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Control allocation for double-ended ferries with full-scale experimental

results

Tobias R. Torben, Astrid H. Brodtkorb, Asgeir J. Sgrensen

Abstract: A novel control allocation algorithm for double-ended ferries with symmetrical thruster configuration
is proposed. The allocation problem is formulated using the extended thrust representation, resulting in a four
dimensional constrained optimization problem. Using the thrust configuration constraint, the optimization problem
is reduced to a scalar bounded optimization problem, for which there exists fast solvers. We propose a cost function
and bounds such that the allocation algorithm supports the standard way of performing manual thruster control on
ferries. The real-time performance of the proposed algorithm is demonstrated in a simulation study, and in full-scale

experiments.
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1. INTRODUCTION

In the recent years there has been high activity related
to autonomy in ferry operations, both in academia and in
the industry [1, 8, 10]. Due to the relatively low mission
complexity, ferry operations make a good candidate for pi-
loting the transition towards increased autonomy in ships.

Automating the navigation tasks requires new devel-
opments for high-level control. However, at the control
execution level, functionality resembling a traditional dy-
namic positioning (DP) system must exist. The perfor-
mance and robustness of the DP system is paramount for
the success of the mission. For over-actuated marine ves-
sels, control allocation is a vital part of the DP system.
Improper allocation may lead to degraded control perfor-
mance, lower energy efficiency, and increased wear and
tear on the actuators.

In this paper, we treat control allocation for double-
ended ferries with symmetrical thruster configuration.
This is a standard setup for car ferries, of which there
exists several hundred in Scandinavia. A ferry crossing
typically consists of a high-speed transit phase and a low-
speed docking phase. During docking, fully actuated con-
trol is normally necessary to meet the high-precision re-
quirements in all weather conditions. A control allocation
algorithm is thus called for. These ferries have one az-
imuth thruster in each end with the same orientation, as
shown in Figure 2. A challenge with this configuration is

that it may take considerable time to change the direction
of thrust, as the turning rate of the azimuths is usually low.
In particular, when a braking force is required, one thruster
must turn 180 degrees. This time delay is unacceptable for
high-precision maneuvers, such as docking. Also, if not
treated carefully, the thruster may produce a force in the
wrong direction while turning, which may have a destabi-
lizing effect on the motion control system.

For manual thruster control, it is common to turn the
front thruster 180 degrees when approaching the dock.
A force can then quickly be produced in both forward
and reverse direction by balancing the thrust on the two
thrusters. At some ferry sites, turning the front thruster
by 180° is restricted, as the thruster wake may cause ero-
sion damage to the quay. In this case the aft thruster is
turned instead. The principle is the same, however some
thruster-thruster interactions may occur.

As far as the authors are aware, no previous published
work exists for control allocation for double-ended fer-
ries. However, there is a rich literature in control allo-
cation for marine surface vessels, commonly referred to
as thrust allocation. In-depth reviews of the literature are
given in [5] and [6]. Two methods dominate the literature.
The Pseudo-inverse method [13], and variations of the
Quadratic Programming (QP) method [11]. The Pseudo-
inverse method has an advantage in its simplicity and low
computational complexity, but it yields an unconstrained
solution. Also it does not support the thruster control
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method described for manual thruster control above. The
strength of the QP method is that it can add both equality
and inequality constraints. Drawbacks include relatively
high computational complexity and the fact that the origi-
nal allocation problem must be linearized before it can be
formulated as a QP problem.

The main scientific contribution of this paper is the de-
velopment of an efficient nonlinear control allocation al-
gorithm. The algorithm uses the thrust configuration con-
straint to reduce the solution space, and is able to control
the thrusters in a similar manner as described for man-
ual thruster control. The algorithm is tested in simulation
and in full-scale experiments with the passenger ferry pro-
totype milliAmpere, shown in Figure 1. The algorithm
was originally developed for the NTNU Autoferry mil-
liAmpere, and was first presented in [14]. Here it is elab-
orated upon with an extension for reversible thrusters and
additional experimental results.

