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Abstract
Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and
performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of
parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be
categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful,
which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-
driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate
that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter,
spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network
(surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the
process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with
three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for
Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally,
the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface
roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling
center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum
material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show
that more optimal surface quality and material removal can be achieved with the optimal set of parameters.

Keywords Square end milling . Bayesian regularized neural network . Beetle antennae search algorithm . Data-driven and
surrogate-assisted optimization .Manufacturing process optimization

1 Introduction

Computer numerical controlled (CNC) milling is an essential
metal cutting technique among various machining processes
in the modern era of manufacturing. CNC milling not only
makes the milling process fully automated but also enhances

machining time, reduces process variations, improves product
quality, and enriches the overall productivity of the manufactur-
ing companies. For CNCmilling, end mill is the most exploited
among various milling cutters due to its ability of high-speed
cutting of metal with minimum surface roughness in a single
pass [1]. CNC end milling is being used significantly in differ-
ent manufacturing sectors, such as aerospace, automotive, elec-
tronics, jewelry, and bioinstrumentation industries. CNC end
milling is used for making different geometrical shapes and
holes in a metallic workpiece during milling, profiling,
contouring, slotting, counter-boring, drilling, reaming applica-
tions, etc. [2]. Aluminum alloy is the mostly explored material
for end milling, which has more than 90% pure aluminum. It
has high strength and ductility, corrosion resistance,
weldability, machinability, and formability. It is used as an
important material for vehicle bodies, refrigerated trucks, cold
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storage rooms, anti-skid flooring, manufacturing of mobile
homes, residential siding, sheet metal work, rain carrying
goods, etc. [3]. With optimum settings of end milling parame-
ters, it is possible to achieve good surface quality and higher
metal removal rate (MRR) for the aluminum alloy. For that
matter, tool diameter (TD), spindle speed (SS), feed rate (FR),
and depth of cut (DOC) could be the most important process
variables. The surface roughness (Ra) is the primary machining
attribute since most of the manufacturing companies try to
maintain better surface quality for the machined parts.
Therefore, Ra determines the manufacturing cost and quality
of the engineered products [4]. Surface texture, fatigue resis-
tance, and heat transmission of manufactured products are
greatly influenced by Ra. Surface quality is also influenced by
the abovementioned machining parameters of end milling. On
the contrary, MRR is determined by the volume of removed
metal and required machining time. MRR could affect the cost
of manufacturing largely. When the combined effect of MRR
and Ra is studied, the cutting process optimization becomes
more complicated [5]. The solidity and life of the cutting tools
could be greatly influenced by another process response known
as cutting forces for the end milling process. Machining errors
could be seen if the cutting forces are not considered while
optimizing the process [6] [7]. Therefore, it is obligatory to
study the effect of various process parameters on Ra, MRR,
and cutting forces collectively for the CNC endmilling process.
The objective of this research is to determine the ideal param-
eter settings, which could yield high MRR and low Ra and
cutting forces for the end milling of aluminum alloy (3105).
This type of multi-response process optimization has never
been accomplished on the Proxxon CNC milling machine,
which is the focus area of this work.

To accomplish the above task successfully, the primary anal-
ysis is performed in two stages. In the first stage, Taguchi’s
orthogonal array (OA) L16 (4 × 4) is used for designing the ex-
perimental study for end milling of AA3105 alloy. Kohonen’s
self-organizing map (KSOM) is applied, which reveals the cor-
relations among the process responses. Thereafter, grey relational
analysis (GRA) and VIseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR) methods are employed as
multi-response optimization techniques, which can simulta-
neously optimize MRR, Ra, and cutting forces by obtaining
single grey relational grade (GRG) and VIKOR index score re-
spectively. Furthermore, the analysis of variance (ANOVA) is
conducted to understand the most influential process parameter
and its percentage contribution. In the second stage, the Bayesian
regularized neural network (BRNN)-assisted beetle antennae
search (BAS) algorithm is developed and used as surrogate-
assisted optimization technique for the end milling of AA3105.
This sequential BRNN-BASmodel accurately estimates the pro-
cess parameter settings for maximum MRR, and minimum Ra
and cutting forces. The BRNN is used as a surrogate module and
BAS is used as the optimization module in this study. Another

variant of BAS algorithm is introduced to elaborate the analysis,
which exploits multiple regression model as the surrogate. The
rest of this article is arranged in the following order, in the
“Related work” section, the related literature are cited, which
covers the papers of end milling of alloys and composites, deep
learning-based predictive modeling of manufacturing processes,
and surrogate-assisted data-driven optimization. The
“Experimental setup and materials” section demonstrates the de-
tails of material, experiments on Proxxon milling machine, and
correlational analysis among input and output variables. BRNN-
BAS-based data-driven surrogate-assisted optimization tech-
nique is presented in the “Researchmethodologies” section along
with the GRA, VIKOR method, and regression-BAS algorithm.
Computational studies, analysis of results, and discussions are
presented in the “Results and discussions” section. Finally, the
“Conclusions” section concludes this work and shows the future
scopes.

2 Related work

2.1 CNC milling process optimization

Due to the tremendous advancements in material research and
increasing complicacies in part geometries, milling cutters are
evolving in faster rate. End mill tools are being applied heavily
in various high-speed metal removal processes. Recently, dif-
ferent types of milling tools are being investigated by
manufacturing researchers, which are flat/square end mill, ball
end mill, fillet mill, chamfer mill, face mill, etc. Li and Zhu [8]
utilized a flat endmill tool for cutting force predictionmodeling
on an improved automatic five-axis machine, which is further
coupled with the cutting effects. Chao and Altintas [9] used the
mechanics and dynamics of the ball end milling process on a 5-
axis milling machine. Zhu [10] tried the fillet mill for the
feature-based modeling with parametric design of the cutting
process. Gao et al. [11] utilized various chamfered mills for slot
milling of aluminum alloy 7075, where the tool wear and sur-
face roughness are considered as the performance characteris-
tics. Zhenyu et al. [12] studied the face milling with an algo-
rithm and considered the different factors of Ra for estimation.
In this paper, the square end mill is used as the cutter as
displayed in Fig. 1. This is the mostly common end mill tool
available for the CNC machine. Optimal parametric design for
CNC milling has always been an area of interest to the re-
searchers since the past two decades [13] [14] [15] [16] [17].
During this time, themethodologies for themulti-responsemill-
ing processes have been advanced considerably. Mukherjee
and Ray [18] presented a comprehensive study on the method-
ologies developed for the multi-response CNC milling. Yusup
et al. [19] portrayed a detailed survey on the evolutionary algo-
rithms (EA) and bio-inspired techniques for parametric designs
of machining processes during 2007–2011. The authors
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concluded that the genetic algorithm (GA)-based optimization
approaches are heavily exploited and the Ra is the most ex-
plored performance criterion. Furthermore, Chandrasekaran
et al. [20] reviewed 142 articles based on the soft-computing
and machine learning techniques for multi-response CNC ma-
chining. The authors stated that despite using the artificial neu-
ral network (ANN) and EA-based techniques, few more im-
provements are expected as future goal depends upon the data
acquisition cost, the data filtration for noise, and the feature
extraction from data. Kadirgama et al. [21] has proposed an
ant colony optimization (ACO)-based technique to obtain opti-
mum surface roughness for milling operation.

