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Abstract. Manufacturing process variables influence the quality of products sub-
stantially. It is unquestionably difficult to model the manufacturing processes that 
include a large number of variables and responses. Development of the multi-
objective surrogate models for the manufacturing processes could be computa-
tionally and economically expensive. In this article, a generic multi-objective sur-
rogate-coupled heuristic algorithm is employed that needs small amount of ex-
perimental data as input, and predicts precise responses with quick Pareto solu-
tions. The proposed algorithm is verified with different cases collected from the 
literature based on the CNC turning, centreless cylindrical grinding, and micro 
milling machining and shown to produce some interesting results. 

Keywords: Manufacturing Process Optimization, Surrogate Models, Heuristic 
Algorithm, Multi-Objective Optimization. 

1 Introduction 

Manufacturing process optimization has gained substantial interest from the researchers 
since decades. In reality, it is difficult to optimize the process of manufacturing due to 
the association of a large number of design parameters and multiple objectives or per-
formance indicators. Multidisciplinary collaborative approaches are required to manu-
facture complex engineering components. It also requires complicated design space due 
to the nonlinear relationships among various dependent and independent design varia-
bles to manufacture these optimally. Due to the above fact, it is substantially difficult 
to formulate these relationships mathematically [1]. Precision of manufacturing process 
largely depends on the empirical process data, which is expensive in terms of the ma-
chining costs, labor costs, overhead costs, and scrap costs. Data-driven models, ma-
chine-learning techniques, meta-model or surrogate modeling techniques could be ap-
propriate in such scenarios [2]. 

The complexity of engineering product increases with the number of design varia-
bles, performance indicators and specifications or tolerance levels defined for the prod-
ucts. This problem is termed as combinatorial problem, which could have many near 
optimal solutions within boundary conditions. For an example, the milling machining 
is associated with various design parameters such as the spindle speed, feed rate, depth 
of cut, tool diameter, etc. while minimizing the surface roughness, applied cutting 
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forces, tool wear, which in turn improve the material removal rate and tool life. How-
ever, this optimization could be very complex due to the nonlinear relationships among 
the input and output variables. Moreover, this kind of optimization approach is substan-
tially process specific and generic formulations or models are not prominently available 
in the literature [3]. Hence, the aim of this study is to portray a suitable multi-objective 
process modeling to solve the above problem promptly. 

To cater the purpose, an Artificial Neural Network (ANN) and Gaussian Kernel 
Regression (GKR) techniques are considered to construct efficient surrogate models, 
which take various design parameters as the inputs. Once the surrogates are trained, 
these are capable of predicting process responses with good accuracy. Both the surro-
gates studied here, are compared with each other based on the Normalized Mean Square 
Error (NMSE) and the best one is selected.  
In general, Design of Experiment (DOE) is used to define the design space for the ma-
chining or manufacturing processes [4]. For that purpose, the Latin hypercube sampling 
(LHS) [5] is used, which uniformly generates the set of values for design parameters 
within the predefined range. Thereafter a heuristic method is employed to select optimal 
sets of these parameters, which could fine-tune the process responses. 

2 Manufacturing Process Optimization 

CNC (Computerized Numerical Control) machining has transformed the manufactur-
ing industries drastically since past few decades, which precisely removes excess ma-
terials with precision and accuracy while improving the tool life and the quality of the 
manufactured products with reduced manufacturing cost. This includes the turning, 
grinding, milling, welding, lathe, which effectively obtain flat or curved shaped com-
ponents with smooth finishing [6]. In this paper, three cases are considered based on 
the CNC turning, grinding, and milling operations. In CNC turning, design parameters 
such as the cutting tool geometry and materials, the depth of cut, feed rates, cutting 
speeds as well as the use of cutting fluids could influence the material removal rates 
and the other performance indicators, such as the surface roughness, roundness of cir-
cular and dimensional deviations of the product [7]. Whereas, the cylindrical grinding 
is employed to finish parts with circular symmetry and projections, variations in shapes, 
varying diameters etc. In in-feed method, the shape variations are accommodated in the 
form of the grinding wheel aiming to form various part diameters and lengths to meet 
the part geometry [8]. In this process, the part is fed to the wheels from the above with 
no lateral movement of the piece while it is being on ground. However, in milling pro-
cess, machining at the top speeds usually attains better surface roughness, material re-
moval rate, and improved tool wear rate. The effect of the input parameters such as the 
cutting speed, feed per tooth and depth of cut for milling could be decisive factors for 
the product quality in a big way [9]. 