Fig. 1. The NTNU-developed, fully electric passenger
ferry prototype, milliAmpere, used in the experi-
mental testing. Photo: Kai T. Dragland

The paper is organized as follows: In Section 2 the
problem formulation is described. In Section 3 the novel
control allocation algorithm is presented. In Section 4 the
results from the simulations and full-scale experiments are
presented and discussed. Conclusions are given in Section
5.

2. PROBLEM FORMULATION

In this paper the control allocation problem for the
thruster configuration shown in Figure 2 is considered.
This figure also shows the definition of the symbols and
directions used in this paper.

Fig. 2. Thruster configuration for double-ended ferries. F;
is the force from thruster i, with components F;
and F;, and angle ¢. L, indicates the longitudonal
distance from the center origin (CO) to each of the
thrusters.

For marine vessels with the horizontal plane (surge,
sway, yaw) as its working space, the input to the thrust
allocation module is the desired body frame control ac-
tion T = [X,Y,N]". The output from the thrust allocation
is the setpoints to the actuators. This can for instance be in
form of propeller speed or pitch, engine torque or power,
or rudder angle, depending on the type of actuator and the
corresponding mapping of the desired force [12].

The mapping from actuator setpoints to body frame
control action can be formulated as

7=B(a)u N

where o is a vector of unknown actuator angles and u
is an unknown vector of control inputs. The matrix B is
called the thrust configuration matrix. The objective of
the control allocation problem is to find an inverse map-
ping, that is, determine u and « such that the resulting
generalized force produced is 7. For over-actuated ma-
rine vessels, the system of (1) is under-determined, that is,
there are infinitely many solutions. This gives the thrust
allocation algorithm freedom to choose a combination of
u and o that is optimal in some sense.

For azimuth thrusters, the dependence of B on o can be
removed by considering the surge and sway components
of the thrust produced from one actuator. This is referred
to as the extended thrust representation [13]. In the case
of n azimuth thrusters, (1) takes the form

Fi
1 0o ... 1 0 Fy
T= 0 1 ... 0 1 : 2)
—Liy Liy ... —Lyy Ly, Fo.
Fo,

where L;, and L;, are the distances from thruster i to
the center origin (CO) in surge and sway directions, re-
spectively. F; ; and F;, are the surge and sway components
of the thrust produced by thruster i. This is illustrated in
Figure 2 for n = 2 thrusters.
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From the thrust components, the thrust and azimuth an-
gle for each thruster can be retrieved as follows:

F
T, = 1/Fi,2x -|-Ff_w ;= arctan% 3)

ix

3. NONLINEAR SCALAR CONTROL
ALLOCATION

In this section the nonlinear scalar allocation (NSA)
algorithm is presented, and guidelines for choosing the
bounds on the optimization problem and the cost function
are given. The section is concluded with a summary of the
steps of the algorithm.

3.1. Transformation to a scalar, bounded optimization
problem

When applying the extended thrust representation to the
thruster configuration of Figure 2, the thrust configuration
matrix, B € R34, becomes

1 0 1 0
B— 0 1 0 1 )
_Ll,y Ll,x _LZ,y L2,x

By assigning the index 1 to the front thruster and 2 to
the aft thruster, and exploiting the symmetry properties of
double ended ferries, it is clear that Ly, = L, = 0 and
Ly =L, = —L,,. Applying this to (4) yields

1 01 O
B=| 0 1 0 1 ©)
0 L, 0 —L,

A key observation here is that B is a Rank 3 matrix,
whereas there are 4 unknown thrust components to be de-
termined:

u= [F17X7F1,y7F2,X7F2,y]T

Hence, there is in fact only one degree of freedom in the
thrust mapping T = Bu. The main idea for the new thrust
allocation algorithm is to reformulate the original opti-
mization problem with 4 variables (7, if slack variables are
used as in [7]) into a bounded scalar optimization problem
in the one, free variable of the equation T = Bu.

