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Abstract

This thesis presents results from experimental and numerical investigations
of the hydrodynamic forces on a rigid cylinder moving with prescribed or-
bits in uniform flow. The hydrodynamic forces are measured in both in-line
(IL) and cross-flow (CF) directions. The measurements are processed to
find excitation and added mass coefficients at discrete frequencies. The nu-
merical simulations are used to illustrate the vortex shedding modes and
are compared with the experimental results.

The hydrodynamic coefficients obtained from the harmonic forced motion
experiments of a rigid cylinder do not always represent forces on a cross sec-
tion of a flexible beam. The orbits used in the forced motion experiments
are therefore extracted from the measured motions of cross sections of a
flexible pipe under uniform and shear flows. Both periodic and observed or-
bits within a time window are applied as prescribed motions. Higher order
displacement components are present in such orbits.

IL response amplitudes from combined IL and CF response are larger than
pure IL response amplitudes. The hydrodynamic coefficients obtained from
the periodic experiments are often larger than those obtained from the pure
IL tests. Higher order displacement components are more common in the
IL direction than in the CF direction, and higher order IL displacement
components will cause larger hydrodynamic forces in both directions. The
hydrodynamic coefficients obtained from periodic motion tests are adequate
for representing quasi-periodic observed motions. For chaotic observed mo-
tions, periodic orbits will yield hydrodynamic coefficients with larger uncer-
tainties.

Results from numerical analyses using large eddy simulation (LES) indicate
that this method can be used to identify vortex shedding patterns and pre-
dict hydrodynamic forces under certain Re numbers and orbits.
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Chapter 1

Introduction

1.1 Motivation

As the offshore oil and gas industry has developed, focus has moved from
shallow and moderate water depths to deep water area, which causes tradi-
tional exploitation and production systems to be unsuitable.

Marine risers constitute the main connection between a floating platform
and the well-heads or manifold on the seabed. The response of marine ris-
ers shows that vortex-induced vibrations (VIV) will occur frequently due to
currents, and VIV may cause costly and environmentally-damaging fatigue
failures. In the deep waters of the Gulf of Mexico and offshore West Africa,
the wave climate is milder than in the North Sea, and VIV may account for
the largest contribution to riser fatigue damage. As water depth increases,
damage related to wave and vessel motion may stay approximately the same
or diminish, but currents exist and exert forces over the whole length of ris-
ers, making VIV more important in deeper water. However, VIV of long
risers is generally less understood than other load effects, and this has led
to an intensive research activity in recent years (Trim et al., 2005).

To predict VIV and include its influence during the design process, empirical
models has been established based on hydrodynamic coefficients obtained
from experiments. During the past decades, a lot of research has been done
on a rigid cylinder with one degree of freedom (DOF) forced motions. Most
of the previous work has used harmonic motions, which are not likely to
occur in nature. Hydrodynamic coefficients for ‘realistic’ combined in-line
(IL) and cross-flow (CF) VIV are needed in order to develop more reliable
empirical methods for response prediction. Focus of present research will

3



4 Introduction

be on forced motions of a rigid cylinder that follows orbits found from
experiments with a flexible beam in sheared current. These experiments
included cases with response at high mode orders.

1.2 Scope

Direct measurement of local forces on a long flexible beam subjected to VIV
is not feasible. Local forces can be estimated by inverse analysis (Mainçon
et al., 2008). An alternative method is to identify the cross section orbits
at a number of positions along the flexible pipe and use these as forced mo-
tions for a rigid cylinder in uniform flow. By keeping the Reynolds number,
non-dimensional frequency and amplitude ratio identical for the two types
of experiments, forces measured on the rigid cylinder will become a direct
scaling of the forces on the corresponding cross section of the flexible beam.
This experimental technique was applied by Soni (2008), but his tests in-
cluded only uniform flow cases for a flexible beam experiment. The purpose
of the present work has been to apply the same experimental method to
flexible beam cases with sheared flow, and thereby obtain a more general
basis for hydrodynamic coefficients to be applied in empirical models for
combined IL and CF VIV (Yin and Larsen, 2010).

Hydrodynamic forces for combined IL and CF VIV are studied using both
experimental and numerical methods. Focus will be on forced motion tests
which use measured orbits of cross sections along a flexible pipe in sheared
current profiles with high mode response.

