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Abstract

We extend previous results regarding infinite-dimensional backstepping-based controller design for linear hyperbolic partial
(integro-)differential equations (P(I)DEs), and derive a state-feedback controller for a PIDE system with time-varying system
parameters. The system state converges to zero in the ∞-norm, in a finite time corresponding to the propagation time between
the boundaries. Secondly, the controller is slightly modified to solve an output tracking problem. The derived controllers are
demonstrated in simulations. The derived state-feedback controllers can also be combined with state observers into output-
feedback controllers.
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1 Introduction

Background: Infinite-dimensional backstepping is a sys-
tematic method for design of controllers and observers
for systems of partial (integro-)differential equations
(P(I)DEs). It is based on the introduction of invertible
Volterra integral transforms and accompanying control
laws that map the system of interest into a carefully de-
signed target system possessing some desirable stability
properties. Due to the invertibility of the transform, the
stability properties of the two systems are the same. The
method was originally proposed for parabolic PDEs in
[9], and was thereafter quickly expanded in numerous
directions with key references including: Non-adaptive
state-feedback control laws for a class of parabolic PDEs
[11] and Backstepping-based boundary observer de-
sign [12]. The method also found its way into adaptive
solutions [13].

Extension of the backstepping method to hyperbolic
PDEs is done in [8], where a scalar, general 1–D linear
hyperbolic PDE with time-invariant coefficients is sta-
bilized using this method. The method has also been ex-
tended to systems of coupled hyperbolic PDEs [14], [5],
[6], as well as adaptive solutions [3].
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All above mentioned solutions consider systems with
time-invariant parameters. Very few results exist regard-
ing control or estimation of time-varying systems of lin-
ear hyperbolic PDEs using infinite-dimensional back-
stepping. An observer based on backstepping is derived
in [4] for a hyperbolic partial integro-differential equa-
tion, which is a subclass of the type of systems con-
sidered in this paper. The resulting observer achieves
exponential convergence of the estimated state to its
true value in the L2-norm. The only result regarding
infinite-dimensional backstepping-based controller de-
sign for time-varying linear hyperbolic PDEs is [2], where
a PDE with a single parameter that is allowed to vary
with both time and space, is stabilized using this tech-
nique.

In this paper, we will derive a control law for the more
general type of systems investigated in [8]. We allow all
system parameters, except the transport speed, to be
time-varying, and derive a backstepping-based control
law that achieves convergence to zero in a finite time in
the ∞-norm. We also slightly modify the controller for
solving an output tracking problem.

Notation: We define the domains: D = {x | x ∈
[0, 1]},D1 = {(x, t) | x ∈ D, t ∈ [0, T1]}, T = {(x, ξ) |
0 ≤ ξ ≤ x ≤ 1}, T1 = {(x, ξ, t) | (x, ξ) ∈ T , t ∈ [0, T1]},
for some constant T1 > 0. For two variables u, v : D → R
(or u, v : D1 → R), we will use the following norm and
associated vector space: ||u||∞ = supx∈D |u(x)|,B(D) =
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{u : D → R | ||u||∞ <∞}, and the operator≡ is defined
as u ≡ v ⇔ ||u− v||∞ = 0, and u ≡ 0⇔ ||u||∞ = 0.

2 Problem statement

We consider a 1–D linear hyperbolic partial integro-
differential equation in the system state u : D1 → R

ut(x, t)− µ(x)ux(x, t) = f(x, t)u(x, t) + g(x, t)u(0, t)

+

∫ x

0

h(x, ξ, t)u(ξ, t)dξ (1a)

u(1, t) = U(t) (1b)

u(x, 0) = u0(x) (1c)

y(t) = u(0, t). (1d)

The system parameters are assumed to satisfy µ : D →
R, µ ∈ C1([0, 1]), µ(x) > 0, ∀x ∈ D, f, g : D1 →
R, h : T1 → R, while the initial condition u0 is
assumed to satisfy u0 ∈ B(D).