To do this reformulation, the structure of the solution
space of T = Bu is investigated. Firstly, the augmented
matrix for the linear system is set up:

1 01 0 X
(Blz)=(0 1 0 1 Y (6)
0 L, 0 —L, N

Secondly, Gaussian elimination is performed on
( B ‘ T ) until the matrix is in reduced row echolon form.
This yields the equivalent linear system of equations

1010 X
0100 Néfiyy ©)
000 1 -5k

Written in matrix-vector form, (7) becomes

Fl,x

1010 F X

0100 2= Ml ®)
2x __N-LY

00 0 I P o+

Multiplying out (8) and writing out the components
yields:

Fl,x+F2,x:X (%9a)
N+LY
F,= oL, (9b)
N—-LY
py=—k (%)

This shows that F;, and F,, are uniquely determined,
whereas in (9a) there is one degree of freedom. Natural
choices for the parametrization of the solution space are
Fior F> . Fj . is chosen here.

For the next stage, the idea is to search for an optimal
solution by trying different choices of Fj .. For each step
of the optimization, a candidate F) , is selected. From this,
F>,, Fi, and F, can be calculated from (9a) - (9¢) such
that the thrust configuration constraint is satisfied. Now
that all the thrust components are known, the thrust magni-
tude and angle for each thruster can be calculated from (3).
Knowing the thrust magnitude and angle for each thruster,
a cost function can be defined to penalize, for instance,
large thrust magnitudes or large changes of azimuth an-
gle. This shows that the value of a cost function for all
possible solutions to (9a) - (9c) can be calculated by only
varying Fi ,. Two great advantages are thus achieved:

1. To search for the optimal solution, one only need to
solve a scalar optimization problem.

2. For every candidate solution, the thrust configuration
constraint, T = Bu, is automatically satisfied. This
removes the need for equality constraints in the opti-
mization problem, and the optimization problem can
then be reduced to a bounded optimization problem,
where the only constraints are fixed bounds on F ;.

The reason why these are great advantages, is that for
scalar, bounded optimization problems, there exists fast
and robust nonlinear solvers. Popular alternatives in-
clude Brent’s Method [3] and Golden Section Search [9].
Two example implementations are MATLABs fminbnd
and Python SciPys fininbound.
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3.2. Choosing the bounds in the optimization problem

There are several options for choosing the bounds on
Fi « in the optimization problem. First of all, the bounds
should ensure that the allocation algorithm does not com-
mand a greater thrust than the thrusters can deliver. To
ensure that a feasible solution exists for the optimization
problem, the commanded control action, 7 = [X,Y,N]",
should be saturated before entering the control allocation
module. There are several options for doing this. The ap-
proach used in this paper is to first calculate F; , ans 3,
from (9b)-(9c¢), and saturate them according to the max
thrust. X can then be saturated based on the remaining
capacity in F| , and F; .

If it is desirable that the front is turned 180°, as de-
scribed in Section 1, this can be achieved by constraining
the front thruster to only produce a negative surge force,
and the aft thruster to only produce a positive surge force.

To enforce these constraints, the requirement for the

front thruster is that /1, < 0 and Fy, > —, /T2, — F}?

max — 11y’

where T, is the maximum thrust produced by one
thruster.

Similarly, the requirement for the aft thruster is that

P >0and F, < /T2, —F}, Since the variable of

the optimization problem is Fj ., these constrains must be
expressed in terms F7 . This can easily be achieved using

(9a). This gives that Fj , < X and Fy , > X — /T2, — FZ%),.

In the end, these constraints give two upper and two
lower bounds on Fj . The bounds used in the optimiza-
tion problem are chosen to be the most restrictive of the
two. This yields the bounds

Flr,n)fn = max(— \/ Tn%ax - F127y7X - Tn%ax - FZZ)) (10)

F"* = min(0,X) (11)

1x

3.3. Choosing a cost function

In optimal control allocation algorithms, it is common
to penalize the thrust magnitude, to minimize energy con-
sumption, and to penalize the change in thrust magnitude
and the change in azimuth angle to reduce wear and tear
[5]. As noted in Section 3.1., it is possible to evaluate
these costs for all possible solutions by only varying Fj ..
Note that when the azimuth angles enter the cost function,
it becomes nonlinear due to (3).

