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Abstract— We extend a previous result regarding adaptive
control of a linear hyperbolic partial differential equation (PDE)
with time-varying in-domain source coefficient in two ways.
Firstly, we introduce a parametrization of the uncertain time-
varying in-domain source coefficient that allows for a broader
class of systems compared to previous result. Secondly, and
more importantly, we introduce an uncertain scaling factor
in the input boundary condition which is present in most
applications, but wasn’t handled in the previous result. All
system parameters except the transport speed are uncertain and
time-varying, although parametrizable as a linear combination
of uncertain constants and certain time-variance. Closed-loop
convergence of the state to the origin is proven, and perfor-
mance is demonstrated for a numerical example.

I. INTRODUCTION

A. Background

Systems of hyperbolic partial differential equations (PDEs)
can be used to describe a vast range of different physical
systems, ranging from predator-prey systems [1], to oil wells
and road traffic [2]. Systems of this type have therefore
been subject to extensive research, and several approaches
have been used for design of estimators and controllers for
such systems, including Lyapunov functions [3], Riemann
invariants [4], and frequency domain approaches [5].

For the last two decades, the infinite-dimensional back-
stepping method has been used for controller and observer
design of systems of PDEs. When using this method, an
invertible Volterra integral transformation is introduced, and
an accompanying control law or injection gains are designed
that maps the system of interest into a target system de-
signed to possess some desirable stability properties. Due
to the invertibility of the transform, the stability properties
of the two systems are the same. A huge advantage with
this method, is that the designs are taken on the infinite-
dimensional system directly, avoiding any uncertainties that
results from discretization.

Infinite-dimensional backstepping was initially proposed
for parabolic PDEs in [6], where it was used for non-adaptive
stabilization of an unstable heat equation. The method was
quickly expanded in numerous directions, including: Non-
adaptive state-feedback control laws for a class of parabolic
PDEs [7] and backstepping-based boundary observer design
[8]. The method also found its applications to adaptive
control of parabolic PDEs [9].

Application of the backstepping method to hyperbolic
PDEs, on the other hand, was first done in [10], where
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a scalar, general 1–D linear hyperbolic PDE with time-
invariant coefficients is stabilized using this method. The
method has also been extended to systems of coupled hy-
perbolic PDEs [11], [12], [13], as well as adaptive solutions
[14], [15], [16].

However, all aforementioned results only concern systems
with time-invariant parameters, and very few results concern
PDE systems with time-varying parameters. One such result
is [17], where backstepping is used to construct an observer
for a hyperbolic partial integro-differential equation. No
control results were considered. The only result regarding
infinite-dimensional backstepping-based controller design for
time-varying linear hyperbolic PDEs is [18], where a PDE
with a single parameter that is allowed to vary with both time
and space, is stabilized using this technique. An adaptive
control problem was also considered in [18], subject to the
assumption of splitting the uncertain parameter into a known,
scalar time-varying part, and uncertain scalar time-invariant
part that was allowed to be spatially varying.

In this paper, we extend the result from [18], and solve an
adaptive control problem for a more general type of systems
by allowing the actuation to be scaled by an unknown, time-
varying scalar, and allowing both uncertain parameters to
be a superposition of an arbitrary number of known time-
varying functions scaled by uncertain parameters. The paper
is organized as follows. In Section II, we formally state the
problem and necessary assumptions. The adaptive control
problem is solved in Section III. The derived controller is
demonstrated in a simulation in Section IV, while some
concluding remarks are offered in Section V.

B. Notation

We define the domains:

D = {x | x ∈ [0, 1]}, D1 = {(x, t) | x ∈ D, t ≥ 0} (1)

For a vectorized variable u : D → Rn (or u : D1 → Rn),
we will use the following norm and associated vector space:

||u||∞ = sup
x∈D,i=1,2,...,n

|ui(x)| (2a)

B(D) = {u : D → Rn | ||u||∞ <∞}. (2b)

Moreover, the operator ≡ is defined as follows

u ≡ a ⇔ ||u− a||∞ = 0. (3)

II. PROBLEM STATEMENT

We consider a 1–D linear hyperbolic partial differential
equation with a constant transport speed, and time-varying



source term and actuation scaling, in the form

ut(x, t)− µux(x, t) = θ(x, t)u(0, t) (4a)
u(1, t) = ρ(t)U(t) (4b)
u(x, 0) = u0(x) (4c)
y(t) = u(0, t). (4d)

defined for (x, t) ∈ D1. Any scalar, linear hyperbolic P(I)DE
can be transformed to the form (4) [16, Lemma 2.1]. The
goal is to design a control law U that adaptively stabilizes
system (4) in the L∞-sense despite the unknown θ and ρ,
from using the boundary sensing y only.

