  

A. KPIs and Toolbox for ZEN center 

The ZEN center [30] defines a set of KPIs to test and 
analyze the performance of pilot projects [31]. ZEN KPIs are 
“a set of quantifiable performance measurements that defines 
sets of values based on measurement data from a project, 
making sure to measure and track the neighborhood’s 
performance over time and against other similar projects.” 
Therefore, there is a need for a clearly defined set of 
assessment criteria and KPIs that can be used to create 
methods and tools to assess the progress of the ZEN pilot 
project in terms of reaching their stated goals. This KPI data 
needs to be collected and made available from the pilots. 

B. D2C-ICT Architecture for ZEN center 

As we discussed in [6, 7, 16], we introduce a completely 
hierarchical distributed (from sensors and IoT devices) to 
centralized (Cloud computing technologies) ICT architecture 
for the ZEN center as a context of smart cities. Our D2C-ICT 
architecture for the ZEN center is based on Fog, cloudlet, 
and Cloud technologies [6, 16]. The preliminary basis of the 
recommended ICT architecture is proposed throughout the 
two main axes, Time and Location. Those axes demonstrate 
our idea about the ZEN ICT management in smart cities 
through the concept of the “ZEN center requirements,” “data 
management architecture,” “software management 
architecture,” and “technology layers.” 

C. Using the MAUT cost model for data discovery in the 
ZEN center 

The cost model design is based on the underlying ZEN 
decentralized-to-centralized ICT architecture [2, 32], as 
shown in Fig.3. There are two “Integrated and Intelligent 
Control and Monitoring of IoT” (I2CM-IoT) in Fog-Layer-2, 
which are in two different cities of Norway, Trondheim, and 
Bergen. Furthermore, there is also an I2CM-IoT is in the 
Cloud, which may be in a different country (in our test it is in 
Finland). The architecture supports adding more units in 

Fog-Layer-2, but for simplicity, only two are included in the 
design. The solid arrows represent the communication 
between I2CM-IoT s, while the stippled arrow represents 
communication between I2CM-IoT s and data repositories. 

It is a distributed design, where different instances of 
what in this case is called “I2CM-IoT” are hosted in the Fog-
Layer-2 and Cloud layer and can communicate with each 
other. The idea behind the design is that I2CM-IoT can be 
queried and get a response but being in a city where an 
I2CM-IoT in the Fog-Layer-2 layer is hosted. As a result, it 
is better to find data from that city. In this case, the I2CM-
IoT is kept separate from the data repositories, but could just 
as easily be implemented as a part of the data storage. In the 
scenario outlined for the ZEN, there might be different actors 
within the same city, like an energy provider, a municipal 
entity, or a research team that they keep data from the city 
that might be accessed. 

I2CM-IoT I2CM-IoT

I2CM-IoT           Cloud

 

Fig. 3. The ZEN cost model based on F2C ICT architecture 

The I2CM-IoT consists of three major components, as 
discussed below. Those three components are “request 
handler,” “cost model,” and “routing.” In addition to the 
I2CM-IoT, a GUI is designed as the point where the user 
interacts with the system, consisting of a configuration 
component to specify criteria for the search, as well as a 
search component that searches for specific data and displays 
the results. In Fig.4, the internal architecture and how the 
different components interact is shown, where solid arrows 
show internal control flow of the I2CM-IoT and request and 
response to the I2CM-IoT, and the stippled arrows show the 
queries that the routing component might make. How the 
control flows from a query to the I2CM-IoT, to its response, 
is shown in the sequence diagram in Fig.5. 
 Request Handler: The request handler organizes the 

incoming queries, from either a user or another I2CM-IoT 
and is responsible for forwarding the request to the other 
components and responding to the query once the other 
two components are used.  
The request handler acts as the interface to the I2CM-IoT. 
Two types of communications would access the request 
handler, the first being user requests in the form of a 
search query together with a description of the cost model 



 

 

parameters, which returns a ranked list of all the suitable 
alternatives. The other is a request from another I2CM-IoT 
that needs information about data repositories that the 
I2CM-IoT knows about, in the form of a search query 
without a cost model configuration and returns all results 
that match the query. The search query consists of the 
location where the data was created, the time it was 
created, and the type of data it is, like temperature 
measurements.  

