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Abstract. Over the past decade, several approaches have been introduced for 
short-term traffic prediction. However, providing fine-grained traffic prediction 
for large-scale transportation networks where numerous detectors are 
geographically deployed to collect traffic data is still an open issue. To address 
this issue, in this paper, we formulate the problem of customizing an LSTM 
model for a single detector into a finite Markov decision process and then 
introduce an Automatic LSTM Customization (ALC) algorithm to automatically 
customize an LSTM model for a single detector such that the corresponding 
prediction accuracy can be as satisfactory as possible and the time consumption 
can be as low as possible. Based on the ALC algorithm, we introduce a distributed 
approach called Distributed Automatic LSTM Customization (DALC) to 
customize an LSTM model for every detector in large-scale transportation 
networks. Our experiment demonstrates that the DALC provides higher 
prediction accuracy than several approaches provided by Apache Spark MLlib. 

1   Introduction 

In the past decade, several approaches for short-term traffic prediction have been 
proposed. They can be classified into parametric approaches and nonparametric 
approaches. The autoregressive integrated moving average (ARIMA) model is a widely 
used parametric approach [1], in which the model structure is predefined. The 
nonparametric approaches include k-nearest neighbors method, artificial neural 
network, recurrent neural network (RNN), etc. As a type of RNN, long short-term 
memory (LSTM) [2] is superior in predicting time series problem with long temporal 
dependency such as traffic prediction. Prior study [3][4][5][22] have demonstrated that 
LSTM provides satisfactory prediction accuracy. However, to our knowledge, none of 
existing LSTM-based prediction methods is designed to provide fine-grained traffic 
prediction for large-scale transportation networks where numerous detectors are 
geographically deployed to collect traffic data. 

The success of LSTM depends on choosing an appropriate hyperparameter 
configuration, including the number of hidden layers and the number of epoch [6], since 
the configuration determines if LSTM can achieve satisfactory prediction accuracy or 
not. However, determining such a configuration is usually done manually. Each time a 
different configuration is used for training an LSTM model, and many times of 



retrainings might be required until the LSTM model provides satisfactory prediction 
performance. This process might be time consuming and energy-inefficient, and such 
a process will be even longer when providing the above-mentioned fine-grained traffic 
prediction for large-scale transportation networks. 

To address the above issues, in this paper, we formulate the problem of customizing 
an LSTM model with an appropriate hyperparameter configuration for a single detector 
into a Markov decision process and then employ Value Iteration [7] to suggest the 
policy that consumes the least expected training time. We then incorporate the policy 
into an automatic LSTM customization (ALC) algorithm and further take prediction 
accuracy into account to automatically customize an appropriate LSTM model for a 
single detector. More specifically, ALC will keep training the LSTM model by 
preferentially following the policy suggested by Value Iteration until the prediction 
accuracy of the LSTM model reaches a predefined threshold or until the prediction 
accuracy cannot be further improved by all possible choices. 

In order to provide fine-grained traffic speed prediction, we propose that each 
detector-period combination (DPC), i.e., each detector in a different time period, should 
have its own LSTM model. In addition, to effectively customize LSTM models for all 
DPCs in large-scale transportation networks, we introduce a distributed approach based 
on the ALC algorithm, named DALC. Note that the first letter D stands for 
“distributed”. In the DALC, each DPC will have its own LSTM model, and the jobs for 
customizing LSTM models for all DPCs will be executed by a set of computation nodes 
in a parallel manner.  

To demonstrate the effectiveness of DALC, we conduct an experiment to compare 
DALC with several distributed machine learning approaches provided by Apache 
Spark MLlib [8]. The results show that DALC provides the best prediction accuracy 
and is able to achieve fine-grained traffic speed prediction for large-scale transportation 
networks in a distributed and parallel manner. 

The rest of the paper is organized as follows: Sections 2 and 3 describe the 
background of LSTM and related work, respectively. In Section 4, we introduce the 
details of ALC and DALC. Section 5 presents the experiment result. In Section 6, we 
conclude this paper and outline future work. 

