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THE CLASSICAL BOUSSINESQ HIERARCHY REVISITED

FRITZ GESZTESY AND HELGE HOLDEN

ABSTRACT. We develop a systematic approach to the classical Boussinesq (cBsq) hierarchy based
on an elementary polynomial recursion formalism. Moreover, the gauge equivalence between the
¢Bsq and AKNS hierarchies is studied in detail and used to provide an effortless derivation of
algebro-geometric solutions and their theta function representations of the ¢Bsq hierarchy.

1. INTRODUCTION

We develop an elementary algebraic approach to the classical Boussinesq (cBsq) hierarchy in
close analogy to previous treatments of the KdV, AKNS, and Toda hierarchies (cf. [2], (9], [10],
(12] and the references therein). The complete integrability of the classical Boussinesq system
(and its closely related variants, also known as the Kaup-Boussinesq, Broer-Kaup, and classical
Boussinesq-Burgers system),

1
us + FVees +(uw); =0, v +ovv; —u, =0, (1.1)
was originally established by Kaup [19], [20]. Various aspects of this system (and its variants) are
studied, for instance, in [3], [4], [5], [8], [13], [14], [15], [18], [21], 23], [24], [25], [27], [30], [31], and
[32).
Subsequently, the equivalence of the classical Boussinesq system (1.1) and the AKNS system,

Pe+ 5Pee —ip°q=0, @ = 30uat ipg® =0, (1.2)
was established by Jaulent and Miodek [18] by means of the explicit transformation

ut v =-pg, v= i%’- (1.3)
(cf. Section 4 for more details).

The principal purpose of this note is threefold. First, we develop the zero-curvature formalism
of the ¢Bsq hierarchy in Section 3 using a polynomial recursion formalism (independently of its
connection with the AKNS hierarchy). Second, we provide a new and elementary proof of the
gauge equivalence between the cBsq and AKNS hierarchies in Section 4. Finally, using this gauge
equivalence, we derive the class of algebro-geometric solutions of the cBsq hierarchy in Section 5.

The AKNS hierarchy and its class of algebro-geometric solutions, the fundamental ingredients
for Sections 4 and 5, are briefly reviewed in Section 2.
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2 GESZTESY AND HOLDEN

2. THE AKNS HIERARCHY

In this section we review the construction of the AKNS hierarchy and its algebro-geometric
solutions following a recursive approach to the AKNS zero-curvature formalism developed in [11].
We start by recalling the recursive construction of the AKNS hierarchy. Suppose p,¢: C = Cx

with C, = CU {00}, are meromorphic and introduce the matrix

v = (s 7).

Define {fe(z)}sen,s {9¢(2) }een,» and {he(z)} ey, recursively by
folz —iQ(I), go(z) =1, ho(z) = ip(z),

) =
fera(z) = ft =(2) — ig(2)ges1(z),
get1,2(T) = P(I)fl( ) + a(z)he (),
heta(z) = —Eh“(z) +ip(z)ge+1(z), £€No.

Exlicitly, one finds

fo=—iq, fi= 2q: + c1(—iq),
i i 1 .
fa= 7902 ~ 51’(12 +a (5%5) + co(—1g),

1
go=1 g =c, 92=§m+02,

i 1
g3 = —Z(P,q—pqz) +c (qu) +¢3,

ho =ip, hy = cp, +ci(ip),

1
2
ho p.. + pq+cl(1p)+62(ip),
T4t T g 2
etc.,

where {¢;};en C C are integration constants.
Next, define the matrix V,11(z, ) by
-3 _GN-H(zaz) Fn(z,z)
bt =5 (S i) meme

where Fy,(2,z), Gnt1(2, ), and H,(z,z) are polynomials in z € C of the type,

(212) = 3" fcel)st = =ig [ [z - ms(o)),
£=0 j=1
n+1

Gut1(z,7) = Z Int1-£(x)z

(z,2) = Zhn z)2t = H(z—uj(a:)).

Jj=1
Using the recursion (2.2) one verifies
Fn,z = ~2izF, + 2an+1,
Gn+1,z = pF, + ¢H,,
Hn,z' = 2izH, + 2pGrya,

(2.1)

2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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implying
(Ggﬁ—l — F.Hyp): =0, 2.7
and hence
Gn+1(z’z)2 —Fn(Z,II)Hn(Z,Z') = R2n+2(z)7 (28)
where Ran42(2) is a monic polynomial of degree 2n + 2 with zeros {Eo,...,Eant1} C C. Thus,
2n+1
R2n+2(z) = H (Z - Em)7 {Em}m=0,4..,2n+1 cC (29)
m=0

In particular, there is a naturally associated hyperelliptic curve K, of genus n obtained from the
characteristic equation for V41,

det (yI — iVps1(z,2)) = y? — Gny1(2,2)* + Fo(z,2)Hp(z, )
=y* — Rani2(2) = 0, (2.10)

with I = (3 9) . We compactify the curve by adding two points Py, . The compactified curve is still
denoted by K,,. A point P on the curve K, \{Pwo, } is written as P = (2z,y), where y% = Rany2(2).
For precise definitions of detailed properties of the curve K, we refer to Appendix A in [11].

