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Abstract— We solve an adaptive boundary control problem
for an 1-D linear hyperbolic partial differential equation (PDE)
with an uncertain in-domain source parameter and uncertain
transport speed using boundary sensing only. Convergence of
the parameters to their true values is achieved in finite-time.
Since linear hyperbolic PDEs are finite-time convergent in the
non-adaptive case, finite-time parameter convergence leads to
the system state converging in finite-time. This is achieved by
combining a recently derived transport speed estimation scheme
using boundary sensing only, with the swapping scheme for
hyperbolic PDEs and a least-squares identifier of an event-
triggering type. The method is demonstrated in simulations.

I. INTRODUCTION

A. Background

Systems of linear hyperbolic partial differential equa-
tions (PDEs) are used to model various flow and transport
phenomena, ranging from electrical transmission lines and
propagation of light in optical fibers, to flow in blood
vessels and the propagation of epidemics (see e.g. [1] for
an overview). These systems therefore naturally give rise to
important estimation and control problems, with methods
ranging from the use of control Lyapunov functions [2],
frequency domain approaches [3] and active disturbance
rejection control (ADRC) [4] to the backstepping method
[5].

In the last few years, many results on adaptive estimation
and control of systems of linear hyperbolic partial differential
equations have been published. The first result was in [6],
half a decade ago, where a 1-D system with a spatially
varying in-domain source coefficient was adaptively stabi-
lized using a filter based technique known as swapping
design in conjunction with the backstepping method. Only
boundary sensing was required. In [7], backstepping was
used again, adaptively stabilizing the same type of systems
using a Lyapunov approach, but requiring the use of full state
measurements.

Before the result in [6] for hyperbolic PDEs, backstepping
for parabolic PDEs had been extensively studied, particularly
in the work by Smyshlyaev and Krstic. Important results
include [8], [9] and [10] for the non-adaptive case, and [11],
[12], [13] and [14] for the adaptive case.
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In [15] and [16], the method from [6] is extended to more
complicated classes of hyperbolic PDEs, resulting in output-
feedback solutions to systems of coupled hyperbolic PDE.
Other results concerning uncertain boundary parameters in-
clude [17] and [18], and most of these backstepping-based
adaptive results are summarized in [19].

However, common for the above mentioned results for
hyperbolic PDEs, is that the system’s transport speed is al-
ways assumed known. To the best of the authors’ knowledge,
no result exists on adaptive control of a hyperbolic PDE
with an uncertain transport speed. The difficulty in having
an uncertain transport speed comes from the fact that the
transport speed appear in terms also including non-measured
distributed spatial derivatives, which excludes commonly
used techniques in adaptive control from being applied.

In [20], an event-triggered least-squares identifier was
combined with a backstepping controller to achieve adaptive
control of a constant-parameter parabolic PDE. The proposed
methodology is an extension of the finite-time convergent
event-triggered least-squares identification method and con-
troller for nonlinear ordinary differential equations (ODEs)
presented in [21]. However, the controller in [20] is a state-
feedback one, requiring full-state measurements, and finite-
time convergence of the state to zero can in general not be
achieved for parabolic PDEs.

In this paper, we present the first result on backstepping-
based adaptive boundary control of a linear hyperbolic PDE,
where the transport speed is allowed to be uncertain. This is
achieved by combining the boundary-sensing-based transport
speed estimator from [22] with an event-triggered finite-
time convergent estimator scheme which is motivated by
the scheme presented in [21]. Since the transport speed is
estimated in finite time, one can proceed as before with the
swapping-based technique from [6] to estimate any of the
other uncertain parameters considered in [6]. However, we
slightly modify this technique to also estimate this parameter
in finite time, for the scalar parameter case. Since linear
hyperbolic PDEs of the type considered in [6] and this paper
are finite-time convergent in the non-adaptive case, finite-
time parameter convergence of the parameters leads to the
system state converging in finite-time.

