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Abstract. Computer Numerical Controlled (CNC) end milling processes re-
quire very complex and expensive experimentations or simulations to measure 
the overall performance due to the involvement of many process parameters. 
Such problems are computationally expensive, which could be efficiently 
solved using surrogate driven evolutionary optimization algorithms. An attempt 
is made in this paper to use such technique for the end milling process optimi-
zation of aluminium block and solved using Non-dominated Sorting Genetic 
Algorithm (NSGA III). The material removal rate, and surface roughness are 
considered as the crucial performance criteria. It is shown that the regression 
driven NSGA III is efficient and effective while obtaining improved process re-
sponses for the end milling. 

Keywords: Parameter Optimization; NSGA III; Regression; CNC End Milling 

1 Introduction 

Metamodel or Surrogate function driven optimization has recently been emerged, 
which exploits the cheap metamodel/surrogate functions as objective functions and 
eliminates the requirement of complex mathematical functions or laboratory experi-
ments. Traditional optimization methods could be used for these problems, such as, 
the exact methods, evolutionary algorithms, and non-evolutionary methods as the 
solution methodologies. Surrogate/black-box models are useful when less information 
exists on the problems [1]. Surrogate based approaches can predict correlations 
among the process variables depending on the data obtained through Design of Exper-
iment (DOE) approaches [2]. Precision of the prediction model would be significant 
for the training of the models. The Mean Square Error (MSE), Root Mean Square 
Error (RMSE) etc. are exploited as performance metrics for the surrogate approaches. 
Once the training of the surrogate model is completed, a suitable optimization tech-
nique, such as Genetic Algorithms (GA), Ant Colony Optimization (ACO), Bat In-
spired Algorithm (BA), Particle Swarm Optimization (PSO) etc. could be employed 
as an optimization technique to obtain Pareto optimal front [3]. Surrogate models are 
substantially prompt and efficient. Therefore, the surrogate-assisted optimization is 
not expensive in terms of computation. 
DOE techniques, e.g. Latin Hypercube Sampling (LHS), Full Factorial Design (FFD), 
Orthogonal Array Design (OAD) etc. are employed to design the experimental or trial 
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sample points in the process design space. These could be employed as the training 
dataset for the surrogate/black-box models. The DOE techniques amplify the process 
information acquired from the experimental runs [4]. 
Some of the surrogate-based approaches are heavily practiced in literature. These 
could be Response Surface Models (RSM), radial basis functions (RBF), Support 
Vector Machines (SVM), Gaussian Process (GP), Artificial Neural Network (ANN) 
etc. [5]. 
Recently surrogate-assisted techniques are being practiced for manufacturing process 
optimization problems. Ref. [6] portrays a metamodel based process parameter opti-
misation. In ref. [7], ANN coupled GA is used to find improved process parameters. 
Ref. [8] [9] introduced surrogate modeling for the optimisation of an injection mold-
ing process. Ref. [10] demonstrated the expected improvement, which could select the 
enhanced solutions in a surrogate-based optimization. Ref. [11] introduced a Model-
Based Self-Optimisation (MBSO), which includes machines having the reasoning 
capabilities. Therefore, automatic parameters adaptation could be done by machines 
in uncertain conditions. In another work authors introduced surrogate-based optimisa-
tion to a composite textile draping process, which is a deep ANN and it could predict 
the shear angle of many textile elements [5]. It is shown to minimize the number of 
FEM simulations, which was needed to attain optimal level of parameters. 
Computer Numerical Controlled (CNC) milling is an essential metal cutting technique 
among various machining processes in the modern era of manufacturing. CNC mill-
ing not only makes the milling process fully automated, but also enhances the ma-
chining time, reduces milling process variations, improves the quality of the machined 
parts, and enriches the overall productivity of the manufacturing companies [8]. For 
CNC milling, end mill is one of the most vital tools amongst various milling cutters 
due to its ability of high-speed cutting of metal with minimum surface roughness in a 
single pass [12]. CNC end milling is being practiced significantly in different manu-
facturing sectors, such as aerospace, automotive, electronics, jewellery, bioinstrumen-
tation industries, etc. CNC end milling is used for making different geometrical 
shapes and holes in a metallic work-piece during milling, profiling, contouring, slot-
ting, counter-boring, drilling, and reaming applications, etc. [13]. Aluminium alloy is 
mostly explored material for end milling, which has more than 90% pure Aluminium. 
It has high strength and ductility, corrosion resistance, weldability, machinability, and 
formability. It is used as an important material for vehicle bodies, refrigerated trucks, 
cold storage rooms, anti-skid flooring, manufacturing of mobile homes, residential 
siding, and rain carrying goods, etc. [14]. It is also used in sheet metal work. With 
optimum settings of end milling parameters, it is possible to achieve good surface 
quality and high Metal Removal Rate (MRR) for the aluminium alloy. For that matter, 
Tool Diameter (TD), Spindle Speed (SS), Feed Rate (FR), and Depth of Cut (DOC) 
could be the most important process variables. The Surface Roughness (Ra) is the 
primary machining attribute since most of the manufacturing companies try to main-
tain better surface quality for the machined parts. Therefore, Ra determines the manu-
facturing cost and quality of the engineered products [15]. Surface texture, fatigue 
resistance, and heat transmission of manufactured products are greatly influenced by 
Ra. Surface quality also depends on the abovementioned machining parameters of end 
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milling. On the contrary, MRR is determined by the volume of removed metal and the 
machining time on the metal work-piece. MRR could affect the cost of manufacturing 
largely. When the combined effect of MRR and Ra is studied, the cutting process 
optimization becomes more complicated [16]. The solidity and life of the cutting tools 
could also be influenced by the cutting forces for the end milling process. Machining 
errors could be seen if the cutting forces are not considered while optimizing the pro-
cess [17] [18]. The objective of this study is to determine the ideal parameter settings, 
which could yield high MRR and low Ra for the end milling of AA3105 alloy in de-
sired range. Data-driven surrogate assisted optimization has rarely been used for ma-
chining process optimization [19], which is depicted in this work.  