The stationary AKNS hierarchy is obtained by enforcing the stationary zero-curvature relation

—Vn+1,1 + [U1 Vn+1] = 01 (211)
which, using (2.2), (2.4), and (2.5), reduces to
— Vn4lz + [U» Vn+1]

_ iGri1 g~ ipFn —iqHp,  ~iFp . + 22F0 + 2igGri (2.12)
iHp o +22H, — 2ipGpy1 —iGny1z +ipFn + igH, ’
iGn+1,c — iPfn — ighs =2fn+1 )

= ’ ) ! . =0. 2.13

( _2hn+1 —ign+1,2 + 'Lpfn +ighs ( )
Hence the stationary AKNS hierarchy is defined by
h"“) =0, neN,. (2.14)
fn+l
Explicitly, the first few equations read
-p, + c1(—2ip)
=0: = . =0,
" ( ~gz + c1(2iq)
i ;2 ;
ip,. —ip*q +ci(-p,) + c2(-2ip)
n=1: (2_ s ) ) =0, (2.15)
—1$qze +ipg® + c1(—gz) + c2(2ig)

etc.

Next we introduce a deformation parameter t,, € C in the functions p and g, that is, p = p(z,tn),
g = g(z,t,). The time dependent zero-curvature relation then reads

Ut,. - Vn+1,z + [U, Vn+1] =0. (216)
Employing (2.1), (2.12), and (2.13), one finds
Ui, = Vasi,z +[U, Vi)

— 2.Gnﬁ-l,a: —ipFy, — igH, qt, — iFn,:t +22F, + 2'l‘qGrH-l (2 17)
pr, +iHp o + 2zH, — 2ipGpn+1 ~iGny1,0 +pFn + igH, )
ign+1,c — iDfn — iqhn 4t — 2fn+1 ) (

= T . no . =0. 2.18

( Ptn — 2hnt1 —ign+1,e +pfn + ighn ' )

Hence the AKNS hierarchy is defined by

AKNS,.(p,q) = (”‘" - 2”"“) =0, neN. (2.19)
qt,. — 2fn+1
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Explicitly, the first few equations read

Pto — Pz + 01(—2i1)))
AKNSy(p,q) = o A =0,
op4) ( Gto — 4o + €1(2ig)
P, + 5p,, —ip%q + 1 (—p,) + c2(—2ip)
AKNS;(p,q) = ( o -, ' =0, (2.20)
G, — 30zz +10¢° + c1 (—¢z) + c2(2ig)
etc.

We also recall a scale invariance of the AKNS hierarchy (see [11] for details). Suppose (p,q)
satisfies one of the AKNS equations (2.19) for some n € Ny,

AKNS,.(p,q) =0 (2.21)
and consider the scale transformation
(P(@:tn), 4(2, tn)) = (B2, 1n), 4(2, 1)) = (Ap(z,ta), A7 g(z, ta)), A € C\{0}. (222)
Then
AKNS,.(p,q) = 0. (2.23)

The outlined recursive approach is not confined to the hierarchy of AKNS evolution equations.
Analogous considerations apply to the KdV, Toda, Boussinesq hierarchy, etc. (see [2], [9], [10],
[12] and the references therein).

Next we turn to the class of algebro-geometric solutions of the AKNS hierarchy. For brevity we
present the formulas in the time-dependent setting only. The corresponding stationary formulas
easily follow as a special case (cf. [11]). Let (p{9, ¢!®) be a solution of the nth stationary AKNS
system, that is,

Far1(@9,4©) = By (019,¢9) =0, (2.24)

for a given set {¢;}j=1,..,n+1 C C of integration constants. Consider subsequently the rth time-
dependent AKNS system for some fixed r € Ny, with integration constants {¢;};=1,...,
The corresponding quantities f;, g;, etc. (that is, with cy,..., ¢4 replaced by &,...,&-41), for

this system will be denoted with a tilde, fj, §;, hj, Vr41, etc. Thus, we are interested in the
construction of solutions (p, q) of

. - 2h,
AKNS,(p,q) = (”" ; “) =0, (@l=to. = @®*,d?). (2.25)
g, — 2fri1

These algebro-geometric AKNS solutions are obtained by a careful analysis of two specific functions
on K,. First one defines the meromorphic function ¢ on X,, by

y(P) +Gn+1(zaz7t7‘) _Hn(zazvtT)

P7 z’ t = = ’
¢( T‘) Fn(z7z1t7‘) y(P) —Gn+l(z7z7t7')