‘High mode VIV experiment’ was a set of experiments carried out by the
Norwegian Deepwater Programme (NDP), (Braaten and Lie, 2005). Based
on the data from these tests, the orbits of cross sections on the flexible beam
were generated, and then used in forced motion test with a rigid cylinder
with much larger diameter. Forces were measured at the ends of the cylin-
der model.

Particle Image Velocimetry (PIV) technique was applied to identify the vor-
tex pattern in the wake for selected test cases.

Numerical calculation has been performed and results were compared to
observations from forced motion experiments including the use of PIV. The
differences between calculations and observations have been identified and
the reasons of the deviation explained.
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1.3 State of the art

Three main categories of experimental work have been done to study VIV:

1. Free oscillation of rigid cylinders

a. Pure CF: Vikestad (1998), Williamson and Jauvtis (2004)

b. Combined CF & IL: Moe and Wu (1990), Sarpkaya (1995), Williamson
and Jauvtis (2004), Dahl et al. (2006)

2. Forced oscillation of rigid cylinders

a. Pure CF: Sarpkaya (1978), Gopalkrishnan (1993), Morse and Williamson
(2009)

b. Pure IL: Aronsen (2007)

c. Combined CF & IL: Aronsen (2007), Dahl (2008), Soni (2008)

3. Free oscillation of flexible beams: Huse et al. (1998), Chaplin et al.
(2005), Braaten and Lie (2005), Vandiver et al. (2006), Soni (2008)

In order to find the fatigue damage imposed by VIV, three types of models
are developed:

1. Parametric response models: One example is DNV-RP-F105 Free
spanning pipelines (2006), using amplitude envelope curves established
from experiments data and full scale test to estimate fatigue damage
from VIV. The IL response amplitude ratio is mainly a function of
reduced velocity and stability parameter, while for CF direction, the
amplitude ratio is mainly a function of reduced velocity and current
flow velocity ratio.

2. Empirical models: These will use empirical force coefficients in a re-
sponse model of a flexible beam, SHEAR7 and VIVANA are examples
of such programs. Both programs lack coefficients for the combined
CF & IL vibrations and higher order components are not taken into
account.

3. Computational Fluid Dynamics (CFD) is also an important tool. How-
ever, due to high requirement of computing time, CFD still can not
be used extensively for practical VIV predictions.

Figure 1.1 shows the classification of various VIV prediction models based
on the situation 10 years ago.
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2.5 The empirical models

Figure 2.11: Classi�cation of VIV models credited Larsen et al [27].

Figure 2.11 shows the classi�cation of VIV models available to conduct the VIV analy-
sis of slender marine structures [27]. This section will only deal with the empirical force
coe�cient models e.g. VIVANA [28], [48]. The empirical models work in the frequency
domain and the essential features include the hydrodynamic coe�cient models. VIVA[10],
SHEAR7[44] and VIVANA are all based on the excitation zone (excitation coe�cient)
model from Gopalkrishnan.

VIVA follows the iterating procedure to �nd the response frequency, shape and amplitude
in one operation by using a frequency response method combined with complex modes. It
contains an extensive database for di�erent types of cross-sections. The tests behind these
coe�cients include also the single/double/triple frequency oscillations. On the other hand,
SHEAR7 considers uniform cross-sections, which implies modeling limitations. It gives
response at eigenfrequencies for user-de�ned added mass. The Strouhal number should
also be de�ned as input.

All codes in question have been constantly developed and these comments may hence
be incorrect at present.

VIVANA
VIVANA [28], [48] is developed for analysis of VIV and is based on a set of empirical
coe�cients for added mass, external forces and damping. Figure 2.12(a) shows the added

Figure 1.1: Classification of VIV prediction models (Larsen et al., 2001).

Gopalkrishnan (1993) found coefficients from pure CF forced oscillation ex-
periments, and his results have been widely used in the empirical models
for prediction of CF response for slender beams.

It is well known that pure CF response of slender beams will not happen;
there will always be an IL component as well. The underlying assumption
for the use of data from pure CF tests has been that the IL component will
not have a large influence on CF response. This has, however, been proved
to be wrong.

IL oscillations are important due to three effects:

1. IL response for a flexible beam will normally start at a lower flow speed
than CF. Hence, IL motions may contribute significantly to fatigue
accumulation during long periods with low current speed. This effect
is in particular of interest for free spanning pipelines.

