
lable at ScienceDirect

Energy 196 (2020) 116999
Contents lists avai
Energy

journal homepage: www.elsevier .com/locate/energy
Optimization of a dual mixed refrigerant process using a nonsmooth
approach

Matias Vikse a, *, Harry A.J. Watson b, Donghoi Kim a, Paul I. Barton b, Truls Gundersen a

a Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
b Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
a r t i c l e i n f o

Article history:
Received 24 June 2019
Received in revised form
3 December 2019
Accepted 18 January 2020
Available online 25 January 2020

Keywords:
Process optimization
Nonsmooth models
DMR processes
LNG
* Corresponding author.
E-mail address: matias.vikse@ntnu.no (M. Vikse).

https://doi.org/10.1016/j.energy.2020.116999
0360-5442/© 2020 The Authors. Published by Elsevie
a b s t r a c t

This article uses a nonsmooth flowsheeting methodology to create simulation and optimization models
for dual mixed refrigerant processes. New improved operating conditions are obtained using the primal-
dual interior-point optimizer IPOPT, with sensitivity information calculated using new developments in
nonsmooth analysis to obtain generalized derivative information using a nonsmooth generalization of
the vector forward mode of automatic differentiation. Several optimization studies are performed with
constraints on both the minimum temperature difference (DTmin) and total heat exchanger conductance
(UAmax) used to represent the trade-offs between energy consumption and the required heat transfer
area. In addition, comparison is made with the conventional process simulator Aspen HYSYS using
particle swarm optimization. Results show that the nonsmooth model was able to reduce the required
compression power by 14.4% compared to the initial feasible design for the dual mixed refrigerant
process, and by 20.4e21.6% for the dual mixed refrigerant process with NGL extraction. Furthermore, the
solutions obtained from the nonsmooth model were 1.9e8.1% better than the design obtained by particle
swarm optimization. Multistart optimization also shows that IPOPT converges to the best known solution
when starting from an initial feasible design.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Natural gas is projected to play a central role in the shift towards
green energy sources. According to the BP Energy Outlook from
2017 [1], it is the fastest growing fuel at 1.6% p.a, and is expected to
overtake coal in overall demand by 2035. Considered a cleaner
alternative to oil and coal due to a low sulfur content, lower CO2
emissions and no particle emissions, the main challenge with
natural gas as a fuel is related to transportation. For shorter dis-
tances, pipelines are usually preferred, though it requires in-
vestments in infrastructure and limits the potential customers to
predetermined locations. However, in order for natural gas to be
traded as a global commodity, long distance transport using liqui-
fied natural gas (LNG) is necessary. LNG has also received increased
attention as the solution to production of natural gas in remote
offshore fields where pipeline transport to an onshore process fa-
cility is uneconomical. Nevertheless, liquefaction of natural gas is a
very energy intensive process. Investments in expensive and
r Ltd. This is an open access articl
proprietary technology such as cryogenic multistream heat ex-
changers and turbomachinery are required, and together with high
operating costs, the liquefaction process generally accounts for
about 30e40% of the total cost in the LNG chain [2]. The type of
liquefaction process used largely depends on the purpose of the
LNG plant. In general, LNG production plants are categorized into
three types: base-load, peak-shaving and small-scale plants. For
small-scale production, the capital costs are of primary concern,
thus promoting designs with relatively few pieces of equipment
such as single-mixed refrigerant (SMR) processes [3]. Compactness
of the design and the small equipment inventory also make SMR
processes attractive for floating LNG (FLNG) systems. In base-load
production, on the other hand, the operating costs are significant
and should be reduced by using more efficient designs. Typical
processes considered for base-load production are therefore
cascade, propane precooling (C3MR), and dual mixed refrigerant
(DMR) processes.

Large-scale production of LNG demands more efficient lique-
faction processes. In particular, as the train capacity goes up,
operating costs will increase and account for a higher fraction of the
total costs of liquefaction. Efficient design and operation are
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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therefore needed to limit the total costs of these plants. Dual mixed
refrigerant processes represent a promising technology for large-
scale production of LNG. With an additional multicomponent
refrigerant mixture, they achieve small temperature driving forces
in the precooling and liquefaction heat exchangers, as well as added
versatility to the feed gas composition. Their compact design
compared to other large-scale processes, i.e. refrigerant cascade
and C3MR processes, also means that DMR is suitable for large-
scale FLNG units. Efficient and versatile designs are priorities in
such large-scale LNG facilities at the expense of higher capital costs
(though mitigated by economies of scale) and a larger equipment
inventory compared to SMR processes. Although DMR processes
already have been installed on large-scale FLNG processes such as
Shell Prelude and Coral FLNG [4], they have received relatively little
attention from the optimization community [5,6].

The high costs associated with production of LNG have resulted
in numerous optimization studies for different liquefaction pro-
cesses that are summarized in extensive reviews by Austbø et al. [5]
and He et al. [6] Particular attention has been given to the Poly-
Refrigerated Integrated Cycle Operations (PRICO) process [7],
which is an SMR process consisting of one multistream heat
exchanger (MHEX) and a simple vapor-compression refrigeration
cycle. Its relatively basic design has made it a desirable test case for
different tailor made MHEX models for optimization of LNG
processes.

Kamath et al. [8] developed an equation-oriented (EO) MHEX
model using concepts from pinch analysis such as composite
curves. The model treats the MHEX as a heat integration problem
with hot and cold utility duties set to zero. The authors then per-
formed energy targeting by using the Duran and Grossmann model
for simultaneous process optimization and heat integration [9].
Furthermore, the authors included a disjunctive model for phase
regime detection that is represented in terms of complementarity
constraints. Phase regimes of the inlet and outlet streams may vary
during simulation and optimization of LNG processes, representing
a modeling challenge as the phase regimes traversed in the MHEX
are not known a priori. This also affects other process equipment
such as compressors and valves that handle streams leaving the
MHEX in a priori unknown phase regimes. Pattison and Baldea [10]
proposed a different MHEX model using a pseudo-transient EO
approach. Assuming a fixed relative sequence of stream tempera-
tures prior to optimization, they constructed a series of enthalpy
intervals for the composite curves. Temperatures for each enthalpy
interval are then calculated from thermophysical property models
by introducing a pseudo transient temperature variable and reor-
ganizing themodel equations into a system of differential-algebraic
equations (DAEs). No disjunctive representation is needed for
handling phase changes in the model. Instead, the model perturbs
the time variable across the phase boundaries while keeping the
temperature constant. Properties are then resolved with the solu-
tion from the previous time step as an initial guess. Hasan et al.
[11,12] proposed a MHEX model using a superstructure of two-
stream heat exchangers and solving a heat integration problem
with no external utilites. However, the model can only handle
phase changes as long as the phases traversed in the MHEX are
known a priori. Another superstructure model by Rao and Karimi
[13] addresses this issue by including nonlinear constraints to
ensure phase boundaries occur at the endpoint of each heat
exchanger such that it operates in a specific phase regime. A process
simulator (e.g. Aspen Plus) is used for the property correlations and
therefore no disjunctive constraints are needed for phase detection.

