
Distributed Fine-Grained Traffic Speed
Prediction for Large-Scale Transportation

Networks based on Automatic LSTM
Customization and Sharing

Ming-Chang Lee1, Jia-Chun Lin1, and Ernst Gunnar Gran1,2

1 Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, 2815 Gjøvik, Norway

2 Simula Research Laboratory, 1364 Fornebu, Norway
{ming-chang.lee,jia-chun.lin,ernst.g.gran}@ntnu.no

Abstract. Short-term traffic speed prediction has been an important
research topic in the past decade, and many approaches have been in-
troduced. However, providing fine-grained, accurate, and efficient traffic-
speed prediction for large-scale transportation networks where numerous
traffic detectors are deployed has not been well studied. In this paper,
we propose DistPre, which is a distributed fine-grained traffic speed pre-
diction scheme for large-scale transportation networks. To achieve fine-
grained and accurate traffic-speed prediction, DistPre customizes a Long
Short-Term Memory (LSTM) model with an appropriate hyperparame-
ter configuration for a detector. To make such a customization process
efficient and applicable for large-scale transportation networks, DistPre
conducts LSTM customization on a cluster of computation nodes and
allows any trained LSTM model to be shared between different detec-
tors. If a detector observes a similar traffic pattern to another one, Dist-
Pre directly shares the existing LSTM model between the two detec-
tors rather than customizing an LSTM model per detector. Experiments
based on traffic data collected from freeway I5-N in California are con-
ducted to evaluate the performance of DistPre. The results demonstrate
that DistPre provides time-efficient LSTM customization and accurate
fine-grained traffic-speed prediction for large-scale transportation net-
works.

Keywords: Hyperparameter tuning · Lightweight LSTM · Large-scale
transportation networks · Traffic speed prediction · Distributed and par-
allel processing · The Nelder-Mead method.

1 Introduction

Accurate traffic-speed prediction is crucial to achieve efficient proactive traffic
management and control for large-scale transportation networks. During the past
decade, many approaches and methods have been introduced for short-term traf-
fic speed prediction. They can be classified into two main categories: parametric

2 Ming-Chang Lee et al.

approaches and nonparametric approaches. The former category of approaches
simplifies the mapping function to a known form, i.e., these approaches require a
pre-defined model. A typical example is the autoregressive integrated moving av-
erage approach (ARIMA) [1]. On the other hand, the nonparametric approaches
make no assumptions about the form of the mapping function, i.e., they require
no pre-defined model structure. The k-nearest neighbors (k-NN) method [6, 3],
artificial neural network (ANN) [5], recurrent neural network (RNN) [15], etc., all
belong to this category. As a special type of RNN, long short-term memory [8],
abbreviated as LSTM, is superior in time series prediction with long temporal
dependencies. Prior studies such as [17, 26, 27] have shown that LSTM provides
better prediction accuracy than many other approaches and neural networks.
Therefore, LSTM is chosen as a building block for traffic speed prediction in
this paper.

However, several issues still need to be addressed to achieve fine-grained,
accurate, and efficient traffic speed prediction for large-scale transportation net-
works. For example, in large-scale transportation networks, numerous detectors,
such as loop detectors or traffic cameras, are deployed in different places to
collect traffic data. Depending on the density of nearby population and other
factors, the traffic observed/collected by detectors at different locations may
have diverse patterns. For instance, Fig. 1 shows that five detectors deployed
on freeway I5-N in California [23] observe completely different traffic patterns
between 6 a.m. and 10 a.m. in a typical weekday. In order to provide fine-grained
traffic-speed prediction for achieving better transportation services and manage-
ment, we suggest that each detector should have its own LSTM model to predict
the traffic speed of its coverage. However, such an approach would be expensive,
time consuming, and impractical because we might need to manually configure
LSTM hyperparameters and train the corresponding LSTM model for each in-
dividual detector several times before we find an LSTM model that is able to
accurately make predictions. Note that LSTM hyperparameters are parameters
whose values are set before the training process of an LSTM starts.

