
Password Guessing-Based Legacy-UI Honeywords
Generation Strategies for Achieving Flatness
Muhammad Ali Fauzi

Department of Information Security
and Communication Technology

Norwegian University
of Science and Technology (NTNU)

Gjøvik, Norway
muhammad.a.fauzi@ntnu.no

Bian Yang
Department of Information Security

and Communication Technology
Norwegian University

of Science and Technology (NTNU)
Gjøvik, Norway

bian.yang@ntnu.no

Edlira Martiri
Department of Information Security

and Communication Technology
Norwegian University

of Science and Technology (NTNU)
Gjøvik, Norway

edlira.martiri2@ntnu.no

Abstract—The legacy-UI honeywords generation approach is
more favored due to its high usability compared to the modified-
UI approach that sometimes becomes unusable in practice.
However, several prior arts on legacy-UI based honeywords
generation methods often fail to obtain the security standard,
especially the flatness criterion. In this work, we propose two
legacy-UI honeywords generation strategies based on two pass-
word guessing methods: PassGAN and Probabilistic Context-
Free Grammar (PCFG). Besides, we also introduce two hybrid
strategies by combining PassGAN, PCFG, and random-based
methods. We empirically examine the flatness of the proposed
honeywords generation strategy against Top Password (Top-
PW) attack using real-world datasets, instead of only providing
heuristic security arguments. The experiment results show that
three of the proposed methods (the PassGAN-based and the
two hybrid methods) have lower flatness value than all previous
legacy-UI methods and able to meet the ”perfectly flat” criterion.

Index Terms—Honeywords, PassGAN, Probabilistic Context-
Free Grammar, Random, Hybrid, Password.

I. INTRODUCTION

Password database leaks are not a new phenomenon and
some of them were experienced by reputable corporations
including Dropbox [1], Linkedin [2], Yahoo [3], etc. One of
the important concern about the password data breach is the
fact that most organisations take a long time to detect the
breach [4], [5]. The failure to detect the leak early gives the
attacker more than enough time to fully exploit the users’
account. Therefore, it is notable to have not only a mechanism
to enhance password-based authentication security but also
a mechanism that can identify the password data breach
immediately [6].

One of the promising approaches to tackle the data leak
issue is honeywords system introduced by Juels and Rivet
[7]. Honeywords provide a simple solution without significant
changes required in both client and server-side [8]. For each
user’s password, the honeywords system generates some decoy
passwords (termed as honeywords) and store them to the
password file along with the original password after converting
them into a hashed format. If the attacker manages to compro-
mise the password file and decode the hashed password using
the inversion attack, the attacker will find several passwords

for each user and have to decide which one is the correct
password. Once the attacker login using the wrong password,
the data breach will be recognized.

The most challenging part for the system administrator to
implement the honeywords system is how to create the decoy
passwords that fulfill the security and usability standards of the
system [9], [10]. Unfortunately, usability and security often
collide with each other so that the two standards cannot be
met [9]. Based on whether there is a modification on the user
interface (UI) for password change, the honeywords generation
methods can be divided into two classes: the legacy-UI and
the modified-UI approach. Using a legacy-UI method, there is
no need for change in UI. This method also does not interfere
with the user password selection nor requires to notify the
user about the use of honeywords. In contrast, the modified-
UI approach needs to modify the registration and password
change UI. This method also has to interfere with the user’s
password selection to obtain the desired security standard
making the usability standard deteriorated. Moreover, some
modified-UI based methods (e.g. take-a-tail in [7]) sometime
become unusable in practice [9]. Therefore, legacy-UI is
more recommended due to its high usability. However, this
approach often fails to reach the security standard, especially
the flatness criterion. In this work, we propose some legacy-UI
honeywords generation strategies that are based on two pass-
word guessing methods (PassGAN and Probabilistic Context-
Free Grammar (PCFG)) to achieve the flatness criterion. Be-
sides, two hybrid strategies combining PassGAN, PCFG, and
random-based methods are also introduced. We also evaluate
the flatness of the proposed honeywords generation strategy
empirically using a real dataset, unlike most of the previous
work (e.g. [7], [10]–[12]) that only evaluate the flatness of
their methods using heuristic security arguments.