Regarding the parameters ρ and θ, we assume the follow-
ing, stated in Assumptions 1–3.

Assumption 1: There exist a parameter ρ > 0 so that

ρ(t) ≥ ρ (5)

for all t ≥ 0.
The case ρ(t) < 0, ∀t can be handled by simply defining

the new control signal Ū(t) = −U(t).
Assumption 2: The parameters θ and ρ have the following

form

θ(x, t) = aT (x)ν(t) (6a)

ρ(t) = bTϑ(t) (6b)

where

a(x) =
[
a1(x) a2(x) . . . an(x)

]T
(7a)

b =
[
b1 b2 . . . bm

]T
(7b)

contain uncertain parameters, and

ν(t) =
[
ν1(t) ν2(t) . . . νn(t)

]T
(8a)

ϑ(t) =
[
ϑ1(t) ϑ2(t) . . . ϑm(t)

]T
(8b)

are known, bounded functions of time, and ν is for all t
known a time d1 into the future.

Assumption 3: We are in knowledge of non-negative con-
stants ā and b̄ such that

||a||∞ ≤ ā, |b|∞ ≤ b̄. (9)

Additionally, the parameter b belongs to a known convex set
Π, defined as

Π = {γ | P(γ) ≤ 0}, (10)

for some function P(γ), so that

γTϑ(t) ≥ ρ, ∀t ≥ 0, b ∈ Π. (11)
The system considered in [18] is a subsystem of (4) subject

to Assumptions 1–2, obtained by letting n = 1, and b = 1,
ϑ(t) = 1 for all t ≥ 0.

Assumption 2 might seem quite restrictive. However, if
for instance all system parameters are known to be periodic
with a known period T , the parameters can be reasonably
approximated using a truncated Fourier series. Such an
approximation can be parameterized as (6).

III. ADAPTIVE CONTROL

A. Filter design

Setting the stage for parameter estimation,, we introduce
swapping filters that are used to express the system state as
a linear combination of the filters and uncertain parameters.
Define the filters

ψt(x, t)− µψx(x, t) = 0, ψ(1, t) = ϑ(t)U(t)

ψ(x, 0) = ψ0(x) (12a)
φt(x, t)− µφx(x, t) = 0, φ(1, t) = ν(t)y(t)

φ(x, 0) = φ0(x) (12b)

where ψ and φ are defined over D defined in (1), with initial
conditions

ψ0, φ0 ∈ B(D). (13)

Note that the filters (12) can be generated using only known
or measured quantities. Consider the non-adaptive state es-
timate of u generated as

ū(x, t) = bTψ(x, t) + d1F [a, φ(t)](x). (14)

where

F [a, φ(t)](x) =

∫ 1

x

aT (ξ)φ(1− (ξ − x), t)dξ. (15)

Lemma 4: Consider the system (4) and the non-adaptive
state estimate generated from (14). Then

ū ≡ u (16)

for t ≥ d1, where

d1 = µ−1. (17)
Proof: Define the non-adaptive state estimation error e

as

e(x, t) = u(x, t)− ū(x, t). (18)

We will show that e satisfies the dynamics

et(x, t)− µex(x, t) = 0 (19a)
e(1, t) = 0 (19b)
e(x, 0) = e0(x) (19c)

for some e0 ∈ B(D). From differentiating (18) with respect
to time and space, and inserting the dynamics (4a) and (12),
we obtain

et(x, t) = ut(x, t)− bTψt(x, t)− d1F [a, φt(t)](x)

= µux(x, t) + θ(x, t)u(0, t)− bTµψx(x, t)

−F [a, φx(t)](x). (20)

and

ex(x, t) = ux(x, t)− bTψx(x, t)− d1F [a, φx(t)](x)

+ d1a
T (x)ν(t)y(t), (21)

where we have inserting the boundary condition (12b). From
(20) and (21), we find

et(x, t)− µex(x, t) = θ(x, t)u(0, t)− aT (x)ν(t)y(t)