2 Material and Method  

AA3105 alloy work-piece (90 x 140 x 20 mm3) is used for the testing of end milling 
operation. AA3105 alloy is primarily used in sheet metal work and manufacture of 
mobile homes, residential siding, and rain carrying goods in sub-zero temperature. It 
is perfectly suitable for the climate of Nordic Europe. AA3105 portrays good machin-
ability property. Percentages of weight in chemical composition of the AA5105 are Al 
- 98.56%, Mn - 0.716%, Fe - 0.38%, Zn - 0.128%, Cu - 0.118%, Cr – 0.081%, and Pb 
– 0.006%. The experimental set up is depicted in Fig. 1.  

 
Fig. 1. End Milling operation in laboratory  

The experiments are carried out on Proxxon FF 500/BL 3-Axes CNC milling ma-
chine, manufactured by Proxxon, Germany. It has double roller bearing recirculating 
ball spindles at all 3-axes. The spindle speed varies in the range of 200 - 4000 rpm. It 
has large traverse area (X -290mm, Y-100mm, and Z-200 mm). Tools are based on 
the spiral design according to DIN 844 and made of the high-speed steel (HSS-Co5) 
5% cobalt. To measure the surface quality of the machined work-pieces, a ZEISS 
Handysurf E-35B is used. 



3 Surrogate Assisted Optimization Method 

In this article a novel regression driven NSGA III algorithm is employed. The cutting 
process is modelled with a popular DOE tool namely, Taguchi’s orthogonal design. 
For carrying out the basic experiments during the cutting of AA3105, the initial set-
tings of the levels of the milling process parameters (Table 1). The responses are de-
termined by conducting trials, which are portrayed in Table 2. 

Table 1. End milling parameters with their levels 

Factors 
Level 1 Level 2 Level 3 Level 4 

1 2 3 4 
TD (mm) 6 7 8 10 
SS (rpm) 1500 1750 2000 2250 

FR (mm/s) 2 3 4 5 
DOC (mm) 0.5 1.0 1.5 2.0 

Table 2. Experimental design space using L16 Orthogonal array 

Ex# TD SS FR DOC MRR (mm3/s) Ra (µm) 
1 6 1500 2 0.5 5.263 0.08 
2 6 1750 3 1 11.080 0.06 
3 6 2000 4 1.5 18.100 0.06 
4 6 2250 5 2 7.299 0.05 
5 7 1500 3 1.5 6.652 0.29 
6 7 1750 2 2 20.690 0.25 
7 7 2000 5 0.5 5.848 0.05 
8 7 2250 4 1 18.018 0.04 
9 8 1500 4 2 41.379 0.18 
10 8 1750 5 1.5 20.000 0.22 
11 8 2000 2 1 13.043 0.29 
12 8 2250 3 0.5 7.477 0.62 
13 10 1500 5 1 25.641 0.075 
14 10 1750 4 0.5 6.390 0.27 
15 10 2000 3 2 40.000 0.89 
16 10 2250 2 1.5 24.390 0.72 