P={(z,y) € K. (2.26)
The divisor of ¢(P,z,t,) is given by
(¢(P,z,tr)) = D, s(atr) = PPou_pfoits)- (2.27)
Here
Az, te) = (ha(x,tr), .., fin(z, 2r)) € 07Ky,
Bi(x,te) = (i (@, tr), Gyt (i@, tr), 2, 80)), G =1,...,m, (2.28)
and
bz, tr) = (h(z,tr), ..., Dn(z, tr) € 07Ky,
vi(z,te) = (Wilz, tr), — G (Vi(z, te), 2, t:)), F=1,...,m, (2.29)
where o™K,, denotes the nth symmetric power of X, and

'DQoQ(P) =Dq, +Dq, Dq=Dgq, +---+Dq,,
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Q = (Qh sy Qn) € an’Cnv QO € KTH (230)
and for any Q € K,,,

1 for P=0Q,

0 for P e K,.\{Q}. 231)

Do:Kn +Ng, P Dg(P) = {

Secondly, we introduce the Baker—Akhiezer vector,

_ wl(Paz’xO’tratO,T)
W(quy -’L‘07tr;t0,r) = (1/)2(P,:E,(E0,tr,t0,r) ) (232)

T
1111 (vasz():tTWtO,T‘) = €xp (/ dz' (—ZZ + q(x’7t1‘)¢(P7 z’ytr))
xo
12

+i ’ ds(fn(z,zo,sw(P,zo,s) - én+l(z7z013))> s

to,r

1/)2(P1 I, g, tr, tO,r) = ¢(P1 z, tr)wl (P7 z, o, tr, tO,r):
P € Kn\{Pxy}, (z,t;) € C*.
The functions ¢ and 1 satisfy the following fundamental properties.

Theorem 2.1 (see [10], [11]). Let P = (2,y) € Ka\{Pwy} and (z,7,%0,tr to,r) € C®. Then
&(P,z,t,) satisfies

$a(P,2,t,) + q(@, t:)$(P, 7, t,)? — 2i26(P, 2, tr) = p(2, 8;), (2.33)

and ¥(-,z,z0,t0,to,r) fulfills
¥, (P, xz,Zo,tr to,r) = Ul(z,z,t.)¥(P,z,z0, tr, to.r), (2.34)
iy(PYR(P, z,T0, trs to,r) = Vat1(2, 2, 8) ¥ (P, 2,20, tr, to,r), (2.35)
U, (P, x,%0,tr, to.r) = Ves1(2, 2, t:)¥(P, 2, Zo, try to,r)- (2.36)

In addition, as long as the zeros of Fu(-,z,t,) are all simple for (z,t;) € Q, Q C R open and
connected, (-, z, L0, tr, tor), (T,t), (To,to,r) € Q, i meromorphic on Kn\{Poo.}

Further properties of ¢ and ¥ can be found in (11], Lemma 4.1.

In order to express the basic quantities in terms of Riemann’s theta function associated with
Kn, we need to introduce differentials and some more notation in connection with the hyperelliptic
curve K,,. In the following we assume K, to be nonsingular, that is,

Em # Ep, mym =0,....2n+1, m#m. (2.37)
Given a canonical homology basis {a;,b;}j=1,....n for K, with intersection matrix a; o bx = 6;k,
one denotes by wj, j = 1,...,n a normalized basis of the space of holomorphic differentials on K,
/ Wj = 0j,k, j,k:l,_..,n. (238)

[: 7%

In addition, one considers a canonical dissection of K, along its cycles yielding the simply connected
interior K, of the fundamental polygon

OKn = arbray b7t . antbt (2.39)

Next, we choose, without loss of generality, the base point Py = (Es,0) € K., and denote by Ap,,
ap, the Abel maps

Ap,: Kn = J(Ky), Pr Ap (P)= (Apy 1(P),..., Apyn(P))

P P
= (/ w1,~--,/ wn> (mod L), (2.40)
Py Po
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and
ap,: Dv(Ka) = J(Kn), D ap (D)= Y D(P)Ap,(P), (2.41)
PeK.,
where
Ln={2€C"|z=N+1M, N,M e€Z"} (2.42)

denotes the period lattice, and
J(Kq) =C"/Lp (2.43)
the Jacobi variety. In addition we introduce
Ap:Kn—C*, Pw Ap (P)=(Ap,(P),... APO, (P))

P
= (/ wl,..., (244)
Py

B Div(Ka) 2 €, D ap (D)= Y D(P) APO(P (2.45)
PeKn
and Zp, = (Ep,,15-- -5 Zpp,n), the vector of Riemann constants, by

Zp, = Ep,(mod Ly),
1 .
Ep= 5 (1 +/ w,) Z/ we(P)Ap, j(P), j=1,...,n. (2.46)

Next, consider the normal differential of the third kind w P3°)0+’ p,,  With simple poles at Py, and