B. Notation

For two (possibly time-varying) signals a(x), b(x) defined
for x ∈ [0, 1], we define the operator ≡ as

a ≡ b⇔ max
x∈[0,1]

|a(x)− b(x)| = 0. (1)



II. PROBLEM STATEMENT

We consider the following simple type of scalar 1-D
hyperbolic transport PDE with uncertain transport speed µ,
and an uncertain in-domain source coefficient θ

ut(x, t)− µux(x, t) = θu(0, t) (2a)
u(1, t) = U(t) (2b)
u(x, 0) = u0(x) (2c)

where we assume

µ ∈ R, µ > 0, θ ∈ R, u0 ∈ C1([0, 1]). (3a)

The goal is to design a boundary control law U that
adaptively stabilizes system (2), from boundary sensing
only. We assume the following boundary measurements are
available

y0(t) = u(0, t), y1(t) = u(1, t) (4a)
ϑ0(t) = ux(0, t), ϑ1(t) = ux(1, t), (4b)

where we note that y1 = U .
Previous backstepping-based adaptive control results for

hyperbolic PDEs employing boundary sensing have only
used the Dirichlet-type boundary measurements on the form
(4a) [19], however, none of these results considered an
uncertain transport speed. All four methods proposed in [22]
for estimation of the transport speeds in hyperbolic PDEs,
required measurement of the spatial derivative, and only one
of those four limited the measurements to be taken at the
boundaries. The method considered in this paper is based on
this method, and combines it with a finite-time convergent
least-squares estimation scheme previously used in [21] and
[20].

Note that we assume a continuously differentiable initial
condition u0. Moreover, we will assume that the boundary
control law U(t) is compatible so that the state u always will
remain in C1([0, 1]). This is formally stated in the following
assumption:

Assumption 1: We assume u(t) ∈ C1([0, 1]).
This is a property that is generally not the case for hyperbolic
PDEs, but is required for the analysis that follows. We
will achieve this by simply only consider solutions that are
compatible with this assumption.

Regarding the uncertain parameters, we assume the fol-
lowing

Assumption 2: A lower bound on µ is known; specifically,
we are in knowledge of a positive parameter µ so that

µ ≤ µ. (5)

III. EVENTS AND EVENT TRIGGERS

We will use a time-triggered series of events. For simplic-
ity, we will use a fixed interval between each event. This is
justified by the fact that a linear hyperbolic PDE on the form
(2) is finite-time observable [23], within a time d, defined as

d = µ−1 (6)

which is an unknown quantity. However, this also implies
that system (2) is observable within a time T , defined as

T = µ−1 (7)

which, by Assumption 2, satisfies T ≥ d. We therefore
choose to trigger a new event every T seconds; hence, the
ith event happens at times τi, where

τi = iT. (8)

Of course, the performance, especially in terms of con-
vergence times, can be improved by having non-periodic
triggers, but we choose this periodic trigger due to its
simplicity and such that the time length between triggers
is sufficient to capture all necessary traits of the system.

IV. ESTIMATION OF THE TRANSPORT SPEED

A. Dynamics of ux
We now derive a trigger-based finite-time convergent

boundary estimator for the transport speed µ. Firstly, we
derive the dynamics of the spatial derivative ux, and define
the new variable v as

v(x, t) = ux(x, t). (9)

By using the dynamics (2), we obtain

vt(x, t)− µvx(x, t) = 0 (10a)

v(1, t) = dU̇(t)− dθu(0, t) (10b)
v(x, 0) = v0(x) (10c)

where v0(x) = u′0(x).

B. Parametric form

Define the measured, scalar signal

η(t) = y1(t)− y0(t)

= u(1, t)− u(0, t) =

∫ 1

0

ux(x, t)dx

=

∫ 1

0

v(x, t)dx. (11)

Differentiating (11) with respect to time, we obtain

η̇(t) =

∫ 1

0

vt(x, t)dx. (12)

Inserting the dynamics (10a) and integrating gives

η̇(t) = µ

∫ 1

0

vx(x, t)dx = µ(v(1, t)− v(0, t))

= µω(t) (13)

where

ω(t) = ux(1, t)− ux(0, t) = ϑ1(t)− ϑ0(t) (14)

is a measured signal. Integrating (13) from σ to t, we obtain

p(t, σ) = µq(t, σ) (15)



where

p(t, σ) = η(t)− η(σ) (16a)

q(t, σ) =

∫ t

σ

ω(s)ds. (16b)

From (15), it is evident that whenever q(t, σ) 6= 0, µ can be
computed from µ = o(t,σ)

q(t,σ) . However, we will use a technique
similar to the one in [21], which is suited for estimation in
the case of measurement noise and unmodeled disturbances.