I2CM-IoT

Database

Cost 
Model

Routing

Request Handler

Just select and type text. 

Use control handle to 

adjust line spacing.

Routing Table

Response

Query

 

Fig. 4. Internal architecture of an I2CM-IoT [26] 

 

Fig. 5. Control flow for user query [26] 

 Cost Model: The second component is the “cost model,” 
which is responsible for filtering and calculating a ranking 
between all viable alternatives that are found based on the 
criteria given by the user in the query. It can either return 
the ranked results or the highest-ranked alternative. 
The cost model designed for the ZEN proposal is based on 
that MAUT approach [14]. The reason behind using this is 
that it is a fairly intuitive approach that allows creating a 
reasonably detailed ranking function depending on the 
number of intervals done. Being a utility-based 
comparison makes it easier to target specific performance 
values than by using comparison to the relative 
performance of all alternatives. It is not very 
computationally demanding, as it only needs one iteration 
through all alternatives to find the best score. It also 
seemed easy to make an intuitive interface for that as well. 
However, as it does not have strict constraints in it, 
filtering results on strict constraints will be added as part 
ranking and selection. This is something that should give a 
variety of ways for a user to specify their demands for the 
results. So, the cost model configuration consists of a set 

of significant constraints that filters out alternatives based 
on some KPIs, and utility functions in the form of utility 
intervals and their weights. The final result set consists of 
all the alternatives that are scored. A pseudo-code 
implementation of the cost model is presented in algorithm 
1. After gathering all the alternatives in alternatives, it 
iterates through them. For each alternative, it first iterates 
through the strict constraints in the filter, if the alternative 
breaks a constraint, it fails, and it is nothing added to the 
final results. If it is not filtered out, it iterates through the 
criteria for the ranking, calculating a score with the weight 
and utility function in each criterion c, adding it to the total 
score, before it is appended to the list of results together 
with its score. 

ALGORITHM 1: The cost model calculation [26] 

 
 Routing: The last component is the router. The router 

depends on some of the search parameters, queries the 
location that might hold the type of data for metadata 
about the data and their service properties. 
The routing component is responsible for querying all the 
places that might have the data the user is looking for, 
specified by the search query sent to the request handler, 
and passed to the routing. It consists of a routing table and 
a set of query algorithms. The idea behind this approach is 
based on the distributed hash tables containing information 
on where to find data or files presented in [26]. The 
approach allows the different nodes of the system to hold 
partial information about all data stored in the system and 
knowing where to forward the queries if it does not hold 
that information itself. This means that an I2CM-IoT in the 
Fog-Layer-2 layer only needs to hold information about 
the data stored for the Fog-Area, limiting the amount of 
information kept and managed by it and that 
communication can go to I2CM-IoT placed locally, 
instead of through the Cloud I2CM-IoT, lowering response 
times. Any query to it for data from another Fog-Area is 
forwarded to the Cloud I2CM-IoT that will forward it to 
the correct Fog. 
The main reason for this approach is to assume that data 
generated in a building can only be found at certain places, 
at the Fog-Layer near where it was generated as real-time 



 

 

data, at Fog-Layer-2  layer as last recent data kept in the 
Fog-Layer-2 repositories in the same city, or the Cloud as 
historical data. This can also be influenced by the 
frequency of central data collection and aggregation of 
KPI data. This could be extended to be done together with 
“type” and “time,” as part of the routing entries, but is not 
done yet, focusing solely on location.  

VI. CONCLUSION AND FUTURE MAPS 

The contributions of this paper include designing a cost 
model for D2C-ICT architecture and tailoring ICT KPIs with 
business KPIs for data discovery in the smart cities. 
Therefore, we suggested the MAUT cost model for data 
discovery within a D2C-ICT architecture in the smart city. 

As a part of our future map, we will develop our 
proposed cost model for the ZEN center. 
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