P,,_, corresponding residues +1 and —1, vanishing a-periods, being holomorphic otherwise on
K. Hence one obtains

n ~ ~
3 T (7 = A;) dr 3 s
“’LM,POQ_ = ]f: w;ﬁ,_,pm = —wﬁa’ P (2.47)
/ W p =0, j=1,...,n, (2.48)
a; + -
u® =w®, ..., U,
1 n < .
o - %/b oD b = Apu (Puy) =2Ap5(Pay), G=1,...m, (2.49)
t
/ ;2+ P = ET(n() —In(wo) + O(C)), P =(¢"",y) near Py, (2.50)
P, = (-0

where the numbers {};};=1,...» are determined by the normalization (2.48). The Abelian differ-

,,,,,

entials of the second kind w}?li,o are chosen such that
w0 =, (€72 +0(1)) ¢ near Prsy (2.51)
aj
2 2 (2 2 1 2 2 5 2
D= UG UGh) UG = 5 /b,. 6, 0 =) g -uf) o (@253)

P
/ 2" o F(( +eoo+ el +0(¢%), P=(("y) near Ps,. (2:54)
Py
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In addition we define Abelian differentials of the second kind “’g;i,r by

wg‘li’r (io (€2 + 0O(1)) d( near Py, T € Ng, (2.55)
/ wgo)oi,r = Oa J = 17"'7"7 (256)
a;
~(2) ~(2 22 77(2 1 O
B = @, 0, Y =g [ 4,
T
0O = S (g + Ve, — @bl o) (257)
q=0
P - r
8O = (Y &I +E0+0(Q) |, P=(C"y) near Peoy, (2.58)
Py ¢—0 \g=0

with {&}¢=1,.., C C, & = 1 denoting integration constants.
Finally, we abbreviate
2P,Q) = Ap,(P) - ap, (Do) - En, (2.59)
2:(Q) =2(Peoy, @)y @=(Q1,---,Qn) (2.60)
Next, assume that (p, g) satisfies the rth time-dependent AKNS equation with initial data (p®,¢9)
being solutions of the nth stationary AKNS equation at ¢t = to,r, that is,
(p(x; to,r), a(@, to.r)) = 00 (2),dV (), z€C. (2.61)

The principal aim is to derive explicit formulas for the solution (p, q) as well as the function ¢ and
the Baker—Akhiezer function ¥ in terms of the Riemann theta function

8(z)= Y exp (2mi(m,z) + 7i(m,Tm)), z€C",
meLr

(_@,Q) = ;—ﬂ]’l}]a T= (/bJ wk)] . . (262)

k=1,...,n

This is the content of the next theorem.

Theorem 2.2 (see [10], [11]). Let P € Ku\{Poor}, (z,To,tr,to,r) € C*, assume K, to be non-
singular, and suppose Dy(z.1) and Dy(zz) to be nonspecial, that is, their index of speciality van-
ishes, i(Dy(z.ty)) = H(Dpizty) = 0 Moreover, suppose that (p,q) satisfies AKNS.(p,q) = 0 with
(p, q)|t,=t0‘: = (p'0,4(®), a solution of the nth stationary AKNS system. Let ¢ and ¥ be defined
by (2.26) and (2.32), respectively. Then

% 0(z_(f(zo,to,r))) 0(zy ((z, ) 8(2(P, &(z, tr)))
(o, tor)wo 8(z4 (B, to,r))) 8z (B(z, 1)) B(2(P; f(z, 1))

¢(P,.’E,t,-) =

P
X exp (/P wgc)owpw_ — 2i(x — z0)eo,0 — 2i(t, — to,r)€r0), (2.63)
(]

8(z, ((zo, o)) 8(2(P, 1z, tr))
Y1(P, 2,70, troto,r) = 9(5(3», (@0, 0,0))) 0z, (A=, 1))

P P _
X exp (l(x - 1‘0)(60,0 + / 95)2)) + ’L(tr - t(),r) (é’r,O + / 95‘2))) ’
Py

Py
_ 2 0(&-(_’2(107t0,7‘))) 0(§(Pa E(Zytr)))
Y2(P, 2,20, b o) = TS S0 BB, lzor tor) 0(z_ (002, 1))

P P
X exp (/P wglypw_ +i(z — z0)( — €00 + /P 982))
[ 0

(2.64)
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P
+i(ty —tor)( —éro + / 69)))- (2.65)

Py
Furthermore, one derives

B 6(z_ (220, 10,))) Bz, (02, 1,)))
Pl tr) = B0y tor) G o o) 0z B t) ¥
X exp(—2i(z - 1130)60,0 — 21:(t,- had tO,T)éT,O)y (266)