Consider the cost function

Ji(α) =

∫ τi

τi−1

∫ τi

τi−1

(p(t, σ)− αq(t, σ))2dσdt (17)

which equally weights all measurements since the last event.
It is clear that α = µ minimizes (17). Evaluating ∂Ji(α)

∂α = 0,
we obtain

Pi = µQi (18)

where

Pi =

∫ τi

τi−1

∫ τi

τi−1

p(t, σ)q(t, σ)dσdt (19a)

Qi =

∫ τi

τi−1

∫ τi

τi−1

q2(t, σ)dσdt. (19b)

Again, it is evident that if Qi 6= 0, the transport speed µ
can be computed as µ = Pi

Qi
. In the next subsection, we

investigate in what cases Qi = 0, and an estimate will not
be achievable.

C. Requirements for convergence of µ̂ to µ

In the case of an event, t = τi, it is possible that Qi = 0,
and hence µ cannot be computed from (18). This is addressed
in the following lemma.

Lemma 3: Let U(t) = 0 for all t ≤ τi. If either
• µ 6= θ or
• µ = θ and u0(x) 6= k(1− x) for any k ∈ R,

then Qi = 0 if and only if u(t) ≡ 0 for all t ∈ [τi−1, τi],
i ≥ 2.

Proof: First of all, the case k = 0 is trivial, as u0 ≡ 0
yields u(t) ≡ 0 for all t ≥ 0. Hence, we only consider
k 6= 0. From the definitions of Qi and q in (19b) and (16b),
respectively, and the assumption of having a continuous u,
it is apparent that Qi = 0 implies

q(t, σ) = 0, ∀t, σ ∈ [τi−1, τi], (20)

which from (15), also implies

p(t, σ) = 0, ∀t, σ ∈ [τi−1, τi]. (21)

From the definition of p and η in (16a) and (11), with the
assumption u(1, t) = U(t) = 0 until µ is estimated, we then
have

u(0, t) = u(0, σ), ∀t, σ ∈ [τi−1, τi], (22)

and hence u(0, t) is a constant, say

u(0, t) = c, ∀t ∈ [τi−1, τi]. (23)

Using the method of characteristics, we find

d

ds
u(x+ µs, t− s) = −θu(0, t− s) (24)

Integration from s = 0 to s = d(1 − x), with U(t) = 0,
gives

u(x, t) = θ

∫ d(1−x)

0

u(0, t− s)ds. (25)

If c = 0, we then have u(t) ≡ 0, which is trivial. If c 6= 0,
we insert u(0, t) = c and evaluate (25) at x = 0 to obtain

c = θcd (26)

and hence Qi = 0 and c 6= 0 implies

θ = µ. (27)

From (10), we have that v(x, t) = v(1, t − d(1 − x)) =
−c for all x ∈ [0, 1], t ≤ τi, which by integration gives
u(x, t) = c(1 − x) for all t ≤ τi. However, as we have
assumed u0(x) 6= k(1 − x) for any k ∈ R, this cannot be
the case. Hence, the conditions in the lemma and Qi = 0
implies that u(t) ≡ 0.

Remark 4: For the special case θ = µ, all initial condi-
tions on the form

u0(x) = k(1− x) (28)

give Qi = 0 for all i ≥ 1. This can be seen by inserting (28)
into (2), showing that (2) has the unique solution u(x, t) =
u0(x) = k(1 − x) for all t ≥ 0, which in the proof of
Lemma 3 was shown to imply Qi = 0. In this case, let
U(t) = Uex(t) for t = [0, d] for some Uex(t) 6= 0 such
that u(x, d) 6= u0(x) and the result of Lemma 3 holds for
all initial conditions for all i ≥ 3. We can therefore in the
following assume without loss of generality that u0(x) 6=
k(1 − x), since the case u0(x) = k(1 − x) can be handled
by just applying U = Uex if Q1 = 0. The signal Uex is up
to the designer; but a generic non-zero signal should suffice.

D. Estimation law

Based on the above derivations, we suggest Algorithm 1
for estimating µ, for which Theorem 5 holds.

Theorem 5: Consider system (2), with U(t) = 0 for all
t ≤ τ1. If u(t) is not identically equal to zero for all t ≤
τ1, then the estimation method of Algorithm 1 produces the
correct estimate µ for t ≥ τ1.