= 0 (22)

where we have inserted the boundary measurement (4d) and
used the parameterization (6a). Hence, the dynamics (19a)
holds. Evaluating (18) at x = 1 and using the boundary
conditions (4b) and (12a) gives (19b), since

e(1, t) = u(1, t)− bTψ(1, t)

= ρU(t)− bTϑ(t)U(t) = 0 (23)

where we have used (6b). Lastly, the the initial condition
(19c) is given as

e0(x) = u0(x)− bTψ0(0)− d1F [a, φ0](x). (24)

Since u0, ψ0, φ0 ∈ B(D) it follows that e0 ∈ B(D). From
the simple transport dynamics (19) with zero as input, it is
evident that e ≡ 0 and hence ū ≡ u for t ≥ d1.

B. Adaptive laws

By Lemma 4, we now have the linear parametric model

y(t) = u(0, t) = bTψ(0, t) + d1F [a, φ(t)](0) + e(0, t)

= bTψ(0, t) + d1

∫ 1

0

aT (ξ)φ(1− ξ, t)dξ + e(0, t)

(25)

where e(0, t) = 0 for t ≥ d1.
We propose the adaptive laws

ât(x, t) = projā{τ1(x, t), â(x, t)}, â(x, 0) = â0(x) (26a)
˙̂
b(t) = projΠ{τ2(t), b̂(t)}, b̂(0) = b̂0 (26b)

where ā and Π are defined in Assumption 3, and

τ1(x, t) = γ1
ê(0, t)φ(1− x, t)

1 + f2(t)
(27a)

τ2(t) = γ2
ê(0, t)ψ(0, t)

1 + f2(t)
(27b)

for some positive gains γ1, γ2 of choice, with

f2(t) = ||φ(t)||2 + |ψ(0, t)|2. (28)

and

ê(x, t) = u(x, t)− û(x, t) (29)

where

û(x, t) = b̂T (t)ψ(x, t) + d1F [â(t), φ(t)](x) (30)

is an adaptive estimate of the state u. The initial conditions
â0 and b̂0 are assumed to satisfy

||â0||∞ ≤ ā, b̂0 ∈ Π. (31)

The projection operators are standard, and defined as

proja(τ, ω) = τ


0 if ω = −a and τ ≤ 0

0 if ω = a and τ ≥ 0

1 otherwise
(32)

and

projΠ(τ, b̂)

= τ

1−
∇b̂P∇b̂P

T

∇b̂PT∇b̂P
if b̂ ∈ ∂Π and ∇b̂P

T τ ≥ 0

0 otherwise.
(33)

Lemma 5: The adaptive laws (26) with initial conditions
satisfying (31) provide the following signal properties

||â(t)||∞ ≤ ā, ∀t ≥ 0 (34a)

b̂ ∈ Π, ∀t ≥ 0 (34b)

||ât||, ˙̂
b ∈ L2 ∩ L∞ (34c)
σ ∈ L2 ∩ L∞ (34d)

where

σ(t) =
ê(0, t)√
1 + f2(t)

. (35)

Proof: Properties (34a)–(34b) follow from the projec-
tion operators and the initial conditions (31). Consider

V (t) = d1

∫ 1

0

e2(x, t)dx+
d1

2γ1

∫ 1

0

ãT (x, t)ã(x, t)dx

+
1

2γ2
b̃T (t)b̃(t) (36)

where

ã(x, t) = a(x)− â(x, t) b̃(t) = b− b̂(t) (37)

Differentiating with respect to time, inserting the adaptive
law (34) and using the property −θ̃projθ̄(τ, θ̂) ≤ −θ̃τ ([19,
Lemma E.1]), we find

V̇ (t) ≤ −e2(0, t)− d1

∫ 1

0

ãT (x, t)
ê(0, t)φ(1− x, t)

1 + f2(t)
dx

− b̃T (t)
ê(0, t)ψ(0, t)

1 + f2(t)
. (38)

Inserting the relationship

ê(0, t)− e(0, t) = b̃T (t)ψ(0, t)

+ d1

∫ 1

0

ãT (ξ, t)φ(1− ξ, t)dξ (39)

obtained from (14)–(15), (18) and (29)–(30), now gives

V̇ (t) ≤ −e2(0, t)− ê2(0, t)