Bz, (20, t0,)) Bz (ilz, 1))

alate) = aloostor) g e Bla (3 &)
X exp(Zi(a: - 5170)80,0 + 2i(tr - tO,r)ér,O)v (267)
4 0(z (¥(z0,%0,5))) 8(2_(f(z0,t0,r)))

ot o) = — NZ4 - , 2.68
Pa0stor)al@0:tor) = G2 G G g T0,))) Bz (0 o)) (2.68)
82 )
p(z,tr)q(x,t,) = —eq,1 — 32 In(0(z, (ji(z,t-)))), (2.69)
and
. 2 . ~(2)
Qp, (D_[i(x,tr)) = Qap, (DE(IO,tO,r)) - ’L(.’L‘ - zO)QO - l(t,- - tO,r)Qr s (270)
. . ~(2)
Qp, (Dz(z.tr)) =ap, (Dﬁ(zo,to,r)) - 1(.7: - -TO)Q((Jz) — ity — tO,r)Qr . (2~71)

Algebro-geometric solutions of the AKNS equations (i.e., the case r = 1, n € N) have previously
been derived by a variety of authors, see, for instance, [1], [6], [7], [16], [17], [22], [26], [28], [29] and
the literature cited therein. The principal contribution of [11] to this circle of ideas is an effortless
treatment of algebro-geometric solutions of the entire AKNS hierarchy (i.e., for r,n € N) using
the elementary polynomial recursion formalism outlined in the first part of this section.

3. THE CLASSICAL BOUSSINESQ HIERARCHY

In this section we follow the zero-curvature formalism introduced by Geng and Wu [8] for the
¢Bsq hierarchy and adapt it to the recursion formalism outlined in Section 2. Fix! a € C\{0},
B € C, and define the matrix

Uea) = (7250 D afj”(;‘)“”)) . (3.1)
Define recursively {f;(z)}jen,, {G;(z)}ieno, and {h;(z)}jen, by
folz) = ~i(u(z) + Bue(2)), Gole) =1, holz) = —i, (3.2a)
fin(@) = %71;1(1) +iav(z)f;(2) - i(u(z) + Bvs (2))F;4.1 (2), (3.2b)
j+1,0(7) = (u(z) + Bz (2))h;(z) - f;(2), (3.2¢)
Rj1() = ~5hie(3) + iav(@)hi(2) = 17,41 (2), € No. (3.2d)

Explicitly, the first few elements read

71 = %(U + fvz)s + av(u + Bug) + c1(—i)(u + Bv.),

_ _ 1
hi=e, = —5u+tBu) +o, (3.3)
by =av— icy,

etc.

!The constants a and 3 remain fixed in the following and will not be emphasized in the notation.
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where {c;};en C C are integration constants.

Next, define
= _ (~Gnnr(z,7)  Falz,2)
Vn+1 (z,z) =1 ( _‘ﬁn(z’z) an+l (Z,:E) (34)
where (2, ), Gny1(2,7), and H,(2,z) are polynomials in z € C,
Fo(z,z) = ane = —i(u(z) + Buz(z )Hz—,u]x)
n+1
Grti(2,2) Zgn-H (@), (3.9)

n

Hulz,z) = Z—ﬁn_g(z)zl =—i [[(z - 7;(a)).
=0 i=1

Using the recursion (3.2) one verifies

Fnz = —2(12 + av)Fn + 2(“ +ﬂvz) n+ls

Guyiz = (+ Bv)Hp — Fa, (3.6)
Hy. =20z +av)H, — 2Gny1,
implying
(Gn+1 FoH,): =0 (3.7
and hence
Grri(z,2)? — Fulz,2)H,(2,7) = Rony2(2), (3.8)
where Rany2(z) is a monic polynomial of degree 2n + 2 with zeros {Eb, ..., E2nt1} C C. Thus,
2n+1
R2n+2 H (Z - m ) {Em}m=0,4..,2n+1 cC (39)

Again the corresponding hyperelhptlc curve K, of genus n is naturally obtained from the charac-
teristic equation for V41,

det (yI — iV (2,2)) = y* = Grpa(2,2)° + Fo(z,z)H,(2,2)

=y — Ronya2(2) = 0. (3.10)
The corresponding zero-curvature relation then reads, employing (3.4) and (3.5),
- Vn+l z + [U Vn+1] (311)
- ( Cnt1,24+Fn—(ut+Bve)Hn —?n‘,—2(iz+av)F,.+2(u+ﬂ'u,,)a,.+1) -0
Ha . —2(iz+av)Ha+2Gn 41 —Grtt,e—Fnt(utfu,)Hn -

Using the recursion (3.2) to compute f]-, g;, and h; for j =0,...,n, (3.11) equals

~Vapite + [U Vsl (3.12)
gn+1a: +fn (u+ﬂvw)ﬁ _fn;r: —2avfn +2(u+ﬂvr)gn+1 =0
hn z 2avh + 2gn+1 gn+1 x fn (U + ﬂvz) n ’
Next, let
1-— —
Iny1 = _'2‘hn,z + avhn (3.13)

(consistent with fi,+1 = 0 in (3.2d)). Inserting (3.13) into (3.12), we find that the stationary cBsq
hierarchy is given by
(fn ot 200f, + (ut Bvz)(Bn,z — 200hy)

*_hn zz + a(vhn)z + fn (u+ ,sz)hn ) =0, nelo. (3.14)
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Remark 3.1. Observe that due to (3.13), the nth stationary ¢Bsq system will contain only inte-
gration constants ¢y, . .., ¢, for n € N coming from integrating (3.2c). Since we have g1, , +F -
(u + Bvz)hy = 0 from (3.12), our definition (3.13) is consistent with the definition of g,,; given
by the recursion (3.2c). However, no new integration constant is introduced.