We will for the remainder of the paper denote the event
for which µ is estimated as the iµth event, so that τiµ is the
time for which µ̂(t) = µ, ∀t ≥ τiµ .

V. ESTIMATION OF θ

A. Filter design and parametric form

With µ estimated using the method of Theorem 5, we
can now proceed as before in estimation of the uncertain
parameter θ, using the filter-based method presented in e.g.
[6]. However, we will slightly modify this method so that



Algorithm 1 Estimation of µ
1) Let

µ̂(0) = µ̂0. (29)

for some µ̂0 ≥ µ.
2) At event i, set µ̂ as

µ̂(τi) =


Pi
Qi

if Qi > 0

µ̂(τi−1) otherwise
(30)

where Pi and Qi are generated from (19).
3) For all times t ∈ (τi−1, τi), i = 1, 2, . . . between

events, the estimate µ̂ is set to the most recent event-
triggered estimate, that is

µ̂(t) = µ̂(τi), ∀t ∈ [τi, τi+1). (31)

finite-time convergence is achieved. We introduce the filters

φt(x, t)− µ̂(t)φx(x, t) = y0(t), φ(1, t) = 0

φ0(x, 0) = φ0(x) (32a)
ψt(x, t)− µ̂(t)ψx(x, t) = 0, ψ(1, t) = U(t)

ψ0(x, 0) = ψ0(x) (32b)

for some initial conditions φ0, ψ0 ∈ C1([0, 1]) of choice.
Using these filters, a non-adaptive estimate of the state u
can be generated as

ū(x, t) = ψ(x, t) + θφ(x, t). (33)

The following lemma immediately follows
Lemma 6: Consider system (2), the state estimate (33)

generated using the filters (32), with µ̂ generated using the
method of Theorem 5. Then

ū(t) = u(t) (34)

for all t ≥ τiµ + d.
Proof: We will prove that the signal

e(x, t) = u(x, t)− ū(x, t) (35)

satisfies the dynamics

et(x, t)− µex(x, t) = 0 (36a)
e(1, t) = 0 (36b)
e(x, 0) = e0(x). (36c)

We evaluate

et(x, t) = ut(x, t)− ψt(x, t)− θφt(x, t)
= µux(x, t) + θu(0, t)− µ̂(t)ψx(x, t)

− θµ̂(t)φx(x, t)− θu(0, t) (37)

Utilizing that µ̂(t) = µ for t ≥ τiµ , we obtain

et(x, t) = µ(ux(x, t)− ψx(x, t)− θφx(x, t))

= µex(x, t). (38)

which proves (36a). Inserting x = 1 into (35) yields

e(1, t) = u(1, t)− ψ(1, t)− θφ(1, t)

= U(t)− U(t) = 0 (39)

Lastly, the initial condition is given as

e0(x) = u0(x)− ψ0(x)− θφ0(x). (40)

From the simple dynamics (36) valid for t ≥ τiµ , it is
evident that e ≡ 0 after an additional time d = µ−1, which
produces the desired result.

We will for the remainder of the paper denote the event
for which ū = u as the iūth event, so that τiū is the time for
which ū(t) ≡ u(t), ∀t ≥ τiū .

B. Estimation

Following Lemma 6, we must have ū(t) = u(t) for t ≥
τiū = τiµ+1 = τiµ + T ≥ τiµ + d, which is the time of the
event immediately after the iµth event. Thus, for t ≥ τiū , we
have

z(t) = y0(t)− ψ(0, t) = θφ(0, t) (41)

Integrating from σ to t, and using the same techniques as
for the transport speed, we obtain

Ai =

∫ τi

τi−1

∫ τi

τi−1

a(t, σ)b(t, σ)dσdt (42a)

Bi =

∫ τi

τi−1

∫ τi

τi−1

b2(t, σ)dσdt (42b)

where

a(t, σ) =

∫ t

σ

z(s)ds

b(t, σ) =

∫ t

σ

φ(0, s)ds. (43a)

As with the estimation of µ, it is evident that if Bi 6= 0,
the parameter θ can be computed as θ = Ai

Bi
. In the next

subsection, we investigate in what case Bi = 0.

