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Abstract— This paper presents a hybrid feedback controller
suitable for orientation control of ships. A hybrid kinematic
controller on the unit circle is constructed from the gradient of
a synergistic potential function, which globally asymptotically
stabilizes a desired orientation, with yaw rate viewed as control
input. While this idea is not new, the potential function is novel
and possesses some desired properties. The kinematic controller
generates smooth reference signals for the desired velocity and
acceleration, except at instances when the controller switches.
Continuity of velocity and acceleration is achieved by control-
ling the yaw rate through a double integrator. Moreover, the
velocity and acceleration converge to their desired values expo-
nentially. The resulting closed-loop system is stable, provided
the controller gains satisfy mild constraints. This is shown using
a hybrid Lyapunov function.

I. INTRODUCTION

Control of orientations, such as heading of a ship, is anal-
ogous to stabilizing a point on the unit circle. Representing
the orientation in this manner avoids the need for numerical
tricks in implementation, such as mapping a yaw angle to
some defined interval (typically −π to π radians).

Systems evolving by continuous vector fields on compact
manifolds, such as the unit circle, cannot have a globally
asymptotically stable equilibrium [1], [2], hence precluding
global asymptotic stability by continuous control.. For heading
control, this implies the existence of an unstable equilibrium,
typically located at the 180 degree error point. The unstable
equilibrium may be removed by discontinuous control; how-
ever, the resulting controller is not robust towards arbitrarily
small disturbances [3], [4]. It may also be trivially removed
by not mapping the angle to a defined interval, however
this results in the unwinding phenomena [5]. By utilizing a
hybrid control structure [6], the unstable equilibrium may be
removed using a properly defined switching logic, ensuring
both global stability and robustness.

Stability analysis of hybrid systems using multiple Lya-
punov functions are proposed in [7]. Various Lyapunov-based
design tools for hybrid control systems have since been pro-
posed. Notable examples include patchy control Lyapunov
functions [8], synergistic Lyapunov functions [9], [10], hybrid
control Lyapunov functions [11], and more recently Lyapunov-
based model predictive control [12], [13]. In [14] the authors
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propose to construct synergistic potential functions on the unit
circle, by stretching the unit circle onto itself while keeping
the desired equilibrium fixed. This idea is also used in [15]
for control of spherical orientations and in [16] for attitude
control. Hybrid control systems have been applied for robust
global trajectory tracking for underactuated vehicles [17], and
underwater vehicles [18].

In this paper we first propose a version of the hybrid
kinematic controller given in [14], with yaw rate viewed as
control input. The commanded yaw rate, constructed from the
gradient of a synergistic potential function, is approximately
flat for large angular errors, while it decays smoothly towards
zero as the error tends to zero. This property makes it suitable
for heading control of ships and similar vehicles, where
the convergence rate to a desired orientation is limited by
saturation of the angular velocity, rather than acceleration or
higher derivatives. The kinematic controller generates smooth
references signals for the desired yaw rate, acceleration and
jerk (except at instances when the controller switches).

The main contribution of this paper is found in the second
part of the control system development; by controlling the
yaw rate through a double integrator, continuity of velocity
and acceleration is achieved. Furthermore, the control system
architecture (where the continuous-time evolution is reminis-
cent of a cascaded system [19]) simplifies adaptation to more
realistic ship models considering propellers and rudders as
control input. The error dynamics of the velocity and accel-
eration admits exponential convergence towards their desired
values. Stability is shown using a hybrid Lyapunov function,
where the controller gains are chosen such that the sign in-
definite terms are dominated (rather than canceling the terms
which is often done in hybrid backstepping approaches [9],
[10]). While dominating the sign indefinite terms is not new,
employing it on a hybrid Lyapunov function places restrictions
on the controller gains which are not present for non-hybrid
systems. This is because the jumps destroy the cascade struc-
ture exhibited by the flows. A simulation study indicates that
the constraints are not restrictive for the intended application.

The remainder of this paper is organized as follows: The
problem statement is given in Section II, while hybrid con-
trol systems are briefly reviewed in Section III. Section IV
presents a hybrid controller on the unit circle, with velocity
viewed as control input. In Section V the yaw rate and accel-
eration are rendered continuous by controlling the velocity
through a double integrator, while tracking the velocity and
acceleration reference signals generated in Section IV. The
theoretical results are supported by simulations in Section
VI. Finally, concluding remarks are given in Section VII.