The technique is developed using the response surface
method (RSM) and ACO. The most crucial variables are de-
termined as cutting speed, feed rate, axial depth, and radial
depth. Yildiz [22] proposed a hybrid algorithm to obtain op-
timal milling parameters. The results were successfully com-
pared with GA, PSO, ACO, and immune algorithms. Arnaiz-
González et al. [23] demonstrated the ball end milling process
models using the multi-layer perceptron (MLP) and radial
basis function (RBF). The RBF is shown to obtain better pre-
dictive model than the MLP with higher precision. Xiang and
Zhang [24] depicted a prediction model based on the back
propagation (BP) network and support vector machine
(SVM) for milling process modeling, and proposed an opti-
mization technique using the SVM and NSGA-II. Sarıkaya
et al. [25] used the vibration signals, cutting force, and surface
roughness to model the multi-response process of CNC mill-
ing of AISI 1050 steel. Das et al. [26] studied the grey fuzzy
technique for the optimal level of process variables for CNC
milling of Al–4.5% Cu–TiC metal matrix composites

(MMCs). The cutting force (Fc) and surface roughness (Ra
and Rz) are considered as performance characteristics. Zhou
et al. [27] proposed an integrated multi-response technique
based on GRA, RBF, and particle swarm optimization
(PSO) for the ball end milling. While compared with the clas-
sical GRA, it produces continuous space for optimality. The
authors considered some design variables such as inclination
angle, cutting speed, feed, surface roughness, and compres-
sive residuals stress. Khorasani and Yazdi [28] proposed the
Ra monitoring system for the milling process considering cut-
ting speed, feed per tooth, cut depth, type of materials, and
coolant fluid as the decision variables and mechanical vibrations,
white noise, and Ra as the process responses. Thereafter, the
testing and verification procedures are utilized to achieve higher
accuracy. Das et al. [29] performed the CNC milling of alumina
green ceramic compact, where spindle speed, XY speed, Z
speed, and depth of cut are considered as the process parameters
and surface roughness is considered as the performance indicator.
The authors developed a regressionmodel from the experimental
results and performed GA-based optimization of the Ra. Gaikhe
et al. [30] experimented with the cutting forces in helical ball end
milling of Inconel 718 and developed a GA by using cutting
force regression model to obtain optimum cutting parameters.
The proposed work achieved stability of machines, reduced the
power consumption, and minimized the cost for machining.
Kaushik et al. [31] has developed a statistical model to predict
the temperature rise as a function of helix angle, the radial rake
angle of the cutting tool. Cutting speed, feed rate, and axial depth
of cut are considered as the process variables. RSM is used for
optimization of high-speed end milling of aluminum Al 7068.
Recently, Li et al. [17] proposed a multi-objective model for

Fig. 1 Six-mm flat/square end
mill tool
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energy-efficient CNC milling with minimum production time
and portrayed depth of cut andwidth of cut as themost influential
parameters.

As of now, the following issues could be pointed out from
the above citations,

& Multi-response models are being considered for the CNC
milling, where Ra, MRR, cutting forces, vibration, energy
consumptions, etc., are considered as the process re-
sponses [20].

& Some multi-response models are solved using the GRA or
fuzzy-GRA-based single-objective techniques. The multi-
ple regression, RSM, MLP, RBF, etc., are used for predic-
tive modeling of process response [32].

& Metaheuristic algorithms such as theGA, PSO, andACO are
used as the optimization tools. Mostly mathematical formu-
lations are being used as the objective functions. Limited
studies could be seen, where response surface or regression
equations are used as the objective functions [21].

& In true sense, the surrogate-assisted optimization (the deep
learning and metaheuristic algorithms in combined form)
has not yet been utilized for the manufacturing process
optimization.

2.2 Surrogate-assisted optimization

Lately, the data-driven predictive or optimization models are
being exploited more by the researchers for the CNC milling
process. However, the combination of predictive and optimiza-
tion models has not yet been studied completely, which is also
known as data-driven surrogate-assisted optimization technique.
It is an important state-of-the-art area for the machine learning
and optimization researchers [33]. When the metaheuristic tech-
niques are being used for the multi-response manufacturing pro-
cess modeling, the best practice is to utilize the data-driven sur-
rogate models as the fitness functions. This approach eliminates
the requirement of the complex mathematical function, expen-
sive empirical or numerical modeling for fitness evaluation. It
often facilitates the use of traditional or existing optimization
algorithms. Surrogate-assisted optimization could also be classi-
fied as black-box optimization when there would be little to no
information available about the process or problem considered
[34]. Yet this approach is highly capable of approximating the
functional relationships among process variables based on the
sampled data obtained using design of experiment (DOE) tech-
niques [35]. The exactness of the surrogate training could be an
important issue for the data-driven surrogate models if global
optimality is not guaranteed. Therefore, the mean square error
(MSE), root mean square error (RMSE), or mean absolute error
(MAE) could be used as the performance metrics. The lower is
the error score, the better is the accuracy of the model. Once the
surrogate model is trained, an appropriate metaheuristic

algorithm, e.g., GA, PSO, and ACO, could be employed to find
optimal set of the process variables [36]. Data-driven surrogate-
assisted optimizers are substantially prompt and efficient; there-
fore, these are computationally inexpensive. DOE-based tools,
such as the central composite design (CCD), Box-Behnken de-
sign (BBD), D-optimal design (DOD), Latin hypercube sam-
pling (LHS), full factorial design (FFD), and orthogonal array
design (OAD), are generally used to define the experimental or
trial sample points as initial solution(s). These are also used to
define the input data to the surrogate models. DOE methods
generally maximize the process information obtained from the
restricted number of trial runs [37]. As mentioned earlier, some
of the surrogate models already exploited for the machining pro-
cess modeling are RSM, Gaussian process (GP), decision tree,
RBF, SVM, etc. [32]. Recently, surrogate-assisted optimization
techniques are being practiced in various engineering and tech-
nological research. Sun et al. [38] developed a two-stage surro-
gate-assisted PSO algorithm by incorporating a global and some
local surrogate functions. The proposed technique is tested with
some popular unimodal and multimodal problems from litera-
ture. In another research [39], the authors demonstrated the
online- and offline-based classifications of the surrogate-
assisted optimization techniques and developed an EA to opti-
mize the offline data-driven trauma system. The CPU time is
reduced using a multi-fidelity surrogate management strategy.
Haftka et al. [40] performed a survey based on the surrogate-
based global optimization with a focus on the balance between
the exploration and exploitation search and kriging-based surro-
gate models are reviewed primarily. Furthermore, Sun et al. [41]
studied the combined effect of the surrogate-assisted PSO and a
surrogate-assisted social learning (SL-PSO) algorithm. SL-PSO
worked on exploration and PSO worked on exploitation. The
proposed method is successfully tested on the benchmark prob-
lems. Allmendinger et al. [42] presented another survey and
discussed the complexities in the surrogate-assisted multi-objec-
tive optimization. The authors found these complexities from the
different real-world problems and analyzed. This study pointed
out multiple future scopes and demonstrated the applicability of
the surrogate-assisted optimization in industrial settings. Chugh
et al. [43] proposed a kriging surrogate-assisted reference vector-
guided EA (RVEA) and tested on some benchmark problems.
Jin et al. [44] considered five real-world cases of blast furnace
optimization, trauma system design optimization, optimization of
fusedmagnesium furnaces, optimization of airfoil design, and air
intake ventilation system optimization where surrogate-assisted
optimizers have shown promising solutions.