The first few equations (after some simplifications) read
n=0: ("z) =0, (3.15)
[} Vg
n=1: (u+ﬂv$)zz +4a(v(u+ﬂv1))z _Cli(u+ﬂvz)z =0
T Uz + (ﬂ - a)vzz + 2(12 (1)2)1 - Qiclav,: ’
etc.

In the special homogeneous case, the latter set of equations, the stationary classical Boussinesq
system, can be rewritten in the more familiar form

u+t(B—a)vg +20%0° =0, (208 — B vzes + (@ — B)tizs + 4a® (uv); = 0. (3.16)

Using the first equation in (3.16), the second can also be rewritten as vzzz — 12a2%(v?),; = 0.

To discuss the time-dependent hierarchy of classical Boussinesq systems we follow the AKNS
case and introduce a deformation parameter ¢, € C in the functions u and v, that is, u = u(z, t,),
v = v(2,t,). The time-dependent zero-curvature relation then reads

Ui, —Votrz +[U,Vas1] =0, (8.17)
implying
0= -ﬁt,. — —‘7"4.1’1 + [U, 7,,+1] (318)
_ (—am,,+i6,.+1,,+z‘7,._i(u+ﬁu,)ﬁ,, (u4Bv2)tn, —iFn.a ~2i(iz+0av) Fn+2i(u+8v2)Gn+1 )
- iHp o —2i(iz4+0v)Hn+2iGny1 avy, —1Gn41,2—iF n+i(u+0vs)Ha ’
Using now the recursion (3.2) to compute f;, g;, and k; for j =0,...,n, (3.18) reduces to
Ui, = Varre + U, Vi) (3.19)
_ [ —oven B, tiFp —i(utBo2)En (uhBua)en —iF, o~ 200F 420w 4v)T0ta | _
= iRn,e—2ia0hn+2ig, 4, ave, —iGny1,0— 0 n Hi(U+B2)Rn -
or equivalently,
ave, —iGni1e — if, +i(u+ Bug)hy, =0, (3.20a)
(u+ Bvz)e, —ifpe — 2iavf, + 2i(u + Bv2)Gnyq =0, (3.20b)
Pn,z — 200hp + 25,4y = 0. (3.20¢)

Using An » — 2avhy, + 2§, = 0 in order to eliminate g, ,; in (3.20a) and (3.20b), then yields the
following expressions for the time-dependent classical Boussinesq hierarchy,

e, = B ces + 1080z = i((8+ @) + B8 - )0r)n
—i(Bu+ (B — a)vz)z — 202 (u + Bug )v) ke +i(B — a)?nyz — 2ia?vf, =0, (3.21)
av, + %ﬁn,u —iavh, ; +i(u+ (8 - a)v )b, —if, =0, neN.
For brevity, equations (3.21) will be denoted by
cBsq, (u,v) =0, n€eN. (3.22)

Remark 3.2. Observe that g, ., defined by (3.20c) does not satisfy (3.2c), but rather (3.20a). This
is in contrast to the stationary case as well as the corresponding definitions for the AKNS hierarchy.
As in the stationary case, the nth cBsq system contains n integration constants ¢i,...,c, forn € N.
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Explicitly, the first few equations read

Bsqq(u,v) = (‘;‘}:0 :ZZ,) =0, (3.23)
0

| quy; —$0BYapat F(B—a) (Ut Brs)aa—2ia” (uv)e ter(—aua) | _
CBSql (u,'u) - ( avtl—%(u-H?u,),—Ziazzrv,+cl(—av,) =0,

etc.

In the homogeneous case ¢Bsq, (u,v) = 0 can be rewritten as

i i .
aug, = 5:3(20 - ﬂ)vzxa: + ‘2'(0 - ﬂ)uza: + 21&2(1“))1,

1 . .
oy, = 5(,3 — Q)vgs + 2ic’vy, + %ux (3.24)
Finally, specializing to @ = 8 one obtains the classical Boussinesq system
ug, = %av,m + Zio(wv),, owy, = 2ictvv, + %uz (3.25)

In the next section we provide a new proof of the fact that the AKNS and the cBsq hierarchies
are gauge equivalent by exibiting an explicit gauge transformation between them. In the last
section this will be used to derive algebro-geometric solutions of the cBsq hierarchy.