The tailor-made MHEX models have so far been tested for SMR
processes with a particular focus on the PRICO process. In addition,
most of them require solving nonconvex nonlinear programs
(NLPs) [8,10,13] or mixed-integer nonlinear programs (MINLPs)
[11,12]. The complexity of DMR processes, which includes addi-
tional refrigerant streams, MHEXs, and splitting or mixing of
streams, make them significantly more difficult to optimize. A large
temperature span and phase changes in the MHEXs also result in a
highly nonlinear variation in the enthalpy as a function of tem-
perature. To account for this nonlinearity, the process streams are
frequently partitioned into smaller stream segments with constant
heat capacity flowrate. Examples presented by Watson et al. [14]
show that using less than 20 segments to represent the two-phase
region for the PRICO process leads to significant inaccuracy in the
simulations resulting in an under-prediction of the necessary
compression power. Therefore, additional variables must be added
for each MHEX making the optimization problem large and chal-
lenging to solve. As a result, most optimization studies on DMR
processes use conventional process modeling tools such as Aspen
HYSYS [15] or Aspen Plus [16] for simulation and optimization, or
together with an external software for optimization [5].

Khan et al. [17] optimized the specific compression power and
total UAusing multi-objective optimization for a DMR process.
Aspen HYSYS was used for process modeling, whereas Matlab was
used for finding the Pareto-optimal solutions. Results show that
multi-objective optimization decreases the specific compressor
power and total heat exchanger conductance (UA) by 13% and 3%
compared to the base case. Another optimization study was done
by Hwang et al. [18] on a DMR process using Aspen HYSYS for
process simulation and a hybrid optimization method combining a
genetic algorithm with sequential quadratic programming (SQP).
Process optimization resulted in a 34% reduction in total
compression power compared to the original design. Morin et al.
[19] optimized an SMR and a DMR process using an evolutionary
search method and sequential quadratic programming. SQP was
shown to obtain better results on average, particularly for the SMR
process. However, it struggled to converge successfully for the DMR
process without significant tuning, and was found to be higly
sensitive to the problem formulation. The evolutionary search
method, on the other hand, required relatively little tuning and was
faster than SQP for the DMR process. Furthermore, it obtained so-
lutions within 3.12% of the SQP solution. The authors therefore
suggest using a hybrid optimization strategy, where an evolu-
tionary search method would be used for obtaining a good starting
point for the SQP algorithm. Additional optimization studies of
DMR processes are reviewed in Austbø et al. [5] and He et al. [6].

This article uses the MHEX model developed by Watson et al.
[20] that employs recent advances in nonsmooth analysis for
handling composite curves and heat transfer area calculations.
Similar to the models by Kamath et al. [8] and Pattison and Baldea
[10], the heat exchanger is treated as adiabatic with no external
utilities. Based on this, the authors reformulated the Duran and
Grossmann [9] model into a single nonsmooth equation to prevent
temperature crossovers in the MHEX. Equations for the overall
energy balance and area calculations are also included in the
model, reducing the degrees of freedom by two compared to the
MHEX modules in Aspen HYSYS and Aspen Plus. Phase regime
detection for the streams is handled using the nonsmooth mathe-
matical operatorsmin, max andmid [21], where themid operator is
a function that maps to its median argument. The MHEX model
employs a hybrid simulation framework where two-phase sub-
streams are solved sequentially in flash calculations nested in an EO
environment. Flash calculations are solved using a nonsmooth
extention of the inside-out flash algorithm by Boston and Britt [22]
that handles phase-changes without relying on post-processing
methods for phase detection. This procedure is summarized in a
3-paper series byWatson et al. [14,23] andWatson and Barton [24],
where a mid-function is used for automatic outlet phase regime
detectionwithin the flash calculation procedure. The algorithmwas
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shown to handle instances close to the critical point for which the
conventional inside-out algorithm implemented in Aspen Plus with
post-processing methods for phase detection failed to identify the
correct single phase [23]. The purpose of the model is to provide an
alternative to preliminary design and analysis of LNG processes
currently conducted by commercial process simulation tools, e.g.
Aspen HYSYS. No detailed geometrical considerations are therefore
studied here. Instead, the model should be employed as an initial
step in the design process to obtain good operating points for the
design, as well as a rough cost estimate through installed
compression power and total heat exchanger conduction UA, and
then use more detailed models in the detailed engineering stage.

Model size remains an important issue in the existing multi-
stream heat exchanger models. Binary variables or complemen-
tarity constraints for phase detection, and a MINLP formulation for
enforcing the second law have resulted in these models only being
used for studying the relatively simple PRICO process. For larger
and more complex processes, the state-of-the-art is still to use
commercial simulation tools, e.g. Aspen HYSYS, sometimes with an
external optimizer. The nonsmooth modeling framework, however,
exhibits several advantageous properties. As the flash calculations
are nested in the flowsheet calculation, the number of segments
chosen to model the two-phase region does not impact the model
size. Furthermore, the reformulated Duran and Grossmann model
places a single constraint on the problem, regardless of the number
of stream segments used in the model. Consequently, additional
stream segments can be included for an accurate representation of
the two-phase regionwithout increasing the number of variables in
the model. The result is a multistream heat exchanger model that
scales well with the number of streams and stream segments used
in the analysis. Furthermore, auxiliary equipment, i.e. valves,
compressors and mixers employ the same nonsmooth inside-out
algorithm, and thus do not impact the overall size of the flow-
sheet model. The model was shown to work well for simulating
[25] and optimizing [26] complex SMR processes. In this article,
these models are expanded to that of a DMR process and improved
using IPOPT [27]. Optimization studies of these processes have
primarily used Aspen HYSYS together with an external derivative
free solver. Others have used SQP, although it suffers from a low
success rate, particularly without any prior tuning of the model
[19]. Optimization cases with constraints on the total heat
exchanger conductance UAmaxand minimum approach tempera-
ture DTminare considered in the analysis, and the performance of
the algorithm is compared with the state-of-the-art, using opti-
mization results from Aspen HYSYS with particle swarm optimi-
zation (PSO) [28,29].

2. The dual mixed refrigerant process

The process studied in this article is a version of the AP-DMR
process with single-stage compression for both refrigerant cycles.
The process flowsheet is presented in Fig. 1 along with the variables
considered in the optimization. It features three MHEXs for cooling
the natural gas, though in practice the two cold MHEXs are nor-
mally merged into a single spiral-wound heat exchanger (SWHX).
The SWHX is a cryogenic heat exchanger, commonly used in Dual
Mixed Refrigerant (DMR) processes, that consists of one or several
stream bundles wound around a mandrel. Separate tubes are used
for the hot refrigerant and natural gas streams, whereas the cold
refrigerant is flowing countercurrently outside the bundles. Nor-
mally, different refrigerants are used for cooling different parts of
the heat exchanger in order to reduce the refrigerant circulation at
the cold end. As a consequence, the heat transfer area required to
cool the same quantity of natural gas is comparatively smaller. A
warmmixed refrigerant (WMR) cycle consisting of ethane, propane
and n-butane is used for precooling the natural gas and the cold
mixed refrigerant (CMR) to an intermediate temperature TOUT

HP;1.
After precooling, a CMR that consists mainly of nitrogen, methane,
ethane and propane, is used for cooling the natural gas down to
120.15 K. For a better distribution of refrigerant in the SWHX, the
CMR is sent to an adiabatic separator, where the liquid product is
subcooled, throttled and used for providing cooling in MHEX 2. The
vapor product, on the other hand, proceeds to MHEX 3 where it is
condensed, subcooled and throttled to provide cooling in the cold
end of the process.