II. BACKGROUND AND RELATED WORK

A. Honeywords System

Honeywords system works by simply generating some arti-
ficial passwords (termed as honeywords) for each user account
and store them into the password file together with the user’s
original password (termed as sugarword). This combination is

called sweetwords. The purpose of this approach is to make
the attacker’s job more complicated even after successfully
steal and crack the hashed password file because the attacker
still has to decide which password is the original one. Once
the attacker entering a honeyword to log in, an alert will be
triggered to inform the defender that a password breach had
happened.

B. Honeywords Flatness Criterion

All honeywords generated should be indistinguishable from
the user’s original password so that sweetwords corresponded
to the user’s account should be equal probability to be chosen
by the attacker as the correct password (sugarword). Ideally,
since the system administrator has k sweetwords for each
account, the success rate of the attacker to guess the account’s
correct password is 1/k. However, several cases (e.g., an as-
sociation between username and password, popular password
[13], etc.) can make the attacker’s success rate to guess the
correct password higher.

The formula to calculate the attacker’s success rate is as
follows:

ε =
NoC

NoA
(1)

where NoC is the number of accounts whose passwords have
been guessed correctly by the attacker and NoA is the total
number of accounts. A honeywords generation technique is
called ε-flat when the attacker’s success rate given one chance
to select a user’s original password is ε. A ”perfectly flat”
generation method make the attacker only has success rate
ε = 1/k while if the success rate ε is not much larger than
= 1/k, it is considered as ”approximately flat” [7]. It is also
important to notice that some honeywords may allow more
than one guess to minimize a false alarm. Therefore, Wang et
al. [13] used a flatness graph as displayed in Fig. 1 to display
the attacker’s success rate when it is allowed to login using
the wrong password more than once. A flatness graph outlines
the success rate of the attacker to pick the original password
against the number of login efforts per account. A point (x, y)
on a curve in Fig. 1 means that the original password is
correctly selected by the attacker with a probability y in the
first x login trials, where x ≤ k.

Fig. 1. The flatness graph

C. Legacy-UI Honeywords Generation Strategies

1) Chaffing by tweaking (CbT): CbT [7] produces fake
passwords by “tweaking” some characters from the user’s
original password. One of the most popular variants under this
method is “chaffing-by-tail-tweaking”. Under this approach,
for a user’s original password pi, some honeywords are
produced by replacing each of the last t characters of pi with
a random character of the same type: a letter is substituted by
a letter, a digit by a digit, and a special character by a special
character. For instance, if the pi is “Lakers4%” and t = 3
is used, then the produced honeywords can be “Lakerw9@”,
“Lakeru1?”, “Lakerr3*”, etc.

2) Chaffing-with-a-password-model (CPM): CPM [7]
generates fake passwords by applying the same syntax as the
password model. One of the variants of CPM is modeling
syntax inspired by Bojinov et al. [14] that uses the user’s
original password pi as a password model. First, the syntax
of pi is extracted. For example, if the pi is “Lakers4%”, then
the syntax is L6D1S1 meaning the password has 6 letters,
1 digit, and 1 special character. The honeywords are then
generated based on the syntax so that they can be “TgsRfv3!”,
“TGygha2?”, “ewscpl8*”, etc.

3) Close-number-formation (CNF): CNF method [15]
produces the honeywords by replacing numbers in the original
password with other numbers that are close to them. This
method maintains two lists: num = {1, 2, 3} and sig =
{+,−}. First, the system will find the number dp in pi. Then,
dp will be tweaked using the following formula:

dh = dp e(sig) e(num), (2)

where e(sig) and e(num) indicate an element from the
list sig and num, respectively. For example, if the original
password is “Lakers2007“, then the honeywords generated are
“Lakers2008“, “Lakers2009“, “Lakers2010“, “Lakers2006“,
“Lakers2005“, and “Lakers2004“.