2   LSTM 

LSTM [2] is a special type of RNNs with ability to learn long-term dependencies and 
model temporal sequences. The architecture of LSTM is similar to that of RNN except 
that the nonlinear units in the hidden layers are replaced by memory blocks. Each 
memory block contains one or more self-connected memory cells to store internal state. 
Each memory block also contains three multiplicative units (input, output and forget 
gates) to manage cell state and output using activation functions. These features enable 
LSTM to preserve information in the memory block over long time lags. 

In order to optimize the prediction performance of LSTM, it is essential to choose 
appropriate hyperparameters, including the number of hidden layers, the number of 
hidden units, the number of epochs (Note that an epoch is defined as a complete pass 
through a given dataset [6]), learning rate, activation function, etc. Determining the 



 

above hyperparameters often depends on a trial-and-error approach and lots of practices 
and experiences. In this paper, we focus on determining a configuration consisting of 
two hyperparameters, i.e., the number of hidden layers and the number of epochs, since 
these two hyperparameters are influential on determining both training time and 
prediction accuracy. Our goal is to automatically customize an LSTM model with an 
appropriate hyperparameter configuration for a detector such that the prediction 
accuracy can be as satisfactory as possible and the corresponding time consumption can 
be as low as possible. 

3   Related work 

Existing traffic prediction approaches can be classified into two categories: parametric 
approaches and nonparametric approaches.  

Parametric approaches are also called model-based methods in which the model 
structure has to be determined in advance based on some theoretical assumptions, and 
the model parameters can be derived with empirical data. The autoregressive integrated 
moving average (ARIMA) model is a widely used parametric approach [9], with which 
Ahmed and Cook [1] predicted short-term freeway traffic flow and Hamed et al. [10] 
forecasted traffic volume in urban arterial roads. Many ARIMA-based approaches were 
then developed to enhance prediction accuracy, including Kohonen-ARIMA [11] and 
seasonal ARIMA [12].  

Different from parametric approaches, nonparametric approaches do not require a 
predefined model structure. Typical examples of nonparametric approaches include k-
nearest neighbors (k-NN), artificial neural network (ANN), RNN, hybrid approaches, 
etc. In year 1991, the k-NN method was used by Davis and Nihan [13] to forecast 
freeway traffic. After that, several variants of the k-NN method were introduced for 
traffic prediction. For instances, Bustillos et al. [14] proposed a travel time prediction 
model based on n-curve and k-NN methods. 

Lv et al. [9] proposed a deep learning approach with a stacked autoencoder model to 
learn generic traffic flow features for traffic flow prediction. The greedy layerwise 
unsupervised learning algorithm is applied to pre-train the deep network, and then a 
fine-tuning process is used to update the parameters of the model so as to improve 
prediction accuracy. Ma et al. [3] employed LSTM to forecast traffic speed using 
remote microwave sensor data. Their experiment results compared with other recurrent 
neural networks (including Elman NN, Time-delayed NN, Nonlinear Autoregressive 
NN, support vector machine, ARIMA, and the Kalman Filter approach) show that 
LSTM provides superior prediction accuracy and stability. 

Different from all the above work, in this paper, we focus on providing fine-grained 
traffic speed prediction for large-scale transportation networks in a distributed and 
parallel manner. Customizing an LSTM for a single detector is automatically done by 
the proposed ALC algorithm. In addition, to effectively customize LSTMs for the 
enormous number of detectors in the target large-scale transportation networks, we 
introduce a distributed approach based on the ALC algorithm. 



4   LSTM customization for a single detector 

In this section, we introduce how to convert the LSTM customization problem for a 
single detector into a finite Markov decision process (MDP), and then present the ALC 
algorithm to achieve automatic customization. 