For manufacturing process optimization, the experimental design approaches are 
heavily practiced in literature, which are active statistical method. The design space is 
formed with a DOE tool, which makes small changes in one or more inputs to analyze 
the corresponding influences in the response patterns. This analysis could essentially 
points out the complex correlations among the process parameters and responses, which 
further reduces the process variabilities [6]. This experimental design space could be 
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useful for evaluating the nature of the manufacturing process and considered as the 
input to the process optimization models. Various methods are available in the litera-
ture, which are categorized as the DOE techniques. These are full factorial method, 
fractional factorial method, Taguchi’s method, LHS etc. Various applications of the 
DOE based approaches to the manufacturing process optimizations could be found in 
the literature for the single or multiple performance indicators [10]. In this study, three 
different cases are collected from the literature [7] [8] [9], which are used as the training 
data for the proposed iterative heuristic optimizer. The cases are discussed in the fol-
lowing subsections. 

2.1 CNC Turning Case Study 

The experimental data for CNC turning are collected from the literature and presented 
in Table 1. A rigid CNC turning center with a 7.5kW spindle motor at 4200rpm (ma-
chine type of Vtum||–20, manufactured by VICTOR Taichung Machinery Works Co. 
in Taiwan) is used to perform machining [7]. 

 Table 1. CNC turning process data [7] 

No. CS FR DC CFMR Ra Rt phi 

1 125 0.12 0.5 4 3.27 28.76 4.7 
2 125 0.16 0.65 8 1.92 15.91 2.9 
3 125 0.2 0.8 12 1.8 11.04 1.9 
4 155 0.12 0.65 12 1.11 6.626 0.85 
5 155 0.16 0.8 4 1.78 7.861 1.1 
6 155 0.2 0.5 8 2.73 10.84 1.95 
7 185 0.12 0.8 8 1.04 5.698 0.75 
8 185 0.16 0.5 12 2.87 11.19 2.1 
9 185 0.20 0.65 4 3.91 15.71 2.55 

 
The cutting length of the work piece is 40mm. The cutting tool is made of carbide and 
coated with titanium nitride (TiN) manufactured by Sumitomo Electric Industries, Ltd., 
Japan with a part number of TNMG160408-UG. In this case, the cutting speed (CS) 
(100 -200m/min), feed rate (FR) (0.1 - 0.25 mm/rev), depth of cut (DC) (0.1 – 1.0 mm) 
and the cutting fluids mixture ratio (CFMR) (2 – 15%) are considered as most influen-
tial parameters of turning operations and average surface roughness (Ra), maximum 
surface roughness (Rt) and roundness of circumference surface (RCS) are considered 
as process responses. The material considered is SKD11 (JIS) alloy tool steel with high 
carbon high chromium. This is used in the production of dies, plastic injection molding 
dies, precision gauge, spindle, jigs and fixtures, etc. The composition of the SKD11 is 
1.55 wt.% C–11.5 wt.% Cr–0.70 wt.% Mo–1.00 wt.% V–0.30 wt.% Mn–0.25 wt.% Si. 
The yielding stress of raw SKD11 is 330MPa, the Young’s modulus is 200 GPa and 
hardness is 25 HRC. The diameter for the work pieces has been fixed to 20mm. 
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2.2 Centerless Cylindrical Grinding Case Study 