II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

1) Notation: R is the set of real numbers and Rn is the
n-dimensional Euclidean space. R≥0 and R>0 are the set of
non-negative and positive numbers, respectively. N is the set
of non-negative integers. The Euclidean norm of a vector x ∈
Rn is denoted |x|, while (x, y) denotes two column vectors
stacked into a column vector, that is, (x, y) := [x> y>]>.
For two vectors x ∈ Rn, y ∈ Rn, we define 〈x, y〉 := x>y.
For a function f : Rn × Y → Rm, the Jacobian matrix with
respect to x ∈ Rn is denoted Jx(f(x, y)) ∈ Rn×m. For a
function f : Rn × Y → R, ∇x(f(x, y)) := J>x (f(x, y)) is a
column vector. The subscript x is omitted when the argument
is clear from context. Finally, ẋ is the time derivative of x.

2) Unit circle representation of planar rotations: The unit
circle and planar rotations are given by [14]

S1 :={z ∈ R2 : z>z = 1} (1)

SO(2) :={R ∈ R2×2 : R>R = RR> = I, det(R) = 1},
(2)

respectively. We denote the unit vector corresponding to an
angle a ∈ R as

za :=

[
za1
za2

]
=

[
cos(a)

sin(a)

]
∈ S1, (3)

and the corresponding map R : S1 → SO(2) is given by

R(za) :=

[
za1 −za2
za2 za1

]
∈ SO(2). (4)

Define ε1 = (1, 0) and ε2 := (0, 1), and let S be the rota-
tion matrix corresponding to the 90 degree counterclockwise
rotation

S := R(ε2) =

[
0 −1

1 0

]
∈ SO(2). (5)

The kinematic equation for motion along the unit circle with
angular velocity ωa = ȧ is given by ża = ωaSz

a. Note the
convenient calculation rules: za+b = R(zb)za = R(za)zb,
za−b = R(zb)>za, and R(za)R(zb) = R(zb)R(za).

B. Problem formulation

We consider heading control of surface ships and similar
vehicles moving in a plane. As such, we adopt marine con-
trol terminology [20]. Let zψ be the unit orientation vector
corresponding to the ship heading, where ψ is referred to as
the yaw angle. Furthermore, ωψ := ψ̇ is the yaw rate, ω̇ψ
is the yaw acceleration, and ω̈ψ is the yaw jerk. Let zψd be
the desired orientation vector corresponding to the heading
ψd, assumed constant, and define z̃ := zψ−ψd = R(zψd )>zψ .
Controlling z̃ → ε1 is equivalent to controlling ψ → ψd. In
the remainder of this paper, z refers to z̃, while ω refers to ωψ ,
that is, omitting the superscript and subscript, respectively.

The main control task is to design a kinematic controller
which renders z = ε1 globally asymptotically stable. More-
over, the kinematic controller shall be suitable for ships. This

implies that the kinematic controller admits smooth reference
signals for both the yaw rate and yaw acceleration. Further-
more, since convergence to a desired orientation is limited
by saturation of ω for large yaw errors, it is desired that the
commanded yaw rate is approximately constant and within
rate limits for large yaw errors. Define the system

ż = ωSz, ω̈ = u, q̇ = 0 (6)

with states (z, (ω, ω̇), q) ∈ S1 × R2 ×Q, where q is a logic
variable available for feedback control, and u ∈ R is the con-
trol input. Controlling ω through a double integrator achieves
continuity of both the yaw rate and acceleration. We now
state the control problem:

Problem statement: Consider the system (6). Design
a hybrid feedback controller for u such that (ω, ω̇)
tracks a desired reference (ωd(z, q), ω̇d(z, ω, q)), where
(ωd(z, q), ω̇d(z, ω, q)) shall render z = ε1 robustly globally
asymptotically stable.