4.1 Markov decision process formulation 

As mentioned earlier, this paper focuses on customizing an LSTM model for a detector 
in terms of two-hyperparameter configuration: hidden layers and the number of epoch. 
For every detector, its LSTM can have up to 𝑛  hidden layers and the maximum 
allowed training for every different configuration is 𝑘 epochs, where 𝑛 ≥ 1	and 𝑘 ≫
1. Fig. 1 illustrates the state transition graph for the LSTM customization problem. 
Each state 𝑠 is a large oval labelled by the number of hidden layers, and the number 
of epochs, except the start state which is labelled by start. We define an LSTM model 
under configuration 〈ℎ, 𝑗 ∙ 𝑒〉 as state 𝑠/,0∙1, implying that the LSTM model has been 
trained with the configuration of ℎ hidden layers and 𝑗 ∙ 𝑒 epochs, where ℎ ≤ 𝑛, 𝑒 
is a fixed integer number (e.g., 100), and 𝑗 = 1,2, … , 𝑘/𝑒. For instance, when the state 
is 𝑠7,1, it means that the LSTM model has been trained with configuration 〈1, 𝑒〉. Note 
that the number of epochs is assumed to start from 𝑒, regardless of the value of ℎ. 

 
Fig. 1. The state transition graph of customizing an LSTM model for a detector. 

We define the action set for state 𝑠 to be 𝐴9. Given the current state 𝑠/,0∙1, two 
actions denoted by small solid circles in Fig. 1 are possible: 𝐶9;,<∙=&9;,(<@A)∙=  and 
𝐶9;,<∙=&9;@A,= , i.e., 𝐴9;,<∙= = {	𝐶9;,<∙=&9;,(<@A)∙=	, 𝐶9;,<∙=&9;@A,=} . The former action is to 
compare the LSTM model under configuration 〈ℎ, 𝑗 ∙ 𝑒〉 with the LSTM model under 
configuration 〈ℎ, (𝑗 + 1) ∙ 𝑒〉. If the latter LSTM provides better prediction accuracy, 
the state will transit to 𝑠/,(0F7)∙1. Otherwise, the state will remain the same, i.e., 𝑠/,0∙1. 
The latter action 𝐶9;,<∙=&9;@A,= is to compare if the prediction accuracy of the LSTM 
model can be improved by changing the configuration from 〈ℎ, 𝑗 ∙ 𝑒〉 to 〈ℎ + 1, 𝑒〉, 



 

i.e., adding one more hidden layer with the initial number of epochs. If the answer is 
true, the state will transit to 𝑠/F7,1. Otherwise, the state will still be 𝑠/,0∙1. 

Table 1. All possible values for state transition probability and time consumption. 
𝑠 𝑎 𝑠H 𝑃(𝑠H|𝑠, 𝑎) 𝑇(𝑠, 𝑎, 𝑠H) 