Following points could be extracted further,

& Surrogate-assisted optimization is useful for computation-
ally expensive and many-objective optimization prob-
lems. These problems are based on real-world data, which
are not readily available in the literature. Therefore, this
area of research is less explored [44].
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& Different surrogate models are available in literature such
as GP, kriging, and RBF for the surrogate-assisted optimi-
zation. Many other predictive models, such as MLP,
BRNN, SVM, decision tree, Gaussian kernel, and deep
belief network, could also be explored for the surrogate-
assisted optimization [42].

& Metaheuristic techniques are being evolved every day.
Recently, researchers exhibit great enthusiasm in
transforming bionic phenomenon into the computer algo-
rithm. As a result, various new and promising methods
have appeared, such as the grey wolf optimization
(GWO), African buffalo optimization (ABO), beetle an-
tennae search (BAS) algorithm, ant-lion optimization
(ALO), Harris hawks optimization algorithm (HHO), the
grasshopper optimization algorithm (GOA), and the
multi-verse optimization algorithm (MVO) [45–49].
These latest methodologies are capable enough to outper-
form popular EAs and these are not much exploited for the
surrogate-assisted optimization. Hence, a missing link ex-
ists between the deep learning and bio-inspired
metaheuristic research, which is an innovation issue.
This further shows immense research scope on the hybrid-
ization of methodologies.

& Many different real-world problems are considered for the
surrogate-assisted optimization. However, manufacturing or
machining processes are not very popular yet for the said
purpose. The reason could be that the manufacturing re-
searchers have not yet shown their interest in the said ap-
proaches, or some communication gap exists among ma-
chine learning, optimization, and manufacturing researchers.

The aim of this article is to address these abovementioned
issues. For that matter, a Bayesian regularized neural network
(BRNN) is used for the surrogate modeling and the beetle
antennae search (BAS) algorithm is used as the optimization
technique. Both the techniques are novel and never employed
in manufacturing process optimization. Hence, the proposed
BRNN-BAS is verified further with the end milling cutting of
aluminum alloy.

3 Experimental setup and materials

The experiments are carried out on Proxxon FF 500/BL 3-
Axes CNC milling machine, manufactured by Proxxon,
Germany. It has brushless direct drive with 50 μm precision,
which is suitable for academic projects or small businesses. It
has double roller bearing recirculating ball spindles at all 3-
axes. The spindle speed varies in the range of 200–4000 rpm.
It has large traverse area (X 290 mm, Y 100 mm, and Z
200 mm). In this machine, milling head could be pivoted to
the left and right by 90°, with running condenser motor. The
experimental setup is depicted in Fig. 2a. Four milling tools

are considered (Fig. 2b) based on the spiral design according
to DIN 844 and made of the high-speed steel (HSS-Co5) 5%
cobalt. The cutting force data acquisition (DAQ) system con-
sists of a KISTLER dynamometer 9257B (6-DOF), a
KISTLER multichannel charge amplifier 5017B, a
KISTLER DAQ system 5697A1, and the DynoWare soft-
ware. To measure the surface quality of the machined work-
pieces, a ZEISS Handysurf E-35B is used.

3.1 Materials

AA3105 alloy is used as the test workpiece (90 × 140 ×
20 mm3) for the end milling cutting (Fig. 3). AA3105 is pri-
marily used in sheet metal work and manufacture of mobile
homes, residential siding, and rain carrying goods in sub-zero
temperature. It is perfectly suitable for the climate of Nordic
Europe. AA3105 portrays good machinability property.
Percentages of weight in chemical composition of the
AA3105 are Al 98.56%, Mn 0.716%, Fe 0.38%, Zn
0.128%, Cu 0.118%, Cr 0.081%, and Pb 0.006%. Table 1
shows the mechanical properties of the alloy. The workpieces
are positioned and clamped with fixtures supplied by Proxxon
and KISTLER. Many independent process variables are in-
volved in this experiment. To determine the most influential
factors, rigorous experimentations were carried out on
AA3105 alloy. Specific ranges for the process variables are
determined from machine handbook and empirical studies.
Cutting force data sample is portrayed in Fig. 4, which is
recorded in an interval of 0.01 s for a 10-s cycle.

3.2 Experiments

TD, SS, FR, and DOC are selected as most influential process
parameters for the experiments carried out. For Taguchi’s OAD,
the level of each factor is opted based on the operating range.
Parameters are set with four levels and portrayed in Table 2.

In this study, MRR, Ra, and cutting forces in three directions
(Fx, Fy, and Fz) are considered as process responses. Taguchi’s
L16 OAD is considered, which consists of sixteen experimental
runs. These experiments are conducted on fresh workpieces for
three repeated runs each for every setting and the average values
are recorded. The experimental results are depicted in Table 3.
The main effect plots for the responses are portrayed in Fig. 5,
which points out the following observations,

& TheMRR is directly correlated and proportionate with the
TD and DOC. This means the higher is the TD and DOC
scores, the better is the MRR score, whereas the SS and
FR are inversely related to the MRR, i.e., the MRR score
is higher at the low-level settings of the SS and FR. MRR
is dependent mostly on DOC and FR. Hence, a higher
DOC indicates lower FR to achieve a level of MRR.
Furthermore, the low FR demands lower SS in order to
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improve the tool life [15]. Therefore, the ideal setting for
the MRR is TD4-SS1-FR3-DOC4 which produces better
mean value for MRR (Fig. 5).

& For the high value of mean Ra, high scores of the TD,
DOC, and SS are required and lower value of DOC is
expected. For better-quality surface, lower DOC and
higher SS are desirable in CNC milling [2]. The desired
setting for Ra is TD4-SS4-FR2-DOC4 (Fig. 5).

& Three cutting force components (Fx, Fy, and Fz) change
their values abruptly with small changes on parameters.
For the Fx, TD4-SS4-FR2-DOC1 would be the ideal set-
ting, and for the Fy, TD2-SS2-FR1-DOC1 yields best re-
sult, whereas for the Fz, TD4-SS2-FR1-DOC1 is the op-
timal combination. It could be concluded that determining
the exact levels of the process parameters is a combinato-
rial task while attaining the near-optimal force compo-
nents together with the MRR and Ra.

3.3 KSOM analysis

TheKohonen’s self-organizingmap (KSOM) is an unsupervised
deep learning tool, which presents the high-dimensional (n-D)
data using a two-dimensional (2D) map [50]. This presentation
saves the topological information of the original data in the new

data. This graphical 2Dpresentation enables the users to visualize
data correlations [51] [52]. KSOM trains the network using an
input data point x. Using competitive learning, the winning neu-
ron c with the weight vector wc is selected using,

x−wcj jj j ¼ mini x−wij jj jð Þ ð1Þ

The weight vector wc is updated to match the data point x.
Thereafter, the weights of the neurons in the close neighbor-
hood of c are also updated, i.e., the nearby neurons are moved
towards c. The update expression is demonstrated as,

wi t þ 1ð Þ ¼ wi tð Þ þ hci tð Þ x tð Þ−wi tð Þ½ � ð2Þ
where t is the count of iterations, x(t) is the input data point x
during t, and hci(t) is the neighborhood function (decreasing
type Gaussian function), defined as,

hci tð Þ ¼ α tð Þ � e
−

rc−rij jj
2σ tð Þ2

� �
ð3Þ

where α(t) is the learning rate. KSOM algorithm reduces the
dimensionality of the data to present it in 2D and reveals the
hidden pattern in data.