The systems considered in [4] is the subclass of (1), ob-
tained by letting µ ≡ 1, and, moreover, [4] deals with the
state observation problem, only. The stabilization prob-
lem for the case f ≡ 0, h ≡ 0 and µ ≡ const was consid-
ered in [2]. Thus, the present paper is the first to pro-
vide stabilization and tracking controllers for the general
system (1). The PIDE (1) is related to the Korteweg-de
Vries PDE, which models shallow-water waves and ion
acoustic waves in plasma, and is also an approximation
of the linearized Boussinesq PDE that models complex
water waves such as tidal bores [7, Section 14.3].

Firstly, we design a state-feedback control law U(t) so
that system (1) is stabilized in B(D). Specifically, the
state converges to zero in B(D) (i.e. u(t) ≡ 0) in a finite
time d1 given as

d1 =

∫ 1

0

dγ

µ(γ)
. (2)

The quantity d1 corresponds to the propagation time
from x = 1 to x = 0 in system (1). Secondly, we con-
sider a tracking problem, where the goal is to design a
control law so that the output y tracks an arbitrary ref-
erence signal r, and simultaneously stabilizes the system
in B(D).

Both controllers will be derived subject to Assumptions
1 and 2, while the tracking controller also employs As-
sumption 3.

Assumption 1 There exist constants f̄ , ḡ, h̄ so that
|f(x, t)| ≤ f̄ , |g(x, t)| ≤ ḡ, ∀(x, t) ∈ D1 and
|h(x, ξ, t)| ≤ h̄, ∀(x, ξ, t) ∈ T1.

Assumption 2 The parameter µ(x) is known for all x ∈
D, f(x, t) and g(x, t) are known for all (x, t) ∈ D1 and
h(x, ξ, t) is known for all (x, ξ, t) ∈ T1.

Assumption 3 At any time t, the signal r(t) is known
and predictable a time d1 into the future. Moreover, there
exists a constant r̄ so that |r(t)| ≤ r̄, ∀t ≥ 0.

3 Finite-time convergent state-feedback con-
troller

3.1 Controller

Consider a function K(x, ξ, t) defined on T1 and satisfy-
ing the PIDE

Kt(x, ξ, t)− µ(x)Kx(x, ξ, t)− µ(ξ)Kξ(x, ξ, t)

= (µ′(ξ)− f(ξ, t))K(x, ξ, t)

−
∫ x

ξ

K(x, s, t)h(s, ξ, t)ds+ α(x, t)h(x, ξ, t) (3)

with boundary condition

µ(0)K(x, 0, t) + α(x, t)g(x, t)

−
∫ x

0

K(x, ξ, t)g(ξ, t)dξ = 0 (4)

where

α(x, t) = exp

(
−
∫ 1

x

f(s, t+ φ(x)− φ(s))

µ(s)
ds

)
, (5)

is a bounded function (under Assumption 1), with

φ(x) =

∫ x

0

dγ

µ(γ)
. (6)

Theorem 4 Consider system (1) in closed loop with

U(t) =

∫ 1

0

K(1, ξ, t)u(ξ, t)dξ (7)

whereK : T1 → R is a solution to (3)–(4). If Assumption
1 holds, then u(t) ≡ 0 for t ∈ [d1, T1], where d1 is defined
in (2).

The existence and computation of the kernel K is ad-
dressed in Section 3.2.

PROOF. Consider the same type of backstepping
transformation used in [4]

w(x, t) = α(x, t)u(x, t)−
∫ x

0

K(x, ξ, t)u(ξ, t)dξ, (8)

from the variable u into a new variable w : D1 → R,
where α is given by (5), and K satisfies (3)–(4). The
transformation (8) is invertible for all α 6= 0, which, by
the definition of α in (5) is the case here.
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We will show that the transformation (8) and the control
law (7) map system (1) into the following target system

wt(x, t)− µ(x)wx(x, t) = 0 (9a)

w(1, t) = 0 (9b)

w(x, 0) = w0(x) (9c)

for some w0 ∈ B(D). By differentiating (8) with respect
to time, inserting the dynamics (1a) and integrating by
parts, we obtain