𝑠/,0∙1 
𝐶9;,<∙=&9;,(<@A)∙= 

𝑠/,(0F7)∙1 𝛼/,0∙1 (𝑗 + 1) ∙ 𝑒 ∙ 𝑡/ 
𝑠/,0∙1 1 − 𝛼/,0∙1 (𝑗 + 1) ∙ 𝑒 ∙ 𝑡/ 

𝐶9;,<∙=&9;@A,= 
𝑠/F7,1 𝛽/,0∙1 𝑒 ∙ 𝑡/F7 
𝑠/,0∙1 1 − 𝛽/,0∙1 𝑒 ∙ 𝑡/F7 

Based on the chosen action 𝑎 in state 𝑠, the state transition probability function for 
the next state 𝑠H is denoted by 𝑃(𝑠H|𝑠, 𝑎). Let 𝑇(𝑠, 𝑎, 𝑠H) be the time consumption 
incurred by taking action 𝑎 in state 𝑠 to transit to state 𝑠H. All possible values for 
𝑃(𝑠H|𝑠, 𝑎) and 𝑇(𝑠, 𝑎, 𝑠H) are listed in Table 1. Taking action 𝐶9;,<∙=&9;,(<@A)∙= in state 
𝑠/,0∙1  means that the LSTM model needs to be retrained with configuration 
〈ℎ, (𝑗 + 1) ∙ 𝑒〉 , i.e., ℎ  hidden layers with (𝑗 + 1) ∙ 𝑒  epochs. Hence, the 
corresponding time consumption is (𝑗 + 1) ∙ 𝑒 ∙ 𝑡/ where 𝑡/ is the time for executing 
an epoch when the number of hidden layers is ℎ. On the other hand, taking action 
𝐶9;,<∙=&9;@A,=  in state 𝑠/,0∙1  means that the LSTM model needs to be retrained with 
configuration 〈ℎ + 1, 𝑒〉 , i.e., ℎ + 1  hidden layers with 𝑒  epochs. Therefore, the 
corresponding time consumption is 𝑒 ∙ 𝑡/F7  where 𝑡/F7  is the execution time per 
epoch when the number of hidden layers is ℎ + 1. 

4.2 The ALC algorithm 

To find an appropriate hyperparameter configuration for a detector such that the 
resulting LSTM model is able to provide satisfactory prediction accuracy with low time 
consumption, we propose the ALC algorithm based on the state transition graph shown 
in Fig. 1 and Value Iteration [7]. Value Iteration is an iterative method of computing an 
optimal MDP policy and its value. Let 𝑄Q(𝑠, 𝑎) be the action-value function assuming 
there are 𝑖 steps to go from state 𝑠 by taking action 𝑎. Let 𝑉Q(𝑠) be the state-value 
function assuming there are 𝑖 steps to go from state 𝑠. 
𝑄Q(𝑠, 𝑎) = ∑ 𝑃(𝑠H|𝑠, 𝑎) ∙ (𝑇(𝑠, 𝑎, 𝑠H) + 𝛾 ∙ 𝑉QV7(𝑠H))9W  for 𝑖 > 0. 
𝑉Q(𝑠) = min

]
𝑄Q(𝑠, 𝑎) = min

]
∑ 𝑃(𝑠H|𝑠, 𝑎) ∙ (𝑇(𝑠, 𝑎, 𝑠H) + 𝛾 ∙ 𝑉QV7(𝑠H))9W  for 𝑖 > 0. 

where 𝛾 is a discount rate, which equals to 1 in this paper so that all the costs can be 
accumulated as they are.  

Fig. 2 shows the ALC algorithm. By starting with an arbitrary function 𝑉  (i.e., 𝑖 =
0) and using the above two equations to get the functions for 𝑖 + 1 steps to go from 
the functions for 𝑖 steps to go (i.e., working backward), the ALC algorithm calculates 
𝑉Q(𝑠) for each state 𝑠 and then checks if |𝑉Q(𝑠) − 𝑉QV7(𝑠)| is larger than 𝜃 for all 
the states (see lines 3 to 7), where 𝜃 is a predefined threshold with a positive value. If 
the answer is yes, implying that the difference between the two expected time 
consumptions is more than we accept, the ALC algorithm terminates its searching. As 
line 9 shows, for each state 𝑠, the action leading to the least expected time consumption 



will be stored as 𝜋(𝑠), i.e., 𝜋(𝑠) is the action suggested by Value Iteration to take 
when the state is 𝑠. 

 
The ALC algorithm 
Input: The training data and testing data associated with a detector 
Output: An LSTM model with an appropriate hyperparameter configuration for the detector 
Procedure: 
1: Let 𝑉 (𝑠) = 0 for each state 𝑠;  
2: Let 𝑖 = 0; 
3: repeat  
4:  𝑖 = 𝑖 + 1; 
5:  for each state 𝑠 ∈ 𝑆 { 
6:    𝑉Q(𝑠) = min