4) Chaffing with “tough nuts” (CTN): Unlike all pre-
vious methods, honeywords generated using CTN [7] is
not necessarily related to the user’s original password pi.
CTN is used to produce honeywords whose hashed form is
hard to crack. This method can be applied by using some
pseudo-random generator algorithm. Juels and Rivet [7] pro-
vided an example for “tough nut“ as “9,50PEe]KV.0?RIOtcL-
:IJ”b+Wol¡*[!NWT/pb“. The purpose of this method is to
make the attacker unable to crack the hashed form of this
kind of passwords. It is stated in [7] that this method cannot be
used alone, it should be combined with other methods to make
the honeyword system more secure. If this method is used
alone, the attacker will easily recognize the original password
by selecting the one that can be cracked. This method can
be powerful when it is combined with another method. The
combination approach will give the attacker some sweetwords
that can be cracked but some of them will be blank because
they cannot be cracked. It is expected that in such a situation
the attacker will be in doubt and may hesitate to make a login
attempt using the cracked passwords.

5) Using passwords of other users (POU): The approach
introduced by Erguler [11] utilizing other users’ passwords as
the honeywords. For a newly registered user, k− 1 passwords
are randomly selected from other users’ passwords. Under this
approach, the sweetwords are stored in a way that requires less
storage than other previous methods.

III. THE PROPOSED APPROACH

In this work, we propose four password guessing based
legacy-UI honeywords generation strategies. The first two
methods are based on two password guessing methods: Pass-
GAN and PCFG. To make the attacker’s task to distinguish
the original passwords from the fake one hard, we have to
produce honeywords that are similar to the original password.
The weakness of most previous methods (e.g. CbT, CPM, and
CTN) is they cannot generate honeywords that are similar to
most users’ passwords. Thus, the original password becomes
notable and makes the attacker’s job easier. According to
some studies, most users use an easy-to-guess password for
their account [16], [17]. Another report by Avast in 2019 [18]
also show that 83% of American using weak passwords. The
challenge for the system administrator in a honeywords system
is to generate some easy-to-guess passwords to make the
honeywords indistinguishable from widely used passwords. To
obtain the objective, we employ PassGAN and PCFG due to
its ability to mimic the characteristic of real-world password
data. PassGAN and PCFG are originally intended to be a
machine learning-based password guessing methods that learn
from real password datasets to produce password guesses that
have high similarity with passwords in the dataset. These two
approaches do not need primary knowledge or intuition from
experts about what kind of passwords frequently taken by users
since it will autonomously learn from the real data. Therefore,
PassGAN and PCFG can be a potential strategy for the system
administrator to generate indistinguishable honeywords.

The other two proposed strategies are hybrid approaches.
The first hybrid approach (Hybrid 1) combines PassGAN
and PCFG to make the honeywords more diverse so that
it will be harder for the attacker to predict the honeywords
pattern and reveal the method that the defender uses to cre-
ate the honeywords. Meanwhile, the second hybrid approach
combines PassGAN, PCFG, and random-based method. This
incorporation of a random-based method is based on the fact
that even though most users tend to choose easy-to-guess pass-
words, there are still many users that select good passwords
consist of a random combination of letters, digits, and special
characters (e.g. using random password generators). This kind
of user also needs to be accommodated. If we use PassGAN
and PCFG to create honeywords for this random look-like
passwords, the attacker that manages to crack the hashed
password can conclude that the original password is the one
that is random look like because all passwords in sweetwords
look like easy-to-guess passwords, except one that is random
look like. Therefore, we also use a random-based method in
this hybrid approach to tackle this problem. By adding some
random look like passwords into the sweetwords, even tough

the user uses a random look-like password, the attacker cannot
conclude which type of password is the original one because
some passwords are random look like and some of them are
easy-to-guess.