α(x, t)ut(x, t) = −αt(x, t)u(x, t) + wt(x, t)

+K(x, x, t)µ(x)u(x, t)−K(x, 0, t)µ(0)u(0, t)

−
∫ x

0

Kξ(x, ξ, t)µ(ξ)u(ξ, t)dξ

−
∫ x

0

K(x, ξ, t)(µ′(ξ)− f(ξ, t))u(ξ, t)dξ

+

∫ x

0

K(x, ξ, t)g(ξ, t)dξu(0, t)

+

∫ x

0

∫ x

ξ

K(x, s, t)h(s, ξ, t)dsu(ξ, t)dξ

+

∫ x

0

Kt(x, ξ, t)u(ξ, t)dξ (10)

where we have changed the order of integration in the
double integral involving the term in h. Similarly, differ-
entiating (8) with respect to space results in

α(x, t)ux(x, t) = −αx(x, t)u(x, t) + wx(x, t)

+K(x, x, t)u(x, t) +

∫ x

0

Kx(x, ξ, t)u(ξ, t)dξ. (11)

Multiplying (1a) by α(x, t) and inserting (10) and (11),
and using the dynamics (3), the fact that αt(x, t) −
µ(x)αx(x, t) = −α(x, t)f(x, t) which is easily verified
from (5) by direct substitution, and using the boundary
condition (4), we obtain (9a). Evaluating (8) at x = 1
and inserting the boundary condition (1b) gives

w(1, t) = α(1, t)U(t)−
∫ 1

0

K(1, ξ, t)u(ξ, t)dξ. (12)

The control law (7) results in (9b) when noting from (5)
that α(1, t) = 1. The initial condition w0 is given from
u0, K and α as

w0(x) = α(x, 0)u0(x)−
∫ x

0

K(x, ξ, 0)u0(ξ)dξ, (13)

found by evaluating (8) at t = 0. The target system (9) is
a pure transport equation with zero as input, and hence
w ≡ 0 for t ∈ [d1, T1]. The kernel governed by (3)–(4)
is uniformly bounded since all the coefficients are uni-
formly bounded in light of Assumption 1 (see Theorem
5). The backstepping transformation (8) is therefore in-
vertible, and the result follows. 2

3.2 Computing the controller gain

We now prove that there in fact exists a controller gain
K(1, ξ, t) so that (3)–(4) holds. We use a proof similar
to what was done in [4].

Theorem 5 Suppose Assumption 1 holds. Then, the
PIDE (3)–(4) has a solution in T1 with a bound depend-
ing on f̄ , ḡ, h̄, but not on the state u.

PROOF. The PIDE (3) with (4) imposed corresponds
to a PIDE propagating backwards in time. Instead,
the boundary condition must be set as K(1, ξ, t), and
the problem then boils down to deciding what function
K(1, ξ, t), defined over D1, when propagated through
the dynamics (3) to the boundary ξ = 0 ensures that
(4) holds.

We will prove that such a function K exists by reversing
time. Consider the new kernel L also defined over T1, in
the variables (x, ξ, τ), with parameter T1, defined as

L(x, ξ, τ) = K(x, ξ, T1 − τ). (14)

Using the equations (3)–(4), we can straightforwardly
find the following PIDE for L

Lτ (x, ξ, τ) + µ(x)Lx(x, ξ, τ) + µ(ξ)Lξ(x, ξ, τ)

= −(µ′(ξ)− f(ξ, T1 − τ))L(x, ξ, τ)

+

∫ x

ξ

L(x, s, τ)h(s, ξ, T1 − τ)ds

− α(x, T1 − τ)h(x, ξ, T1 − τ) (15a)

µ(0)L(x, 0, τ) =

∫ x

0

L(x, ξ, τ)g(ξ, T1 − τ)dξ

− α(x, T1 − τ)g(x, T1 − τ) (15b)

L(x, ξ, 0) = L0(x, ξ) (15c)

for the initial condition

L0(x, ξ) = K(x, ξ, T1). (16)