1 + f2(t)
+
ê(0, t)e(0, t)

1 + f2(t)
. (40)

Application of Young’s inequality on the latter term yields

V̇ (t) ≤ −1

2
σ2(t), (41)

for σ defined in (35), which shows that V is non-increasing,
and hence is bounded and has a limit as t→∞. Integrating
(41) from t = 0 to ∞ gives

σ ∈ L2. (42)

Moreover, we have

σ(t) =
ê(0, t)√
1 + f2(t)

=
1√

1 + f2(t)

(
e(0, t) + b̃T (t)ψ(0, t)



+ d1F [ã(t), φ(t)](0)
)

≤ |b̃(t)|+ ||ã(t)||+ e(0, t)√
1 + f2(t)

. (43)

Due to the pure transport characteristic of e, and the fact that
e0 ∈ B(D), it follows that e(0, ·) ∈ L∞, with e(t) = 0 for
t ≥ d1, and hence σ ∈ L∞.

From the adaptive law (26)–(27), we have

||τ1(t)|| =
∣∣∣∣∣∣∣∣γ1

ê(0, t)φ(1− x, t)
1 + f2(t)

∣∣∣∣∣∣∣∣
≤ γ1

|ê(0, t)|√
1 + f2(t)

||φ(t)||√
1 + f2(t)

≤ γ1|σ(t)| (44)

and hence

||ât|| ∈ L2 ∩ L∞ (45)

follows. A similar line of reasoning gives | ˙̂b| ∈ L2 ∩L∞.

C. Main control law

Consider the control law

U(t) =
1

ρ̂(t)

∫ 1

0

k̂(ξ, t)û(ξ, t)dξ (46)

where k̂ is the solution to the Volterra integral equation

µk̂(x, t) = −âT (1− x, t)ν(t+ d1x)

+

∫ 1

x

k̂(1 + x− ξ, t)âT (1− ξ, t)dξν(t+ d1x). (47)

Theorem 6: Consider system (4) with the adaptive state
estimate û generated from (30), and k̂ as the solution to (47).
If Assumptions 1–3 hold, then the control law (46) ensures

||u||∞, ||ψ||∞, ||φ||∞ ∈ L2 ∩ L∞, (48a)
||u||∞, ||ψ||∞, ||φ||∞ → 0. (48b)

Proof of Theorem 6 is given in Section III-F.

D. Adaptive state estimate dynamics

It can straightforwardly be verified, using the filter dy-
namics (12), that the adaptive state estimate (30) has the
dynamics

ût(x, t)− µûx(x, t) = θ̂(x, t)u(0, t) +
˙̂
bT (t)ψ(x, t)

+ d1F [ât(t), φ(t)](x) (49a)
û(1, t) = ρ̂(t)U(t) (49b)
û(x, 0) = û0(x) (49c)

where

θ̂(x, t) = âT (x, t)ν(t), ρ̂(t) = b̂T (t)ϑ(t) (50)

and for some initial condition

û0 ∈ B(D) (51)

which can be obtain by evaluating (30) at t = 0.

E. Backstepping

We note that since â and ν are bounded, the former by
projection and the latter by assumption, k̂ as defined in (47)
must be uniformly bounded, that is; there exists a constant
k̄ such that

||k̂(t)||∞ ≤ k̄, ∀t ≥ 0. (52)

Consider the backstepping transformation T , given as

w(x, t) = T [û](x, t)

= û(x, t)−
∫ x

0

K̂(x, ξ, t)û(ξ, t)dξ (53)

where K̂ is given as

K̂(x, ξ, t) = k̂(1− (x− ξ), t− d1(1− x)) (54)

and k̂ is the solution to (47).
Since k̂ and hence also K̂ are uniformly bounded, the

backstepping transformation (53) is invertible, and by [16,
Theorem 1.3], there exist constants G1, G2 > 0 so that

||w(t)|| ≤ G1||û(t)||, ||û(t)|| ≤ G2||w(t)|| (55)

for all t ≥ 0, where

û(x, t) = T−1[w](x, t). (56)

Consider also the target system

wt(x, t)− µwx(x, t) = T [âT ν](x, t)ê(0, t) + T [
˙̂
bTψ](x, t)

+ d1T [F [ât, φ]] (x, t) + ζ(x, t)w(0, t) (57a)
w(1, t) = 0 (57b)
w(x, 0) = w0(x) (57c)

where

ζ(x, t) =

∫ t

t−d1(1−x)