If the thruster control method where the front thruster is
turned 180 degrees is used, the offset from the home an-
gles, a; = 180°, a, = 0°, can also be penalized to avoid
large or sudden changes in the azimuth angle. When tun-
ing the weights in the cost function, there is a trade-off
between energy efficiency and control performance. If

less weight is enforced on the angle change and devia-
tion from home angle and more weight is enforced on the
thrust usage and thrust change, the algorithm will allow
the thrusters to have larger angular displacements. For a
given commanded sway force or yaw moment, a lower
thrust is then needed to produce it, since the thrust will
have a larger lateral component. However, due to the low
servo speed, this will also yield a larger delay from com-
manded forces to produced forces.

In manual thruster control during docking, it is also
common to give both thrusters a mean thrust opposing
each other. This yields even faster response from com-
manded to produced control action, since it removes much
of the spin-up time. Of course, it will also increase the en-
ergy consumption since the thrusters are constantly coun-
teracting each other. The control allocation algorithm can
easily be extended to support this by adding a term in the
cost function which penalizes deviations from a prescribed
mean thrust.

Using all the ideas introduced in this section, the cost
function can take the form

C(F1~,X7T’a_aT_) =wr HTHZ -+ War ||AT||2
+wor [T > +wsq || ol +waq [Aat]*  (12)

where =, 7~ € R? are the azimuth angles and thrust
magnitudes from last time step, and T, € R? are the
thrust magnitudes and azimuth angles found from (3). F> .
is found from (9a). Aa € R? are the shortest angle paths
from o~ to &, S € R? are the shortest angle paths from
a to the home angles. AT € R? are the changes in thrust
magnitude from last time step, and 87 € R? are the de-
viations from the mean thrusts. wy, War, Wsr, Waa, Weo €
R>g are the corresponding weights.

Collecting all the penalized variables in a vector z =
[T,AT,8T,5a,Ac]” € R'0, the cost function can be writ-
ten more familiarly as a quadratic form:

C(z)=z2'0z (13)

where Q € R'9%10 is a positive semi-definite diagonal
matrix of weights.

3.4. Thrusters with reversible thrust

The nonlinear scalar control allocation algorithm can
easily be modified to support thrusters which can reverse
the thrust. In this case, the thusters do not need to turn 180
degrees to produce a braking force, and it is therefore not
necessary to constrain the front thruster to only produce a
negative force, and the aft thruster to produce a positive
force. The constraints of (10)-(11) are thus modified to

F" = max(— /T2, — F2, X —

Tn%ax - F22,y) (14)
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Fres = min(\ /T2, — 2, X +\/T2,—F,)  (15)

The solution of the optimization problem only gives the
surge and sway components of the thrust for each thruster.
However, when the thrusters can reverse the thurst, a given
combination of F;, and F;, can be produced in two differ-
ent ways, by reversing the thrust and turning the azimuth
by 180 degrees. To find the optimal solution in this case,
the optimization problem must be solved four times, with
the following configurations:

e Forward thrust on both thrusters

e Forward thrust on front thruster, reversed thrust on aft
thruster

e Reversed thrust on front thruster, forward thrust on aft
thruster

e Reversed thrust on both thursters

The solution with minimum cost of the four is cho-
sen. Because most thrusters are less efficient in reverse,
a term can be added to the cost function to penalize re-
verse thrusting. A solution with reversed thrust can still
be favourable, because it may lead to significantly lower
change in azimuth angle, and thus less control action de-
lay.

3.5. Summary of the control allocation algorithm

To do one iteration of the nonlinear scalar allocation al-
gorithm, the following steps must be performed:

1. Input the desired control action, 7, and the thrust mag-
nitudes and angles from last time step. Saturate the
desired control action to ensure that a feasible solu-
tion exists.