C. Convergence of θ̂ to θ

Lemma 7: Bi = 0 if and only if u(t) ≡ 0 for all t ∈
[τi−1, τi], for i ≥ iū + 1.

Proof: From the definition of Bi, we conclude that
Bi = 0 implies b(t, σ) = 0 for all t, σ ∈ [τi−1, τi], which
in turn implies φ(0, t) = 0 for all t ∈ [τi−1, τi]. From
the definition of the filter φ, we then conclude that u(0, t)
must be zero for t ∈ [τi−1, τi], which, by the finite-time
observability property of systems of the type (2) (see [23]),
must imply u ≡ 0.

The control goal is u(t) ≡ 0 for some t. Hence, Bi = 0
if and only if u(t) ≡ 0, meaning that u(t) 6≡ 0 will result in
Bi 6= 0, and the possibility of estimating θ in finite time.



Algorithm 2 Estimation of θ
1) Let

θ̂(0) = θ̂0. (44)

for some θ̂0 ∈ R.
2) Consider the first event after the iūth event, that is the

(iū + 1)th event. Set θ̂ as

θ̂(τiū+1) =


Aiū+1

Biū+1
if Biū+1 > 0

θ̂(τiū) otherwise
(45)

where Aiū+1 and Biū+1 are generated from (42).
3) For all times t ∈ (τi−1, τi), i = 1, 2, . . . between

events, the estimate θ̂ is set to the most recent event-
triggered estimate, that is

θ̂(t) = θ̂(τi), ∀t ∈ [τi, τi+1). (46)

D. Estimation law

Again, based on the above derivations, we suggest the
following algorithm for estimating θ in finite time.

Theorem 8: Consider system (2). Assume µ has been
estimated correctly using Algorithm 1. Then, provided u(t)
is not identically zero for all τiū ≤ t ≤ τiū , the estimation
method of Algorithm 2 produces the correct estimate θ for
t ≥ τiū+1.

For the remainder of the paper, we will denote the event
for which θ is estimated as the iθth event, so that θ̂(t) = θ,
∀t ≥ τiθ .

VI. ADAPTIVE CONTROL

Consider the control law

U(t) = − θ̂(t)
µ̂(t)

∫ 1

0

exp

(
θ̂(t)

µ̂(t)
(1− ξ)

)
û(ξ, t)dξ (47)

where û is an adaptive state estimated generated as

û(x, t) = ψ(x, t) + θ̂(t)φ(x, t), (48)

which is obtained by replacing θ by its estimate θ̂ in (33).
Theorem 9: Consider system (2), and the control law (47)

with µ̂ and θ̂ generated using Theorems 5 and 8, respectively.
Then

u(t) ≡ 0, for t ≥ τiθ + d (49a)
ψ(t), φ(t) ≡ 0, for t ≥ τiθ + 2d (49b)

Proof: Since, by Theorems 5 and 8, we have µ̂(t) = µ
and θ̂(t) = θ for t ≥ τiθ , the proof of (49a) follows directly
from [19, Theorem 5.1]. From the structure of the filter in
(32a), it is then evident that we must have φ(t) ≡ 0 for
t ≥ τiθ + 2d. From (33) and Lemma 6, ψ(t) ≡ 0 follows for
t ≥ τiθ + 2d.

The explicit form of the controller gain in (47) is derived
in e.g. [19, Example 3.1].

Remark 10: In order to convey the main idea as clearly
as possible, we have not payed attention to ensuring that
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Fig. 1. Actual (solid black) and estimated (dashed red) µ for Case 1.

solutions stay in C1([0, 1]), which is a premise for the
analysis. To have solutions stay in C1([0, 1]), we would
need modifications to ensure that U(t) = limx→1 u(x, t)
and U ∈ C1([0,∞)). Loosely speaking, we could restrict
initial conditions to be compatible with U(0) = 0 and ensure
smooth transitions between parameter updates in point 3) of
the two algorithms.

VII. SIMULATIONS

System (2) was implemented in MATLAB, along with
the parameter observers of Algorithms (1) and (2), and the
control law (47). Due to numerical issues when implementing
on a computer, the requirements of Algorithms 1 and 2 of
having Qi > 0 and Bi > 0 respectively, are substituted by
Qi > ε0 and Bi > ε0, respectively, for a small number
ε0 > 0. For the simulations in this section, we have chosen
ε0 = 10−3.