The following nomenclature is used for the parameters and
variables of the refrigerant streams in the DMR model:

� High pressure level of the warm (W) and cold (C) mixed re-
frigerants: PHP;W=C.

� Low pressure level of the warm (W) and cold (C) mixed re-
frigerants: PLP;W=C.

� Outlet temperatures of the high pressure refrigerant and natural
gas streams from MHEXs 1 and 2: TOUTHP;1=2.

� Outlet temperatures of the low pressure refrigerant from
MHEXs 1,2 and 3: TOUTLP;1=2.

� Component molar flowrates: fW=C.
� Total molar flowrate: FW=C.
2.1. The nonsmooth multistream heat exchanger model

The nonsmooth MHEX model is a generalization of the two-
stream countercurrent heat exchanger model [20], defined by the
equations for the energy balance, minimum temperature difference
DTminand total heat exchanger conductance UA. The energy balance
for multiple hot and cold streams is given by Equation (1)

XnH

i¼1

mCpH;i
�
T INH;i � TOUTH;i

�
¼

XnC

j¼1

mCpC;j
�
TOUTC;j � T INC;j

�
: (1)

where mCpH=Care the heat capacity flowrates for the hot (H) and
cold (C) streams. Area calculations can also be defined analogously
for MHEXs by assuming vertical heat exchange between the hot
and cold composite curves [20].

UA¼
XK�1

k¼1

DQk

DTkLM
: (2)

Here, UAis the heat transfer conductance, DTLMis the log-mean
temperature difference, K is the total number of enthalpy in-
tervals and DQkis the enthalpy change over interval k.

Location of the minimum temperature difference is ostensibly
more challenging to calculate for MHEXs. For single phase heat
transfer in a two-stream countercurrent heat exchanger, the min-
imum approach temperature occurs at the end points of the heat
exchanger. Multiple stream inlets entails possible pinch candidates
at all inlet temperatures. Furthermore, MHEXs are normally
included in cryogenic applications with phase transitions, where
the minimum approach temperature can also occur at interior
points in the heat exchanger. Instead, the minimum approach
temperature can be calculated using pinch analysis and heat inte-
gration with a pinch location algorithm. Different pinch location
algorithms have been developed. However, most entail solving
either a nonconvex NLP or an MINLP to global optimality. A refor-
mulation of the simultaneous optimization and heat integration
algorithm by Duran and Grossmann [9] was proposed by Watson
et al. that translates the optimization problem into a single non-
smooth equation [20]:



Fig. 1. Flowsheet of the DMR process.
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minf
p2P

EBPpC � EBPpH
� ¼ 0; (3)

where P is the (finite) set of candidate pinch points and EBPpH=Care
the enthalpies of extended hot/cold composite curves for pinch
candidate p as defined in Watson et al. [20] as nonsmooth func-
tions. The equation can be solved using nonsmooth numerical
equation solvers, and no optimization problem must be solved to
ensure feasible heat exchange.

Phase changes in MHEXs represent a known modeling chal-
lenge, as phase boundaries vary dynamically during simulation and
optimization. Consequently, the phases traversed in the heat
exchanger are not known a priori andmust be determined on every
iteration of the solver. Instead of using binary variables or dis-
junctions for detecting the correct phase regime, the MHEX model
partitions each process stream into superheated (sup), two-phase
(2p) and subcooled (sub) substreams whose inlet and outlet tem-
peratures are determined by the nonsmooth equations [21]:

T IN=OUTsup ¼max
�
TDP; T

IN=OUT
�
; (4)

T IN=OUT2p ¼mid
�
TDP; TBP; T

IN=OUT
�
; (5)

T IN=OUTsub ¼min
�
TBP; T

IN=OUT
�
; (6)

where T IN=OUTare the inlet and outlet temperatures of the process
stream, T IN=OUT

sub=2p=supare the corresponding inlet and outlet temper-
atures of the substreams, and TDPand TBPare the dew and bubble
point temperatures of the process streams. Additional stream
segments are used to improve the accuracy of the calculations. In
the simulation and optimization studies in this article, five stream
segments are used for the two single-phase regimes, whereas 20
stream segments are used for the two-phase region.

Stream temperatures in the two-phase region are calculated
from pressure-enthalpy (PQ-) flash operations. Similarly, auxiliary
equipment such as compressors and valves are modeled using
isentropic and adiabatic flash calculations, respectively. Because of
the aforementioned issue with phase regime detection and dy-
namic phase boundaries in MHEXs, the PQ-flash algorithmmust be
capable of handling instances of single phase flow. A nonsmooth
extension of the well recognized Boston and Britt algorithm [22]
that handles cases of single-phase flow is presented in a 3-paper
series by Watson et al. [14,23] and Watson and Barton [24]. The
algorithm includes a mid-function for correctly identifying the
phase regime at the outlet, avoiding the use of the suggested post-
processing methods for handling single-phase behaviour. In
particular, the flash algorithm was shown to handle cases near the
critical point robustly, where the conventional inside-out algorithm
was prone to failure [23]. In addition, a methodology for calculating
generalized derivatives analytically for the flash calculations,
means the flash calculations can be nested and solved as sub-
routines in the model. The result is a smaller model size, where
auxiliary equipment such as compressors and valves, as well as
stream segments for the two-phase region are solved sequentially
at every iteration.
2.2. Simulation of the DMR process

Simulation Case I from Vikse et al. [30] was used as a starting
point for the optimizer. The MHEX model [20] provides either two
or three equations, depending on whether area calculations are
included. Using a two-equation MHEX model is particularly useful
for precooling and intermediate MHEXs during simulation as
specifying either the UA-value or DTminin these heat exchangers is
difficult. The process parameters in these MHEXs depend on the
process conditions in the low temperature MHEX, which makes it
hard for the user to select a pre-defined area or minimum approach
temperature. Instead, during simulation of the DMR model, an
efficient approach is to use the two-equation MHEX model to find
the approach temperature for a set of initial conditions, and
calculate the UA-value subsequently. Then, during process optimi-
zation, a three-equation MHEXmodel can be used to iterate around
the initial area values as desired. No tear equations are required in
this model as the pressure levels, material flows and compositions
are set for the refrigerant streams similar to an equation oriented
approach. In addition, the temperature is fixed after the cooler. The
results of the simulations are discussed for each of the two variable
sets below. Consequently, the DMR simulation model has seven
equations, which were used to solve for the following unknown
variables: TOUTHP;1, T

OUT
HP;2, T

OUT
LP;3 , PLP;C, FC, fW; ethaneand DTmin;2[30].