To address the above issue, we propose DistPre, which is a distributed fine-
grained traffic speed prediction scheme for large-scale transportation networks.
DistPre customizes an LSTM model for a detector by automatically determin-
ing LSTM hyperparameter values and training the corresponding LSTM model
based on the Nelder-Mead method [19], which is a commonly applied method
used to find the minimum or maximum of an objective function in a multi-
dimensional space. To make the above customization process time-efficient for
large-scale transportation networks, we propose that detectors should share the
same LSTM model if they observe similar traffic patterns. More specifically,
DistPre works in an incremental, distributed, and parallel manner. Whenever
DistPre encounters an unprocessed detector i, it checks if the traffic-speed pat-
tern observed by detector i is similar to the one observed by any other detector
that previously has been processed by DistPre. If the answer is negative, Dist-
Pre requests an available compute node from a computer cluster to customize
an LSTM model for detector i. However, if the traffic-speed pattern observed by

DistPre for large-scale transportation networks 3

Fig. 1. The traffic speed collected by five randomly-chosen detectors on freeway I5-N
in California between 4 a.m. and 10 a.m. in a typical weekday.

detector i is similar to the one observed by a detector j, DistPre directly shares
the LSTM of detector j with detector i without requiring to customize a new
LSTM model for detector i.

To demonstrate the performance of DistPre, we conducted experiments on an
Apache Hadoop YARN cluster using real-world traffic data collected by detectors
on freeway I5-N in California. The results confirm that DistPre is able to provide
fine-grained and accurate traffic speed prediction for large-scale transportation
networks due to the LSTM customization. In addition, DistPre is scalable, ef-
ficient, and cost-effective since the number of LSTM models needed does not
proportionally increase with the number of detectors, due to the LSTM sharing
feature of DistPre.

The rest of the paper is organized as follows: Section 2 briefly introduce
LSTM, LSTM hyperparameters, and the Nelder-Mead method. Section 3 presents
related work, while Section 4 introduces the details of DistPre. In Section 5, we
evaluate the performance of DistPre. Section 6 concludes this paper and outlines
future work.

2 LSTM, LSTM hyperparameters, and the Nelder-Mead
Method

In this section, we introduce LSTM, LSTM hyperparameters, and the Nelder-
Mead method.

LSTM and LSTM Hyperparameters: LSTM [8] is designed to learn long-
term dependencies and model temporal sequences. The architecture of LSTM is
similar to that of RNN except that the nonlinear units in the hidden layers are
memory blocks. Each block contains memory cells, an input gate, an output gate,
and a forget gate. The input gate decides whether the input should be stored in

4 Ming-Chang Lee et al.

the memory cells or not. The output gate determines if current memory contents
should be output. The forget gate decides if current memory contents should be
erased. These features enable LSTM to preserve information over long time lags,
thus addressing the vanishing gradient problem [7].

It is well-known that the prediction performance of LSTM highly depends
on choosing appropriate values for the following hyperparameters:

– Learning rate (denoted by RLearn)
– The number of hidden layers (denoted by NLayer)
– The number of hidden units (denoted by NUnit)
– Epochs (denoted by ep)

The learning rate controls how much the weights of LSTM are adjusted
with respect to the loss gradient. The lower the value, the less is the chance to
miss any local minima, but it prolongs the training process. A hidden layer
is a layer between the input layer of LSTM and the output layer of LSTM.
The more complex the training dataset is, the more hidden layers are required
to learn the training dataset. A hidden unit is a neuron in a hidden layer.
It is responsible for taking in a set of weighted inputs and produce an output
through an activation function. Too many hidden units may result in overfitting,
while too few hidden units might cause underfitting. An epoch is defined as one
forward pass and one backward pass of all the training data. Too many epochs
might overfit the training data, whereas too few epochs may underfit the training
data.