The PIDE (15) is well-posed, and sup(x,ξ,t)∈T1 |L(x, ξ, t)|
has an upper bound that depends on f̄ , ḡ and h̄. This fol-
lows from slightly modifying the proof of well-posedness
in [4]. Moreover, the gainK(1, ξ, t) can be obtained from
L as

K(1, ξ, t) = L(1, ξ, T1 − t). (17)

The PIDE (15) is independent of the state u, so therefore,
its solution is independent of u. 2

The kernel L can be computed from (15) numerically in
software off-line prior to implementation of system (1),
in view of Assumption 2.
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Note that the initial condition L0 given as (16) is gener-
ally unknown. To cope with this, the computation of L
can be done over the extended domain

τ ∈ [−t0, T1] (18)

for some t0 ≥ d1 > 0, acting as a ”startup time”, and
using an arbitrary initial condition

L(x, ξ,−t0) = L−t0(x, ξ). (19)

We also note that if the system parameters f, g, h are
periodic in t, with a common period of say T , the kernel
K will also be periodic with period T . It will in this case
suffice to compute K over any interval of length T .

4 Finite-time convergent output tracking con-
troller

We now seek to design a control law U so that the track-
ing objective

y(t) = r(t) (20)

is achieved for t ≥ d1. This is achieved by adding a term
to the control law (7) as follows

U(t) =

∫ 1

0

K(1, ξ, t)u(ξ, t)dξ

+ α(0, t+ d1)r(t+ d1) (21)

where α is given from (5).

Theorem 6 Consider system (1) in closed loop with
(21), where K : T1 → R is a solution to (3)–(4) and α is
given by (5). If Assumptions 1–3 hold, then y(t) = r(t)
for t ∈ [d1, T1]. Moreover, there exists a constant ν > 0
so that ||u(t)||∞ ≤ νr̄ for all t ∈ [d1, T1].

PROOF. With the control law (21), the backstepping
transformation (8) used in the proof of Theorem 4, maps
system (1) into the target system

wt(x, t)− µ(x)wx(x, t) = 0 (22a)

w(1, t) = α(0, t+ d1)r(t+ d1) (22b)

w(x, 0) = w0(x). (22c)

System (22) can be solved explicitly to yield

w(x, t) = w(1, t− φ(1) + φ(x))

= α(0, t+ φ(x))r(t+ φ(x)) (23)

for t ≥ φ(1) − φ(x), where φ is defined in (6), and we
have used that d1 = φ(1). Inserting this into (1d) gives
y(t) = u(0, t) = 1

α(0,t)w(0, t) = 1
α(0,t)w(1, t − d1) =

1
α(0,t)α(0, t)r(t) = r(t).

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

0

1

2

3

4

Fig. 1. State norms for the stabilization (dashed-dotted blue)
and tracking (dashed red) cases.

We note from (23) that ||w||∞ ≤ ᾱr̄ for t ≥ d1, where
ᾱ bounds α. Such a bound ᾱ exists since Assumption 1
holds. From the invertibility of the transform (8) with a
bounded kernelK and bounded α, the result follows. 2

5 Simulations

The controllers of Theorems 4 and 6 are implemented in
MATLAB, using the system parameters

µ ≡ 1, f ≡ 0 (24a)

g(x, t) = 1 +
1

2
(x+ sin (0.2πt)) (24b)

h(x, ξ, t) = 1 + (x+ ξ) cos (0.5πt) (24c)

and initial condition u0(x) = sin(x).We note that d1 = 1
in this case. System (1) with parameters (24a) is open
loop unstable.

5.1 Smooth reference signal

The reference signal is set to

r(t) = 1 + 2 sin(2πt). (25)

The controller gain is computed off-line using the
method described in Section 3.2, with t0 = 2d1, and
using a second order upwind variant of the directional
discretization method proposed in [1] for approximat-
ing the spatial derivatives. The system states is imple-
mented using the method of lines [10] with a second
order upwind scheme.