A. First Proposed Method: PassGAN-based Honeyword gen-
eration approach

PassGAN is a deep learning-based approach formerly de-
signed by Hitaj et al for password guessing [19]. PassGAN
uses Generative Adversarial Network (GAN), deep neural
net architectures developed by Goodfellow et al. [20], that
consist of two neural networks (generator and discriminator)
that compete against each other. The generator network learns
from the password dataset and then produces some new
artificial passwords with a high likeness to the real passwords
in the dataset. Then, the real passwords and the generated
ones are combined before being fed into the discriminator.
The discriminator task is to classify the combined data. The
purpose of the generator network is to minimize the chance of
the discriminator to correctly distinguishing the real and the
artificial data, while on the contrary, the discriminator’s objec-
tive is to improve the classification performance. Furthermore,
the discriminator’s classification performance is then employed
as the basis to improve both network models. This process is
iterated until it reaches a certain condition (e.g. the number
of iteration). After the training finished, some honeywords are
produced using the generator model of the PassGAN.

B. Second proposed method: PCFG-based Honeyword gener-
ation approach

Context-free grammar (CFG) is not a new phenomenon in
the natural language field as it frequently used to create strings
with particular structures. A CFG is defined as a 5-tuple G =
(S,N, P,Σ, R) where S is the start variable, N is a finite set
of variables (non-terminals), P is a finite set of preterminals,
Σ is a finite set of terminals, and R is a finite set of production
rules of the form [21]:

S → A,A ∈ N (3)

A→ BC,A ∈ N,B,C ∈ N ∪ P (4)

T → ω, T ∈ P, ω ∈ Σ. (5)

A probabilistic context-free grammar (PCFG) is simply a
CFG with assigned probability in each production. The prob-
ability of a string generation (derivation) is the product of the
probabilities of the productions used in that generation. The
probabilities are learned from the training data. In this work,
we used a PCFG method designed by Weir et al [22]. First, a
PCFG model is built by training on a real passwords datasets.
Then, the model is used to produce some honeywords.

C. Third proposed method: Hybrid 1

Hybrid 1 method combines PassGAN and PCFG to produce
honeywords. In this ensemble method, half of the honeywords
are generated using PassGAN while the other half are created
using PCFG method.

D. Fourth proposed method: Hybrid 2

Hybrid 2 method combines PassGAN, PCFG, and random-
based method to produce honeywords. As seen in Fig. 2,
since the recommended number of honeywords is 19 [7],
we will create n fake passwords using the random-based
method, where n is choosen randomly between 2 to 4, and the
remaining honeywords will be generated equally by PassGAN-
based and PCFG-based method.

Fig. 2. The Proposed Hybrid 2 Honeywords Generation Approach

The random-based used in Hybrid 2 approach is similar
to the ’tough nut’ method. The purpose of this method is to
generate passwords that look like strong passwords (include
some letters, digits, and special characters). To create the
honeywords using this random-based method, we generate
a combination of random lowercase and uppercase letters,
numbers, and punctuations. Unlike the ’tough nuts’ method
that creates a very long password, the length of the password
in this method follows the system’s password policy.

IV. EVALUATING THE FLATNESS OF HONEYWORDS
GENERATION METHODS

Most former studies do not assess the flatness of their hon-
eywords generation methods empirically. They only present
heuristic security reasons to justify the flatness of their method.
In this work, we evaluate some honeywords generation meth-
ods empirically using some real-world password datasets. A
game between the defender (e.g. system administrator) and
the attacker is simulated. The defender produces k−1 honey-
words for each original password (sugarword) in the password
database. The defender can use several generation strategies
for this task. We use k = 20 because it is the ideal number
of k suggested by Juels and Rivet [7]. The sugarword and its
honeywords are then joined and rearranged to form sweetword.
The sweetwords are then saved into a correlated user account’s
record in a hashed form. In this game, the attacker is assumed
to successfully compromise the password data and convert all

the hashed sweetwords into plain texts. The attacker’s next
task is to guess the original password among the sweetwords.
The evaluation used to measure the flatness of the honeywords
generation methods are the attacker’s success rate and flatness
graph as described in subsection II-B.