Due to the importance of the above-mentioned hyperparameters to the learn-
ing performance and computational efficiency of LSTM, this paper takes all of
them into consideration. One of this paper’s goals is to automatically deter-
mine appropriate values for these hyperparameters such that the resulting LSTM
model is able to achieve high prediction accuracy and that human effort can be
greatly reduced.

The Nelder-Mead Method (NMM): NMM [19] is a popular optimization
method for non-linear functions. In this paper, we use it to automatically find
appropriate values for the above-mentioned LSTM hyperparameters. NMM min-
imizes the target objective function by generating an initial simplex based on a
predefined vertex and then performing a function evaluation at each vertex of
the simplex. Note that a simplex has n+1 vertices in Rn where n is the number
of dimensions of the parameter space. A sequence of transformations is then
performed iteratively on the simplex, aiming to decrease the function values at
its vertices. Possible transformations include reflection, expansion, contraction,
and shrinking. We refer readers to the original paper [21] for more details about
these transformations. The above process terminates when the sample standard
deviation of the function values of the current simplex fall below a predefined
threshold.

In our context, the initial simplex has five vertices. Each vertex consists of
four values assigned to the four LSTM hyperparameters. One of the five vertices

DistPre for large-scale transportation networks 5

is the so called predefined vertex, and it consists of four default values separately
assigned to the four LSTM hyperparameters. The remaining four vertices are
automatically determined by NMM in a deterministic way. In other words, NMM
always produces the same four vertices given a predefined vertex. Note that the
terms vertex and hyperparameter setting are interchangeable. In this paper, the
function evaluation is to derive the prediction error introduced by an LSTM
model trained with a certain dataset under a specific hyperparameter setting. If
the prediction error of an LSTM model is no larger than a predefined threshold,
NMM terminates the search.

3 Related Work

Traffic prediction approaches introduced in the past two decades can be classi-
fied into two categories: parametric approaches and nonparametric approaches.
In parametric approaches, a model structure needs to be determined before-
hand based on some theoretical assumptions. The ARIMA model is a typical
and widely used parametric approach [2]. ARIMA is designed to fit time series
data so as to predict future data points in the time series. Many ARIMA-based
approaches were also introduced to improve prediction accuracy, including [13,
24, 25].

Different from parametric approaches, nonparametric approaches do not re-
quire a predefined model structure. There is no need to make assumptions about
the mapping function. Typical examples include k-NN, ANN, RNN, hybrid ap-
proaches, etc. Le et al. [10] addressed traffic speed prediction using big traffic
data obtained from static sensors and proposed local Gaussian Processes to learn
and make predictions for correlated subsets of data. Jiang and Fei [9] introduced
a data-driven vehicle speed prediction method based on Hidden Markov mod-
els. However, these two approaches focus on predicting traffic on a road section
or a small region. They might be difficult to use in large-scale transportation
networks.

Ma et al. [18] used deep learning theory to predict traffic congestion evolu-
tion in large-scale transportation networks. Furthermore, Ma et al. [16] predicted
traffic speed in large-scale transportation networks by representing traffic as im-
ages and employing convolutional neural networks to make prediction. However,
both of these methods require the scale of the target transportation network to
be fixed and specified in advance. Lee et al. introduced DALC [11] to predict
traffic speed at each individual detector in large-scale transportation networks
based on LSTM. However, DALC only focuses on auto-tuning two LSTM hy-
perparameters, i.e., the number of hidden layers and epochs for each detector of
the target transportation network.

Different from these methods, DistPre proposed in this paper is designed
in an incremental manner. DistPre can handle an increasing number of detec-
tors on the fly without pre-fixing the scale of the target transportation network,
and it is able to automatically tune more LSTM hyperparameters for each de-
tector if needed. These practical features make DistPre a much better solution

6 Ming-Chang Lee et al.

Fig. 2. The LSTM auto-tuning and sharing algorithm performed by the master node.

for providing fine-grained traffic speed prediction for large-scale and growing
transportation networks.