In all closed loop cases, it is observed from Figure 1 that
the stabilizing controller of Theorem 4 achieves conver-
gence of the system state to zero for t ≥ d1. The actu-
ation signals are also bounded in both cases, as seen in
Figure 2, with the control signal converging to zero for
the stabilizing controller. The tracking goal is seen in
Figure 3 to be achieved for (approximately) t ≥ d1, as
stated in Theorem 6.

5.2 Discontinuous reference signal

We now set the reference signal to a square wave with
period of 1 second. Even though the method proposed in
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Fig. 2. Actuation signals for the stabilization (dashed-dotted
blue) and tracking (dashed red) cases.
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Fig. 3. Reference signal r (solid black) and measured output
y (dashed red) during output tracking.

this paper indeed handles a discontinuous reference sig-
nal, the second order upwind scheme used for simulating
the system in Section 5.1 requires spatial derivatives to
exist. To deal with discontinuous references, we there-
fore compute the closed loop dynamics by exploiting the
explicit solution (23) of target system (22) and apply the
inverse backstepping transformation, that is the inverse
of (8), to obtain u. In other words, we solve an integral
equation, thereby avoiding the need to compute spatial
derivatives. The results are shown in Figures 4–6.

The system state is bounded, as shown in Figure 4,
and the sharp edges induced by the square reference
are clearly visible throughout the domain. It is observed
from Figure 5 that the measured boundary y(t) = u(0, t)
successfully tracks the square wave after one second of
simulation. The control input that achieves this is shown
in Figure 2, and is bounded as predicted by theory.

From Figures 4 and 6, it is observed that the system
state and actuation are bounded.

6 Discussions and further work

We have derived a controller for a 1–D linear hyperbolic
PIDE with spatially and time-varying source parame-
ters. The controller achieved convergence in the∞-norm
in finite time d1, corresponding to the propagation time
between the boundaries. Secondly, the state-feedback
controller was modified to solve an output tracking prob-
lem, where the PIDE’s unactuated boundary success-
fully tracked a bounded reference signal of choice. The
controller was also shown to stabilize the system in the
∞-norm. The tracking goal was achieved in finite time
d1. The derived controllers were implemented in MAT-
LAB, illustrating the theory. The derived controllers can

Fig. 4. System state with a square wave reference signal (solid
black). The measured boundary y(t) = u(0, t) is highlighted
(dashed red).
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Fig. 5. Measured output (dashed red) and the square wave
reference signal (solid black).
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Fig. 6. Actuation (dashed red) with a square wave reference
signal.

also be combined with an observer generating a full state
estimate that converge to its true value in d1 time, in the
sense of the ∞-norm. One such observer was derived in
[4] for a slightly less general type of systems. However,
the extension to systems on the form (1) is straightfor-
ward.

The proposed theory is valid for a finite time interval
t ∈ [0, T1]. However, the case of having T1 at an arbitrary
(possible infinite) length can be handled by splitting the
horizon into periods of, say T seconds. The controller
gain for the (i − 1)th period can be computed during
the ith period, and hence, the horizon length T1 is not
needed to be known beforehand.

Although optimality is not considered here, the fact
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that the controller gains are obtained by solving a
PIDE backwards in time from a boundary condition at
the terminal time is reminiscent of conditions for well-
posedness in optimal control. Optimal controllers follow
from Pontryagin’s maximum principle, working back-
wards in time from a terminal cost. The most famous
example is, of course, the differential Riccati equation
which provides the solution of the linear quadratic
control problem.

A natural next step is to solve the above problem for
more complicated systems of P(I)DEs with time-varying
coefficients, for instance 2 × 2 systems which is sta-
bilized using infinite-dimensional backstepping for the
time-invariant case in [14].

A subclass of (1), where

µ ≡ const, f ≡ 0, h ≡ 0 (26)

is investigated in [2]. It is shown that subject to (26),
the kernel equation (3) is significantly simplified. A triv-
ial observer for (1) with (26) is also derived in [2]. An
adaptive problem is also solved in [2], under the assump-
tion (26) and the additional assumption that g(x, t) can
be split into a time-varying part and a spatially varying
part, i.e. g(x, t) = g1(x)g2(t).
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