An in-feed centerless cylindrical grinding machine is considered for the experiments 
[8]. The material considered for the experiments is made of EN52 for an internal com-
bustion (IC) engine valve stem with 79.6 mm dia. An A80N5V45 grinding wheel ro-
tating at 1440 rpm (giving a surface speed of 45 m/s) and an A80RR control wheel were 
utilized for this process. The centreless cylindrical grinding process was carried out 
over a length of 98 mm of valve stem with a job height of 212 mm above the blade. The 
chemical composition of the EN52 is given as, C (0.40–0.50%) Si (2.70–3.30%) Mn 
(0.8% max) P (0.04% max) S (0.03% max) Cr (8-10%). For centreless cylindrical 
grinding process, surface roughness (Ra), out of cylindricity (OC) and diametral toler-
ance (Dt) were selected as response variables whereas dressing feed (DF) (2-15 
mm/min), grinding feed (GF) (1-12 mm/min), dwell time (DT) (1-5 Sec.) and cycle 
time (CT) (5-15 Sec.) are considered as experimental design parameters. Table 2 pre-
sents the experimental data for the cylindrical grinding process. 

Table 2. Cylindrical grinding process data [8] 

No. DF GF DT CT Ra OC Dt 
1 5 2 1.5 10 0.432 0.67 0.001 
2 5 6 2.5 11 0.439 0.67 -0.001 
3 5 10 3.0 12 0.427 1 -0.002 
4 8 2 2.5 12 0.578 1.67 0.001 
5 8 6 3.0 10 0.613 1 0.001 
6 8 10 1.5 11 0.763 1.33 0.001 
7 10 2 3.0 11 0.505 3.33 0.004 
8 10 6 1.5 12 0.517 3 0.004 
9 10 10 2.5 10 0.554 3.67 0.003 

2.3 CNC Micro-Milling Case Study 

The micro-milling experimental data are collected from the published paper and por-
trayed in Table 3. The experiments were carried out using a DECKEL MAHO DMU 
60 PCNC milling machine [9].  

Table 3. Taguchi’s Design sets for micro milling process [9] 

No. SS FPT DC TW Fx Fy Ra 
1 10000 0.5 50 5.41 1.33 0.71 0.33 
2 10000 1.0 75 13.51 1.63 0.86 0.47 
3 10000 1.5 100 16.22 2.02 1.02 0.71 
4 11000 0.5 75 27.02 1.62 1.08 0.32 
5 11000 1.0 100 32.43 2.03 1.49 0.59 
6 11000 1.5 50 14.86 2.65 1.52 0.58 
7 12000 0.5 100 45.95 2.10 1.36 0.27 
8 12000 1.0 50 27.03 2.99 1.66 0.35 
9 12000 1.5 75 32.43 3.55 1.81 0.58 

 
Al7075 material is used (Vickers hardness of 139) as a work piece material, which had 
a dimension of 15×10×20 mm3. The chemical compositions of material are given as, Li 
< 0.0002 wt%, Si 0.92 wt %, Mn 0.348 wt%, P <0.001 wt%, Sr <0.0001 wt%, Cr 0.093 
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wt%, Ni 0.057  wt%, Na 0.003 wt%, Al 89.0 wt%, Cu 1.71 wt%, Co <0.001 wt%, Ti 
0.048 wt%, Be 0.0003 wt%, V 0.009  wt%, Fe 0.55, Pb wt%, 0.018 wt%, Mg 2.00 wt%, 
B 0.0017 wt%, Sn 0.008 wt%, Zn 5.22wt%, Ag 0.0022 wt %, Bi 0.0018 wt%, Ca 0.0027 
wt%, Cd 0.0031 wt%, and Zr 0.0078 wt%. In this case, Spindle speed (SS) (5000-15000 
rpm), feed per tooth (FPT) (0.5-1.5 µm/tooth) and depth of cut (DC) (50-100 µm) were 
considered as design parameters and tool wear (TW), cutting forces (Fx, Fy), and sur-
face roughness (Ra) were selected as process responses.  