3.1 Regression Analysis 

Multiple regression mode is obtained for MRR and Ra at 95% confidence level. Re-
gression equations are depicted in Eq. (1)-(2). These equations are used as the fitness 
functions for the NSGA III algorithm. Table 3 shows the p-values and R2 values of 
the regression analysis, which states that the MRR is mostly dependent on the DOC 
and Ra is mostly dependent on the TD. 
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Table 3. Regression models with P Values and R2 Values 

  P-Value R2-Value 

P-Values for regression 
models and parameters 

Regression 0.015 0.002 
TD(mm) 0.022 0.001 
SS(rpm) 0.530 0.055 

FR(mm/s) 0.947 0.011 
DOC(mm) 0.005 0.193 

R2 64.69% 75.66% 

3.2 NSGA III Technique 

NSGA III is a recently published optimization technique developed in the ref. [20]. 
NSGA III is extended based on the framework of previously published NSGA-II with 
a newer selection approach.  
NSGA III works on an evenly distributed reference points in the state space. These 
are further updated using supervised learning technique. Algorithm 1 portrays NSGA 
III. It starts with a randomly generated initial population POP (size N). The set of 
reference points are assumed as Zref. The NSGA III runs for a fixed number of genera-
tions. The tournament selection, binary crossover, and polynomial mutation [21] are 
used for the NSGA III, which further produce N number of child solutions (e.g. POP-
new). 

  
NSGA III 
1: Create the set of reference points Zref to put on hyper plane 
2: Create random population POP 
3: Create the Ideal points Zmax  
4: Calculate fitness for the generated population 
5: Execute non-dominated sorting on population 
6: for i=1 to Iteration No. do 

7: Compute crossover with Pc probability 
8: Compute mutation with Pm probability 
9: Add new solutions to obtain NEWPOP = POP ∪ POPnew 
10: Execute non-dominated sorting on NEWPOP 
11: Normalize NEWPOP exploiting Zmax 
12: Correlate the NEWPOP solutions with the Zref 
13: Compute niche and Execute niche preservation 
14: Send niche obtained solutions to the next iteration 

15: end for 
 

The new population is combined with old population and the combined population of 
size 2N is achieved. Further the non-dominated sorting is performed [22], which clubs 
the solutions of combined population using some ranking method (Fi where i=1, 2,…, n). In 
the next iteration the population is acquired using this ranking method (e.g. initially 
F1 members are picked, then F2, F3, etc.). Once the population size becomes N, this 
method stops. However, if the lth rank holders are being included in the next popula-
tion as last set of members, then, rest of the members from (l+1)th are discarded. This 



could mean that some of the members with Fl rank are counted (restriction of size N). 
To achieve such goal, reference point-driven selection technique is introduced. This 
method is different than the crowding distance technique of previous version of 
NSGA [23]. 

3.2.1 Reference Point Generation 
A hyper-plane is defined as an inclined plane to the M-objective axes using (M-1)-
dimensional unit simplex. The technique suggested in ref. [24] distributes the refer-
ence points on this normalized hyper-plane, where the Pareto solutions are mapped 
with the reference points. The number of segments of each of the objective axes de-
cides the number of the reference points. For P segments, the number of reference 
points is computed using, 

 
 

3.2.2 Normalization of Population 
The normalization procedure proposed by [20] can recognize ideal points Zmax. This is 
done with solutions to the computationally expensive linear equations. The basic 
normalization technique is followed for that ease of computation. If Zj

min= (z1
min, 

z2
min,..., zM

min) with the lowest fitness scores for jth member ∀ j∈[1, N]. zi
min is the ith 

minimum fitness score fi ∀ i∈[1, M]. The zi
max ∈ Zmax is worst point for the ith objec-

tive. The normalized fitness score fi*(xj) is computed as, 
 

 

3.2.3 Mapping the Population Members and Reference Points 
After obtaining the normalized fitness scores, each solution is linked to a correspond-
ing reference point. To facilitates that, reference lines are derived from reference 
points to hyper-plane origin and the perpendicular distance between each solution and 
each reference line is calculated. The solution is mapped to reference point based on 
this lowest perpendicular distance. 