2. IL response will have a frequency that is twice the CF frequency and
will hence give a larger number of stress cycles than CF.
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3. Active mode shapes for IL response will normally have higher order
than for CF. Thus IL dynamic bending stresses might become higher
than CF even if the amplitudes are lower.

Pure IL response of flexible beams will take place at the primary mode at
low reduced velocities simply because the frequency of IL forces is twice the
CF frequency. Hence, coefficients for pure IL response are of interest, which
was the motivation for Aronsen (2007). He carried out forced motion tests
on a rigid cylinder with pure IL motions. The coefficients are in particular
of interest for calculating fatigue for free spanning pipelines (Larsen et al.,
2007).

The combination of IL and CF response has attracted increasing interest
during recent years (Larsen and Lie, 2008). It has been observed that CF
motions will change the IL response significantly as compared to pure IL
response. The IL amplitude will increase, and the CF and IL response
frequencies will be decided by an adjustment of their added mass. The in-
teraction is not fully understood, but it is obvious that Aronsen (2007)’s
results are inadequate for predicting IL response when CF response also is
present. Hence, there is a need for coefficients valid for combined IL and
CF response.

To sum up, the interaction between CF and IL VIV and the effect of higher
order components are not fully understood, and the primary goal of the
present research work is to improve the understanding of these phenomena.
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Chapter 2

Problem Description &
Theory

2.1 Environmental load

Wind, wave, current and earthquake are main environment loads on ocean
structures. In this thesis, wave and current loads will be discussed.

2.1.1 Wave

For marine structures, first order wave forces with the period range 3− 24s
are conventionally assumed to have significant energy (Larsen, 2007). If
linear wave theory is applied with respect to infinite water depth, wave pa-
rameters of the two boundaries of this range and a typical wave condition
in North Sea can be calculated, see Table 2.1.

From Table 2.1, we can see, even under extreme conditions with Tw =
24 s, wave velocity decreases to 50% of it at the surface. In shallow water,
wave induced vibrations should be taken into account, while in this thesis,
only risers located in the water with moderate and deep water depth are
considered, and hence wave effects are neglected.

2.1.2 Current

Ocean currents could be generated by many factors, the most common
categories are (10th International Ship and Offshore Structures Congress
(ISSC), 1988):

� local wind generated currents, Uw

9
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Table 2.1: Wave parameters, calculated using linear wave theory.

Tw (wave period) (s) 3 15 24

λ = gT 2
w

2π (wave length) (m) 14 351 900
k = 2π

λ (wave number) (-) 0.448 0.018 0.007

Hmax = λ
7 (m) 2 50 128

Vmax = πHmax
Tw

(m/s) 2.1 6.7 16.8

V100 = Vmaxe
−k100 (m/s) 0.076 1.1 8.4

Hmax = Maximum wave height,
Vmax = Maximum water particle velocity,
V100 = Water particle velocity at 100 m depth.

� tidal currents, Ut

� component generated by Stokes drift, Us

� from major ocean circulation, depending on geographical location, Um

� soliton currents due to internal waves generated by density gradients,
Ud

� component due to set-up phenomena and storm surges, Uset−up

The total surface current velocity U can be expressed as:

U = Uw + Ut + Us + Um + Ud + Uset−up (2.1)

In general, the current velocity varies in space and time, U = U(x, y, z, t).
From the design point of view, it is common to assume the current only
varies with water depth at a given position. (8th International Ship and
Offshore Structures Congress (ISSC), 1982) suggests that the tidal and local
wind components described as:

Ut(z) =

{
Ut(0), for − (h− 10) ≤ z ≤ 0

Ut(0)log10(1 + 9z
10−h), for − h < z < −(h− 10)

(2.2)

Uw(z) =

{
Uw(0)h0+z

h0
, for − h0 ≤ z ≤ 0

0, forz < −h0

(2.3)

DNV-RP-C205 Environmental conditions and environmental loads (2009)
recommends for the tidal component:

Ut(z) = Ut(0)(
h+ z

h
)α, forz ≤ 0 (2.4)
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where Ut(0) and Uw(0) are tidal and wind generated current velocity at
the still water level; Ut(z) and Uw(z) are tidal and wind generated current
velocity at water level z; h is water depth; h0 is the reference depth and
can be chosen as 50 m (10th International Ship and Offshore Structures
Congress (ISSC), 1988); z is vertical coordinate; α is exponent, typically
taken as 1/7.