2. Set bounds on Fj , using, for instance, (10)-(11) or
(14)-(15).

3. Calculate F7 , and F3 , from (9b) and (9¢).

4. Formulate a cost function to minimize, for instance
based on (13).

5. Solve a nonlinear bounded scalar optimization prob-
lem where Fj , is the free variable and F , F3 ,, T are
constant parameters.

6. Calculate F, , from (9a).

7. Calculate the thrust magnitude and azimuth angle set-
points from (3).

4. RESULTS AND DISCUSSION

To evaluate the performance of the novel control alloca-
tion algorithm, simulations and full-scale experiments are
conducted. Simulations have the advantage that the pro-
duced thrust is known, and we can therefore compare the
commanded and produced thrust. In experimental testing,

the produced thrust is usually not known. Instead, the DP
performance of the ferry when using the nonlinear scalar
control allocation algorithm is evaluated, since good DP
performance relies on good control allocation.

4.1. Simulation setup, results and discussion

In the simulation study, a simplified model for an az-
imuth thruster, which can not reverse the thrust, is used.
The thruster dynamics are modelled as a saturated first or-
der system:

T= %(kT) (162)
T = max (0, min(Tyuy, T)) (16b)

where T, is the commanded thrust, 7 is the actual thrust,
Ty 1s the maximal thrust and O is the thrust time con-
stant.

The closed-loop azimuth servo is modelled as a pro-
portional controller from angle offset to servo speed with
saturation on the maximal servo speed. The dynamics of
the servo is neglected, that is, the actual servo speed is
assumed equal to the commanded servo speed.

a=r (17a)
r = max(—7Fmuqe, MIN(Fypax, —Kp (00 — 0))) (17b)

where « is the actual azimuth angle, ¢, is the commanded
azimuth angle, r is the servo speed, 7, is the maximal
servo speed and K, is the proportional gain.

The commanded control action is generated stochas-
tically from discrete first-order Gauss-Markov processes
[4]. The parameters of the stochastic processes are given
in Table 1. The commanded control action has some noise,
which is realistic for a signal from a DP controller.

The implementation of the control allocation algorithm
uses all the terms from (13). The parameters are given
in Table 1. For comparison, the Pseudo-inverse and QP
methods are tested under the same conditions. The imple-
mentation of the QP method is that of [5], not including
the singularity avoidance term.

Figure 3 shows the commanded generalized force,
together with the actual produced generalized force, Bu,
from the nonlinear scalar allocation algorithm. The results
show good tracking in all degrees of freedom.
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Fig. 3. Commanded and produced forces and moments for
the nonlinear scalar control allocation algorithm.

Figure 4 shows the corresponding azimuth angles. The
plot shows that both thrusters work in angles of +30°
about their home angles. There is good compliance be-
tween commanded and actual azimuth angles, indicating
that the allocation generates feasible references for the az-
imuth servos.
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Fig. 4. Azimuth angles when using the nonlinear scalar
control allocation algorithm.

Figure 5 shows the cumulative error between com-
manded and actual produced generalized force for the
three allocation methods; Pseudo-inverse, QP, and the
nonlinear scalar allocation (NSA) algorithm proposed
here. The figure indicates better performance for the non-
linear scalar allocation algorithm, although this can not
be claimed on this basis alone, since there is a possibility
of sub-optimal tuning for the QP method. It is believed
that the main reason for the improved performance is due
to penalizing large angular displacements. As discussed
in Section 3.3. this gives less delay in the control action
and thus tighter tracking and less accumulated error. As

expected, this comes at the cost of higher thrust usage.
In these simulations, the mean thrust was 40.0kN for the
NSA method and 16.2kN for the QP method. The trade-
off between performance and thrust usage is largely de-
termined by the weight on deviation from home angles in
the cost function. It should also be mentioned that an ad-
vantage of the QP method compared to the NSA method
is better handling in the case that the commanded control
action is greater than the propulsion system can produce
because it can include slack variables in the optimization.