âTt (x, τ)dτν(t) (58)

for some w0 ∈ B(D), where T is defined in (53).
Lemma 7: The backstepping transformation (53) and con-

trol law (46) map system (49) into the target system (57).
Proof: By differentiating (53) with respect to time and

space, respectively, inserting the dynamics (49a), integrating
by parts, and inserting the result into the dynamics (49a), we
obtain

0 = ût(x, t)− µûx(x, t)− âT (x, t)ν(t)u(0, t)

− ˙̂
bT (t)ψ(x, t)− d1F [ât(t), φ(t)](x)

= wt(x, t)− µwx(x, t) +

∫ x

0

(
K̂t(x, ξ, t)− µK̂x(x, ξ, t)

− µK̂ξ(x, ξ, t)
)
û(ξ, t)dξ − âT (x, t)ν(t)ê(0, t)

+

∫ x

0

K̂(x, ξ, t)âT (ξ, t)ν(t)ê(0, t)dξ −
(
θ̂(x, t)

+ µK̂(x, 0, t)−
∫ x

0

K̂(x, ξ, t)âT (ξ, t)ν(t)dξ

)
û(0, t)

− ˙̂
bT (t)ψ(x, t) +

∫ x

0

K̂(x, ξ, t)
˙̂
bT (t)ψ(ξ, t)dξ



− d1F [ât(t), φ(t)](x)

+ d1

∫ x

0

K̂(x, ξ, t)F [ât(t), φ(t)](ξ)dξ. (59)

Using the fact that K̂ defined in (54) satisfies

0 = K̂t(x, ξ, t)− µK̂x(x, ξ, t)− µK̂ξ(x, ξ, t) (60)

and defining

f(x, t) = µK̂(x, 0, t) + âT (x, t)ν(t)

−
∫ x

0

K̂(x, ξ, t)âT (ξ, t)ν(t)dξ, (61)

equation (59) can be written

wt(x, t)− µwx(x, t) = T [θ̂](x, t)ê(0, t) + f(x, t)û(0, t)

+ T [
˙̂
bTψ](x, t) + d1T [F [ât, φ]](x, t). (62)

Inserting the definition (54) for K̂ into (61) gives

f(x, t) = µk̂(1− x, t− d1(1− x)) + âT (x, t)ν(t)

−
∫ x

0

k̂(1− (x− ξ), t− d1(1− x))âT (ξ, t)ν(t)dξ. (63)

By equation (47) for k̂, we have

µk̂(1− x, t− d1(1− x)) = −âT (x, t− d1(1− x))ν(t)

+

∫ x

0

k̂(1− x+ ξ, t− d1(1− x))âT (ξ, t)ν(t)dξ (64)

and inserting this into (63) gives

f(x, t) =
[
âT (x, t)− âT (x, t− d1(1− x))

]
ν(t)

=

∫ t

t−d1(1−x)

âTt (x, τ)dτν(t) = ζ(x, t) (65)

and since w(0, t) = û(0, t), (57a) holds. Evaluating the
backstepping transformation at x = 1 and inserting the
boundary condition (4b) and the definition (54), we find

w(1, t) = ρ̂(t)U(t)−
∫ 1

0

k̂(ξ, t)û(ξ, t)dξ. (66)

The control law (46) now gives the boundary condition (57b).
Lastly, evaluating the backstepping transformation at t = 0
gives the initial condition (57c) from the initial condition
(4c) as

w0(x) = T [û0](x, 0). (67)

F. Proof of Theorem 6

Consider the non-negative functions

V2(t) =

∫ 1

0

(1 + x)w2(x, t)dx (68a)

V3(t) =

∫ 1

0

(1 + x)ψT (x, t)ψ(x, t)dx (68b)

V4(t) =

∫ 1

0

(1 + x)φT (x, t)φ(x, t)dx. (68c)

The following lemma states upper bounds on the deriva-
tives of the functions (68).