A. The Defender’s Strategies

In this experiment, several prior arts of legacy-UI honey-
words generation will be used by the defender. The proposed
hybrid method and each of the individual methods that com-
pose it will also be employed by the defender. The following
is the honeywords generation methods used by the defender:

1) Chaffing by tweaking (CbT). The CbT variant used is
“chaffing-by-tail-tweaking” with t = 3.

2) Chaffing-with-a-password-model (CPM). The CPM
variant used in this experiment is “modeling syntax”.

3) Using passwords of other users (POU). The honey-
words used is the other users’ password in the database.

4) Random/’tough nuts’ method (Random). The honey-
words are created using a combination of random low-
ercase and uppercase letters, numbers, and punctuations.

5) PassGAN. A PassGAN model is first trained using
a real-world password dataset and then it is used to
produce the honeywords.

6) PCFG. A PCFG model is first trained using a real-world
password dataset and then it is employed to generate the
honeywords.

7) Hybrid of PassGAN and PCFG (Hybrid 1). Half of
the k − 1 honeywords are produced using PassGAN
while the other half are generated using PCFG method.

8) Hybrid of PassGAN, PCFG, and random-based
method (Hybrid 2). Like described in the Section III, 2
to 4 honeywords are generated using the random-based
method and the remaining honeywords are generated
equally by PassGAN-based andPCFG-based method.

The CNF is not used in this experiment because it cannot
be used in a general password dataset. As mentioned before,
the CNF cannot be used on passwords that do not contain a
number. The CTN is also not used because the assumption of
this method is the hashed form of honeywords generated by
CTN cannot be cracked. Besides, the CTN method has been
represented by the random-based method as they share similar
generation techniques

B. The Attacker’s Method

The attacker uses a Top Password (Top-PW) attack in this
game. The Top-PW attack is a simple attack based on the
fact that user passwords follow Zipf’s law [23]. Users tend
to choose popular passwords (e.g. 12345, password, etc.)
to easily remember them. Therefore, among the sweetwords
for each user, the most popular password is most likely the
original one. Top-PW attack measures the popularity of each
sweetwords by calculating its probability distribution in other
real-world password datasets (e.g. leaked password datasets).
Sweetwords that often appear on other password databases
will have a large probability value. The sweetword with the

largest probability value is considered as the most popular
password and it will be guessed as the correct password.
This method is used for the attacker’s method because its
simplicity and it expose the weakness of most legacy-UI
honeywords generation methods: cannot produce honeywords
that are similar to the most users’ password so that the original
password becomes quite salient.

The formula to calculate each of sweetwords probability
distribution in a password dataset is as follow:

PD (x) =
count (x)

|D|
(6)

where count(x) e number of sweetword x appears in a pass-
word dataset and |D| is the total number of users’ passwords
in the dataset. The sweetwords are then ordered based on the
probability value. Eventually, the sweetword with the highest
probability is regarded as sugarword.

C. Dataset

Three password datasets are used for this experiment as
follows:

1) Sugarset. The sugarset is the password datasets to sim-
ulate the original passwords (sugarwords) from users. In
this work, a leaked password data from LinkedIn [24]
is used as the sugarset. This dataset contains 3,000,000
real-world passwords.

2) The defender’s dataset. The defender needs a pass-
word dataset only to train their PassGAN and PCFG
models. The defender does not require the dataset for
other honeywords generation methods. In this work, a
leaked password data from Rockyou [25] is used as
the defender’s dataset. This dataset contains 21,315,673
real-world passwords.

3) The attacker’s dataset. The attacker also needs a
real-world password dataset to compute the probability
distribution of each sweetword. It is assumed that the
attacker does not know the dataset that had been used
by the defender to generate the honeywords, in case
the defender used PassGAN or PCFG method, so that
the attacker uses different datasets. In this work, a
leaked password data from Dropbox [26] is used as the
attacker’s dataset. This dataset contains 7,884,855 real-
world passwords.