Figure 5 previously demonstrated the relationships among
inputs and responses. Hence, the KSOM is employed to ana-
lyze the correlations among all the five responses. In order to
obtain high quality of KSOM topology structure, the quanti-
zation error and the topological errors are kept at the minimum
level (≃ 0). The size of the map is considered as 19 × 17. The
KSOMvisualization of data is presented in Fig. 6. The KSOM
maps are the distribution of colors (from lighter shed to darker
shed) with the actual values of variables. It could be stated that
the MRR and Ra are inversely related as the MRRmap shows
light color at the top-right corner of the map and the Ra depicts
dark color distribution at the same area of the map. This phe-
nomenon can be scientifically explained. When MRR is high,
a higher number of atomic layers are chipped off the surface of

Fig. 2 a Proxxon CNC milling
hub and b various end milling
tools

Fig. 3 Sample AA3105 workpiece
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the material. Due to the higher speed of the chipped particles,
the atoms of the material surface are chipped off evenly in
large chunk. This leads to the surface of higher quality [28].
Force components along the x-axis and y-axis show very sim-
ilar nature of color patterns. However, third force component
along z-axis shows different pattern of colors. It is also notable
that the MRR and Ra obtain low scores when forces are at
higher side and vice versa. This study implies that the re-
sponses are conflicting in nature, and to optimize the multi-
response end milling process, concurrent optimization of all
the responses is required to obtain the near-optimal levels of
the end milling process parameters.

4 Research methodologies

The proposed multi-response optimization is performed using
four different approaches, such as GRA, VIKOR methods,
BRNN-assisted BAS, and regression-assisted BAS algo-
rithms. Furthermore, the comparative analyses are presented
based on these methods, and the best solution is picked up. In
this section, the methodologies are discussed.

4.1 Taguchi’s OAD coupled with grey relational
analysis

Taguchi’s OAD is suitable for single-response design. For
multi-objective problems, the GRA is suitable [53], which
has the ability to exploit Taguchi’s OAD and estimate the
process responses using single grey relational grade (GRG).
Steps of GRA are as follows:

Step 1: The data are normalized to reduce inconsistency and
restricted in the range {0, 1}. When the performance
objective is to be minimized, non-beneficial (Eq. 4)
rule is applied; else, beneficial (Eq. 5) rule is applied,

y*i xð Þ ¼ y0i xð Þmax−y
0
i xð Þ

y0i xð Þmax−y0i xð Þmin

ð4Þ

y*i xð Þ ¼ y0i xð Þ−y0i xð Þmin

y0i xð Þmax−y0i xð Þmin

ð5Þ

where, i∈[1, m] and x∈[1, N],m is the number of experimental
runs, and N is the number of responses. yi

0(x)max and yi
0(x)min

are the largest and smallest values of yi
0(x) is the original data.

Step 2: Compute grey relational coefficient (GRC) using
Eq. (6),

εi xð Þ ¼ δmin−ε� δmax

δ0i xð Þ−ε� δmax
ð6Þ

where δi
0 (x) = yi

0 (x)-yi
*(x), the deviation coefficient.

Step 3: Calculate grey relational grade (GRG) using Eq. (7),

γi ¼
1

N
� ∑

N

k¼1
εi xð Þ ð7Þ

GRG depicts the overall quality index (transformed single
response). The values of GRG determine the ranking of ex-
perimental runs and obtain near-optimal set of variables.

Step 4: Calculate the analysis of variance (ANOVA) to
find out the sensitivity of the variables to the de-
sign process at 95% confidence level and obtain
the response table and main effect plot. This fur-
ther depicts ranks based on delta statistics, which
compare the relative magnitude of effects. The
delta statistic shows the difference between the
largest and the smallest average (max-min) for
each variable. It finally indicates the most sensi-
tive variables to the design process.

Step 5: Once the optimal levels of process parameters are
selected, the improvement of GRG is measured
using the confirmatory test. The predicted GRG
could be computed using,

bγ ¼ γm þ ∑
n

i¼0
γi−γmð Þ ð8Þ

Table 2 Milling parameters and their levels for L16 orthogonal array
(OA)

Factors Units Level 1 Level 2 Level 3 Level 4
Codes 1 2 3 4

TD mm 6 7 8 10

SS Rpm 1500 1750 2000 2250

FR mm/s 2 3 4 5

DOC mm 0.5 1.0 1.5 2.0

Table 1 Mechanical property of
AA3105 Tensile strength Yield strength Shear strength Elastic modulus Poisson’s ratio Elongation

150 MPa 130 MPa 97 MPa 70–80 GPa 0.33 7%
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where γm is the sum of mean GRG, γi is the mean GRG at the
near-optimal level of the individual process parameter, and n
is the number of input variables.

4.2 Taguchi’s OAD coupled with VIKOR method

The VIKOR method is a multi-criteria decision-making
(MCDM) technique, which was originally developed in refer-
ence [54] to solve the decision problems with conflicting ob-
jectives. It is based on a decision matrix with alternatives
(rows) and responses (columns). The conflicting correlations
are investigated, and solutions are obtained, which are closest
to the ideal. Furthermore, the alternatives (rows) are evaluated
based on the verified conditions. The VIKOR method assigns
ranks to the alternatives based on the distance to the ideal. The
VIKOR method could be applied on Taguchi’s OAD to

transform the multi-response process into a single-response
process based on VIKOR index. The steps are as follows,

Step 1. An initial decision matrix is created: where Ai repre-
sents ith alternative, i=1, 2, 3, … ; Cxj represents
the jth criterion, j = 1, 2,.........,n, and xij is the indi-
vidual performance of an alternative.

D ¼

Cx1 Cx2 : : Cxn
x11 x12 : : x1n
x21
:

xm1

x22
:

xm2

: : x2n
: : :
: : xmn

2
6664

3
7775 ð9Þ

Step 2. The normalized decision matrix can be expressed as
follows: F = [fij]m × n. Here, f ij ¼ xijffiffiffiffiffiffiffiffiffiffi

∑m
i¼1x

2
ij

p , i = 1, 2, 3,

Table 3 Experimental results for
MRR, Ra, Fx, Fy, and Fz in
Taguchi’s L16 OAD

Ex# TD SS FR DOC MRR (mm3/s) Ra (μm) Fx (N) Fy (N) Fz (N)

1 6 1500 2 0.5 5.263 0.08 1.115 3.081 11.44

2 6 1750 3 1 11.080 0.06 1.079 4.047 10.7

3 6 2000 4 1.5 18.100 0.06 0.391 0.586 0.171

4 6 2250 5 2 7.299 0.05 0.662 0.2448 0.0287

5 7 1500 3 1.5 6.652 0.29 1.546 4.342 12.35

6 7 1750 2 2 20.690 0.25 0.138 6.675 12.72

7 7 2000 5 0.5 5.848 0.05 1.148 3.719 13.49

8 7 2250 4 1 18.018 0.04 1.401 2.158 6.924

9 8 1500 4 2 41.379 0.18 0.1233 0.0195 7.094

10 8 1750 5 1.5 20.000 0.22 0.1333 0.5187 7.368

11 8 2000 2 1 13.043 0.29 0.079 0.579 7.45

12 8 2250 3 0.5 7.477 0.62 0.703 0.643 7.585

13 10 1500 5 1 25.641 0.075 1.09 1.823 11.755

14 10 1750 4 0.5 6.390 0.27 1.1225 2.038 11.884

15 10 2000 3 2 40.000 0.89 1.103 2.05 12.096

16 10 2250 2 1.5 24.390 0.72 1.181 1.99 12.198

-8
-7

-6
-5

-4
-3

-2
-1

0
1

1 201 401 601 801 1001

Fx (N) Fy (N) Fz (N)

Fig. 4 Sample of cutting force
data
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…m; xij is the performance of Ai alternative with
respect to the jth criterion.