The current velocity varies with water depth, and this variation depends
on the local oceanographic climate, the vertical density distribution and
the water flux. Deep water profiles could be complicated, as the direction
can even change 180 degrees with depth (DNV-RP-C205 Environmental
conditions and environmental loads, 2009). In open sea, the tidal velocity
may be up to ≈ 0.5 m · s−1. From the design point of view, a typical total
current velocity in the North Sea is 1 m/s (Faltinsen, 1990).

2.2 Structure

Slender structures are common structures in offshore industry, such as risers
of various utilities and pipelines used for transportation. Figure 2.1 shows
different types of riser in offshore structures.

Structure parameters

Structure parameters describe cylinder geometry, density and damping. The
following parameters have been used.

Length to diameter ratio

This is the ratio of cylinder length (L) to its diameter (D) and it provides
a measure of the geometric shape:

L

D
(2.5)

As the oil and gas industry moves towards deep sea, the length of risers
varies from hundreds to thousands of meters. The diameter depends on the
riser type, the typical diameter of different type risers is shown in Table
2.2. Generally, the riser has a diameter less than one meter, which gives a
length-to-diameter ratio up to O(104).

Still water Eigenfrequency
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Figure 2.1: Examples of metallic riser configurations and floaters, from
DNV-OS-F201 Dynamic risers (2010).
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Table 2.2: Typical riser diameters (Larsen, 2008).

Riser type Typical diameter (m)

Drilling riser 0.55
Production riser 0.22

Export riser 0.30
Workover riser 0.18

An eigenmode may be expressed by:

φ(x) = φ0sin(
nπ

l
x), n = 1, 2, 3, . . . (2.6)

where l is the riser length and φ0 is the amplitude.

For a tension dominated beam with moment-free end support in both ends,
the eigen-frequency of the nth mode is:

ωs,n =
nπ

l

√
T

m
, n = 1, 2, 3, . . . (2.7)

where T is the tension in the string, and m is cylinder mass per unit length.

For a bending dominated beam, the eigen-frequencies are:

ωb,n =
n2π2

l2

√
EI

m
, n = 1, 2, 3, . . . (2.8)

where EI is the beam stiffness.

Since both beams have the same mode shapes, taking both tension and
bending into account, Eqn. (2.7) and (2.8) become:

ωbs =
nπ

l

√
T

m
+
n2π2

l2
· EI
m
, n = 1, 2, 3, . . . (2.9)

Mass ratio

The ratio of the cylinder mass per unit length to the mass of fluid it displaces
is called the mass ratio:

m̄ =
m

π
4ρD

2
(2.10)

where m is structural mass, ρ is density of water.
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2.3 Disturbed flow and vortex formation

2.3.1 Boundary layer

This discussion is based on Sumer and Fredsøe (1997) and Zdravkovich
(2002).

As a flow passes a stationary circular cylinder, or a circular cylinder moves
in a fluid at rest, the flow around the surface of the cylinder and in the wake
changes with increasing relative velocity between the fluid and the cylinder.

The disturbed flow can be roughly divided into three regions, shown in
Figure 2.2:

1. Boundary layer: Two layers attached to the surface of the cylinder.
The thickness of the boundary layers δ is very small compared with D.
For example, the thickness of laminar boundary layer is δ

D = O( 1√
Re

),

which δ/D � 1 for Re larger than O(100). Due to the small thickness,
the velocity increases from zero on the surface to free stream velocity,
which causes a high velocity gradient normal to the cylinder surface,
see Figure 2.2b. So, for a Newtonian fluid, the shear stress must be
considered here.

2. Shear layer: The boundary layers around the cylinder are subjected
to a favourable pressure gradient downstream followed by a small re-
gion of adverse pressure gradient. The boundary layers will separate
due to this gradient imposed by the divergent geometry of the flow
environment at the rear side of the cylinder. The point where the
separation of boundary layer happens is named the separation point,
see Figure 2.2a. The separated boundary layers continue to develop
downstream and then form shear layers.