]
∑ 𝑃(𝑠H|𝑠, 𝑎) ∙ (𝑇(𝑠, 𝑎, 𝑠H) + 𝑉QV7(𝑠H))9W ;} 

7: until ∀𝑠 |𝑉Q(𝑠) − 𝑉QV7(𝑠)| > 𝜃 
8: for each state 𝑠 ∈ 𝑆 { 
9:   𝜋(𝑠) = argmin

]
∑ 𝑃(𝑠H|𝑠, 𝑎) ∙ (𝑇(𝑠, 𝑎, 𝑠H) + 𝑉QV7(𝑠H))9W ;} 

10: Let 𝐸hij = 0 and 𝐸h1j = 0; //They are used to store the AARE of current LSTM and new LSTM 
11: Let ℎ = 1, 𝑗 = 1, and	𝑓 = false; 
12: Use configuration 〈1, 𝑒〉 to train an LSTM model; 
13: 𝐸hij = the AARE of this LSTM model; 
14: if 𝐸hij ≤ 𝛿 { //	𝛿 is a predefined threshold. 
15:  Output the LSTM model under configuration 〈1, 𝑒〉; 	𝑓 = true;} 
16: else {  
17:  while 𝑓 = false & 𝑗 ≤ 𝑘/𝑒 & ℎ ≤ 𝑛{ 
18:    if 𝜋s𝑠/,0∙1t = 𝐶9;,<∙=&9;,(<@A)∙= { //Follow the action suggested at line 9. 
19:      Use configuration 〈ℎ, (𝑗 + 1) ∙ 𝑒〉 to retrain the LSTM model; 
20:      𝐸h1j = the AARE of the new LSTM model; 
21:      if 𝐸h1j < 𝐸hij { //The suggested action can lower current prediction error. 
22:        if 𝐸h1j ≤ 𝛿 { Output the LSTM model under 〈ℎ, (𝑗 + 1) ∙ 𝑒〉; 𝑓 = true;} 
23:        else { 𝑗 = 𝑗 + 1; 𝐸hij = 𝐸h1j; }}; // To continue by increasing number of epochs. 
24:      else {//The suggested action cannot lower the prediction error, so try the other action. 
25:        Use configuration 〈ℎ + 1, 𝑒〉 to retrain the LSTM model; 
26:        𝐸h1j = the AARE of the new LSTM model; 
27:        if 𝐸h1j < 𝐸hij { 
28:          if 𝐸h1j ≤ 𝛿 { Output the LSTM model under 〈ℎ + 1, 𝑒〉; 𝑓 = true; } 
29:          else { ℎ = ℎ + 1; 𝑗 = 1;	𝐸hij = 𝐸h1j; }} 
30:        else { //Both actions cannot improve the AAREs of current LSTM and new LSTM. 
31:          Output the LSTM model under 〈ℎ, 𝑗 ∙ 𝑒〉; 𝑓 = true;}}} 
32:    else { //It means that the suggested action is 𝐶9;,<∙=&9;@A,=. 
33:      Use configuration 〈ℎ + 1, 𝑒〉 to retrain the LSTM model; 
34:      𝐸h1j = the AARE of the new LSTM model; 
35:      if 𝐸h1j < 𝐸hij { //The suggested action can lower current prediction error. 
36:        if 𝐸h1j ≤ 𝛿 { Output the LSTM model under 〈ℎ + 1, 𝑒〉; 𝑓 = true;} 
37:        else {  ℎ = ℎ + 1; 𝑗 = 1;	𝐸hij = 𝐸h1j; }}  
38:      else {//The suggested action cannot lower the prediction error, so try the other action. 
39:        Use configuration 〈ℎ, (𝑗 + 1) ∙ 𝑒〉 to retrain the LSTM model; 
40:        𝐸h1j = the AARE of the new LSTM model; 
41:        if 𝐸h1j < 𝐸hij { 
42:          if 𝐸h1j ≤ 𝛿 { Output the LSTM model under 〈ℎ, (𝑗 + 1) ∙ 𝑒〉; 𝑓 = true;} 
43:          else { 𝑗 = 𝑗 + 1; 𝐸hij = 𝐸h1j; }} 
44:        else { //Both actions cannot improve the AAREs of current LSTM and new LSTM. 
45:          Output the LSTM model under 〈ℎ, 𝑗 ∙ 𝑒〉; 𝑓 = true; }}} 

Fig. 2. The ALC algorithm. 
 