D. The Experiment Results

The experiment results when the attacker is given only
one opportunity to guess the correct password are depicted
in Fig. 3 while the results when the attacker is given more
than one chance to predict the correct one are represented
by a flatness graph displayed in Fig. 4. Based on results, as
predicted, the stand-alone random-based is the worst method
to generate honeywords. This method produces honeywords
that are very different from the most users’ passwords so
that the attacker can guess the original passwords easily
with a 94.48% success rate. To achieve the ”perfectly flat”
criteria, the honeywords generation strategies have to make

Fig. 3. The attacker’s success rate given only one opportunity to guess the
correct password.

the attacker’s success rate equal to or less than 1/k. Since
k = 20 is used in this work, the maximum success rate
of 5% should be obtained. To achieve the ”perfectly flat”
standard, the honeywords generation strategies have to make
the attacker’s success rate equal to or less than 1/k. Since
k = 20 is used in this work, the maximum success rate of
5% should be obtained. The only previous legacy-UI method
that meet the criterion is POU with exactly 5% of success rate.
Meanwhile, three of our proposed methods (PassGAN, Hybrid
1, and Hybrid 2) achieve the flatness goal with less than 5%
of success rate. The proposed PCFG method can only fulfill
the ”approximately flat” standard as the attacker’s success rate
is 5.33% when the defender uses this method. The similarity
of all these methods is they can produce honeywords that are
similar to the most users’ passwords.

The smallest success rate is achieved when the defender
using the PassGAN-based honeywords generation method.
The hybrid between the PassGAN-based and the PCFG-based
methods (Hybrid 1) also provide a quite small success rate
with 2.92%. Meanwhile, the attacker’s success rate is slightly
higher with 3.61% when the defender uses the Hybrid 2
method because it combines not only the PassGAN-based and
the PCFG-based methods but also the random-based method.

Based on the flatness graph in Fig. 4, the proposed PCFG-
based, Hybrid 1, and PassGAN-based methods provide the
best flatness graph among all honeywords generation methods.
Despite it only meet the ”approximately flat” standard when
the attacker given only one opportunity to guess the correct
password, the PCFG-based method provides the best flatness
graph. It means that this method can produce honeywords that
have the same quality. A different method such as Hybrid
2 cannot generate honeywords that have the same quality
because it contains a random-based method. As a consequence,
the flatness graph of Hybrid 2 will rise sharply at a certain
point. However, this method will be very useful when the user
use random-generated password.

V. CONCLUSION

A good honeywords generation strategy should meet both
the security and usability standards of the system. The legacy-

Fig. 4. The flatness graph.

UI approach is more recommended due to its high usability
compared to the modified-UI approach that sometimes be-
comes unusable in practice. However, several prior arts on
legacy-UI based honeywords generation methods often fail to
obtain the security standard, especially the flatness criterion. In
this work, we propose four password guessing based legacy-
UI honeywords generation method that can achieve the flatness
standard. The two proposed methods are stand-alone methods
based on PassGAN and PCFG while the other two are hybrid
approaches that combine PassGAN, PCFG, and random-based
methods.

We empirically evaluate the flatness of the proposed hon-
eywords generation strategies and several former generation
methods against Top-PW attack using real-world datasets,
instead of only providing heuristic security arguments. The
experiment results show that almost all of the proposed
methods have a lower flatness value than all previous methods
and able to meet the ”perfectly flat” criterion.

In future work, some attacking methods can also be used
to evaluate the flatness of honeywords generation methods.
One of the significant factors to concerned to design an attack
is the user’s behavior to choose passwords that are associated
with their private data (e.g. favorite band, phone number, etc.).
Based on the behavior, the use of targeted guessing attacks to
evaluate the flatness of the honeywords generation methods
would be relevant for future work.