4 The details of DistPre

The architecture of DistPre consists of a master node and a set of worker nodes.
The master node decides when it is necessary to customize an LSTM model for
each detector in the target transportation networks. Each worker node waits
for an instruction from the master node and conducts the required LSTM cus-
tomization process for a given detector upon request.

Fig. 2 illustrates the algorithm of DistPre running on the master node. Let
G=D1,D2, ..., Dx be a list of detectors that already have their own LSTMs
customized by DistPre. It is clear that G is empty before DistPre is employed
and launched. Whenever DistPre encounters an unprocessed detector (denoted
by Ui) in the target transportation network, the master node first normalizes
Li, which is a list of traffic-speed values previously observed by Ui. Note that
Li={vi,1,vi,2, ..., vi,T} where vi,t is the traffic-speed value observed by Ui at
time point t, t=1,2, ...,T. The normalization is to divide vi,t by f where f is
a predefined fixed value (e.g., 70 to represent the speed limit in mph). The
normalized Li, denoted by Ni, will be {ni,1, ni,2, ..., ni,T} where ni,t=vi,t/f.

The master node decides whether to customize an LSTM model for Ui or not
by sequentially comparing Ui with every detector (denoted by Dj, j=1,2, ...,x)
in G in terms of their normalized traffic-speed pattern based on the following
equation:

AARDi.j =
1

T

T∑
i=1

| ni,t − nj,t |
ni,t

(1)

DistPre for large-scale transportation networks 7

where AARDi.j is the average absolute relative difference between the traffic-
speed patterns collected by Ui and Dj, and nj,t is the normalized traffic-speed
value collected by Dj at time point t, implying that nj,t=vj,t/f. If AARDi,j is
less than a predefined threshold thdAARD (implying that Ui and Dj observe a
similar traffic-speed pattern), the master node directly shares the LSTM of Dj

with Ui (see lines 7 to 10 of Fig. 2).
However, if the master node is unable to find any detector that has observed a

similar traffic-speed pattern with Ui (i.e., line 11 holds), the master node requests
an available worker node from the cluster to customize an LSTM model for Ui,
and then appends Ui to the end of G to indicate that Ui will have its own LSTM
model customized by DistPre. Based on how each detector is appended to G,
it is clear that every detector in G must have observed a distinct traffic-speed
pattern.

On the other hand, whenever a worker node receives an LSTM customization
request for Ui from the master node, it utilizes NMM to automatically find
appropriate values for the four abovementioned hyperparameters by using the
following initial hyperparameter setting as the predefined vertex:

RLearn=0.01, NLayer=1, NUnit=2, ep=100

Note that the predefined vertex consists of four low hyperparameter values. The
goal is to enable NMM to start with a simple LSTM model since such a model
introduces less computational cost than a more complex LSTM model.

When the worker node finds a hyperparameter setting which enables the
corresponding LSTM to reach the required prediction accuracy for Ui (i.e., the
corresponding AARE value calculated based on Equation 2 is lower than or
equal to a predefined threshold thdAARD, the worker node terminates the cus-
tomization process and outputs the LSTM model to be the LSTM model of
Ui.

AARE =
1

W

W∑
w=1

| sw − ŝw |
sw

(2)

Note that, in Equation 2, W is the total number of data points considered for
comparison, w is the index of a data point, sw is the actual traffic-speed value
at w, and ŝw is the forecast traffic-speed value at w.

5 Performance Evaluation

To evaluate DistPre, we chose freeway I5-N as our target transportation network.
I5-N is a major route from the Mexico-United States border to Oregon with a
total length of 796.432 miles. In our experiments, DistPre incrementally provides
its LSTM customization and sharing service until the 110 detectors that are
deployed on I5-N are completely covered. Note that the distance between two
consecutive detectors is around 5 miles. We crawled the traffic data collected by
each of these 110 detectors for six continuous working days from the Caltrans

8 Ming-Chang Lee et al.

Table 1. Four LSTM hyperparameters and their domains used by DistPre.