Step 3. For maximization problem, the ideal solution f *j and
the negative ideal solution f −j are selected as

f *j ¼ maxi f ij, f
−
j ¼ mini f ij, and for minimization

problem, the ideal solution f *j and the negative ideal

solution f −j are selected as f *j ¼ mini f ij, f −j ¼
maxi f ij

Step 4. Calculation of utility measure (Si) and regret measure
(Ri): The utility measure and the regret measure for
each alternative are given in (Eqs. 10–11),

Sij ¼ wj

f *j− f ij
� �

f *j− f
−
j

� � ; Si ¼ ∑n
j¼1wj

f *j− f ij
� �

f *j− f
−
j

� � ð10Þ

Ri ¼ min
j

Sij
� � ¼ min

j
w j

f *j− f ij
� �

f *j− f
−
j

� �
0
@

1
A ð11Þ

where Si, and Ri represent the utility measure and the
regret measure, and wj is the weight of the jth criterion,
expressing the relative importance of each criterion. wj

is selected using expert opinion or other MCDM
techniques.

Step 5. Computation of VIKOR index Qi (ith alternative
VIKOR value, i = 1, 2, 3…m) for the ith alternative
is done using,

Qi ¼
v Si−S−ð Þ
S*−S−
� � þ 1−vð Þ Ri−R*

� �
R*−R−� � ð12Þ

Fig. 6 Visualizations of correlations among inputs and responses for end milling of AA3105 alloy

Fig. 5 Individual main effect plots for MRR, Ra, Fx, Fy, and Fz
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S* ¼ maxiSi; S− ¼ miniSi ð13Þ
R* ¼ maxiRi;R− ¼ miniRi ð14Þ

The term v is introduced as the weight of the maximum
group utility. It ranges between [0, 1]. Ideally, it is set to 0.5.
The VIKOR index is ranked based on the ascending order to
find the best alternatives. Furthermore, the ANOVA is per-
formed to find out the sensitivity of the variables to the design
process at 95% confidence level and obtain the response table
and main effect plot. Finally, delta statistics are obtained, and
the most influential parameters are detected.

4.3 BRNN-BSA technique

The data-driven surrogate-assisted optimization technique is
discussed here, which approximates the optimal combination
of input variables for the end milling process. This technique
can estimate the process responses accurately. The BRNN is
opted for the predictive modeling and the BAS algorithm is
considered as the optimization technique. BRNN-BAS is a
sequential method, where BRNN executes first. Once
BRNN training is completed, the best BRNNmodel is obtain-
ed with minimum RMSE score. Thereafter, the BAS optimi-
zation module executes.

4.3.1 BRNN model

BRNN is conceptualized on Bayes’ rule, which considers the
relationship between the probability of any process and prior
knowledge of the process. The output responses could be

generated using this relationship, which is posterior. Foresee
and Hagan [55] expressed the probability density function of
weights as,

P wjd;α;β;Mð Þ ¼ P Djw;β;Mð ÞP wjα;Mð Þ
P Djα;β;Mð Þ ð15Þ

where D is the data, M is the type of ANN (cascade for-
ward multi-layer perceptron), w is the vector of network
weights. P(w|α, M) denotes the prior knowledge of the
weights. P(D|w, β, M) is the likelihood and P(D|α, β, M)
is normalization factor. When noise in D and P(w|α,M) are
Gaussian, then the likelihood and normalization factor are
expressed as,

P Djw;β;Mð Þ ¼ 1

ZD βð Þ e
−βED ð16Þ

P wjα;Mð Þ ¼ 1

Zw αð Þ e
−αEw ð17Þ

where ZD(β) = (π/β)n/2 and Zw(βα) = (π/α)N/2. ED is the sum
of squared errors for data and EW is the sum of squares for
weights. Hence, Eq. (15) becomes,

P wjd;α;β;Mð Þ ¼
1

ZD βð ÞZw αð Þ e
− βEDþαEwð Þ

P Djα;β;Mð Þ ð18Þ

¼ 1

Z F α;βð Þ e
− βEDþαEwð Þ ð19Þ

Optimal weights maximize the posterior probability
density function P(w|D, α, β, M), which is equivalent to

Fig. 7 BRNN schematic diagram
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minimizat ion of regular ized object ive funct ion
f = (β.ED + α.Ew). This objective function restricts the
weights and biases to be small enough, which produces
smooth responses by eliminating over fitting. α and β
are governed by Bayesian regularization. BRNN is a
probabilistic ANN model. The input variables are gener-
ally treated as probability density functions to the hidden
layer [56]. This method helps eliminating the uncertainty
regarding the network weights. Therefore, the output ob-
tained is spanned over a new distribution, which im-
proves the prediction accuracy. The BRNN considered
in this study has a multi-layer perceptron (MLP) network
structure with input layer, one hidden layer, and output
layer. Figure 7 shows the BRNN schematic. Various
probability density functions are shown for the input
and output.

4.3.2 BAS algorithm

Beetle antennae search (BAS) algorithm is a recently pro-
posed technique, which is inspired from the odor-sensing
mechanism of the beetles using their long antennae (Fig. 8)
[57]. The antennae work as sensors with complex mechanism.
Fundamental functions of such sensors are to follow the smell
of food, or to sense the pheromone produced by the potential
opposite gender for reproduction. The beetle moves its anten-
nae in a particular direction to sense the smell of food or
mates. This movement is random in the neighborhood area
and directed according to the concentration of smell. This
implies that the beetle turns to the right or the left depending
upon the higher concentration of smell or odor data gathered
by the antennae sensors.

Wang and Chen [58] described the BAS algorithm as,

Fig. 8 Beetle search procedure
based on odor-sensing
mechanism using antennae

Algorithm 1: BAS algorithm for global minimum searching
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The BAS algorithm is single-solution based, which is
similar to the simulated annealing (SA) algorithm. The
BAS starts with a randomly generated beetle with position
vector xt at tth time (t = 1, 2, …, n) and the position is
evaluated using the fitness function f(x), which determines
the smell or odor concentration [59]. This fitness function
could be a mathematical objective function, i.e., min f(x),
or it could be an approximation model. For the purpose of

initial solution generation, Latin hypercube sampling
(LHS) is preferred, which is a popular method to sample
the random solutions [60] [61]. In this paper, a modified
form of LHS method is adopted, which generates the ran-
dom sample (position of beetle) uniformly within a speci-
fied range depending upon the actual range of end milling
process parameters. Algorithm 2 explains the modified
LHS procedure.