The model converged to a feasible solution with 17.34 MW in
total compression power after three iterations and a total simula-
tion time of 68.7 s [30]. The results of the base case is presented in
Table 1 and will be used as a future reference for the optimization
studies. The variables solved for in themodel are presented in italic.
Furthermore, the total work, the individual compressor duties
(WW=C) and the UA1=2-values are calculated during post-
processing. The compressor duties are calculated using isentropic
flash calculations, as well as a specified isentropic efficiency (h).
The UA-values are calculated for MHEX 1 and 2 using Equation (2).
Thewarmmixed refrigerant composition changes in the simulation
as a result of varying the component molar flowrate of ethane
(fW;ethane). The corresponding natural gas composition, flowrate



Table 1
Process data for the base case. Calculated values are presented in italic.

Property Property

Total work [MW] 17.34 UA3[MW/K] 0.3
h 0.8 UAmax[MW/K] 5.39
WW[MW] 6.36 DTmin;1[K] 4.0
WC[MW] 10.98 DTmin;2[K] 3.55

TOUT
HP;1[K] 238.11 DTmin;3[K] 4.0

TOUT
HP;2[K] 150.96 TOUTLP;1 [K] 280.15

UA1[MW/K] 1.93 TOUTLP;2 [K] 230.15
UA2[MW/K] 3.16 TOUTLP;3 [K] 146.96

WMR: CMR:

FW[kmol/s] 1.62 FC[kmol/s] 0.99
PHP;W[MPa] 1.67 PHP;C[MPa] 4.85
PLP;W[MPa] 0.42 PLP;C[MPa] 0.31
Composition [mol %]: Composition [mol %]:
Ethane 50.16 Nitrogen 7.00
Propane 32.64 Methane 41.80
n-Butane 17.20 Ethane 33.20

Propane 18.00
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and pressure level are specified in Table 2.
3. Optimization of the dual mixed refrigerant process

3.1. Formulation of the optimization problem

Appropriate formulation of the optimization problem is
important when analyzing LNG liquefaction processes. Design of
heat exchanger networks frequently use a lower bound of the
minimum approach temperature DTminas a measure of the level of
heat integration in the process. A smaller DTminmeans more heat
integration at the expense of a larger total heat transfer area and
thus higher capital costs. Therefore, by placing constraints on the
minimum approach temperature in the process one canmanipulate
the trade-offs between energy consumption and the required heat
transfer area. For this reason, DTminhas frequently been used as a
specification in optimization of LNG processes. However, thermo-
dynamic irreversibilities increase with both increasing driving
forces and decreasing operating temperature [31,32], and as a
result, the distribution of driving forces in the MHEXs is important.
Jensen and Skogestad [33] showed that using a minimum tem-
perature approach when optimizing LNG processes led to sub-
optimal utilization of the heat exchanger conductance. Later,
Austbø and Gundersen showed that a problem formulation con-
straining the heat exchanger conductance rather than DTmin,
resulted in a better driving force distribution in the heat exchanger
[32]. Kim and Gundersen [34] later expanded the results to opti-
mization of dual mixed refrigerant processes, though here the total
Table 2
Natural gas stream data for the DMR process.

Property Natural gas

Flowrate [kmol/s] 1.00
Pressure [MPa] 5.50
Inlet temperature [K] 295.15
Outlet temperature [K] 120.15
Composition [mol %]
Nitrogen 1.00
Methane 91.60
Ethane 4.93
Propane 1.71
n-Butane 0.35
iso-Butane 0.4
iso-Pentane 0.01
UA-value should be used rather than the heat exchanger conduc-
tance values for the individual MHEXs.

Another important consideration in optimization of LNG pro-
cesses is the degree of superheating for the low pressure refrig-
erant. A certain degree of superheating is required to avoid the
formation of liquid droplets in the compressor and excessive
compressor wear. However, a large safety margin may degrade the
optimal solution. Kim and Gundersen [34] plotted the specific
compression power as a function of the minimum superheating
value, and found that the solution was more sensitive to the min-
imum degree of superheating when using a DTminapproach.
Furthermore, they discovered that the optimal superheating values
for the WMR and CMR when using area constraints for the DMR
process were 10 K and 12 K, respectively. A minimum superheating
of 5 K is used for all optimization cases presented in this paper. The
overall optimization formulation is similar to that of SMR processes
[26]:

min
x

WWðxÞ þWCðxÞ
s:t: hðxÞ ¼ 0;

UA1ðxÞ þ UA2ðxÞ þ UA3ðxÞ � UAmax;
DTsup � DTsup;min;

xLB � x � xUB;

(7)

where DTsupis the degree of superheating for the two compressors
and his a set of equations describing the DMR model. This set in-
cludes Equations (1)e(3), as well as energy balances for the indi-
vidual stream segments. As the two-phase stream variables, and
auxiliary equipment such as valves, mixers and compressors, are
solved using nested flash calculations, their functions are not
included in h, but are instead resolved at every iteration. The
functions in hare described using the nonsmooth operators min,
max and mid for modeling phase changes, and the minimum
approach temperature in theMHEXs. The UA functions are given by
Equation (2). Sensitivity based methods using classical derivatives
or finite difference approximation are therefore prone to failure
when encountering points of nondifferentiability. A traditional
approach has been to either approximate the function around the
kink points by using smooth approximations, or by reformulating
the nonsmooth operators using disjunctions. Alternatively, gener-
alized derivative elements can be used, which are extensions of the
concept of derivatives to certain classes of nondifferentiable func-
tions. One such generalized derivative is the Clarke Jacobian [35]
that is defined for functions that are locally Lipschitz continuous on
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their domain. Another is the lexicographic (L-)derivative, which is
defined for functions that satisfy conditions for lexicographic (L)-
smoothness [36]. The model presented in this article uses an
automatic differentiation framework for calculating lexicographic
directional (LD-)derivatives developed by Khan and Barton [37].
The lexicographic directional (LD)-derivative is a generalization of
the classic directional derivative that is computed sequentially
along the directions provided by a directions matrix. More impor-
tantly, the L-derivative can readily be obtained from the LD-
derivative. For an extensive review on evaluating LD-derivatives
and their applications, the reader is directed to Barton et al. [38].