4. THE GAUGE EQUIVALENCE OF THE cBsQ AND AKNS HIERARCHIES

We start by briefly recalling the effect of gauge transformations on zero-curvature equations.
Starting with the time-dependent equations

v, =U0¥, ¥ =V", ¥= (ﬁ;) ) (4.1)
whose compatibility relation ¥,; = ¥, yields the zero-curvature equation
U -V, +[U,V]=0, (4.2)
we introduce the gauge transformation
¥ =5T, S invertible. (4.3)
Then one derives,
9, =0%, T =VF, (4.4)
with
U=5,8"1+8US!, V=581+5vst (4.5)
and hence
U, -V, +[U,V]=0. (4.6)
The corresponding stationary formalism starts from
v, =U%¥, u¥=V¥ yeCl 4.7
and
-V +[U,V]=0. (4.8)
The gauge transformation (4.3) then effects
T,=U¥, @wt=VTV, (4.9)
with
U=5,81'+8US8™!, V=8vs! (4.10)
and hence

-V.+[U,V]=0. (4.11)
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Introducing the particular choice

—p)L/2
S = (( 18 1/(_(;)1/2> , p meromorphic on C (4.12)

and applying it to (4.7)-(4.11) in the case of the stationary AKNS hierarchy, identifying (U, V)
and (U, V,,41), then yields the following result.

Theorem 4.1. The stationary AKNS and cBsq hierarchies are gauge equivalent in the sense that
T=58,51+SUS™", Vopp1=8VuuS™h, (4.13)

with (U, Voe1) and (U, Vnt1) given by (2.1), (2.4) and (3.1), (3.4); respectively, and S defined by
(4.12) (with p = p(z)). In particular, the pair (u,v) given by

_ pe(z) _1n@
) = -ploalo) + e (25) o) = - B

satisfies the nth stationary cBsq system if and only if the pair (p,q), given by

p(z) = exp (—2(1 /z dz’ v(a:')) ,
q(z) = —(u(z) + Bu(z)) exp (2a /z dz' v(z’)) , (4.15)

satisﬁes the nth stationary AKNS system with identical sets of integration constants c¢; € C,
j=1,...,nforneN.

(4.14)

Proof. U = S;S~1+8US™! is easily seen to be equivalent to (4.14). Similarly, Va1 = SV, 871
is equivalent to

1
Fp= _pFna Gn+1 = Gn+1: H, = _;Hn- (416)

Next suppose that (p,q) solves the nth stationary AKNS system, that is, equations (2.6) hold.
Define Fy,, Gn+1, and Hy, by (4.16) and (u,v) by (4.14). Then clearly (3.6) is satisfied, proving
that (u,v) satisfies the nth stationary cBsq system.

Conversely, starting with (u,v) solving the nth stationary cBsq system (3.6), we can define
(p,q) and F,, Gpt1, and H, using (4.15) and (4.16), respectively. One then easily verifies that
(2.6) holds, and thus (p, g) solves the nth stationary AKNS system. |

We note that the ambiguity inherent to (4.15), due to an arbitrary integration constant, corre-
sponds to the scale invariance of the AKNS hierarchy as discussed in (2.21)-(2.23).
The time-dependent analog of Theorem 4.1 then reads as follows.

Theorem 4.2. The time-dependent AKNS and cBsq hierarchies are gauge equivalent in the sense
that

U= st—l + SUS_I, Vn+1 = StnS—l + SVn+1S—l, (417)

with (U, Vng1) and (T, Vny1) given by (2.1), (2.4) and (3.1) and (3.4), respectively, and S defined
by (4.12) (with p = p(z,t,)). In particular, the pair (u,v) given by

(2, tn) 1 py(z,ty)
= tn ParBoim/ ) | Jtn) = Pol®sin) .
w(z,tn) = —p(z,tn)g(z, tn) + = 5 ( o 0 ): v(z,t,) = % p(z.tn) (4.18)
satisfies the nth cBsq system cBsq,,(u,v) = 0 if and only if the pair (p,q) given by

p(z,t,) = exp (—2a /I dx' v(z',tn)> ,
gz, tn) = —(u{z, tn) + Buz(z,ta)) exp (2(1 /w dz’ v(z’,tn)) , (4.19)
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satisfies the nth AKNS system AKNS,.(p,q) = 0 with identical sets of integration constants ¢; € C,
j=1,...,nforneN

Proof. U = S;S571 + SUS! is equivalent to (4.18) as noted in the proof of Theorem 4.1. By a
direct calculation, Vs = Si, 87! + SVp 41571 is equivalent to
= i Pta

— — 1
Fn = _pFTH Gn+1 = Gn+1 + 5 ) 3 Hn = -;Hn (4.20)

Next assume that (p,q) solves the nth AKNS system, that is, equations (2.17) hold. Define F,
Grs1, and Hy, by (4.20) and (u,v) by (4.18). Then clearly (3.11) is satisfied, proving that (u,v)
satisfies the nth cBsq system.