3 Iterative Surrogate-Assisted Heuristic 

The Taguchi’s design based data sets are employed for the training of the surrogate 
functions for the proposed heuristics. All these data contain the input data and output 
responses. Following surrogate functions are used in this work, 

3.1 Artificial Neural Network (ANN) 

In order to construct the ANN based surrogate model, a Cascade-Forward Neural Net-
work (CFNN) is considered, which consists of the input layer, hidden layer, and output 
layer [11]. The number of neurons in the input layer and the output layer depends on 
the number of design parameters and the performance indicators. The CFNN has some 
direct connections among the inputs and outputs on top of the multi-layer feed forward 
perceptron architecture. The response equation for the CFNN is given in Eq. (1) as, 
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Where Zi

oa is denoted as the activation function for ith output yi, wji
oa is the weight 

from jth hidden layer neuron to ith output node, Zk
ha is the activation function for jth 

hidden layer neuron, wjk
ha is the weight from kth input to jth hidden layer neuron, and xk 

is the kth input signal. Further, if some bias is added to input layer, the Eq. (1) becomes 
Eq. (2), Zi

k is the activation function and wj
k is the weight from the inputs to outputs. 

The network weight in the CFNN is approximated based on the neurons in the input 
layer. 

3.2. Gaussian Kernel Regression (GKR) 

The GKR is based on the data mapping from the low-dimensional space to high-dimen-
sional space. This linear regression model in high-dimensional space is equivalent to 
the Gaussian regression in the low-dimensional space. The linear regression learner is 
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based on the Support Vector Machine (SVM) regression. In this approach, the input 
parameters x are mapped onto an m-dimensional attribute space using the nonlinear 
mapping, which further converts it to a linear model in the same attribute space. The 
linear model is, 

𝑓𝑓(𝑥𝑥,𝜔𝜔) = �𝜔𝜔𝑗𝑗𝑔𝑔𝑗𝑗(𝑥𝑥)
𝑚𝑚

𝑗𝑗=1

+ 𝛽𝛽                                            (3) 

Where gj(x) (j=1…m) is a non-linear transformation function and β is the bias. The 
performance of regression is analyzed using the ε-insensitive loss function [12], 
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Where γi and γi

* (i=1… n) are positive slack variables, which can calculate the de-
viation of the input parameters beyond the ε-insensitive neighborhood. This optimiza-
tion problem is known as the primal. It could be transformed into a dual and an exact 
SVM kernel is required to solve this. Whereas, in SVM assisted GKR, the primal is 
solved using the high-dimensional attribute space [13]. 

3.3. Normalized Mean Square Error (NMSE) 

In this study, the NMSE is employed for the performance evaluations of the surrogates. 
The NMSE is a metric that measures the overall deviations between the predicted and 
measured values. It is defined as, 
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Where P is the predicted output, M is the measured output and N is the number of 

observations. In NMSE computation, the deviations (absolute values) are summed in-
stead of the differences. Due to that fact, the NMSE generally shows the most striking 
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differences among the models. If a model has a very low NMSE score, then it is an 
optimal model in the space and time. 

Once both the surrogates are trained, the comparison is done based on the obtained 
NMSE scores and R-values obtained for the regression error. From Table 4, it can be 
stated that the GKR based approach outperforms the ANN model for all the training 
data. Therefore, the GKR surrogate model is selected, which is further used as a fitness 
function to the proposed heuristic. Fig. 1 depicts the ANN based regression plots for 
the case data with promising R-values. 
 

Table 4. ANN vs GKR: Comparison based on NMSE values 
Cases GKR ANN 

 NMSE R-Value NMSE R-Value 
CNC Turning Operation 0.0487 0.93704 0.8444 0.84361 

Cylindrical Grinding 0.0474 0.96721 0.3079 0.87762 
CNC Micro-Milling 0.0124 0.98418 0.8701 0.95655 

3.4. Heuristic Algorithm 

The proposed search technique is an improvement heuristic, which is population based 
and iterative in nature. The steps of the proposed algorithm are as follows, 

 
Step 1. It generates a new population at the initial iteration using the LHS based 

algorithm, which uniformly generates the design space for the input pa-
rameters. Every row of the population table is an experimental setup. 
The size of the initial population is set to 100. Maximum number of 
iterations are set to 100. 