III. HYBRID CONTROL SYSTEMS

A. Modeling framework

In this paper we consider affine control systems of the form

H :

{
ẋ = f(x) + g(x)u x ∈ C

x+ = h(x) x ∈ D,
(7)

with states x ∈ Rn and input u ∈ Rm. The continuous-time
evolution of x is referred to as flow, while the discrete evolu-
tion, denoted x+, is referred to as jumps [21]. As such, C ⊂
Rn is the flow set and D ⊂ Rn is the jump map. A solution
x(·, ·) to H is parametrized by an ordinary time variable t ∈
R≥0 and a jump variable j ∈ N, thus existing on a hybrid
time domain. A compact set A ⊂ Rn is globally asymptot-
ically stable if all solutions are bounded and x(t, j) → A
when (t + j) → ∞. See [21] and references therein for a
more rigorous treatment of the topic. Note in particular the
definition of well-posed hybrid systems [21, Definition 6.29],
and the hybrid basic conditions [21, Assumption 6.5].

B. Hybrid feedback and synergistic Lyapunov functions

Consider the system

ẋ = f(x) + g(x)u, q̇ = 0, (8)

with states x ∈ Rn, input u ∈ Rm, and q ∈ Q := {−1, 1}
as a logic variable. The following definition is a slightly
modified version of the synergistic Lyapunov functions and
feedback pairs presented in [9, Section III]:

Definition 1. Let V : Rn × Q → R be a continuously
differentiable function. Assume the following conditions hold:

• ∀r ≥ 0, {(x, q) ∈ Rn ×Q : V (x, q) ≤ r} is compact.
• V is positive definite with respect to the compact set A.

If there exists a function κ : Rn ×Q→ Rm such that

〈∇V (x, q), f(x) + g(x)κ(x, q)〉 ≤ 0, (9)



for all (x, q) ∈ Rn × Q, then V is a synergistic Lyapunov
function candidate relative to the compact setA. Let M(x) :=
minq∈Q V (x, q) and define

Ψ := {(x, q) ∈ Rn ×Q :

〈∇V (x, q), f(x) + g(x)κ(x, q)〉 = 0}
(10)

µ := inf
(x,q)∈Ψ\A

{V (x, q)−M(x)}. (11)

If the synergy gap µ > 0, V is a synergistic Lyapunov function
relative to the compact set A.

Select δ ∈ R>0 and define the closed-loop system

H :

{
ẋ = f(x) + g(x)κ(x, q), q̇ = 0 (x, q) ∈ C
q+ = −q, x+ = x (x, q) ∈ D,

(12)

C := {(x, q) ∈ Rn ×Q : M(x)− V (x, q) ≥ −δ} (13)
D := {(x, q) ∈ Rn ×Q : M(x)− V (x, q) ≤ −δ}. (14)

The following theorem states global asymptotic stability of
H, subject to the constraint δ < µ [9, Theorem 7]:

Theorem 1. For the system (8), assume V is a synergistic
Lyapunov function relative to the set A with synergy gap µ.
If δ < µ, A is globally asymptotically stable for the closed-
loop system (12).

Proof. Since C and D are constructed such that (Ψ\A)∩C =
∅ when δ < µ, the inequality (9) is strict ∀(x, q) ∈ C\A, that
is, V is strictly decreasing during flow. Moreover, V is strictly
decreasing during jumps since V (x,−q)− V (x, q) ≤ −δ <
0,∀(x, q) ∈ D. Then, the conditions of [21, Theorem 3.18]
are satisfied, which states global asymptotic stability.

IV. CONTROL SYSTEM DESIGN: PART I

In this section we develop a controller for the reduced
system

ż = ωdSz, q̇ = 0, (15)

with states (z, q) ∈ S1×Q, and ωd viewed as input. We start
with a non-hybrid control system, which later serves as basis
for a hybrid control system.

A. Almost globally stabilizing non-hybrid controller

We construct a non-hybrid control law for ωd from the
gradient of a potential function which is positive definite with
respect to z = ε1. In the following, recall that z2

1 + z2
2 = 1.