Nonsmooth optimization algorithms exist in the literature [39].
In particular, solvers can be divided into two main categories;
subgradient methods and bundle solvers. Subgradient-based
methods work similar to smooth methods (e.g. the steepest
descent method) but where the gradient is replaced by an arbitrary
subgradient of the function. Subgradient methods are advanta-
geous in that they exhibit low storage requirements and are rela-
tively easy to implement. However, convergence of the algorithms
can be slow, there exists no rigorous stopping condition, and the
selection of step size is challenging, predominantly due to the
possibility of having nondecending step directions [40]. Rather
than using an arbitrary subgradient at each point, bundle methods
approximate the subdifferential of the function. This is achieved by
gathering the subgradients obtained at previous iterations into a
bundle. Different bundle methods have been proposed [40]; the
proximal bundle solver [41], bundle Newton method [42] and a
limited memory bundle method [43,44]. Implementations of the
bundle Newton method for linearly constrained optimization and
the limited memory bundle method for bound constraints exist.
The proximal bundle method [41] is suitable for nonsmooth con-
strained optimization problems. Tests conducted on different
convex and nonconvex nonsmooth optimization problems favored
the proximal bundle method both in regards to efficiency and
reliability [40]. However, attempts at using the MPBNGC v2.0 [41]
solver for the nonsmooth single mixed refrigerant processes were
unsuccessful [26]. Surprisingly, the interior-point optimizer, IPOPT
[27], proved to be more suitable for optimizing the nonsmooth
flowsheet models, despite its assumption that the objective func-
tion and constraints are twice continuously differentiable. Never-
theless, there are issues regarding the use of IPOPT for optimizing
the nonsmooth models, particularly with regards to the termina-
tion criteria [26]. Specifically, no implementation currently exists of
the nonsmooth analog for the dual feasibility calculations in IPOPT,
such that termination at points of nondifferentiability is problem-
atic [26]. However, Watson et al. [26] showed that the termination
issues are avoided when the dual feasibility tolerance is suitably
high. The authors also provided a list of changes to the default
settings, which empirically was shown to provide better perfor-
mance for the nonsmooth models. The full list of non-default set-
tings is provided in Table 3.
Table 3
Non-default settings for IPOPT used in this work [26].

tol 0.1
constr_viol_tol 10�6

bound_push 10�9

bound_frac 10�9

recalc_y_feas_tol 10�2

max_iter 500
mu_strategy adaptive
hessian_approximation limited-memory
limited_memory_max_history number of decision variables
3.2. Optimization of the base case with a UAmaxformulation

The first example looks at improving the operation of the
feasible design from Table 1 by varying the pressure levels, refrig-
erant compositions, and intermediate temperatures for the same
maximum total heat exchanger conductance (UAmax). The models
are programmed in the Julia v0.6.0 programming language and run
on a Dell Latitude E5470 laptop in the Ubuntu v16.10 environment
with an Intel Core i7-6820HQ CPU at 2.7 GHz and 8.2 GB RAM. New
and improved operating conditions are obtained using both the
nonsmooth approach and PSO together with the process simulator
Aspen HYSYS. However, as pointed out by Vikse et al. [25], differ-
ences exist between Aspen HYSYS and Aspen Plus, where the latter
uses the same property package as the nonsmooth model. Whereas
simulations in Aspen Plus showed close correlation to results from
the nonsmooth models, results in Aspen HYSYS deviated signifi-
cantly at lower temperatures [25]. In particular, this was accredited
to Aspen HYSYS using different ideal gas enthalpy correlations from
Aspen Plus and the nonsmoothmodels. However, Aspen HYSYS also
includes the possibility of loading property models directly from
Aspen Plus. Therefore, simulations in Aspen HYSYS are done with
underlying property models from Aspen Plus to better compare the
results from PSO with the nonsmooth models. Termination criteria
for the PSO algorithm were set to 500 maximum iterations, a
function tolerance of 10�8and a maximum number of stall itera-
tions of 40. The latter is the number of iterations with relative
change in objective function value less than the overall function
tolerance before termination.

Accurate representation of the process streams is ensured by
adding an appropriate number of stream segments in the MHEXs.
Five segments are used for representing the single-phase liquid and
vapor substreams and 20 stream segments for the two-phase re-
gion in eachMHEX. However, as the two-phase streamvariables are
solved sequentially in nested flash calculations, they do not impact
the total model size. As a result, the nonsmooth optimizationmodel
consists of 108 variables, of which

P3
i¼1siðnsup þ nsub � 2Þ ¼

88(where siare the number of process streams in MHEX i and
nsup=subare the number of segments for the superheated and sub-
cooled regions) are the temperatures of the individual stream
segments and the remaining 20 variables are other process vari-
ables such as compositions, pressure levels and intermediate
stream temperatures. Variable bounds for the process variables are
presented in Table 4. Upper and lower bounds on the temperature
of the individual stream segments are set to 350 K and 100 K,
respectively.

A solution to the DMR process was obtained with IPOPT after
135 iterations and a total run time (including the time needed for
initializing and simulating the DMR model to obtain the initial
feasible design) of 1173 s. The new operating conditions resulted in
Table 4
Decision variables and bounds for the DMR model.

Variable Bounds Variable Bounds

fC;Nitrogen ½0;0:35� fW;Ethane ½0:1;1:0�
fC;Methane ½0:1;1:0� fW;Propane ½0:1;1:0�
fC;Ethane ½0:1;1:0� fW;n�Butane ½0; 0:8�
fC;Propane ½0:1;0:6� PLP;C ½0:15;0:33�
fC;n�Butane ½0;0:2� PHP;C ½2:5;5:0�
PLP;W ½0:2;0:7� TOUTLP;1

½250:0;400:0�
PHP;W ½1:0;3:0� TOUTLP;2

½220:0;250:0�
DTmin;1 ½1:0;4:0� TOUTLP;3

½130:0;160:0�
DTmin;2 ½1:0;4:0� TOUTHP;1

½230:0;260:0�
DTmin;3 ½0:5;5:0� TOUTHP;2

½150:0;170:0�



Table 5
Improved solution for the base case.

Property Feasible design NM PSO

Total work [MW] 17.34 14.84 15.11
WW[MW] 6.36 5.74 5.17
WC[MW] 10.98 9.10 9.94
UA1[MW/K] 1.93 2.19 2.01
UA2[MW/K] 3.16 2.74 2.76
UA3[MW/K] 0.3 0.46 0.62
UAmax[MW/K] 5.39 5.39 5.39
DTmin;1[K] 4.0 3.83 3.22
DTmin;2[K] 3.55 3.61 4.55
DTmin;3[K] 4.0 2.03 4.04

TOUTHP;1[K] 238.11 233.53 237.86

TOUTHP;2[K] 150.96 150.04 150.89

TOUTLP;1 [K] 280.15 271.47 282.1

TOUTLP;2 [K] 234.11 226.88 232.80

TOUTLP;3 [K] 146.96 145.10 148.2

Table 6
Warm and cold mixed refrigerant results for the base case.