Step 2. The GKR based fitness function is used for functional evaluation, 
which predicts the output for each of the experiment setup (population 
member) obtained in last step. Since the fitness space has multiple re-
sponses or objective values, therefore, it is required to obtain the Pareto 
fronts for the solutions. 

Step 3. To obtain the Pareto fronts, a non-dominated sorting method is applied 
and each of the members of the population are ranked based on the 
domination. 

Step 4. For every iteration of the heuristic, it generates a new population, eval-
uates the solutions, add them with initial population set, and rank them 
using the non-dominated sorting. Hence, each new population has now 
200 members. 

Step 5. Only the top 100 members are selected based on the ranks and crowding 
distances and passed on to the next iterations. 

 
The heuristic stops, once it reaches the maximum number of iteration count. 
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Fig. 1. Regression plots for three cases 

4. Results and Discussions 

The proposed algorithm is coded in Matlab. The obtained Pareto fronts for each of the 
test problems are displayed in Fig. 2, Fig. 3, and Fig. 4. 
 

 
Fig. 2. Pareto Solutions for CNC Turing Case study 

 
Fig. 3. Pareto Solutions for Centerless Cylindrical Grinding Case study 

The turning operation has three responses Ra, Rt, and φ; the grinding operation has 
three responses Ra, OC, and DT; and the milling operation has four responses, TW, Fx, 
Fy, and Ra. The computing time is an important factor for the optimization algorithms. 
This proposed technique consumes 12.14 seconds, 12.11 seconds, and 10.17 seconds 
to produce the optimal results, and the obtained results are better than the published 
results. For the CNC turning, the optimal published result is CF=155, FR=0.12, 
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DC=0.8, CFMR=12, and Ra=0.484, Rt=17.762, φ=0.067. In this study, the most suit-
ably picked results are, (1) CF=131.08, FR=0.14, DC=0.9, CFMR=13.47, and 
Ra=0.269, Rt=10.934, φ=0.177 and (2) CF=161.7, FR=0.144, DC=0.913, 
CFMR=12.355, and Ra=0.094, Rt=1.552, φ=0.604. For the centerless cylindrical 
grinding, the optimal published result is the experimental run# 2 in Table 2. In this 
study two most promising solutions are picked up from the Pareto frontier, (1) DF= 
4.075, GF= 10.920, DT= 4.327, CT= 9.230 and Ra= 0.244, OC= 0.344, Dt = -0.004 
and (2) DF= 4.260, GF= 5.959, DT= 2.894, CT= 9.958 and Ra= 0.229, OC= 0.830, 
Dt = -0.002. For the micro milling, the optimal published result is the experimental 
run# 1 in Table 3. In this study, the most promising Pareto solutions obtained are, (1) 
SS= 9373.596, FPT= 1.219, DC= 57.163, TW= 4.040, Fx= 2.799, Fy= 1.723, Ra= 
0.198 and (2) SS= 11257.000, FPT= 0.153, DC= 86.430, TW= 4.494, Fx= 2.047, Fy= 
1.863, Ra= 0.181. 

 
Fig. 4. Pareto Solutions for Micro-Milling Case study 

The surface roughness is the most exploited process response for all the cases, which 
determines the quality of the products. Therefore, the objective of this study is to find 
those Pareto solutions with the lowest surface roughness scores. Similarly, the Pareto 
solutions obtained using the proposed technique demonstrates better tool wear score for 
the CNC milling. 