3.2.4 Niche Preservation 
Niches are paired with reference points using the linked solution. Niche preserva-

tion is executed to decide, which candidates of rank Fl would be opted. First, the set 
of reference points is chosen with lowest niche counts. If there is more than one refer-
ence point in such situation, a random reference point is chosen from the set. Howev-
er, the solution is chosen based on the smallest perpendicular distance when niche 
count is zero. If niche count ≥ 1, the solution selection is random from Fl front. In 
next iteration the niche count is amplified. The reference point is removed once the 
operation is finished for it. This procedure is iterated for the N – |POP| counts until 
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the new population of size N is achieved. The proposed algorithm framework is de-
picted in Fig. 2. 
 

 
Fig. 2. Data-Driven Surrogate-Assisted NSGA III framework 



4 Results and Discussions 

The regression-assisted NSGA III technique is coded with MATLAB functions on an 
Intel i7 laptop with 16GB RAM. Since it is a multi-objective optimization problem, 
Pareto solutions are recorded. These are near-optimal solutions with trade-offs among 
the fitness scores (Fig. 3). Total 13 Pareto solutions are depicted in Table 4. The best 
solution is chosen for the confirmatory experiment (Table 5). 

Table 4. Total 13 Pareto solutions obtained by regression driven NSGA III 

TD SS FR DOC MRR Ra 
8.319 1565.011 4.548 1.403 22.489 0.136 
6.077 1993.653 4.394 1.486 13.475 0.040 
6.221 1829.457 4.095 1.685 17.252 0.057 
8.323 1629.146 4.884 1.729 26.399 0.151 
6.888 1835.224 4.660 1.531 17.731 0.059 
7.527 1609.844 4.236 1.305 18.150 0.086 
8.495 1580.086 4.131 1.736 27.245 0.234 
9.813 2079.163 4.863 1.847 31.169 0.457 
6.772 1519.991 3.408 1.749 21.404 0.105 
6.543 1595.130 3.503 1.556 17.778 0.074 
9.788 2176.137 3.233 1.970 32.009 0.663 
9.481 1620.140 3.631 1.745 30.666 0.406 
9.252 1874.775 4.840 1.856 30.213 0.340 

 
Fig. 3. Pareto solutions obtained by regression driven NSGA III 
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4.1 Confirmatory Test 
 
Once the optimal levels of the control factors are identified, confirmatory test is per-
formed. Total 10 experimental run are performed using the obtained set of parameters. 
The parameter values are rounded off to the nearest real values. The average MRR, and 
Ra scores are shown in Table 5. The confirmatory test results are compared with the 
model output, which are substantially close to each other with deviation of 10.66% and 
3.22% for the Ra and MRR respectively, which are in the acceptable range. Therefore, 
the confirmatory test indicates that the selection of the optimal levels of the parameters 
could produce the best and accurate process responses for the end milling process. 

Table 5. Confirmatory test result 

End milling Parameters Predicted Re-
sponses 

Experimental Re-
sponses 

Errors 

TD=8, SS=1629, FR=4.88, 
DOC=1.73 

MRR=26.4, 
Ra=0.15  

MRR=27.25, 
Ra=0.166 

MRR=3.22%, 
Ra=10.66% 

5 Conclusions 

In this study, a novel regression driven NSGA III algorithm is employed for the end 
mill cutting problem. This technique exploits multiple regression equations as the 
surrogate fitness functions. This regression driven NSGA III technique can attain 
Pareto optimal solutions. Four process parameters for the end milling process are 
considered, TD, SS, FR, DOC and two process responses are considered, MRR, and 
Ra. The experimental design space is obtained using L16 orthogonal array method 
with a total of 16 experimental runs. The proposed NSGA III obtains accurate results, 
which indicate the optimal parameter settings. This choice of settings based on our 
intuition and experience showed very promising results within the desired parametric 
range. Obtained results are successfully validated with a small number of confirmato-
ry test runs, which recommends the proposed technique as an effective optimizer for 
the end milling process. 
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