Define P : S1 → [0 1] as

P (z) :=L(arccos(λz1)− arccos(λ)) (16)

L :=
1

arccos(−λ)− arccos(λ)
, (17)

with 0 < λ < 1. Here, λ is a regularization parameter such
that the gradient of P (z) on S1, given by

〈∇P (z), Sz〉 =
[
−Lλ√
1−λ2z21

0
]
Sz =

Lλz2√
1− λ2z2

1

, (18)

is continuous and without singularities (note that for λ = 1,
(18) has singularities for z1 = ±1; any 0 < λ < 1 avoids
this). Define σ0 : S1 → [−1, 1] as

σ0(z) :=
z2√

1− λ2z2
1

, (19)

which is a smooth approximation of sign(z2). With suffi-
ciently high λ < 1, |σ0(z)| is approximately constant and
close to unity for most z ∈ S1, while converging smoothly
towards zero at the critical points z = ±ε1. Hence, choosing
ωd := −K0σ0(z), with K0 ∈ R>0 (slightly) less than the
maximum yaw rate of the vehicle, yields a velocity profile
suitable for vehicles where the convergence rate to the desired
orientation is governed by saturation of ω. Noting that

〈∇P (z), Sz〉(−K0σ0(z)) = −K0Lλσ0(z)2 ≤ 0, (20)

and σ0(z) = 0 if and only if z = ±ε1, all solutions starting
in z ∈ S1 \ {z = −ε1} converge to z = ε1.

The first and second directional derivatives of σ0(z) on S1

are given by

σ1(z) :=〈∇σ0(z), Sz〉 =
z1(1− λ2)

(1− λ2z2
1)

3
2

(21)

σ2(z) :=〈∇σ1(z), Sz〉

=(λ2 − 1)z2

(
3λ2z2

1

(1− λ2z2
1)

5
2

+
1

(1− λ2z2
1)

3
2

)
,

(22)

from which we obtain ω̇d = −K0σ1(z)ωd and ω̈d =
−K0σ2(z)ω2

d−K0σ1(z)ω̇d, where ω̈d is required to track ω̇d.

B. Globally stabilizing hybrid controller

To remove the unstable equilibrium located at z = −ε1

we adopt the procedure proposed in [14], where synergistic
Lyapunov functions are constructed from a non-hybrid po-
tential function by angular stretching of the unit circle. For
the system (15), define Q := {−1, 1}. The control task is to
render the set A0 := {(z, q) ∈ S1 × Q : z = ε1} globally
asymptotically stable.

1) Synergistic Lyapunov function: Define the angle φ :=
qkP (z) and z̄ : S1 ×Q→ S1 as

z̄(z, q) := R(zφ)z, (23)

where k ∈ R>0 is a constant gain. If k satisfies

k <
1

max(|∇P (z)|)
=

√
1− λ2

Lλ
< π, (24)

z̄ is a diffeomorphism which stretches the unit circle onto
itself while keeping ε1 fixed [14, Theorem 4.3]. In particular,
each point is given the φ = qkP (z) counterclockwise rotation.
Define the synergistic Lyapunov function candidate V0 : S1×
Q→ [0 1] as

V0(z, q) := P (z̄(z, q)). (25)

Lemma 4.1 in [14] states that

Jz̄(z,q)(z̄(z, q))Sz = (1 + qk〈∇P (z), Sz〉)Sz̄(z, q) (26)



Using (26) the gradient of V0 on S1 is obtained as

〈∇V0(z, q), Sz〉 = (1 + qkLλσ0(z))Lλσ̄0(z, q), (27)

where σ̄0(z, q) := σ0(z̄(z, q)). Define the set of critical points
where the gradient of V0 on S1 vanishes, by

Ψ0 := {(z, q) ∈ (S1 ×Q) : 〈∇V0(z, q), Sz〉 = 0}. (28)

In addition to z = ε1, the point z = −ε1 is now split and
shifted into two new critical points – one for each value of
q. Noting the bound (24), and |qσ0(z)| ≤ 1, we get that

(1 + qkLλσ0(z)) ≥ 1− kLλ > 1−
√

1− λ2

Lλ
Lλ > 0

(29)

holds for all (z, q) ∈ S1 ×Q. It follows that

−〈∇V0(z, q), Sz〉σ̄0(z, q) = −(1 + qkLλσ0(z))Lλσ̄0(z, q)2

(30)

is non-positive for all (z, q) ∈ S1 ×Q, and strictly negative
for all (z, q) ∈ (S1 × Q) \ Ψ0. Since V0 has a non-zero
synergy gap [14], it is a valid synergistic Lyapunov function.