A. Case 1

The system parameters and initial condition were set to

µ = 2 θ = 3, u0(x) = x (50)

constituting an unstable system. The initial guesses and lower
bound µ, were set to

µ̂0 = 1, θ̂0 = 0, µ = 1, (51)

which corresponds to T = 1, and hence an event is triggered
every second. The simulation results are found in Figures 1–
4. From Figure 1, one can clearly se that the value of µ
is correctly estimated at the first event, while θ is correctly
estimated on the third event as predicted by theory. However,
the estimated θ after the first event is very close to the
actual value, resulting in the control managing to stabilize
the system. Convergence to zero is not achieved before θ
is estimated correctly and an additional time d = 1

µ = 0.5
seconds. Hence, the system norm converges to zero within
a finite time τiµ + d = 3.5 s, as predicted in Theorem 9.

B. Case 2

For this case, we choose

µ = θ = 2, u0(x) = 2(1− x) (52)
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which satisfy the conditions of Remark 4. The remaining
parameters are the same as in Case VII-A. The exciting
actuation signal Uex which will be applied for t ∈ [τ1, τ2] is
set as

Uex(t) = 1. (53)

Note that the parameters and initial condition satisfying the
requirements of Remark 4 occurs with probability zero. How-
ever, we include a simulation here for illustrative purposes.

The simulations results are found in Figures 5–8. It is ob-
served that the system state now is stable in the uncontrolled
case, as seen from the constant system norm shown in Figure
7 until t = τ1 = 1, when U is set to Uex as seen in Figure
8. Due to this, the estimator for µ at the first event fails,
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Fig. 6. Actual (solid black) and estimated (dashed red) θ for Case 2.
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as predicted by Theorem 5, to produce the correct estimate
at t = τ1 as seen in Figure 5. However, it produces the
correct estimate at the next event at t = τ2 = 2. The correct
estimate for θ is then seen from Figure 6 to be computed
at t = τ4 = 4 as predicted by theory, and the state norm
converges to zero within t = τ4 + d = 4.5 s.

VIII. CONCLUDING REMARKS

We have combined a recently derived transport speed
estimation scheme using boundary sensing only, with the
swapping scheme for hyperbolic PDEs and a least-squares
identifier of an event-triggering type, into an adaptive con-
troller for a type of scalar 1-D liner hyperbolic PDE with
an uncertain transport speed. Simulations showed finite-time
convergence of the estimated parameters to their true values,
and of the system state to zero.

The finite-time convergence of the state by using Algo-
rithms 1, 2 and the control law (47) are done in the following
four steps:

1) Step 1: Estimation of the transport speed: µ̂ = µ for
t ≥ τi

2) Step 2: The linear parametric form is valid: ū = u for
t ≥ τi+1

3) Step 3: Estimation of the in-domain source parameter:
θ̂ = θ for t ≥ τi+2

4) Step 4: Convergence of the state: u ≡ 0 for t ≥ τi+2+d

where τi denotes the ith event. If the system parameters
and the initial condition are different from the special case
considered in Remark 4, the above events will be triggered
for i = 1, otherwise, i = 2, provided the excitation signal
Uex is chosen according to Algorithm 1.

Topics for further investigation include:
1) Non-periodic trigger times: The events are in the

method presented in this paper triggered by time.
However, it should be possible to achieve better con-
vergence times if the events are allowed to be triggered
by for instance having gathered measurements for
a sufficiently long time series to produce a correct
estimate.

2) Improved robustness should be possible to achieve by
using measured data for a longer period backwards in
time than just until the most recent trigger.

3) Systems with a spatially varying coefficient θ should
be possible to handle. However, as this involves an
infinite number of unknowns, finite-time convergence
cannot be achieved.
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[6] P. Bernard and M. Krstić, “Adaptive output-feedback stabilization
of non-local hyperbolic PDEs,” Automatica, vol. 50, pp. 2692–2699,
2014.

[7] Z. Xu and Y. Liu, “Adaptive boundary stabilization for first-order
hyperbolic PDEs with unknown spatially varying parameter,” Inter-
national Journal of Robust and Nonlinear Control, vol. 26, no. 3, pp.
613–628, 2016.
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