Hyperparameter Domain Description

RLearn [0.01, 0.2] Discrete with step = 0.01
NLayer [1, 10] Discrete with step = 1
NUnit [2, 40] Discrete with step = 2
ep [100, 1000] Discrete with step = 20

performance measurement system [4], which is a database of traffic data collected
by detectors placed on state highways throughout California. The traffic data of
each detector is then split into a training dataset (the first 5 days) and a testing
dataset (the last day). Due to the fact that all the traffic data is aggregated at
5-minute intervals, DistPre follows the same interval for prediction.

In this experiment, DistPre was deployed on a cluster running Apache Hadoop
YARN 2.2.0 [22]. The cluster consists of one master node and 30 worker nodes.
Each node runs Ubuntu 12.04.1 LTS with 2 CPU cores, 2GB of RAM, and 100GB
of storage. As mentioned earlier, four LSTM hyperparameters are considered to
be auto-tuned by DistPre. Table 1 lists the domain of these LSTM hyperparam-
eters. For each hyperparameter, we choose a range of values for NMM to conduct
its search process. Note that the maximum value for each hyperparameter was
determined according to our previous experience [11].

The goal of this experiment is to study the impact of the LSTM sharing
function and the number of worker nodes on the performance of DistPre. To
this aim, the four cases listed in Table 2 were designed. In Case 1, we allowed
only one worker node of the cluster to support the operation of DistPre. In
addition, we disabled the LSTM sharing function of DistPre. In other words, each
detector always gets its own LSTM model, and all the LSTM customizations are
sequentially performed by a single worker node. In Case 2, we still limited a single
worker node to support DistPre, but we enabled the LSTM sharing function.
Therefore, detectors were able to share an LSTM model if they observed similar
traffic patterns. In Case 3 and Case 4, we increased the number of worker nodes
to 30, while we disabled and enabled the LSTM sharing function in Case 3 and
Case 4, respectively.

Table 2. The details of the four cases.

Case No. Number of worker nodes involved The LSTM sharing function

1 1 Disabled
2 1 Enabled
3 30 Disabled
4 30 Enabled

Note that thdAARD=0.1 and thdAARE=0.05 in all the cases. If two detectors
have 90% similarity in their monitored traffic-speed patterns, we consider that
they have similar patterns. This is why we set thdAARD to be 0.1. The same

DistPre for large-scale transportation networks 9

reason for thdAARE: We consider that it is satisfactory if a detector is able to
provide 95% prediction accuracy. This is why we set thdAARE to be 0.05. Note
that these two thresholds are configurable if one wants to change the degree of
similarity or achieve a different level of prediction accuracy. The following five
performance metrics are chosen in this experiment:

1. Total LSTM customization duration (TLCD). This is the time period start-
ing when DistPre is launched and ending when all the 110 detectors have
obtained their LSTM models. Apparently, if TLCD is short, it means that
DistPre is time efficient.

2. The total number of LSTMs generated by DistPre over time.
3. Average AARE, calculated as below:

Average AARE =

∑Z
r=1 AAREr

Z
(3)

where AAREr is the AARE value associated with the LSTM model of de-
tector r, where r=1,2, ...,Z, and Z is the total number of the detectors in
the target transportation network. Note that AAREr is calculated based on
Equation 2, and that Z equals 110 in this experiment

4. Average AAE, calculated as below:

Average AAE =

∑Z
r=1 AAEr

Z
(4)

where AAEr is the average absolute error (AAE) value associated with the
LSTM model of detector r, and AAEr is defined as in [28]:

1

W

W∑
w=1

| sr,w − ŝr,w | (5)

A low AAE value implies that the forecast values are close to the actual
values.