2) Virtual control law: Define κ0 : S1 ×Q→ R as

κ0(z, q) := −K0σ̄0(z, q). (31)

Then the compact set A0 is asymptotically stable for

ż = κ0(z, q)Sz, q̇ = 0, (32)

with region of attraction (S1 ×Q) \ (Ψ0 \ A0).
For future use, we calculate the first and second directional

derivatives of σ̄0(z) on S1. Repeated application of (26) yields

σ̄1(z, q) :=〈∇σ̄0(z, q), Sz〉
=(1 + qkLλσ0(z))σ1(z̄(z, q))

(33)

σ̄2(z, q) :=〈∇σ̄1(z, q), Sz〉
=(1 + qkLλσ0(z))2σ2(z̄(z, q))

+ qkLλσ1(z)σ̄1(z, q).

(34)

The desired velocity and resulting acceleration and jerk pro-
files are obtained as before, simply replacing σi(z) with
σ̄i(z, q) for i = 0, 1, 2:

ωd := −K0σ̄0(z, q) (35)
ω̇d = −K0σ̄1(z, q)ωd (36)

ω̈d = −K0σ̄2(z, q)ω2
d −K0σ̄1(z, q)ω̇d. (37)

See Figure 1 for illustration (the parameters θ and ∆ are
introduced shortly). Fixing q, it is trivial to numerically verify
that ω̇d and ω̈d does not exceed the dynamic constraints of
the vehicle, for a given set of parameters λ, k, and K0.

Fig. 1. Velocity (top) and acceleration (bottom) profile versus heading error
for λ = 0.9, K0 = 1, θ = π

9
, and ∆ = π

36
(which is not a parameter in

σ̄0). Non-hybrid counterpart shown in black. Solid grey lines at π ± θ and
dashed grey lines at π ±∆.

3) Switching logic: The set Ψ0 \ A0 corresponds to the
points where V0(z, q) = 1. Let θ ∈ R>0 set an angular shift
of these critical points away from z = −ε1, obtained by
choosing

k =
θ

P (−R(zθ)ε1)
. (38)

Due to the bound in (24), θ must satisfy θ ≤ θmax <
π
2 .

Define M0(z) := minq∈Q V0(z, q) and

µ := inf
(z,q)∈Ψ0\A0

{V0(z, q)−M0(z)}, (39)

which gives µ = 1−V0(−R(zθ)ε1, 1). Next, select a desired
hysteresis half-width ∆ ∈ R>0 at the 180-degree error point,
satisfying ∆ < θ, and define

δ := |V0(−R(z∆)ε1, 1)− V0(−R(z∆)ε1,−1)| < µ. (40)

From this we define the flow set and jump set as

C0 :={(z, q) ∈ S1 ×Q : M0(z)− V0(z, q) ≥ −δ} (41)

D0 :={(z, q) ∈ S1 ×Q : M0(z)− V0(z, q) ≤ −δ}, (42)

which achieves global asymptotic stability of A0 for the
closed-loop system

H0 :

{
ż = κ0(z, q)Sz, q̇ = 0 (z, q) ∈ C0

q+ = −q, z+ = z (z, q) ∈ D0.
(43)

V. CONTROL SYSTEM DESIGN: PART II

The reference signals (ωd, ω̇d) in (35)-(36) have disconti-
nuities when q is switched. Continuity of (ω, ω̇) is achieved
by controlling ω through a double integrator. To this end,
define the error variables e := (e1, e2) ∈ R2 as

e1 := ω − κ0(z, q), e2 := ω̇ − κ1(z, e1, q), (44)



where κ1 : S1 × R×Q→ R is a virtual control law for ω̇
to be selected.

Remark 1. At this point, we could follow one of the backstep-
ping procedures proposed in [10]. However, this precludes
convergence of ω to ωd except at z = ε1. To illustrate this,
consider the system[
ż

ė1

]
:=

[
(e1 + ωd)Sz

−ω̇d

]
+

[
0

1

]
u =: a(z, e1, q) + bu, (45)

with ωd given in (35), while the time derivative becomes
ω̇d = −K0σ̄1(z, q)(e1+ωd), that is replacing ωd with e1+ωd
in (36) (this also applies to ω̈d in (37)). Define the control
Lyapunov function V : S1 × R ×Q → R as V (z, e1, q) :=
V0(z, q) + γ