Property Feasible design NM PSO

WMR
FW[kmol/s] 1.62 1.07 1.34
PHP;W[MPa] 1.67 1.26 1.70
PLP;W[MPa] 0.42 0.20 0.34
Composition [mol %]:
Ethane 50.16 42.43 36.75
Propane 32.64 34.95 49.16
n-Butane 17.20 22.62 14.08
CMR:
FC[kmol/s] 0.99 1.17 1.34
PHP;C[MPa] 4.85 2.72 3.96
PLP;C[MPa] 0.31 0.19 0.30
Composition [mol %]
Nitrogen 7.00 0.84 3.20
Methane 41.80 37.64 41.79
Ethane 33.20 44.90 40.60
Propane 18.00 14.57 14.38
n-Butane 0.0 2.05 0.02
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a total compression work of 14.84 MW, which corresponds to a
14.4% reduction. Composite curves and driving force plots for both
the initial feasible design and the improved solution are presented
in Fig. 2. The composite curves in the new design are significantly
closer in MHEX 3, though slightly less so in the intermediate MHEX.
The result is a design where the overall temperature difference is
closer to being proportional to the operating temperature, thus
reducing the exergetic losses due to irreversible heat transfer as
discussed by Austbø and Gundersen [32]. Lower refrigerant flow-
rates and a higher degree of separation before the intermediate
MHEX also result in less self refrigeration and a smaller overall heat
exchanger duty.

The DMR model was also optimized using PSO with the same
model built in Aspen HYSYS. The same initial feasible design and
variable bounds were used to compare the performance of the two
optimization strategies. A total run time of 20.9 h was needed
before the algorithm obtained a solution with a total compression
work of 15.11 MW, 1.8% higher than the solution with the non-
smooth model (NM). PSO obtains a process with larger approach
temperatures in all three MHEXs. The high pressure level of the
cold mixed refrigerant is also significantly higher than what was
obtainedwith the nonsmoothmodel. Morin et al. reported a similar
difference in objective values between using the evolutionary
search method and SQP for optimization of DMR processes [19].
Improved results from the two optimizationmethods are presented
in Tables 5 and 6 alongwith the data from the initial feasible design.
The UAmaxcalculated from the simulation, is used as an upper
bound on the total heat exchanger conductance. Consequently, any
improvements must come from a redistribution of the available
heat transfer area in the individual MHEXs.

Next, the DMR model is optimized for different maximum total
heat exchanger conductance values, using both the nonsmooth
approach and PSO for comparison. Variable bounds and IPOPT
settings remain the same as in Tables 3 and 4, and the analysis is
done with maximum total heat exchanger conductance values of 6,
9 and 12 MW/K, respectively. Solutions were obtained for the
nonsmoothmodel in the three cases. However, as the initial point is
the base case in Table 1 with a UAmax ¼ 5:39MW/K, the solution
will vary considerably from the initial design for larger heat
exchanger conductance values. Consequently, the number of iter-
ations and hence the total solution time is larger. The first case
converged after 106 iterations and a total run time of 838 s. The
second case required 221 iterations to solve, resulting in a total run
Fig. 2. (a.) Composite curves for the initial feasible and the improved d
time (including the time needed for initialization and simulation to
obtain the initial feasible design) of 2067 s. For the last case, with a
UAmax ¼ 12MW/K, a solution was obtained in 137 iterations, cor-
responding to a total run time (including initialization) of 1158 s.
esign in the base case (b.) The corresponding driving force plots.



Table 8
Warm and cold mixed refrigerant results for different UAmaxvalues.

Property 6 MW/K 9 MW/K 12 MW/K

WMR:
FW[kmol/s] 1.04 1.01 1.04
PHP;W[MPa] 1.240 1.236 1.406
PLP;W[MPa] 0.200 0.216 0.264
Composition [mol %]:
Ethane 23.70 25.10 31.72
Propane 45.96 39.26 32.81
n-Butane 30.34 35.64 35.47
CMR:
FC[kmol/s] 1.17 1.18 1.18
PHP;C[MPa] 2.720 2.780 2.795
PLP;C[MPa] 0.195 0.232 0.251
Composition [mol %]:
Nitrogen 0.91 1.36 1.56
Methane 37.62 37.55 37.70
Ethane 44.71 45.08 45.25
Propane 14.47 13.58 13.14
n-Butane 2.28 2.44 2.35
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Results for the three cases are presented in Tables 7 and 8. The
driving force plots for the three cases are shown in Fig. 3. As can be
observed, the driving force profiles show a similar shape for the
three cases, as well as for the base case. However, with increasing
heat exchanger conductance values, the obtained designs become
tighter with smaller driving force temperatures throughout the
process.

The three cases were also optimized using Aspen HYSYS with
PSO. ForUAmax ¼ 6MW/K, a solutionwas obtained after 22.3 h with
an objective function value of 14.84 MW, which is 2.4% higher than
what was obtained by the nonsmooth model. In the second case,
PSO obtained a design after 25.3 h with a total compression power
of 13.79 MW, or 1.7% higher than the corresponding nonsmooth
solution. PSO obtained a solution with 13.26 MW for the third case,
which is 1.1% higher than the solution obtained by the nonsmooth
model. The optimization algorithm required 23.9 h to solve this
case. It should bementioned that PSO terminated after reaching the
maximum number of iterations in all cases above. Consequently, no
local optimawere obtained, and the PSO algorithm terminatedwith
the best known solutionwithin 500 iterations. A function tolerance
of 10�6was also tested, however, in that case the PSO algorithm
converged to significantly suboptimal points compared to the
nonsmooth models.
Fig. 3. Driving force plots of the DMR process with different heat exchanger conduc-
tance values and improved operating conditions.
3.3. Optimization of the base case using a DTminformulation

In this section, the UAmaxconstraint in Equation (7) is replaced
by a DTminspecification for all three MHEXs. Again, the feasible
design in Table 1 is used as a starting point for the optimizer, with
the bounds as specified in Table 4. Furthermore, the minimum
approach temperature was specified to 3.50 K in all three MHEXs.
IPOPT obtained a solution for the DMR model with a
DTminformulation after 188 iterations and a total run time of 2363 s.
The solution requires a total compressor work of 14.51 MW and a
total heat exchanger conductance of 11.54 MW/K. By comparison, a
UAmaxformulation with UAmaxof 11.54 MW/K, resulted in a total
compression power of 13.16 MW or 9.3% less than the solution
predicted by the DTminformulation. Thus, energy is saved without
extra investment, just by using a problem formulation inspired by
thermodynamics that utilizes the heat exchanger area more effi-
ciently. The composite curves and driving force plot for the new
design are presented in Fig. 4. The new improved solutions for the
nonsmooth model with the DTminand UAmaxformulations are
summarized in Table 9.
Table 7
Solutions of the nonsmooth model for different UAmaxvalues.

Property 6 MW/K 9 MW/K 12 MW/K

Total work [MW] 14.49 13.56 13.11
WW[MW] 5.60 5.21 5.05
WC[MW] 8.89 8.36 8.06
UA1[MW/K] 2.47 3.65 4.88
UA2[MW/K] 3.04 4.63 6.18
UA3[MW/K] 0.49 0.72 0.94
UAmax[MW/K] 6.0 9.0 12.0
DTmin;1[K] 3.44 2.32 1.34
DTmin;2[K] 3.77 2.43 1.38
DTmin;3[K] 1.87 1.18 0.79

TOUT
HP;1[K] 233.38 233.59 233.14

TOUT
HP;2[K] 150.00 150.00 150.00

TOUT
LP;1 [K] 278.10 282.14 280.56

TOUT
LP;2 [K] 229.60 230.77 231.77

TOUT
LP;3 [K] 148.03 148.76 149.21
3.4. Optimization of the dual mixed refrigerant process with NGL
extraction

The last case considers another version of the DMR process
where NGL extraction is included between MHEXs 1 and 2 (see
Fig. 5). The process has been simulated and optimized for the feed
gas compositions in Table 10. Better operating conditions are ob-
tained using the formulation in Equation (7) with a
UAmaxconstraint. As the natural gas stream data is fixed in the
optimization, the number of optimization variables remains un-
changed from the previous model. However, an additional
constraint is added to ensure a lean LNG product with more than
89% methane.