3. Wake: After the separation point, the wide downstream region of
separated flow is called wake.

2.3.2 Vortex formation and flow regimes

A non-dimensional parameter, Reynolds number (Re), defined by the ratio
of inertial forces to viscous forces was first introduced by Stokes (1851), but
then Reynolds (1883) popularized it, so it was named as Reynolds number.
In the case of flow past a circular cylinder, it is defined as:
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  (a) Definition sketch of flow re-
gion

 

  (b) Detailed picture of flow near the separa-
tion

Figure 2.2: Flow regime definition sketch (Sumer and Fredsøe, 1997).

Re =
Inertia force

V iscous force
=
UD

υ
(2.11)

where U is the flow velocity, υ is the kinematic viscosity.

Vortex formation and shedding

When Re > 5, boundary layers will separate due to the large adverse pres-
sure gradient at the rear side of the cylinder and shear layers are formed, see
Figure 2.2b. Before separation, the boundary layers contain a large amount
of vorticity, which is transferred into the shear layers formed downstream
of the separation point. The shear layers will roll up into vortices, with the
same direction as the vorticity in the boundary layers.

Sumer and Fredsøe (1997) describes the vortex shedding process. As Re
increases, the formed vortices become unstable when exposed to small dis-
turbance for Re > 40. The vortex at one side of the cylinder will grow
larger than the other side. Since these two vortices have opposite vortic-
ity direction, the inner sides of these will have the same velocity direction,
and this velocity vector drives Vortex B across the wake, see Figure 2.3a.
Furthermore Vortex B will cut off the vorticity supply of Vortex A from
the boundary layer. At this instant, Vortex A is shed and convected down-
stream to the wake.

A new vortex (Vortex C) will be formed after shedding of Vortex A, and
vortex B will act the same way as Vortex A. The supply of vorticity will be
cut off by Vortex C and it is shed into the wake, see Figure 2.3b.

Vortices shed alternatively in this way and a vortex street formed in the
wake, which is called von Kármán vortex street.
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(a) Prior to shedding of Vortex A,
Vortex B is being drawn across
the wake

  

(b) Prior to shedding of Vortex B, Vortex
C is being drawn across the wake.

Figure 2.3: Vortex shedding process (Sumer and Fredsøe, 1997).

Vortex shedding pattern

Figure 2.4 shows the sketches and vorticity field of different vortex shed-
ding modes. The classification and sketches given herein are defined by
Williamson and Roshko (1988), Williamson and Govardhan (2004), Jauvtis
and Williamson (2004) and Morse and Williamson (2009).

� 2S mode: there is only one vortex shedding into wake in each half
cycle.

� 2P mode: there is one pair of vortices shedding into wake every half
cycle.

� P + S mode: a pattern where in each cycle a vortex pair and a single
vortex are shed.

� 2Po mode: in 2P mode, a secondary vortex in each pair of vortices is
much weaker than the primary (first) vortex.

� 2P+2S mode: comprises two vortex pairs forming at the top and bot-
tom of the body trajectory as in the 2P mode, but with the inclusion
of single vortices between each vortex pair.

� 2T mode: comprises a triplet of vortices being formed in each half
cycle.

� 2C mode: each half cycle comprises two co-rotating vortices formed.
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Mode Sketch Vorticity field 

2S 
 

 

2P 

 
 

P+S 

 

 

 

2PO 

  

2P+2S 

 

 

2T 

  

2C 

  

  
Figure 2.4: Sketches and vorticity field of various vortex shedding modes,
Williamson and Roshko (1988), Williamson and Govardhan (2004), Jauvtis
and Williamson (2004) and Morse and Williamson (2009).
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Flow regimes

The detailed flow regimes according to different Re number is shown in Fig-
ure 2.5.

The Re numbers used in this thesis is in the subcritical zone, which is
300 < Re < 3 · 105. Here, the wake is completely turbulent, while, the
boundary layers around the cylinder surface still remain laminar over the
whole subcritical range.

The division of Reynolds number is not definite. Blevins (1990) decreased
the subcritical range to 300 < Re < 1.5 ·105, and he stated that the laminar
boundary layers separate at about 80° aft of the leading edge of the cylinder
and that the vortex shedding is strong and periodic in this regime.

The range 1.5 · 105 < Re < 3.5 · 106 is called transitional range. In this
range, the cylinder boundary layer becomes turbulent, and the separation
points move aft to 140°. Regular and stable vortex shedding is disturbed
by the laminar separation bubbles and 3D effects, consequently causing a
broader spectrum of shedding frequencies for smooth surface cylinders.