5. Conclusions 

This paper proposes a generic surrogate-assisted heuristic algorithm for manufacturing 
process optimization problems. The proposed technique exploits the GKR surrogate, 
which is shown to outperform another surrogate based on the neural network. Both the 
surrogate functions need small amount of manufacturing process data for the training 
and obtain very accurate output responses with low NMSE scores. The proposed tech-
nique is successfully tested on three different cases from past literature. This study 
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shows that the surrogate-assisted heuristic algorithm can obtain realistic solutions 
within boundary conditions. This study requires further validation tests for the reliabil-
ity. The proposed surrogate-assisted approach could be extended further with standing 
optimization algorithms such as Nondominated Sorting Genetic Algorithm (NSGA), 
Multi-Objective Evolutionary Algorithm (MOEA) etc. This work is a work-in-progress 
of a project based on multi-response CNC milling operation and process monitoring.    

References 

 
[1]  Afazov, S.M.: Modelling and simulation of manufacturing process chains. CIRP Journal 

of Manufacturing Science and Technology 6(1), 70-77 (2013).  
[2]  Gröger, C.F., Niedermann, F., Mitschang, B.: Data Mining-driven Manufacturing Process 

Optimization. Proceedings of the World Congress on Engineering. WCE., London (2012).  
[3]  Mukherjee, I., Ray, P.K.: A review of optimization techniques in metal cutting processes. 

Computers & Industrial Engineering 50(1-2), 15-34 (2006).  
[4]  An, Y., Lu W., Cheng, W.: Surrogate Model Application to the Identification of Optimal 

Groundwater Exploitation Scheme Based on Regression Kriging Method-A Case Study of 
Western Jilin Province. International Journal of Environmental Research and Public Health  
12(8), 8897-8918 (2015).  

[5]  Stein, M.: Large Sample Properties of Simulations Using Latin Hypercube Sampling. 
Technometrics 29(2), 143-151 (1987).  

[6]  Chandrasekaran, M., Muralidhar, M., Krishna, C.M., Dixit, U.S.: Application of soft 
computing techniques in machining performance prediction and optimization: a literature 
review. The International Journal of Advanced Manufacturing Technology 46(5-8), 445-
464 (2010).  

[7]  Tzeng, C.J., Lin, Y.H., Yang, Y.K., Jeng, M.C.:  Optimization of turning operations with 
multiple performance characteristics using the Taguchi method and Grey relational 
analysis. Journal of Materials Processing Technology 209(6), 2753-2759 (2009).  

[8]  Siddiquee, A.N., Khan, Z.A., Mallick, Z.: Grey relational analysis coupled with principal 
component analysis for optimisation design of the process parameters in in-feed centreless 
cylindrical grinding. The International Journal of Advanced Manufacturing Technology 
46(9-12), 983–992 (2010).  

[9]  Kuram, E., Ozcelik, B.: Multi-objective optimization using Taguchi based grey relational 
analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46, 
(6), 1849-1864 (2013).  

[10]  Baskar, N., Asokan, P., Prabhaharan, G., Saravanan, R.: Optimization of Machining 
Parameters for Milling Operations Using Non-conventional Methods. The International 
Journal of Advanced Manufacturing Technology 25(11-12), 1078-1088 (2005).  

[11]  Schetinin, V.: A Learning Algorithm for Evolving Cascade Neural Networks. Neural 
Processing Letters 17(1), 21–31 (2003).  

[12]  Chapelle, O., Vapnik, V.: Model Selection for Support Vector Machines. NIPS'99 
Proceedings of the 12th International Conference on Neural Information Processing 
Systems, Denver, CO (2000).  

[13]  Brentan, B., Laurain, V., Aberkane, S.: How to Infer Prior Knowledge in Water 
Distribution Data-Driven Models?. WDSA / CCWI Joint Conference 2018, Kingston, 
Ontario, Canada (2018).  



11 

 
 


	1 Introduction
	2 Manufacturing Process Optimization
	2.1 CNC Turning Case Study
	2.2 Centerless Cylindrical Grinding Case Study
	2.3 CNC Micro-Milling Case Study

	3 Iterative Surrogate-Assisted Heuristic
	3.1 Artificial Neural Network (ANN)
	3.2. Gaussian Kernel Regression (GKR)
	3.3. Normalized Mean Square Error (NMSE)
	3.4. Heuristic Algorithm

	4. Results and Discussions
	5. Conclusions
	References