5. Average RMSE, calculated as below:

Average RMSE =

∑Z
r=1 RMSEr

Z
(6)

where RMSEr is the root mean square error associated with the LSTM
model of detector r, and RMSEr is defined as in [28]:√√√√ 1

W

W∑
w=1

(sr,w − ŝr,w)2 (7)

A low RMSE value suggests that the forecast values are close to the actual
values.

10 Ming-Chang Lee et al.

Fig. 3. The number of LSTM models customized by DistPre versus with the number
of detectors processed by DistPre.

Fig. 3 shows the TLCD results of DistPre in the four cases. Case 1 leads
to the longest TLCD, which is around 3144 minutes. This is because only one
worker node was employed to customize an LSTM model for each individual
detector in Case 1, and there is no sharing of LSTM models among detectors.
We can see that TLCD is significantly reduced in Case 2. The required TLCD
is reduced by 81.46% (=(3144-583)/3144) from Case 1 to Case 2, implying that
enabling detectors to share their LSTM models greatly reduces the number of
times LSTM models need to be customized, even though there is only one worker
node supporting the operation of DistPre.

When 30 worker nodes are used by DistPre and the sharing function is dis-
abled, i.e., Case 3, the required TLCD is reduced to 224 minutes, meaning that
the distributed and parallel processing further improves the performance of Dist-
Pre, even when compared to Case 2 (single worker node, LSTM model sharing
enabled). By further enabling the sharing function, i.e., Case 4, the total time
duration drops to only 56 minutes. The reduction is around 75% (=(224-56)/224)
compared with Case 3, and 98% (=(3144-56)/3144) compared with Case 1. This
great performance improvement is mainly due to two factors. Firstly, by means of
DistPre, only 31 out of the 110 detectors require a customized LSTM. Secondly,
the work of LSTM customization is distributed to 30 worker nodes.

Altogether, the above results demonstrate that DistPre is able to provide
the LSTM customization service in a time-efficient and scalable way for detec-
tors in large-scale transportation networks. This feature is very important since
large-scale transportation networks usually contain numerous detectors and the
amount may keep increasing. Furthermore, note that the number of worker nodes
could be increased even further to handle even larger transportation networks
when needed.

Fig. 4 illustrates the number of LSTM models customized by DistPre over
time, i.e., as new detectors are processed. We can see that Case 1 and Case 3
have identical results: Whenever DistPre processed a new unknown detector, one
more LSTM model is customized. The reason is that the LSTM sharing func-
tion is disabled in both cases, so every detector always gets its own customized

DistPre for large-scale transportation networks 11

Fig. 4. The number of LSTM models customized by DistPre versus with the number
of detectors processed by DistPre.

LSTM model from DistPre. On the other hand, in Case 2 and Case 4, there
is no one-to-one relationship between the number of LSTM models customized
and the number of detectors processed by DistPre. When DistPre processed a
new unknown detector, the number of customized LSTM models did not always
increase due to the LSTM sharing function. In fact, when all the 110 detectors
were processed by DistPre, only 31 LSTM models were generated and customized
by DistPre. This also explains why DistPre in Case 2 and Case 4 have shorter
TLCD than DistPre in Case 1 and Case 3, respectively.

From the perspective of prediction performance, both Case 1 and Case 3 have
the same results when it comes to average AARE, average AAE, and average
RMSE as shown in Fig. 5, 6, and 7, respectively. The main reason is that the
algorithm of NMM is deterministic. No matter which worker node executes NMM
for a given detector, the result is always the same. Due to the same reason, the
prediction accuracy results in Case 2 and Case 4 are identical, but they are both
lower than those in Case 1 and Case 3. This is because not all the detectors in
Case 2 and Case 4 have customized LSTMs that perfectly fit their training data.
Nevertheless, the average AARE values in Case 2 and Case 4 still satisfy our
requirement since they are both lower than the predefined thdAARD (i.e., 0.05).