 

Following all suggested actions can lead the total time consumption to the minimum, 
but it does not guarantee that the resulting configuration can achieve satisfactory 
prediction accuracy. On the other hand, keep searching for a configuration and use it to 
retraining the LSTM might be able to keep enhancing the prediction accuracy, but it 
might take a very long time. To avoid unnecessary time consumption, the ALC 
algorithm keeps searching for configurations that can enhance prediction accuracy and 
terminates when the LSTM under a configuration provides satisfactory prediction 
accuracy or when the prediction accuracy cannot be improved by all possible choices. 
The detailed process is as follows: The algorithm first uses configuration 〈1, 𝑒〉, i.e., 
one hidden layer with 𝑒 epochs, to train an LSTM model (see line 12). If the average 
absolute relative error (AARE) of the LSTM model (which is calculated based on 
Equation 1) is less than a predefined threshold 𝛿  (i.e., line 14), implying that the 
prediction accuracy is satisfactory, then the ALC algorithm outputs this LSTM model 
to be the LSTM model of the detector and sets 𝑓 to be true so as to terminate the search 
process. Otherwise, the ALC algorithm takes the action suggested by Value Iteration 
for state 𝑠/,0∙1 , i.e., 𝜋(𝑠/,0∙1). Note that 𝑓  is a boolean variable indicating if the 
desired LSTM model is derived or not. 

If 𝜋(𝑠/,0∙1)  is 𝐶9;,<∙=&9;,(<@A)∙=  (see line 18), the algorithm compares the LSTM 
model under configuration 〈ℎ, 𝑗 ∙ 𝑒〉  with the LSTM model under configuration 
〈ℎ, (𝑗 + 1) ∙ 𝑒〉 , implying that the algorithm must retrain the LSTM model with 
〈ℎ, (𝑗 + 1) ∙ 𝑒〉. If this new LSTM model provides a lower AARE than the original one 
(see line 21), the algorithm further checks if the AARE of this new LSTM model is 
lower or equal to threshold 𝛿. As line 22 shows, if the answer is yes, meaning that the 
prediction accuracy is satisfactory, this LSTM model is outputted to be the LSTM 
model of the detector. Otherwise, the algorithm tries another configuration by 
increasing 𝑗 by one (see line 23) to attempt achieving satisfactory prediction accuracy. 
The algorithm will go back to line 17 and to see if it can proceed. 

However, as line 24 shows, if the LSTM model under configuration 〈ℎ, (𝑗 + 1) ∙ 𝑒〉 
is worse than the LSTM model under configuration 〈ℎ, 𝑗 ∙ 𝑒〉, implying that the action 
suggested by Value Iteration is unable to enhance the prediction accuracy, the algorithm 
will take the other action, i.e., 𝐶9;,<∙=&9(;@A),=. In this case, the LSTM model will be 
retrained with configuration 〈ℎ + 1, 𝑒〉 (see line 25). If the prediction accuracy of this 
new LSTM model is satisfactory, it will be outputted (see line 28). In the case that this 
new LSTM model is better than the previous one but its AARE is still not low than 𝛿, 
the algorithm will try another configuration by increasing ℎ by one and setting 𝑗 to 
be one (see line 29). The algorithm will go back to line 17 and to see if it can proceed. 
It might be possible that the LSTM model under 〈ℎ + 1, 𝑒〉 is worse than that under 
〈ℎ, 𝑗 ∙ 𝑒〉  (see line 30), it means that neither taking action 𝐶9;,<∙=&9;,(<@A)∙=  nor 
𝐶9;,<∙=&9(;@A),= can enhance the prediction accuracy. In this case, the algorithm outputs 
the LSTM model under configuration 〈ℎ, 𝑗 ∙ 𝑒〉  to avoid unnecessary time 
consumption. 