Lemma 8: There exists positive constants h1, h2, h3 and
non-negative, integrable functions l1, l2, l3 so that

V̇2(t) ≤ −
(
µ− 32d1||ζ(t)||2

)
w2(0, t) + h1σ

2(t)|ψ(0, t)|2

− µ

4
V2(t) + l1(t)V3(t) + l2(t)V4(t) + l3(t) (69a)

V̇3(t) ≤ −µ|ψ(0, t)|2 − µ

2
V3(t) + h2V2(t) (69b)

V̇4(t) ≤ h3w
2(0, t) + h3σ

2(t)V3(t) + h3σ
2(t)|ψ(0, t)|2

+ h3σ
2(t)− µ

2
V4(t). (69c)

The proof of Lemma 8 is found in Appendix C.
Now forming the Lyapunov function candidate

V5(t) = aV2(t) + V3(t) + V4(t) (70)

for some positive constant a, we find, using Lemma 8, the
following upper bound on its derivative

V̇5(t) ≤ −
(
a(µ− 32d1||ζ(t)||2)− h3

)
w2(0, t)

− (µ− ah1σ
2(t)− h3σ

2(t))|ψ(0, t)|2 − (a
µ

4
− h2)V2(t)

− µ

2
V3(t)− µ

2
V4(t) + (al1(t) + h3σ

2(t))V3(t)

+ al2(t)V4(t) + al3(t) + h3σ
2(t). (71)

It is evident that a sufficiently large value of a, will result in

V̇5(t) ≤ −
(
c1 − c2||ζ(t)||2

)
w2(0, t)

− (µ− c3σ2(t))|ψ(0, t)|2

− c4V5(t) + l4(t)V5(t) + l5(t) (72)

for some positive constants c1, c2, c3, c4, and non-negative,
integrable functions l4, l5.

By the definition of ζ in (58), we have

||ζ(t)||2 =

∫ 1

0

(∫ t

t−d(1−x)

âTt (x, τ)dτν(t)

)2

dx

≤
∫ 1

0

(∫ t

t−d
|âTt (x, τ)ν(t)|dτ

)2

dx

≤ n2ν̄2

∫ t

t−d
||ât(τ)||dτ (73)

Now, since ||ât|| ∈ L2, there must, for every ε0 > 0, exist
a time T0 ≥ 0 so that∫ t

t−d
||ât(τ)||dτ < ε0 (74)

for all t ≥ T0. Choosing ε0 = c1
c2

, we will for t ≥ T0 have

V̇5(t) ≤ −(µ− h3σ
2(t))|ψ(0, t)|2

− c3V5(t) + l5(t)V5(t) + l6(t). (75)

Since ||u||∞ for a system in the form (4), and ||ψ||∞, ||φ||∞
of the filters generated from u, are all bounded in growth by
an exponential function ([16, Theorem 1.1]), Lemma 9 in
Appendix A gives

V5 ∈ L1 ∩ L∞, (76)



and hence

||w||, ||ψ||, ||φ|| ∈ L2 ∩ L∞. (77)

From the definition of the filter ψ and the control law U , we
then have

||ψ||∞ ∈ L2 ∩ L∞, (78)

and specifically ψ2(0, ·) ∈ L1 ∩ L∞, meaning that (75) can
be written

V̇5(t) ≤ −c3V5(t) + l5(t)V5(t) + l7(t) (79)

where

l7(t) = l6(t) + |ψ(0, t)|2l4(t) (80)

Now since ψ(0, ·) ∈ L∞ and l4 ∈ L1, it follows that l7 ∈ L1.
Lemma 10 in Appendix B then gives V5 → 0, and thus

||w||, ||ψ||, ||φ|| → 0. (81)

From the definition of the filter ψ and the control law U , as
well as the invertibiliy of the transformation (53) (Lemma
7), we have

||ψ||∞ → 0 (82)

and

||û|| ∈ L2 ∩ L∞, ||û|| → 0. (83)

From (14) and Lemma 4, it follows that

||u||, ||u||∞ ∈ L2 ∩ L∞, ||u||, ||u||∞ → 0, (84)

and specifically u(0, ·) ∈ L2 ∩L∞, u(0, ·)→ 0, which from
the definition of the filter φ gives

||φ||, ||φ||∞ ∈ L2 ∩ L∞, ||φ||, ||φ||∞ → 0. (85)

IV. SIMULATION

System (4) and the adaptive controller of Theorem 6 were
implemented in MATLAB, using the system parameters

µ = 1 (86a)

θ(x, t) =
[
e

1
2x 1

5 (1 + x)
]
ν(t) (86b)