2 e
2
1 with γ ∈ R>0. This gives

〈∇V (z, e1, q), a(z, e1, q) + bu〉
= 〈∇V0(z, q), Sz〉(e1 + ωd) + γe1(−ω̇d + u). (46)

Choosing u = −K1e1 + ω̇d− 1
γ 〈∇V0(z, q), Sz〉 ensures that

(46) is non-positive for all K1 ∈ R>0, but results in ė1 =
−K1e1 − 1

γ 〈∇V0(z, q), Sz〉, where the last term is non-zero
for all (z, q) ∈ S1×Q \Ψ0. Also note that it is not possible
to dominate the last term by choosing a very large γ, since
γ must satisfy a rather strict upper bound to ensure that the
critical points where V0(z, q) = 1 are contained in D.

A. Exponentially stabilizing the error dynamics
The time derivative of κ0, expressed in terms of the error

variables, is given by

α1(z, e1, q) := κ̇0 = −K0σ̄1(z, q)(e1 −K0σ̄0(z, q)) (47)

Selecting

κ1(z, e1, q) := −K1e1 + α1(z, e1, q) (48)

yields ė1 = −K1e1 +e2, which is exponentially stable during
flow when e2 = 0 (note that e1 may still increase during
jumps). Differentiating κ1 with respect to time yields

α2(z, e, q) := κ̇1 =−K1(−K1e1 + e2)

−K0σ̄1(z, q)(e2 + κ1(z, e1, q))

−K0σ̄2(z, q)(e1 −K0σ̄0(z, q))2.

(49)

The control law κ2 : S1 × R2 ×Q→ R for u is chosen as

κ2(z, e, q) := −K2e2 + α2(z, e, q), (50)

resulting in ė2 = −K2e2, achieving exponential stability
during flow (as before e2 may still increase during jumps).

B. Closed-loop system and dynamic switching logic
The closed-loop system, expressed in terms of error vari-

ables, with κ1 defined in (48) and u = κ2 defined in (50), is
given by

H :



[
ż

ė

]
= f(z, e, q), q̇ = 0 (z, e, q) ∈ C

[
e+

q+

]
=

[
h(z, e, q)

−q

]
, z+ = z (z, e, q) ∈ D,

(51)

where

f(z, e, q) :=

(e1 + κ0(z, q))Sz

−K1e1 + e2

−K2e2

 , (52)

h(z, e, q) :=

[
e1 + κ0(z, q)− κ0(z,−q)
e2 + κ1(z, q)− κ1(z,−q)

]
. (53)

The updated flow and jump sets will be defined shortly. Note
that the evolution during flow exhibits a cascaded structure,
while the evolution during jumps is not a cascade (since e+

depends on z).
For the system H, define the sets A = A0×{e ∈ R2 : e =

0} and Ψ = Ψ0×{e ∈ R2 : e = 0}. Let X := S1×R2×Q,
and define the Lyapunov function candidate V : X → R as

V (z, e, q) := V0(z, q) +
1

2
γ1e

2
1 +

1

2
γ2e

2
2, (54)

which is positive definite with respect to A for (γ1, γ2) ∈
R2
>0. Further define M(z, e) := minq∈Q V (z, e, q), and

C :={(z, e, q) ∈ X : M(z, e)− V (z, e, q) ≥ −δ} (55)
D :={(z, e, q) ∈ X : M(z, e)− V (z, e, q) ≤ −δ}. (56)

Since M depends not only on z, but also on e, this results
in a dynamic switching condition which depends both on the
yaw rate and yaw acceleration. The switching is influenced
by the parameters (γ1, γ2), which we refer to as dynamic
jump parameters.