Algorithm 2: Initial sample generation using modified LHS

Fig. 9 BRNN-BAS framework for end milling process
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Furthermore, the newly generated beetle decides the next
move based on the smell concentration by creating the next
promising position in the neighborhood of previous position
using the exploration and exploitation approach. The direc-
tional move is determined by Eq. (20),

b
!¼ rnd k; 1ð Þ

rnd k; 1ð Þkk ð20Þ

where rnd is a random function, and k is the input dimension
of the beetle position. The exploration is performed on right
(xr) or left (xl) using Eq. (21) or Eq. (22),

xr ¼ xt þ dt � b
! ð21Þ

xl ¼ xt−dt � b
! ð22Þ

where dt is the sensing length of antennae at time t, which
implies the exploitation skill. Value of dt must enfold the
solution space. This guides the algorithm to escape from being

stuck at local optima and improves the convergence speed.
The next position of the beetle is decided using Eq. (23),

xt ¼ xt−1 þ δt b
!
sign f xrð Þ− f xlð Þð Þ ð23Þ

where δt is the step size of exploration, which follows a de-
creasing function of t, and sign represents a sign function.
Sensing length dt and step size δt are updated using Eq. (24)
and Eq. (25),

dt ¼ 0:95dt−1 þ 0:01 ð24Þ
δt ¼ 0:95δt−1 ð25Þ

The proposed data-driven BRNN-BAS framework is
depicted in Fig. 9. It shows that the BRNN model is used as
a surrogate model to the BAS optimization algorithm, which
can evaluate candidate solutions effectively. The flowchart of
the proposed BRNN-BAS algorithm is portrayed in Fig. 10.
The sequential algorithmic flows are portrayed with dotted
and continuous lines.

Fig. 10 BRNN-BAS algorithmic flowchart

Table 4 Regression models with
p values and R2 values MRR Ra Fx Fy Fz

p values for decision variables TD 0.022 0.001 0.637 0.452 0.053

SS 0.530 0.055 0.923 0.266 0.077

FR 0.947 0.011 0.972 0.163 0.115

DOC 0.005 0.193 0.192 0.874 0.179

R2 64.69%* 75.66%* 16.54%§§ 27.85%§§ 55.08%*

*Moderate to strong effect size

§§Weak effect size
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Table 5 Grey relational analysis on Taguchi’s L16 OA design

Normalized responses Deviation sequence GRC GRG

MRR Ra Fx Fy Fz MRR Ra Fx Fy Fz MRR Ra Fx Fy Fz

0.000 0.953 0.294 0.540 0.152 1.000 0.047 0.706 0.460 0.848 0.333 0.914 0.415 0.521 0.371 0.5107

0.161 0.976 0.318 0.395 0.207 0.839 0.024 0.682 0.605 0.793 0.373 0.955 0.423 0.452 0.387 0.5182

0.355 0.976 0.787 0.915 0.989 0.645 0.024 0.213 0.085 0.011 0.437 0.955 0.702 0.855 0.979 0.7855

0.056 0.988 0.603 0.966 1.000 0.944 0.012 0.397 0.034 0.000 0.346 0.977 0.557 0.937 1.000 0.7634

0.038 0.706 0.000 0.351 0.085 0.962 0.294 1.000 0.649 0.915 0.342 0.630 0.333 0.435 0.353 0.4187

0.427 0.753 0.960 0.000 0.057 0.573 0.247 0.040 1.000 0.943 0.466 0.669 0.926 0.333 0.347 0.5482

0.016 0.988 0.271 0.444 0.000 0.984 0.012 0.729 0.556 1.000 0.337 0.977 0.407 0.474 0.333 0.5056

0.353 1.000 0.099 0.679 0.488 0.647 0.000 0.901 0.321 0.512 0.436 1.000 0.357 0.609 0.494 0.5791

1.000 0.835 0.970 1.000 0.475 0.000 0.165 0.030 0.000 0.525 1.000 0.752 0.943 1.000 0.488 0.8366

0.408 0.788 0.963 0.925 0.455 0.592 0.212 0.037 0.075 0.545 0.458 0.702 0.931 0.870 0.478 0.6879

0.215 0.706 1.000 0.916 0.449 0.785 0.294 0.000 0.084 0.551 0.389 0.630 1.000 0.856 0.476 0.6701

0.061 0.318 0.575 0.906 0.439 0.939 0.682 0.425 0.094 0.561 0.348 0.423 0.540 0.842 0.471 0.5248

0.564 0.959 0.311 0.729 0.129 0.436 0.041 0.689 0.271 0.871 0.534 0.924 0.420 0.649 0.365 0.5784

0.031 0.729 0.289 0.697 0.119 0.969 0.271 0.711 0.303 0.881 0.340 0.649 0.413 0.622 0.362 0.4773

0.962 0.000 0.302 0.695 0.104 0.038 1.000 0.698 0.305 0.896 0.929 0.333 0.417 0.621 0.358 0.5318

0.530 0.200 0.249 0.704 0.096 0.470 0.800 0.751 0.296 0.904 0.515 0.385 0.400 0.628 0.356 0.4567

(a) (b)
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Fig. 11 Main effect plots for a GRG and b VIKOR index

Table 6 Response table for (a) GRG means and (b) VIKOR index means

(a) (b)

Level TD SS FR DOC Level TD SS FR DOC

1 0.6444 0.5867 0.5473 0.5046 1 0.7892 0.6167 0.8092 0.9253

2 0.5132 0.5592 0.4994 0.5869 2 0.8529 0.7895 0.9293 0.7278

3 0.6812 0.6246 0.6699 0.5896 3 0.5852 0.8084 0.5670 0.7667

4 0.5138 0.5821 0.6360 0.6714 4 0.8050 0.8177 0.7269 0.6125

Delta 0.1680 0.0654 0.1705 0.1667 Delta 0.2678 0.2010 0.3623 0.3128

Rank 2 4 1 3 Rank 3 4 1 2
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Table 7 ANOVA results on
GRG Source DF Seq. SS Contribution Adj. SS Adj. MS F value R-Sq R-Sq (adj.)

TD (mm) 3 0.09189 39.44% 0.09189 0.03063 2.61 39.44% 24.31%

SS (rpm) 3 0.008818 3.79% 0.008818 0.002939 0.16 3.79% 0.00%

FR (mm/s) 3 0.07405 31.79% 0.07405 0.02468 1.86 31.79% 14.73%

DOC (mm) 3 0.05562 23.88% 0.05562 0.01854 1.25 23.88% 4.84%

Error 12 0.1754 75.28% 0.1754 0.0146

Total 15 0.23296 100.00%

Fig. 12 Response surfaces of GRG vs. combinations of each two parameters

Table 8 VIKOR method based on Taguchi’s L16 OA design

Normalized decision matrix Utility measure for individual response Si Ri Qi

MRR Ra Fx Fy Fz MRR Ra Fx Fy Fz

0.3411 0.0044 0.3290 0.8496 3.2906 0.3500 0.0021 0.0519 0.0213 0.0719 0.4972 0.3500 0.9009

1.5119 0.0025 0.3081 1.4659 2.8787 0.3302 0.0009 0.0486 0.0368 0.0629 0.4794 0.3302 0.8545

4.0342 0.0025 0.0405 0.0307 0.0007 0.2877 0.0009 0.0062 0.0008 0.0000 0.2955 0.2877 0.6267