Flowsheet simulation is used to obtain feasible starting points
for the optimizer. The following unknown variables were solved for
in the simulation model: TOUT

HP;1, T
OUT
HP;2, T

OUT
LP;3 , PLP;C, PLP;W, PHP;C, and

UA3. A warm mixed refrigerant composition with 47.83% ethane,
34.17% propane and 18% n-butane was used for all three feed
compositions. The molar flowrate was set to 1.55 kmol/s. The cold
mixed refrigerant flowrate and composition also remained con-
stant for the three cases with 7% nitrogen, 41.80% methane, 33.20%



Fig. 4. (a.) Composite curves for the solution with a DTminof 3.50 K. (b.) The driving force plot for the improved solutions with DTminand UAmaxconstraints.

Table 9
Improved solution for the base case with a DTminand UAmaxformulation.

Property DTmin UAmax Property DTmin UAmax

Total work [MW] 14.51 13.16 WMR:
WW[MW] 3.80 5.05 FW[kmol/s] 0.95 1.05
WC[MW] 10.71 8.10 PHP;W[MPa] 1.41 1.43

PLP;W[MPa] 0.36 0.27
UA1[MW/K] 3.36 4.68 Composition [mol %]
UA2[MW/K] 7.45 5.96 Ethane 31.58 32.52
UA3[MW/K] 0.73 0.90 Propane 35.40 33.14
UAmax[MW/K] 11.54 11.54 n-Butane 33.02 34.34
CMR:
DTmin;1[K] 4.23 1.41 FC[kmol/s] 1.39 1.19
DTmin;2[K] 3.50 1.00 PHP;C[MPa] 3.56 2.79
DTmin;3[K] 5.24 0.81 PLP;C[MPa] 0.27 0.25
Composition [mol %]:

TOUT
HP;1[K] 246.14 233.40 Nitrogen 4.62 1.63

TOUT
HP;2[K] 153.36 150.00 Methane 35.77 37.77

TOUT
LP;1 [K] 290.56 280.61 Ethane 41.67 45.50

TOUT
LP;2 [K] 242.21 232.04 Propane 15.38 12.56

TOUT
LP;3 [K] 147.42 148.76 n-Butane 2.56 2.54

Table 10
Feed gas compositions considered for the DMR process with NGL extraction.

Composition [mol %] Case I Case II Case III

Nitrogen 2.00 2.00 2.00
Methane 87.60 85.60 83.60
Ethane 5.93 4.93 5.93
Propane 2.71 3.71 4.71
n-Butane 1.35 2.35 2.35
i-Butane 0.4 1.4 1.4
n-Pentane 0.01 0.01 0.01
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ethane and 18.00% propane and a molar flowrate of 1.45 kmol/s.
The low pressure mixed refrigerant temperatures out of MHEX 1
and 2 were set to 290.15 K and 225.15 K, and the minimum
approach temperature in the three MHEXs were selected as 4.0 K,
Fig. 5. Flowsheet of the DMR m
4.0 K and 7.0 K, respectively. The solutions of the simulation model
for the different feed compositions are given in Tables 11 and 12.

Optimizationwas done using the simulation results as a starting
point and the calculated UAmaxas an upper bound on the total heat
exchanger conductance. As the natural gas stream data are
assumed fixed in this study, the decision variables in the model
remain the same as in the base case. However, most of the variable
bounds are changed from the base case, and are provided in
Table 13 for clarification.

The first case considers a relatively light natural gas composition
with 87.60% methane content. IPOPT obtained a solution after 300
iterations and a total run time of 2684 s including the time needed
for initialization and simulation. The solution requires a total
compression power of 15.57 MW, which is a reduction of 20.9%
odel with NGL extraction.
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Table 12
LNG product of the DMR model with NGL extraction.

Property Case I Case II Case III

FLNG[kmol/s] 0.96 0.91 0.89
Compositon [mol %]
Nitrogen 2.08 2.18 2.21
Methane 90.00 90.77 89.66
Ethane 5.48 4.26 5.04
Propane 1.83 1.93 2.30
n-Butane 0.44 0.48 0.44
i-Butane 0.16 0.38 0.35

Table 13
Changed variable bounds for the DMR model with NGL extraction.

Variable Bounds Variable Bounds

fC;Nitrogen ½0;0:30� PHP;W ½0:9;3:0�
fC;Methane ½0:1;0:8� PLP;W ½0:13;0:7�
fC;Ethane ½0:1;0:8� PLP;C ½0:13;0:33�
fW;Ethane ½0;0:7� PHP;C ½1:3;5:0�
fW;Propane ½0:1;0:7� TOUTHP;1

½220:0;260:0�
fW;n�Butane ½0:1;0:6� TOUTHP;2

½150:0;180:0�
DTmin;1 ½1:5;6:0� TOUTLP;1

½260:0;400:0�
DTmin;2 ½1:5;5:0� TOUTLP;2

½170:0;230:0�
DTmin;3 ½1:0;7:0� TOUTLP;3

½140:0;170:0�
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compared to the initial feasible design. With an NGL extraction
temperature of 220.00 K, the design also satisfies the require-
ment of a methane content larger than 89%. In the second case, a
richer composition with 85.6% methane content is used. The
optimization model converged after 600 s and 62 iterations to a
solution with a total power requirement of 14.90 MW, which is a
21.1% reduction compared to the initial design. In the third case, a
rich natural gas composition with 83.6% methane content is
assumed where significant NGL separation is required to obtain a
satisfactory LNG specification. A solution was obtained after
1794 s and 173 iterations. The results for the three cases are
summarized in Table 14. Driving force plots of the three cases are
also presented in Fig. 6.

3.5. Convergence characteristics

Optimization of DMR processes is significantly more chal-
lenging than for SMR processes. Derivative based methods in
particular tend to struggle to converge, mainly due to nonlinear
constraints and the size of the models. Morin et al. [19] reported
this using an SQP algorithm for optimizing a DMR process in
Aspen HYSYS. Tuning the algorithm for the particular model
required attention from the designer and was therefore quite
time consuming. However, once properly set up it achieved about
a 3% decrease in objective function value compared to using a
stochastic search method. The model in this paper is a stand-
alone simulation and optimization tool tailor made for LNG
processes. Consequently, it does not involve interfacing com-
mercial software with a solver. Instead, the model uses a non-
smooth flowsheeting strategy and LD-derivatives to compute
sensitivities at points of nondifferentiability. Improvements are
done using the interior point algorithm IPOPT with sensitivity
calculations provided by the LD-derivatives. However, IPOPT as-
sumes twice continuously differentiable objective functions and
constraints, which represents an issue with the termination cri-
terion. The dual feasibility calculations are not valid at non-
smooth points [26], which can cause the algorithm not to
converge and instead iterate in a negligibly small search space. As



Table 14
Improved solution of the DMR process with NGL extraction.