C. Stability of the closed-loop system

Redefining the system H in (53) in terms of the original
states (z, ω, ω̇) yields a system of the form given in (12), with-
out changing the nature of the system. Noting that V,M,Ψ,A
may also be expressed in terms of the original states, A is
globally asymptotically stable if (Ψ \ A) ∩ C = ∅, and

〈∇V (z, e, q), f(z, e, q)〉 < 0, ∀(z, e, q) ∈ X \Ψ. (57)

1) Ensuring non-increase during flow: The evolution of
V during flow may be expressed as

〈∇V (z, e, q), f(z, x, q)〉 = −φ>1 Φ1φ1 − e>Φ2e (58)

where φ1 := [σ̄0(z, q) e1]> and

Φ1 : =

[
(1 + qkLλσ0(z))LλK0 − (1+qkLλσ0(z))Lλ

2

− (1+qkLλσ0(z))Lλ
2 c0γ1K1

]
(59)

Φ2 : =

[
(1− c0)γ1K1 − 1

2γ1

− 1
2γ1 γ2K2

]
. (60)

Here, c0 ∈ R>0 may be selected in the interval 0 < c0 <
1. Note the off-diagonal terms which are intentionally not
canceled since this would preclude exponential convergence
of e (during flow). Instead we achieve stability by selecting
(K0,K1,K2) and (γ1, γ2) such that Φ1 and Φ2 are positive
definite. Since 0 < (1 + qkLλσ0(z))Lλ ≤ (1 + kLλ)Lλ, it



follows that Φ1 is positive definite if the following inequality
is satisfied:

c0γ1K0K1 >
(1 + kLλ)Lλ

4
. (61)

Similarly, Φ2 is positive definite if

(1− co)γ2K1K2 >
γ1

4
. (62)

2) Bound on dynamic jump parameters: It is possible
to satisfy (61) and (62) for any value of (K0,K1,K2) by
selecting (γ1, γ2) sufficiently large. Simultaneously satisfying
(Ψ\A)∩C = ∅ is more challenging. It is trivial to verify that
e1 = ω = κ0(z, q) = 0, ∀(z, e, q) ∈ Ψ. Since e2 = 0 =⇒
ω̇ = κ1(z, q) = 0, and e1 = ω = κ0(z, q) =⇒ κ1 = 0,
we conclude that (ω, ω̇) = 0, ∀(z, e, q) ∈ Ψ (this result is
expected since the control law vanishes in Ψ.) For jumps
leaving Ψ, the following holds ∀(z, e, q) ∈ Ψ:

|e+
1 |2 − |e1|2 =|κ0(z,−q)|2 ≤ K2

0 . (63)

|e+
2 |2 − |e2|2 =|κ1(z, e1,−q)|2 ≤ K2

1K
2
0 . (64)

Using (63,64) and (39) gives, ∀(z, e, q) ∈ Ψ \ A:

V (z, e,−q)− V (z, e, q) ≤ −µ+
1

2
K2

0

(
γ1 + γ2K

2
1

)
.

(65)

Hence, (Ψ \ A) ∩ C = ∅ if (K0,K1) and (γ1, γ2) satisfy

1

2
γ1K

2
0 +

1

2
γ2K

2
1K

2
0 < µ− δ. (66)

The inequality (66) makes out sufficient conditions for al-
lowable values of λ and θ. The condition may be relaxed by
calculating a tighter bound in (63).

3) Selecting the parameters: To show that it is always
possible to simultaneously satisfy (61,62) and (66), we pro-
pose the following procedure for systematically selecting the
design parameters: First, select 0 < c1 < 1 as the fraction of
the “remaining” synergy gap (µ−δ) to be used on e1, and let

γ1 = 2c1
µ− δ
K2

0

. (67)

Inserting (67) into (61), followed by some algebraic manipu-
lations, gives the following bound on K1:

K1 > K0
(1 + kLλ)Lλ

8coc1(µ− δ)
. (68)

Next, select 0 < c2 < 1 as the fraction of the “remaining”
synergy gap (µ− δ − 1

2γ1K
2
0 ) to be used on e2, and let

γ2 = 2c2
(1− c1)(µ− δ)

K2
1K

2
0

. (69)

Finally, inserting (69) into (62), followed by some algebraic
manipulations, we arrive at

K2 >
c1K1

4(1− co)c2(1− c1)
. (70)

This reduces the design task to selecting three parameters
(c0, c1, c2) in the interval 0 to 1. Furthermore, (68) and (70)
show that the controller gains (K0,K1,K2) are linearly de-
pendent, as one would expect.

Fig. 2. Trajectory of ω and ωd projected onto S1 × R. Initial values
z = zπ−θ , ω = 1 deg/s, ω̇ = 0 and q = −1. This results in ωd(0, 0) =
−0.8874 deg/s (red dot), followed by a jump to ωd(0, 1) = 0 (red diamond).
The yaw rate ω starts at the blue dot, converges to the desired value ωd, and
then follows the trajectory generated by ωd to z = ε1, ω = 0 (black dot).