The algorithm will follow a similar procedure as mentioned above to customize an 
appropriate LSTM model for the detector when 𝜋(𝑠/,0∙1) is 𝐶9;,<∙=&9;@A,= (see lines 32 
to 45). 



4.3 DALC 

In this section, we introduce how to customize LSTMs for all detectors in large-scale 
transportation networks based on the ALC algorithm. This paper focuses on predicting 
traffic speed in two specific periods on weekdays. One is from 4 am to 10 am. The other 
is from 2 pm to 8 pm. The reason we choose these two periods is that they cover peak 
commute hours, which might significantly affect traffic speed. 

Due to the dynamic nature of large-scale transportation networks, detectors deployed 
in different places might have diverse traffic-speed patterns in the two abovementioned 
periods. To demonstrate this, we choose ten detectors deployed between mile 1.14 and 
mile 14.4 on freeway I5-N in California [21] to compare their traffic-speed patterns in 
the AM period of a typical weekday. As illustrated in Fig. 3, not all of their patterns are 
identical. Hence, we propose that each detector should have its own LSTM model in 
order to achieve fine-grained traffic speed prediction. 

Furthermore, for any single detector, it is also possible that its traffic-speed patterns 
in these two periods are completely different from each other. According to our 
observation, we found that many detectors deployed on freeway I5-N have this 
phenomenon. For instance, the traffic speed collected by detector 1114190 (which is 
one of the detectors in Fig. 3) for five consecutive weekdays (from Oct. 16th 2017 to 
Oct. 20th 2017) illustrated in Fig. 4 shows that the pattern in the AM period is totally 
different from that in the PM period. Therefore, we propose that each detector in each 
of the two periods should have its own LSTM model in order to achieve our goal. In 
other words, the total number of LSTM models will be 2𝑚 if 𝑚 is the total number 
of the detectors in large-scale transportation networks.  

To effectively customize LSTMs for each of the 2𝑚 detector-period combinations 
(DPCs for short) in parallel, we extend ALC in a distributed and parallel manner and 
call the distributed approach DALC. DALC utilizes a set of computation nodes to share 
the workload of customizations. As long as a computation node is available, DALC 
requests it to customize a LSTM model for a DPC. In this way, LSTM customization 
for all the 2𝑚 DPCs can be conducted in parallel.  

 

 
Fig. 3. The traffic speed collected by ten detectors on freeway I5-N in the AM period of Oct. 

16th, 2017. 

 



 

 
Fig. 4. The traffic speed collected by detector 1114190 deployed on freeway I5-N for five 

consecutive weekdays. 

5   Experiment results 

We validated the prediction accuracy of our proposed approach in comparison with five 
distributed machine learning approaches provided by Apache Spark MLlib [8], 
including Linear Regression (LR), Generalized Linear Regression (GLR), Decision 
Tree Regression (DTR), Gradient Boosted Tree Regressor (GBTR), and Random 
Forest Regressor (RFR). All the six approaches are applied to the traffic data collected 
by the California Department of Transportation Performance Measurement System 
[21], which is a consolidated database of traffic data collected at 5-minute intervals by 
each detector placed on state highways throughout California. In this paper, we 
concentrate on predicting traffic speed on freeway I5-N. 