6 Conclusion and Future Work

In this paper, we have introduced DistPre, a distributed scheme to achieve fine-
grained, accurate, and efficient traffic speed prediction for a large amount of de-
tectors deployed in large-scale transportation networks. DistPre automatically
customizes an LSTM models with an appropriate hyperparameter setting for a
detector based on NMM. By enabling any trained LSTM model to be shared
between different detectors that all observe similar traffic-speed patterns, Dist-
Pre enables fine-grained and time-efficient traffic speed prediction in large-scale

12 Ming-Chang Lee et al.

Fig. 5. The average AARE results in four cases

Fig. 6. The average AAE results in four cases

Fig. 7. The average RMSE results in four cases

DistPre for large-scale transportation networks 13

transportation networks. The required LSTM customization time does not pro-
portionally increase when the number of detectors handled by DistPre increases.
Our experiments based on real traffic data, collected by the Caltrans perfor-
mance measurement system, demonstrate the great performance of DistPre in
both prediction accuracy and time efficiency.

As future work, we plan to extend DistPre and improve its performance by
taking continuous monitoring and LSTM re-customization into account such
that any detector is able to keep providing high prediction accuracy under any
circumstances. In addition, we would like to investigate how DistPre can take
advantage of a heterogeneous HPC cluster like the eX3 infrastructure [20] to fur-
ther improve the performance of DistPre by investigating appropriate scheduling
approaches such as [12, 14].

Acknowledgments. This work was supported by the project eX3, Experimen-
tal Infrastructure for Exploration of Exascale Computing, funded by the Research
Council of Norway under contract 270053 and the scholarship under project num-
ber 80430060 supported by Norwegian University of Science and Technology.

References

1. Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using
Box-Jenkins techniques. Transportation Research Record 722(1), 1–9 (1979)

2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: fore-
casting and control, 5th ed. John Wiley & Sons (2015)

3. Bustillos, B., Chiu, Y.C.: Real-time freeway-experienced travel time prediction
using N-curve and k nearest neighbor methods. Transportation Research Record
2243(1), 127–137 (2011). https://doi.org/10.3141/2243-15

4. California Department of Transportation: PeMS, http://pems.dot.ca.gov/, [On-
line; accessed 5-July-2020]

5. Chan, K.Y., Dillon, T.S., Singh, J., Chang, E.: Neural-network-based models
for short-term traffic flow forecasting using a hybrid exponential smoothing and
Levenberg–Marquardt algorithm. IEEE Transactions on Intelligent Transportation
Systems 13(2), 644–654 (2012). https://doi.org/10.1109/TITS.2011.2174051

6. Davis, G.A., Nihan, N.L.: Nonparametric regression and short-term freeway traf-
fic forecasting. Journal of Transportation Engineering 117(2), 178–188 (1991).
https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)

7. Hochreiter, S.: The Vanishing Gradient Problem During Learning Recur-
rent Neural Nets and Problem Solutions. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems 6(2), 107–116 (1998).
https://doi.org/10.1142/S0218488598000094

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

9. Jiang, B., Fei, Y.: Vehicle Speed Prediction by Two-Level Data Driven Models
in Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems
18(7), 1793–1801 (2017). https://doi.org/10.1109/TITS.2016.2620498

10. Le, T.V., Oentaryo, R., Liu, S., Lau, H.C.: Local Gaussian Processes for Efficient
Fine-Grained Traffic Speed Prediction. IEEE Transactions on Big Data 3(2), 194–
207 (2017). https://doi.org/10.1109/TBDATA.2016.2620488

14 Ming-Chang Lee et al.

11. Lee, M.C., Lin, J.C.: DALC: Distributed Automatic LSTM Customization for Fine-
Grained Traffic Speed Prediction. In: Proceedings of the 34th International Confer-
ence on Advanced Information Networking and Applications pp. 164–175 (2020).
https://doi.org/10.1007/978-3-030-44041-1 15, https://arxiv.org/abs/2001.09821