0.6561 0.0017 0.1160 0.0054 0.0000 0.3447 0.0004 0.0181 0.0001 0.0000 0.3633 0.3447 0.7748

0.5449 0.0580 0.6325 1.6874 3.8349 0.3466 0.0365 0.1000 0.0423 0.0838 0.6092 0.3466 0.9941

5.2715 0.0431 0.0050 3.9879 4.0682 0.2668 0.0270 0.0005 0.1000 0.0889 0.4832 0.2668 0.7595

0.4211 0.0017 0.3487 1.2379 4.5756 0.3486 0.0004 0.0550 0.0310 0.1000 0.5351 0.3486 0.9321

3.9980 0.0011 0.5194 0.4168 1.2054 0.2883 0.0000 0.0821 0.0105 0.0263 0.4072 0.2883 0.7259

21.0860 0.0223 0.0040 0.0000 1.2653 0.0000 0.0136 0.0004 0.0000 0.0277 0.0417 0.0277 0.0000

4.9259 0.0334 0.0047 0.0241 1.3650 0.2726 0.0207 0.0005 0.0006 0.0298 0.3243 0.2726 0.6287

2.0951 0.0580 0.0017 0.0300 1.3955 0.3204 0.0365 0.0000 0.0008 0.0305 0.3882 0.3204 0.7590

0.6884 0.2649 0.1308 0.0370 1.4466 0.3441 0.1695 0.0205 0.0009 0.0316 0.5666 0.3441 0.9529

8.0965 0.0039 0.3144 0.2975 3.4743 0.2192 0.0018 0.0496 0.0075 0.0759 0.3539 0.2192 0.5718

0.5028 0.0502 0.3334 0.3718 3.5510 0.3473 0.0316 0.0526 0.0093 0.0776 0.5184 0.3473 0.9152

19.7037 0.5459 0.3219 0.3761 3.6788 0.0233 0.3500 0.0508 0.0094 0.0804 0.5139 0.3500 0.9156

7.3259 0.3573 0.3691 0.3544 3.7411 0.2322 0.2288 0.0582 0.0089 0.0818 0.6099 0.2322 0.8172
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4.3.3 Performance metric

Root mean square error (RMSE) is used as the performance
metric for the BRNN. The RMSE is an improved metric,
which accurately measures regression errors. If the model-
produced output response is y and the target response is t
and i is the index of experiment for machining processes, the
RMSE is calculated using,

RMSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yi−tið Þ2

q
ð26Þ

4.4 Regression model-assisted BAS technique

Multiple regression model is obtained for all the five re-
sponses at 95% confidence level. Regression equations are
depicted in Eqs. (27)–(31). These equations are used as the
fitness functions for the regression-BAS algorithm. Therefore,
in Fig. 10, the dotted part is replaced using these equations for
the regression-assisted optimization technique. Table 4 shows
the p values and R2 values for the regression analysis, which
states that theMRR ismostly dependent on the DOC and Ra is
mostly dependent on the TD.

MRR ¼ −18:6þ 3:60*TD−0:00464*SSþ 0:12*FRþ 12:73*DOC

ð27Þ
Ra ¼ −0:885þ 0:1090*TDþ 0:000290*SS−0:1036*FRþ 0:0937*DOC

ð28Þ
Fx ¼ 0:79þ 0:0434*TDþ 0:000047*SS

þ 0:004*FR−0:329*DOC ð29Þ
Fy ¼ 9:88−0:239*TD−0:00190*SS−0:608*FR−0:132*DOC

ð30Þ
Fz ¼ 17:52þ 1:200*TD−0:00572*SS−1:254*FR−2:11*DOC

ð31Þ

5 Results and discussions

5.1 GRA analysis

In this study, GRA is applied on the data obtained from
Table 3. Analysis is presented in Table 5. Using GRG, the
multi-response problem becomes a single-response problem

Table 9 ANOVA results on
VIKOR index Source DF Seq. SS Contribution Adj. SS Adj. MS F value R-Sq R-Sq(adj.)

TD (mm) 3 0.1683 19.77% 0.1683 0.05609 0.99 19.77% 0.00%

SS (rpm) 3 0.1082 12.71% 0.1082 0.03608 0.58 12.71% 0.00%

FR mm/s 3 0.2776 32.61% 0.2776 0.09255 1.94 32.61% 15.77%

DOC (mm) 3 0.2006 23.56% 0.2006 0.06686 1.23 23.56% 4.45%

Error 12 0.66265 77.84% 0.66265 0.05522

Total 15 0.8513 100.00%

Fig. 13 Response surfaces of VIKOR index values vs. combinations of each two parameters
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of maximization type. Taguchi’s analysis is applied on the
GRG scores. The main effect plot for the parameters is pre-
sented in Fig. 11 a and mean response table for the GRG is
shown in Table 6 (a). The near-optimal combination of the
process parameters is TD3-SS3-FR3-DOC4, i.e., the values of
TD = 8 mm, SS = 2000 rpm, FR = 4 mm/s, and DOC = 2 mm
respectively. The delta values are portrayed (the difference of

highest and lowest GRG mean) as 0.1680 for TD, 0.0654 for
SS, 0.1705 for FR, and 0.1667 for DOC. This further implies
that FR is the most influential parameter followed by TD,
DOC, and SS for the end milling process. ANOVA results
are displayed in Table 7.

ANOVA depicts the significance of the input variables on
the GRG scores. It is observed that the TD and FR are most

Fig. 14 BRNN training and
regression plots for the end
milling data

Fig. 15 Convergence curve
obtained by BRNN-BAS
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significant to the GRG, followed by the DOC and SS. It could
be concluded that the SS is least significant to the process.
Figure 12 shows the response surfaces for each two of the
process variables vs. the obtained GRG values. For the TD-
SS combination, a better GRG could be obtained when the TD
varies between 8 and 9 mm and SS lies in the range of 1500–
1600 rpm. For the TD-FR combination, higher GRG values
are attained within certain range of TD values (8–9 mm) and
the FR values (4–4.5 mm/s). When the DOC varies in the
range of 1.75–2 mm and the TD remains in the same range,
the GRG score improves.

The SS does not show much influence for the highest
GRG, whereas the FR-DOC significantly affects the GRG
scores within certain range of the FR (4–4–5 mm/s) and the
DOC (1.5–2 mm). From the above study, the FR is shown to
be most effective, and the SS is shown to be least effective for
the end milling process.

5.2 VIKOR analysis

Five steps of the VIKOR method are applied on the multi-
response data of Table 3 and the VIKOR index scores are
obtained and presented in Table 8. Taguchi’s analysis is ap-
plied to the VIKOR index values. Equal weights for each of
the responses are considered as, w1 = w2 =w3 =w4 =w5 =
0.2. The main effect plot for the parameters is presented in
Fig. 11b. The mean response table for the VIKOR indices is
shown in Table 6 (b).