Table 2. The average training time per epoch given different number of hidden layers. 
Number of hidden layers Average training time per epoch 

1 𝑡7= 2.214 sec 
2 𝑡x= 3.311 sec 
3 𝑡y= 4.728 sec 
4 𝑡z= 5.547 sec 
5 𝑡{= 6.754 sec 

 
We established a private cluster using Hadoop YARN 2.2.0 [15] and Apache Spark 

2.0.1 [16]. The reason we chose Hadoop YARN is that it is an open-source software 
framework with high scalability, efficiency, and flexibility for processing high volume 
of dataset [17][18]. This cluster consists of one master node and 30 slave nodes. Each 
node ran Ubuntu 12.04.1 LTS with 2 CPU Cores, 2GB of RAM, and 100 GB of storage. 
To guarantee a fair comparison, no other job or work was executed when each of the 
abovementioned approaches runs on the cluster. When the five MLlib approaches were 
employed, they utilized current traffic flow to predict future traffic speed in 5-minute 
intervals. For DALC, we used DL4J [19] to implement the corresponding LSTM and 
adopted the default suggested values for all hyperparameters [19], except the two 
parameters considered in this paper, i.e., the number of hidden layers and the number 
of epochs. Recall that the average training time for each epoch under different number 



of hidden layers is required. This information is shown in Table 2 after we ran some 
experiments on the cluster. We can see that 𝑡7 < 𝑡x < 𝑡y < 𝑡z < 𝑡{, implying that the 
training time for each epoch increases as the number of hidden layers increases. By 
following the suggestion from [20] to achieve highly accurate prediction capability, the 
threshold 𝛿 used in the ALC algorithm is 0.05 for our approaches.  

To extensively measure and compare the effectiveness of all the approaches, one 
widely used performance metric, i.e., average absolute relative error (AARE) is 
employed, and it is defined as follows: 

AARE =
1
𝑊 ∙ �

|𝜏j − 𝜏j�|
𝜏j

�

j�7

 (1) 

where 𝑊 is the total number of data samples for comparison, 𝑤 is the index of time 
point, 𝜏j is the observed traffic speed at time point 𝑤, and 𝜏j� is the predicted traffic 
speed at time point 𝑤. 

In this experiment, we selected 60 detectors deployed on freeway I5-N ranging from 
mile 0 to mile 150.35 to be our targets. Recall that this paper focuses on providing 
traffic speed prediction for every detector in two specific AM and PM periods. 
Therefore, there are 120 DPCs (which stands for detector-period combinations) for the 
60 detectors. For each DPC, we chose its traffic-speed data in the corresponding period 
from five weekdays (from Oct. 16th, 2017 to Oct. 20th, 2017) to be the training data of 
all the approaches, and chose its traffic-speed data in the corresponding period from the 
next three weekdays (i.e., Oct. 23th, 2017 to Oct. 25th, 2017) to be the testing data of 
all the approaches. 

Fig. 5 illustrates the average AARE results of all approaches for the 120 DPCs. It is 
clear that the DALC approach outperforms the rest approaches. When DALC was 
employed, the average AARE values are all less than 0.04 with small standard deviation 
(see Fig. 5). However, when the rest five approaches were tested, the corresponding 
average AARE values are between 0.12 and 0.17 with significant standard deviation, 
implying that these five approaches provide offer poor prediction accuracy for the 
DPCs. In other words, they could not guarantee good prediction accuracy for all the 
DPCs. 

 

 
Fig. 5. The average AARE results of different approaches for all the 120 DPCs. 

 



 

6   Conclusion and future work 

In this paper, we have introduced the ALC algorithm to achieve automatic LSTM 
customization for a single detector by automatically configure the number of hidden 
layers and the number of epochs. Due to the diverse traffic patterns collected by 
detectors, we proposed to customize one LSTM model for each detector in a different 
time period (i.e., DPC). Furthermore, to effectively customize LSTMs for tremendous 
DPCs in large-scale transportation networks, we have introduced DALC to perform all 
the customization jobs in a distributed and parallel way. The experimental result based 
on real traffic data on freeway I5-N in California have demonstrated the outstanding 
prediction accuracy of DALC as compared with another five approaches provided by 
Apache Spark MLlib.  

In our future work, instead of customizing one LSTM for every single DPC, we 
would like to cluster DPCs into groups if they all observe a similar traffic pattern and 
customize one LSTM model for each group so as to speed up LSTM customization for 
the entire large-scale transportation networks. 
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