VI. SIMULATIONS

In this section a small case study is presented. We select
K0 = π

180 (corresponding to 1 deg/s), which is a reasonable
heading velocity for ships. Further discussion of the design
parameters with respect to ship dynamics is outside the scope
of this paper. A brief discussion is provided in the following:

Parameters for the controller generating ωd: Selecting
large regularization parameter λ yields faster convergence, at
the cost of large commanded accelerations in the vicinity of
z = ε1. Increasing the angular shift of the critical points θ
yields a larger synergy gap µ. While the peak value of ωd is
not influenced by θ, the peak values of (ω̇d, ω̈d) increase with
larger values of θ. This effect diminishes close to z = ε1,
but is still undesired. Large hysteresis half-width δ increases
the robustness margin towards disturbances of z, at the cost
of stricter bounds on (K1,K2) (since µ− δ is reduced). We
select λ = 0.9, θ = π

9 (20 degrees), and ∆ = π
36 (5 degrees).

Parameters for the smoothing controller: Increasing
(c1, c2) relaxes the constraints on the controller gains
(K1,K2), at the cost of reduced robustness margin, while c0
is a trade-off between the bounds on K1 and K2. We select
c0 = c1 = c2 = 0.5, which gives γ1 = 375.2 and K1 >
0.0352. We select K1 = 0.1 s−1, which gives γ2 = 18760
and K2 > 0.1. Finally, we select K2 = 0.2 s−1.

A simulation is initialized with z(0, 0) = zπ−θ, where
the arguments are the time variable t and jump variable j.
Furthermore, we select ω(0, 0) = 1 deg/s and ω̇(0, 0) = 0.
Note that z(0, 0) = zπ−θ is close to the critical point for
q = 1, e = 0. We initialize with q(0, 0) = −1, resulting
in ωd(0, 0) = −0.8874 deg/s, corresponding to traversing
the circle in the clockwise direction. However, since the
velocity already has a large value in the counterclockwise
direction, q is automatically toggled; V0 increases but V
decreases overall due to the decrease in e1. This results in
a jump to ωd(0, 1) = 0. Following this, z flows to ε1 in the



Fig. 3. Acceleration signals (top) and control input (bottom) corresponding
to the trajectory in Figure 2. Only the values after the initial jump is shown.

counterclockwise direction, with ω(t, j) converging towards
ωd(t, j). The resulting trajectory in the space of S1 × R,
with yaw rate as the vertical axis, is shown in Figure 2,
while the corresponding yaw acceleration and control input
is shown in Figure 3. Note the moderate convergence rate of
the acceleration error e2 to zero, despite selecting K1 and K2

significantly larger than their lower bounds. This indicates
that the bounds on the controller gains are not restrictive for
the intended application.

Convergence of ψ̃ within 1 degree is achieved in 300
seconds. For this example, disabling the switching and thus
changing the direction of motion yields convergence within
1 degree in 265 seconds. However, changing the direction
of motion in such a manner is unpredictable for neighboring
ships. For autonomous ships, decisiveness and clearly showing
the intentions is a desired property [22]. Decisiveness is
an inherent property of the hybrid control system presented
herein.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a hybrid feedback controller which
globally and robustly stabilizes a point on the unit circle,
where continuity of velocity and acceleration is achieved
by controlling the velocity through a double integrator. The
velocity and acceleration converges exponentially to desired
reference values. Stability is shown using a hybrid Lyapunov
function. The parameters of the Lyapunov function must
satisfy certain bounds to ensure that the critical points where
the control law vanishes are contained in the jump set. This
results in mild constraints on the controller gains. A construc-
tive way of choosing the controller gains is proposed, which
also shows that the controller gains are linearly dependent.

The control system architecture, reminiscent of a cascaded
system, has some desired properties which makes it suitable
for ships and vehicles with similar dynamics. In future work,
the controller will be adopted for heading control of ships,

using the thrusters or rudders as control inputs, and consider-
ing uncertainty in the ship dynamics. Applications may for
instance be a rudder-actuated ship, where continuity of the
commanded rudder angle is desired.
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