5
1010 ‘
= NSA M
z s Pseudo-inverse =
=1 /
1]
0 n . . . .
0 50 100 150 200 250 300
x10°

Sway [Ns]

0 50 100 150 200 250 300

Yaw [Nms]

o

n | . .
50 100 150 200 250 300
Time [s]

o

Fig. 5. Cumulative error for between commanded and
produced generalized force for NSA, Pseudo-
inverse and QP

The computational complexity of the QP method and
the nonlinear scalar allocation algorithm are also com-
pared. In the comparison, the MATLAB fminbnd solver
was used for the nonlinear scalar algorithm and the MAT-
LAB quadprog solver was used for the QP method. Figure
6 shows histograms of elapsed time for one iteration. The
nonlinear scalar allocation algorithm is, on average, 37.8
times faster. Also, it has a more narrow distribution. This
is beneficial for robustness and predictability in a real-time
control system, which is of particular importance in au-
tonomous vessels.
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Fig. 6. Histogram of elapsed time for one iteration of NSA
and QP for 20000 samples.

4.2. Full-scale experimental setup, results and discus-
sion

The experimental tests were conducted with the passen-
ger ferry prototype milliAmpere. A maneuvering model
with with hydrodynamic and rigid body data of this vessel
can be found in [2]. The thrusters on this ferry can reverse
the thrust, and the modifications presented in Section 3.4.
was therefore used. We performed the commonly used 4-
corner maneuver to evaluate the performance. The sides
of the box are 10 meters, and the time used for one set-
point change is about 40 seconds. Between the each set-
point change, the ferry was performing stationkeeping for
several minutes. In this way both the transient and station-
keeping DP performance was tested. The ferry starts in the
lower-left corner and moves with the direction of the ar-
rows. The maneuvers are becoming gradually more com-
plex, as there is increasing coupling between the different
degrees of freedom for each side of the square. The posi-
tion and heading was obtained by Dual RTK GNSS, pro-
viding centimeter-level accuracy. The test was performed
in calm conditions.

Figure 7 shows the trajectory for the 4-corner DP test.
The figure shows good DP performance both in the tran-
sient and stationkeeping phases. As expected, there are
more deviations in the third and fourth maneuvers. This
is likely due to coupling between the degrees of freedom
and nonlinear effects such a vortex shedding. However,
compared to other 4-corner DP test results, these results
are considered good.

4-corner DP Test
d A |
o+ § J |

>

North
o
>
<
_—
=

2+ 1

4t

-

East

Fig. 7. Ferry trajectory from 4-corner DP test

Figure 8 shows ferry’s the position and heading together
with their respective references. Again, the results show
good tracking. Some minor oscillations in the heading can
be observed. The ferry has a flat keel, and therefore very
little yaw damping. This is believed to be the reason for
the heading oscillations.

5 T T
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I I
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8 o
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T
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Time [s]
Fig. 8. Reference tracking from 4-corner DP test. Refer-
ence in red and actual in blue.

DP performance is highly dependent on the perfor-
mance of the control allocation. These results therefore
give increased confidence for the feasibility of the novel
control allocation algorithm for use in real-time DP con-
trol systems.

5. CONCLUSION

A novel control allocation algorithm for double-ended
ferries with symmetrical thruster configuration was pre-
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sented. The algorithm reduces the dimension of solution
space using the thrust configuration constraint, yielding
a computationally efficient nonlinear optimization prob-
lem. Simulations and full-scale experimental results in-
dicate promising real-time performance for use in a DP
system.

Table 1. Parameters for simulations

Description Value
Thrust time constant 2.0s
Max thrust 200kN
Max servo speed 10%
Servo proportional gain 3.0%
Distance from thruster to vessel center 50m
Mean thrust 50kN
Weight on angle change 10
Weight on thrust usage 0.1
Weight on thrust change 0.1
Weight on deviation from home angle 3
Weight on deviation from mean thrust 0.1
Gauss-Markov time constant 200s
Gauss-Markov sample time 0.1s
Gauss-Markov force standard deviation | 40kN
Gauss-Markov torque standard deviation | 300kNm

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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