ρ(t) =
[
2 1

]
ϑ(t) (86c)

where

ν(t) =
[

1
2 (2 + sin(π2 t))

1
2 cos

(
π

2
√

2
t
)]T

(87a)

ϑ(t) =

[
1 +

1

2
sin(πt) 1

2 cos
(

π
2
√

2
t
)]T

(87b)

The system’s initial condition was set to

u0(x) = x, (88)

and the bound ā was set to

ā = 106, (89)
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Fig. 1: State norm in uncontrolled case.
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Fig. 2: State norms.

while the projection in (26b) ensuring that ρ stays positive,
was implemented by forcing the components b̂1 and b̂2 of
b̂ =

[
b̂1 b̂2

]T
to satisfy

1 ≤ b̂1(t), |b̂2(t)| ≤ b̂1(t) (90)

for all t ≥ 0, which can be implemented as

P(b̂(t)) = max
{∣∣∣1− b̂1(t)

∣∣∣ , ∣∣∣|b̂2(t)| − b̂1(t)
∣∣∣} . (91)

The initial guesses were chosen as

â0 ≡ 0, b̂0 =
[
1 0

]T
. (92)

System (4) with parameters (86a)–(87) is unstable in the
uncontrolled case, as seen from Figure 1.

The simulation results from the closed loop case are shown
in Figures 2–5. It is clearly seen from Figure 2 that the
system state and filter states all converge to zero in the L∞-
sense, as guaranteed by Theorem 6. Also, the actuation signal
seen in Figure 3 remains bounded. None of the components
in a or b are anywhere near convergence, as seen in Figures
4–5, however, parameter convergence is not guaranteed in
adaptive control.

V. CONCLUSIONS

We have extended the result from [18] for a time-varying
PDE, and solved an adaptive control problem for a class of
hyperbolic PDEs with an in-domain parameter and actuation
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Fig. 3: Actuation.
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Fig. 4: Actual and final estimated a(x).
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Fig. 5: Actual and estimated b.

scaling, that both are allowed to be uncertain and time-
varying. The controller achieves asymptotic convergence of
the system state’s L∞ norm to zero. Future work includes
extensions to coupled PDEs.
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APPENDIX

A. Stability and convergence lemma

Lemma 9 (Lemma 12 from [20]): Let v1(t), v2(t), σ(t),
l1(t), l2(t) and f(t), be real-valued, non-negative functions
defined for t ≥ 0. Suppose

l1, l2 ∈ L1 (93a)∫ t

0

f(s)ds ≤ AeBt (93b)

σ(t) ≤ kv1(t) (93c)
v̇1(t) ≤ −σ(t) (93d)
v̇2(t) ≤ −cv2(t) + l1(t)v2(t) + l2(t)

− a(1− bσ(t))f(t) (93e)

for t ≥ 0, where k, A, B, a, b and c are positive constants.
Then v2 ∈ L1 ∩ L∞.

B. Convergence lemma

Lemma 10 (Lemma 3 from [21]): Let v(t), l1(t), l2(t),
be real-valued functions defined for t ≥ 0. Suppose

v(t), l1(t), l2(t) ≥ 0, ∀t ≥ 0 (94a)
l1, l2 ∈ L1 (94b)
v̇(t) ≤ −cv(t) + l1(t)v(t) + l2(t) (94c)

where c is a positive constant. Then

lim
t→∞

v(t) = 0. (95)

C. Proof of Lemma 8

1) Bound on V̇2: Differentiating (68a), inserting the dy-
namics (57a) and integration by parts gives

V̇2(t) = 2µw2(1, t)− µw2(0, t)− µ
∫ 1

0

w2(x, t)dx

+ 2

∫ 1

0

(1 + x)w(x, t)T [âT ν](x, t)ê(0, t)dx



+ 2

∫ 1

0

(1 + x)w(x, t)T [
˙̂
bTψ](x, t)dx

+ 2d

∫ 1

0

(1 + x)w(x, t)T [F [at, φ](x)] (x, t)dx

+ 2

∫ 1

0

(1 + x)w(x, t)ζ(x, t)u(0, t)dx (96)

Inserting the boundary condition (57b) and definition (15),
and using Young’s inequality on the cross terms, gives