The near-optimal setting for process parameters is TD2-
SS4-FR2-DOC1, i.e., TD = 7 mm, SS = 2250 rpm, FR =
3 mm/s, and DOC = 0.5 mm respectively. The delta values
in Table 6 (b) are 0.2678 for TD, 0.2010 for SS, 0.3623 for
FR, and 0.3128 for DOC. This further implies that the FR is
the most influential parameter followed by the DOC, TD, and
SS for the end milling process. ANOVA is applied on the

Fig. 16 Convergence curve
obtained by regression-BAS

Table 10 Confirmatory test results for GRA, VIKOR, regression-BAS, and BRNN-BSA methods

GRA method VIKOR method Regression-BAS BRNN-BAS

Parameters TD = 8, SS = 2000, FR = 4,
DOC= 2

TD = 7, SS = 2250, FR = 3,
DOC= 0.5

TD= 10, SS = 1876, FR = 5,
DOC = 1.93

TD= 10, SS = 1646,
FR = 4.66, DOC= 1.54

Predicted Experimental Predicted Experimental Predicted Experimental Predicted Experimental

MRR 17.69 6.49 33.73 29.822 46.027 42.042**

Ra 0.78 0.52 0.412 0.561 0.1652 0.4651**

Fx 0.009 0.03616 0.697 0.749 0.7823 0.7973

Fy 0.0527 0.04776 0.655 2.127 2.826 2.547

Fz 0.0128 0.03387 8.455 9.212 10.8195 2.3727

GRG/VIKOR index/obj. value 0.8826 0.7791 1.2509 0.8687 − 4.7018 − 3.4346 − 6.2868 − 7.172

**40.98% improved MRR and 10.56% improved Ra
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VIKOR indices and portrayed in Table 9. It is observed that
the FR has the highest contribution to the VIKOR indices
followed by the DOC, TD, and SS. It could be concluded that
the SS is least significant to the process. Figure 13 shows the
response surfaces based on the combination of two process
variables and the corresponding VIKOR index values. The
VIKOR index behavior is opposite of the GRG. For the TD-
SS combination, a lower VIKOR index could be obtained
when the TD varies between 8 and 9 mm and SS lies in the
range of 1500–1600 rpm. For the TD-FR combination, lowest
VIKOR indices are attained within specific ranges of TD (8–
9 mm) and FR (4.4.5 mm/s). When the DOC varies in the
range of 1.75–2 mm and the TD remains in the same range,
the VIKOR indices are better. The SS does not show much
influence on the VIKOR indices, which resembles with GRA
study, whereas the FR-DOC is less significant to the VIKOR
indices unlike the GRG scores. Here also, the FR is shown to
be most effective and the SS is shown to be least effective to
the process.

5.3 BRNN-BAS and regression-BAS comparison

The proposed BRNN-BAS and regression-BAS algorithms
are applied on the data in Table 3 for the purpose of surrogate
training and testing. The algorithms are coded in the
MATLAB. The BRNN parameters are considered as the
learning rate = 0.1, error goal = 1e−5, and number of epochs =
100. The data is divided in 70:30 for training and testing. The
performance curve and regression plots of the BRNN are
depicted in Fig. 14.

The training results and regression curves depict very high
R values with low MSE, which proves that the BRNN model
can approximate the function accurately. The cross validation
is not considered since the high R values are obtained and
accurate responses are predicted. The parameters of the BAS
algorithm are set as d0 = 0.001, δ0 = 0.8, number of iterations =
500. The convergence plots of the data-driven BRNN-BAS
algorithm and the regression-BAS algorithm are shown in
Fig. 15 and Fig. 16 respectively. Both the algorithms are cod-
ed considering the boundary conditions of the process param-
eters. The parameters are evaluated based on the following
range, 6 ≤ TD ≤ 10, 1500 ≤ SS ≤ 2250, 2 ≤ FR ≤ 5, and 0.5 ≤
DOC ≤ 2. Out of these four parameters, TD, SS, and FR are
treated as the integer variables and DOC is treated as the real
valued variable. The unfit solutions, which fall outside of the
boundary conditions, are discarded from further evaluation.
The multi-response end milling problem considered in this
study is scaled down using the weighted sum method. The
weights are derived from the VIKOR method. It could be
observed that the proposed BRNN-BAS achieves the near-
optimal solutions promptly. The best solution is fbst (objective
value = − 6.2868) with parameters (TD = 10, SS = 1646,
FR = 4.66, DOC = 1.54)t = 269. This solution shows improved

responses (MRR = 46.027, Ra = 0.1652, Fx = 0.7823, Fy =
2.826, Fz = 10.8195).

5.4 Confirmatory test

Confirmatory tests are conducted to find the corrections for
the GRG, VIKOR index, and objective scores obtained by
both the BAS variants. The results are portrayed in Table 10.

The GRG value becomes 0.7791, which is close to the
estimated value 0.8826. The VIKOR index is 0.8687, which
is better than the predicted value of 1.2509. For the regression-
BAS, the experimental objective score (− 3.4346) is inferior to
the predicted score (− 4.7018). For the BRNN-BAS tech-
nique, the experimental run obtains an objective score of −
7.172, which is better than the predicted value − 6.2868. The
responses obtained using the BRNN-BAS algorithm is
(MRR= 42.042, Ra = 0.4651, Fx = 0.7973, Fy = 2.547, Fz =
2.3727). BRNN-BAS is shown to achieve 40.98% improved
MRR and 10.56% improved Ra scores than the other
methods. For the cutting forces, the obtained results are under
satisfactory range. From the above study, it could be stated
that the BRNN-BAS produces higher material removal rate,
lower surface roughness, and the near-optimal set of cutting
forces for the end milling on the Proxxon CNC machine.

6 Conclusions

In this article, a small desktop CNC milling machine is con-
sidered for the machining of the aluminum alloy used for sheet
metal work. To obtain high-quality machining, a multi-
response decision model is developed using the TD, SS, FR,
and DOC as the process parameters. The MRR, Ra, and cut-
ting forces (Fx, Fy, and Fz) are considered as the performance
characteristics. Taguchi’s OAD coupled with GRA and
VIKOR method, regression-assisted BAS algorithm, and
BRNN-assisted BAS algorithm are considered for the process
optimization task. Following conclusions are drawn from this
study,

& AA3105 shows substantially good machining properties
under the end milling on the Proxxon FF 500 BL CNC
with proper settings of the parameters. The ideal settings
for the parameters are found to be (TD = 10 mm, SS =
1646 rpm, FR = 4.66 mm/s, and DOC = 1.54 mm).

& The ANOVA and response surface plots depict that the
FR is the most influential and SS is the least influential
process parameters.

& The improved GRG, VIKOR index, and objective values
for both the BAS algorithms could be extremely helpful in
minimizing the cost of manufacturing, which could im-
prove the machining quality.
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& Probabilistic BRNN shows good performance curve and
regression fit, which is comparable with the other predic-
tive functions, such as the MLP, RBF, SVM, and
Gaussian kernels. The BAS algorithm portrays its capabil-
ity to obtain the near-optimal solutions promptly while
coupled with the trained surrogate.

& The BRNN-BAS technique shows its superior ability to
optimize the machining process while compared with the
heavily exploited GRA and VIKOR methods and
regression-driven BAS algorithm. The BRNN-BAS is
shown to outperform all the techniques by obtaining
40.98% improvedMRR and 10.56% improved Ra values.

This work is aimed to extend with hard-to-machine mate-
rials, such as the steel alloys and composites as workpieces in
future. More process variables are to be considered, such as
radial depth of cut, axial depth of cut, tool wear, chatter vibra-
tion, power consumption by machines, and temperature. The
many-objective optimization model for BAS would be devel-
oped for the said process, and comparisons would be per-
formed with existing algorithms such as NSGA III or
MOEA/D in future.
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