12. Lee, M.C., Lin, J.C., Yahyapour, R.: Hybrid Job-driven Scheduling for Virtual
MapReduce Clusters. IEEE Transactions on Parallel and Distributed Systems
27(6), 1687–1699 (2016). https://doi.org/10.1109/TPDS.2015.2463817

13. Lee, S., Fambro, D.B.: Application of Subset Autoregressive Integrated Moving
Average Model for Short-Term Freeway Traffic Volume Forecasting. Transportation
Research Record 1678(1), 179–188 (1999). https://doi.org/10.3141/1678-22

14. Lin, J.C., Lee, M.C.: Performance Evaluation of Job Schedulers under Hadoop
YARN. Concurrency and Computation: Practice and Experience 28(9), 2711–2728
(2016). https://doi.org/10.1002/cpe.3736

15. van Lint, J.W.C., Hoogendoorn, S.P., van Zuylen, H.J.: Freeway Travel Time
Prediction with State-Space Neural Networks: Modeling State-Space Dynamics
with Recurrent Neural Networks. Transportation Research Record 1811(1), 30–39
(2002). https://doi.org/10.3141/1811-04

16. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning Traffic as Images:
A Deep Convolutional Neural Network for Large-Scale Transportation Network
Speed Prediction. Sensors 17(4), 818 (2017). https://doi.org/10.3390/s17040818

17. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neu-
ral network for traffic speed prediction using remote microwave sensor data.
Transportation Research Part C: Emerging Technologies 54, 187–197 (2015).
https://doi.org/10.1016/j.trc.2015.03.014

18. Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-Scale Transportation Network Conges-
tion Evolution Prediction Using Deep Learning Theory. PLOS ONE 10(3) (2015).
https://doi.org/10.1371/journal.pone.0119044

19. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Com-
puter Journal 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

20. Simula Research Laboratory: The eX3 Research Infrastructure,
https://www.ex3.simula.no, [Online; accessed 5-July-2020]

21. Singer, S., Nelder, J.: Nelder-Mead algorithm. Scholarpedia 4(7) (2009).
https://doi.org/10.4249/scholarpedia.2928

22. The Apache Software Foundation: Apache Hadoop YARN, Version 3.2.1
(2019), https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html, [Online; accessed 5-July-2020]

23. Wikipedia contributors: Interstate 5 in california — Wikipedia, the free ency-
clopedia (2020), https://en.wikipedia.org/wiki/Interstate 5 in California, [Online;
accessed 5-July-2020]

24. Williams, B.: Multivariate Vehicular Traffic Flow Prediction: Evaluation of
ARIMAX Modeling. Transportation Research Record 1776(1), 194–200 (2001).
https://doi.org/10.3141/1776-25

25. Williams, B.M., Hoel, L.A.: Modeling and Forecasting Vehicular Traf-
fic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empiri-
cal Results. Journal of Transportation Engineering 129(6), 664–672 (2003).
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)

26. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: A generic
approach for extreme condition traffic forecasting. In: Proceedings of the 2017
SIAM International Conference on Data Mining. Society for Industrial and Applied
Mathematics, pp. 777–785 (2017). https://doi.org/10.1137/1.9781611974973

DistPre for large-scale transportation networks 15

27. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning
approach for short-term traffic forecast. IET Intelligent Transport Systems 11(2),
68–75 (2017). https://doi.org/10.1049/iet-its.2016.0208

28. Zou, N., Wang, J., Chang, G.L., Paracha, J.: Application of Advanced Traf-
fic Information Systems: Field Test of a Travel-Time Prediction System with
Widely Spaced Detectors. Transportation Research Record 2129(1), 62–72 (2009).
https://doi.org/10.3141/2129-08