Property I II III Property I II III

Total work [MW] 15.57 14.90 14.42 Propane 1.12 1.24 1.18
WW 7.53 7.55 7.76 n-Butane 0.18 0.24 0.16
WC 8.05 7.35 6.67 i-Butane 0.07 0.20 0.14
UA1[MW/K] 2.41 2.34 2.52 WMR:
UA2[MW/K] 2.09 2.16 2.05 FW[kmol/s] 1.10 1.07 1.08
UA3[MW/K] 0.32 0.31 0.29 PHP;W[MPa] 1.348 1.214 1.316
UAmax[MW/K] 4.82 4.81 4.86 PLP;W[MPa] 0.130 0.131 0.130
DTmin;1[K] 4.32 4.39 3.90 Comp. [mol %]
DTmin;2[K] 2.85 2.50 2.70 Ethane 27.46 22.77 27.04
DTmin;3[K] 1.43 1.76 1.34 Propane 44.13 46.71 41.53

TOUT
HP;1[K] 220.00 223.97 220.00 n-Butane 28.41 30.52 31.43

TOUT
HP;2[K] 150.00 150.02 150.00 CMR:

TOUT
LP;1 [K] 281.87 280.18 279.45 FC[kmol/s] 1.03 0.98 0.90

TOUT
LP;2 [K] 217.15 221.47 217.30 PHP;C[MPa] 1.986 1.992 1.869

TOUT
LP;3 [K] 148.57 148.26 148.66 PLP;C[MPa] 0.143 0.135 0.133

LNG: Comp. [mol %]
FLNG[kmol/s] 0.91 0.87 0.82 Nitrogen 0.18 0.11 0.0
Comp. [mol %] Methane 36.65 35.01 35.74
Nitrogen 2.17 2.27 2.38 Ethane 52.96 53.25 52.66
Methane 91.73 92.40 92.28 Propane 9.74 10.26 11.07
Ethane 4.73 3.66 3.87 n-Butane 0.47 1.37 0.53

Fig. 6. Driving force plots for the DMR model with NGL extraction.

M. Vikse et al. / Energy 196 (2020) 116999 11
mentioned previously, this issue is resolved by increasing the dual
feasibility tolerance to 0.1, thus a local optimum cannot be verified
for these nonsmooth optimization models with a gradient based
optimizer. However, in order to avoid this issue altogether, a non-
smooth optimization solver that can handle L-derivatives must be
developed.

Global optimality cannot be guaranteed for the solutions as a
local solver is used for optimizing the nonsmooth models. There-
fore, in order to evaluate the quality of solutions, multistart using
15 runs from randomly generated (and possibly infeasible) starting
points was done for the cases with variable UAmaxvalues. The re-
sults show that none of the converged solutions were better than
the one provided using the feasible starting point. For the case with
a UAmaxvalue of 6 MW/K, multistart resulted in four runs
converging to the same solution, two cases converging to a sub-
optimal design, and the remaining nine runs not converging at all.
This corresponds to a success rate of 27%, which is slightly better
than the 10e20% range reported by Austbø and Gundersen [32]
with UAmaxconstraints for the PRICO process. For the cases with
heat exchanger conductances of 8 MW/K and 15 MW/K, six of the
runs converged to the best known solution, whereas two runs
converged to suboptimal solutions. This corresponds to a success
rate of 40%. A slightly higher success rate was obtained with the
DTminformulation, where 45% of the runs converged to the best
known solution. Therefore, a possible strategywould be to relax the
UAmaxconstraint first, and use the solution as an initial guess before
optimizing the driving force distribution in the MHEXs.

Setting bounds for the optimization variables is challenging for
the DMR process due to the constraints and number of variables in
themodel. In particular, finding a good set of bounds on component
molar flowrates, refrigerant pressure levels and minimum
approach temperatures is challenging, and may influence the
convergence. Simulation provides good initial points to the opti-
mizer. In addition, it makes it easier for the user to set bounds that
can increase the convergence ratio. In the case studies performed
here, the pressure, DTminand temperature bounds are relaxed to
include the solutions of different case studies. Significant im-
provements to the convergence can be made, however, through
stricter bounds tailored for a specific case. The latter becomes easier
by first considering the initial feasible design, and then determining
the bounds accordingly. As no other tuning is necessary for IPOPT
besides the settings provided in Table 3, finding bounds and opti-
mizing the models is still less time-consuming and yield better
results than running Aspen HYSYS with stochastic search methods
such as PSO. The optimization studies here are only considering
local optimization and no global solution can be guaranteed.
However, analysis using multistart, as well as comparisons to PSO
in Aspen HYSYS, show that the optimizer obtain good results
despite lacking an analogous dual feasibility relation for non-
smooth functions.

In the optimization studies, some of the decision variables
ended up on their respective lower bounds. As the bounds were
relaxed further, the model experienced failures in the flash calcu-
lations, as the model approached regions for which no solutionwas
obtained using the inside-out flash algorithm. Consequently, it
imposes a limitation on the current implementation. Developing an
alternative model formulation or heuristics for handling these
extreme flash conditions to prevent failures in the overall model, is
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therefore a necessary next step.

4. Conclusions

Several stand-alone models for LNG processes have been re-
ported in the literature, and these have been tested for single mixed
refrigerant processes. However, these models often involve solving
either a mixed integer nonlinear program or a nonlinear program
with a large number of variables and constraints. Dual mixed
refrigerant processes feature designs with small temperature dif-
ferences, several multistream heat exchangers, intermediate
throttling, and separation. The models are therefore significantly
larger and more complex than single mixed refrigerant processes,
and as a result, optimization studies in the literature tend to use
commercial process simulators such as Aspen HYSYS along with a
derivative based or stochastic search method. The nonsmooth
flowsheet models presented here are stand-alone tools for both
simulation and optimization of LNG processes, where functioning
models already have been developed for different single mixed
refrigerant processes. In this article, the nonsmooth flowsheeting
strategy is used for developing a simulation and optimization
model for dual mixed refrigerant processes.

Different cases were studied using both DTminand
UAmaxconstraints, and improvements were done with IPOPT using
sensitivity information provided by LD-derivatives. The new oper-
ating conditions resulted in a 14.4% decrease in total compression
power for the DMR process and 20.9e21.6% for the DMR process
with NGL extraction. The nonsmooth model also obtained 1.1e2.4%
more energy efficient operating points than PSO in 25e80 times
less solution time. Multistart for several of the cases showed that
IPOPT obtained the best (known) solution when using a feasible
starting point. Furthermore, the model achieved a higher success
rate with a UAmaxconstraint thanwhat was reported by Austbø and
Gundersen for the basic PRICO process [32].
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