REFERENCES

[1] P. Heim. (2016, Aug.) Resetting passwords to keep your files safe.
[Online]. Available: https://blog.dropbox.com/topics/company/resetting-
passwords-to-keep-your-files-safe

[2] M. J. Schwartz. (2016, May) Linkedin breach: Worse than advertised.
[Online]. Available: https://www.bankinfosecurity.com/linkedin-breach-
worse-than-advertised-a-9113

[3] R. Hackett. (2017, Oct.) Yahoo raises breach estimate to full
3 billion accounts, by far biggest known. [Online]. Avail-
able: https://blog.dropbox.com/topics/company/resetting-passwords-to-
keep-your-files-safe

[4] S. Goolik. (2018, Sep.) Cyber security threats: Why detection takes
so long. [Online]. Available: https://symmetrycorp.com/blog/cyber-
security-threats-detection-takes-long/

[5] T. Brewster. (2016, Aug.) Why you shouldn’t panic about
dropbox leaking 68 million passwords. [Online]. Avail-
able: https://www.forbes.com/sites/thomasbrewster/2016/08/31/dropbox-
hacked-but-its-not-that-bad/55c5c7ee5576

[6] D. Florêncio, C. Herley, and P. C. Van Oorschot, “An administrator’s
guide to internet password research,” in 28th Large Installation System
Administration Conference (LISA14), 2014, pp. 44–61.

[7] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking
detectable,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 145–160.

[8] Z. A. Genc, S. Kardaş, and M. S. Kiraz, “Examination of a new
defense mechanism: Honeywords,” in IFIP International Conference on
Information Security Theory and Practice. Springer, 2017, pp. 130–
139.

[9] N. Chakraborty, S. Singh, and S. Mondal, “On designing a questionnaire
based honeyword generation approach for achieving flatness,” in 2018
17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 444–455.

[10] N. Chakraborty and S. Mondal, “On designing a modified-ui based
honeyword generation approach for overcoming the existing limitations,”
Computers & Security, vol. 66, pp. 155–168, 2017.

[11] I. Erguler, “Achieving flatness: Selecting the honeywords from existing
user passwords,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 13, no. 2, pp. 284–295, 2015.

[12] D. Chang, A. Goel, S. Mishra, and S. K. Sanadhya, “Generation
of secure and reliable honeywords, preventing false detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 5, pp.
757–769, 2018.

[13] D. Wang, H. Cheng, P. Wang, J. Yan, and X. Huang, “A security analysis
of honeywords.” in NDSS, 2018.

[14] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-
resistant password management,” in European symposium on research
in computer security. Springer, 2010, pp. 286–302.

[15] N. chakraborty and S. Mondal, “Towards improving storage cost and
security features of honeyword based approaches,” Procedia Computer
Science, vol. 93, pp. 799–807, 2016.

[16] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An
empirical analysis,” in 2010 Proceedings IEEE INFOCOM. IEEE,
2010, pp. 1–9.

[17] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane,
“Omen: Faster password guessing using an ordered markov enumera-
tor,” in International Symposium on Engineering Secure Software and
Systems. Springer, 2015, pp. 119–132.

[18] Avast. (2019, May) 83 % of americans are using weak passwords.
[Online]. Available: https://press.avast.com/83-of-americans-are-using-
weak-passwords

[19] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep
learning approach for password guessing,” in International Conference
on Applied Cryptography and Network Security. Springer, 2019, pp.
217–237.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[21] Y. Kim, C. Dyer, and A. M. Rush, “Compound probabilistic context-free
grammars for grammar induction,” arXiv preprint arXiv:1906.10225,
2019.

[22] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in 2009 30th IEEE
Symposium on Security and Privacy. IEEE, 2009, pp. 391–405.

[23] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2776–2791, 2017.

[24] Leaks linkedin. [Online]. Available: https://hashes.org/leaks.php?id=68
[25] Brannondorsey. (2018) Passsgan. [Online]. Available:

https://github.com/brannondorsey/PassGAN/releases/download/data/r
ockyou-train.txt

[26] Leaks dropbox. [Online]. Available: https://hashes.org/leaks.php?id=91