V̇2(t) ≤ −µw2(0, t)−

(
µ

2
−

4∑
i=1

ρi

)∫ 1

0

(1 + x)w2(x, t)dx

+
1

ρ1

∫ 1

0

(1 + x)T 2[âT ν](x, t)ê2(0, t)dx

+
1

ρ2

∫ 1

0

(1 + x)T 2[
˙̂
bTψ](x, t) +

1

ρ3
d2

1

∫ 1

0

(1 + x)

× T
[∫ 1

x

âTt (ξ, t)φ(1− (ξ − x), t)dξ

]2

(x, t)dx

+
1

ρ4

∫ 1

0

(1 + x)ζ2(x, t)dxw2(0, t). (97)

for some arbitrary positive constants ρi, i = 1, 2, 3, 4.
Choosing

ρi =
µ

16
(98)

and using Cauchy-Schwarz’ inequality gives

V̇2(t) ≤ 2µw2(1, t)−
(
µ− 32d1||ζ(t)||2

)
w2(0, t)− µ

4
V2(t)

+ 32dG2
1||âT (t)ν(t)||2ê2(0, t) + 32dG2

1|
˙̂
b(t)|2||ψ(t)||2

+ 32d3G2
1||ât(t)||2||φ(t)||2. (99)

The term ê2(0, t) can be rewritten as

ê2(0, t) =
ê2(0, t)

1 + f2(t)
(1 + f2(t))

= σ2(t)(1 + ||φ(t)||2 + |ψ(0, t)|2)

≤ σ2(t)V3(t) + σ2(t)|ψ(0, t)|2 + σ2(t) (100)

and inserting this, we obtain

V̇2(t) ≤ −
(
µ− 32d1||ζ(t)||2

)
w2(0, t) + h1σ

2(t)|ψ(0, t)|2

− µ

4
V2(t) + l1(t)V3(t) + l2(t)V4(t) + l3(t) (101)

where

l1(t) = 32d1G
2
1|

˙̂
b(t)|2 (102a)

l2(t) = 32d3
1G

2
1||ât(t)||2 + l3(t) (102b)

l3(t) = h1σ
2(t) (102c)

are non-negative, integrable functions, with

h1 = 32d1G
2
1n

2ā2ν̄2 (103)

as a positive constant, where ν̄ bounds |ν|∞.

2) Bound on V̇3: Differentiating (68b), inserting the dy-
namics (12a) and integration by parts gives

V̇3(t) = 2µ|ψ(1, t)|2 − µ|ψ(0, t)|2

− µ
∫ 1

0

ψT (x, t)ψ(x, t)dx

≤ 2µm2ϑ̄2U2(t)− µ|ψ(0, t)|2 − µ

2
V3(t). (104)

where ϑ̄ is a positive constant bounding |ϑ|∞. Inserting the
boundary condition (12a) and control law (46) yields

V̇3(t) ≤ −µ|ψ(0, t)|2 − µ

2
V3(t)

+ 2µm2ϑ̄2 1

ρ̂2(t)

(∫ 1

0

k̂(ξ, t)û(ξ, t)dξ

)2

≤ −µ|ψ(0, t)|2 − µ

2
V3(t)

+ 2µm2ϑ̄2M2
ρ ||k̂(t)||||û(t)||

≤ −µ|ψ(0, t)|2 − µ

2
V3(t) + h2||w(t)|| (105)

where

h2 = 2µm2ϑ̄2M2
ρG

2
2k̄

2. (106)

with

Mρ =

(
inf

b∈Π,t≥0
|bTϑ(t)|

)−1

(107)

3) Bound on V̇4: Differentiating (68c), inserting the dy-
namics (12b) and integration by parts gives

V̇4(t) = 2µ|φ(1, t)|2 − µ|φ(0, t)|2

− µ
∫ 1

0

φT (x, t)φ(x, t)dx

V̇4(t) ≤ 2µνT (t)ν(t))u2(0, t)− µ

2
V4(t)

≤ 2µn2ν̄2(û(0, t) + ê(0, t))2 − µ

2
V4(t)

≤ h3w
2(0, t) + h3ê

2(0, t)− µ

2
V4(t) (108)

where

h3 = 4µn2ν̄2 (109)

is a positive constant. Inserting (100) yields

V̇4(t) ≤ h3w
2(0, t) + h3σ

2(t)V3(t) + h3σ
2(t)|ψ(0, t)|2

+ h3σ
2(t)− µ

2
V4(t). (110)