Conversely, starting with (u,v) solving the nth cBsq system (3.11), we can define (p,q) and F,,
Ghna1, and H, using (4.19) and (4.20), respectively. Again one verifies that (2.17) holds, and thus

,q) solves the nth AKNS system. O
(9 y

The equivalence of the ¢cBsq and AKNS hierarchies, on the basis of the transformation (4.18)
has first been noted by Jaulent and Miodek [18] and later by Matveev and Yavor [27]. It has been
further discussed and linked to Hirota’s bilinear formalism by Sachs [30]. Our method of proof of
Theorems 4.1 and 4.2, based on the polynomial recursion formalism developed in Section 3, to the
best of our knowledge, is new.

5. ALGEBRO-GEOMETRIC SOLUTIONS OF THE CLASSICAL BOUSSINESQ HIERARCHY

Finally we derive the theta function representation of algebro-geometric cBsq solutions utilizing
the gauge equivalence of the cBsq and AKNS hierarchies.
Let (u(®,v(®)) be a stationary solution of the nth classical Boussinesq system, that is,

Fro +200f  + (u+ Bvg)(hnz — 2avh,) = 0,
_ _ i- _
Fo—(ut Boz)hn — ihn,zz + a(vhn)z =0, (5.1)

for a given set of integration constants {c;};=1,..n C C. Fixr € N and corresponding integration
constants {&;}j=1,...,, C C. The aim in this section is to construct a solution (u,v) of

CBSQT(u7v) = Ov (u’v)hr:to,r = (U(O)’U(O))' (52)

The function ¢ and the Baker—Akhiezer function T associated with the classical Boussinesq hier-
archy can be obtained as follows.

Theorem 5.1. Consider P = (z,y) € Kn\{Poo, } and (2,2, 20, ¢, to,r) € C®. Let ¢, ¥, and S be
given by (2.26), (2.32), and (4.12), respectively. Define

¥ = (@) =50, ¢= _¢ (5.3)
Py p

Then ¢(P,x,t,) satisfies ¢ =/t and
o(@ BB, 1) — 5 Fa(Prs )

1 — 12— 1
+ E(u(zvtr) + /sz(zvtr))¢(P1m7tr)2 - E¢(P’ Iatr) - % = 01 (54)
and ¥(-,z,To,to, to,r) fulfills
az(P,-'Eyl‘o,tr, tO,r) = U(zv (l},tr)‘-I;(P,ZL', antrvtO,r); (5.5)
iy(PYB(P,z,To,tr toy) = Vint1(2, T, tr) ¥ (P, 2, o, try to,r), (5.6)

@‘tr (P, z,:co,tr, t(),,-) = VT+1(Z,I, tr)T(P, r,Zxo, tr, tO,r)~ (57)



14 GESZTESY AND HOLDEN

In addition, as long as the zeros of F.(,z,t.) are all simple for (z,t,) € Q, @ C R? open and
connected, ¥(-,x, 2o, tr,t0.7), (2,t), (Zo,t0,r) € Q, is meromorphic on Kp\{Peo, }.

Proof. Immediate from Theorem 2.1 and (4.1)-(4.6). O

The explict representation of algebro-geometric solutions of the classical Boussinesq hierarchy
in terms of the Riemann theta function associated with X,, then reads as follows (we use the
notation employed in Theorem 2.2).

Theorem 5.2. Let P € K \{Pw, }, (z,%0,tr,t0,r) € C!, assume K,, to be nonsingular, and sup-
pose Dyz.) and Dy, 4.y to be nonspecial, that is, their index of speciality vanishes, i(Dp(en)) =
i(Dz(I,;)) = 0. Moreover, suppose that (u,v) satisfies c¢Bsq,(u,v) = 0 with (U7U)|;=to,,
(ul®,v®), ¢ solution of the nth stationary classical Boussinesq system. Then the theta func-
tion representation of (u,v) is given by

e A B & (8(z,(0z,1,)))
u(z,t.) = €p1 + gﬁln(g(i+(l_‘(zatr)))) + %ﬁln (m) )
_ i 1 8 0(z, (2(z,t.)))
’U($,t1-) = 360,0 - ﬁa—zln (m) . (58)
Proof. Combine Theorem 2.2 and (4.18). a

Obviously one can derive formulas similar to (2.63)-(2.65) for the functions ¢ and ¥ using the
explicit relation (5.3). We leave the corresponding details to the reader.

Algebro-geometric solutions of the time-dependent classical Boussinesq system cBsq; (u,v) = 0
and their theta function representations were originally derived by Matveev and Yavor [27]. The
case of real-valued solutions and additional reductions to elliptic solutions in the case of genus
n < 3 were subsequently studied by Smirnov [31]. Theta function representations of algebro-
geometric solutions of cBsq,.(u,v) = 0 in the case r < 3 appeared in a recent preprint by Geng
and Wu [8].
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