Pure CF VIV experiments indicate that both response amplitudes and hy-
drodynamic coefficients approaches stable values inside the subcritical flow
regime when Re exceeds 1.5 ·104−2.0 ·104. For Re below 1.5 ·104 the hydro-
dynamic coefficients are significantly influenced by varying Re (Sarpkaya,
2004).

In practice, offshore structures experience high Reynolds number flow. For
instance, Re for a current with velocity of 1 m/s past a riser with diameter
0.5 m is approximately 5 · 105.

2.4 Vortex induced vibrations

2.4.1 Introduction of VIV

The surface force may be divided into two orthogonal components: a pres-
sure component and a viscous component. By integrating these forces along
the surface, the total fluid force is found. When considering VIV, pressure
forces are prominent, and viscous forces are neglected. Since the vortices
shed alternatively from each side, the resulting force on the cylinder oscil-
lates. The shedding of vortices generates time varying pressure over the
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Figure 2.5: Description of flow regimes (Sumer and Fredsøe, 1997).



20 Problem Description & Theory

Figure 2.6: A sequence of simultaneous surface pressure fields and wake
forms at Re = 112, 000 for approximately T/3 of vortex shedding (Drescher,
1956).

cylinder, see Figure 2.6. By integrating the pressure on the cylinder sur-
face we may find the force in CF (force perpendicular to the flow) direction
and drag force in IL (force parallel to the flow) direction. Obviously, the
lift force oscillates at the vortex shedding frequency, while the drag force
oscillates at twice the vortex shedding frequency.

2.4.2 Dimensionless parameters

In order to describe the VIV phenomenon, various dimensionless parame-
ters are used. Definitions are given in Halse (1997), Vikestad (1998) and
Skaugset (2003). The dimensionless parameters used in this thesis are de-
fined below.

Flow parameters

Flow parameters are used to describe flow conditions. In addition to Re
given by Eq.(2.11), there is another parameter:

Strouhal number, St

St is the dimensionless proportionality constant given as the ratio between
the predominant frequency of vortex shedding and the diameter of cylinder
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Figure 2.7: Strouhal number-Reynolds number relationship for circular
cylinders (Blevins, 1990).

divided by the free stream velocity:

St =
fstD

U
(2.12)

where fst is the vortex shedding frequency of a fixed cylinder in water, which
means a full cycle of vortex shedding process; U is the free stream velocity.

The Strouhal number is a function of Reynolds number for any given cross-
section, Figure 2.7 shows its variation for a circular cylinder. For a circular
cylinder, St is approximately constant at 0.2 for a wide range of Reynolds
number.

Keulegan-Carpenter number, KC

This number consider a stationary structure in a oscillating flow, and it is
defined as:

KC =
Um
fD

=
2πUm
ωD

=
UmT

D
(2.13)

where Um is amplitude of flow velocity, and f is the oscillation frequency (for
an oscillating structure in calm water, Um is the structure motion velocity
and f is the structure oscillating frequency). Large KC number defines a
condition that is close to steady state current.
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Turbulence intensity

A steady, turbulent flow u(x, y, z, t) can be described as a sum of time
average component ū and fluctuating component u′(t) (White, 2003):

u(t) = ū+ u′(t) (2.14)

For flows which contain a periodic component, then

u(t) = ū+ ũ+ u′(t) (2.15)

where ũ(x, y, z, t) = 1
N

N∑

j=1

u(x, y, z, t+ jT )− ū(x, y, z).

It is important to distinguish time average turbulence intensity and phase
average turbulence intensity (time dependent) (Nielsen, 1992). Time av-
eraged turbulence intensity is defined as root-mean-square of fluctuating
component:

u′rms = ¯(u′2)
0.5

(2.16)

While the phase average turbulence intensity (time dependent) is ˜(u′2)
0.5

.

It can be normalized by free stream velocity (Blevins, 1990):

u′rms
U

(2.17)

Interaction parameters

The fluid-structure interaction parameters are defined in the following:

Amplitude ratio

The amplitude ratio is used to describe the oscillation amplitude in forced
oscillation experiments and response amplitude in free vibration experi-
ments. The subscript indicates the direction of the oscillation.

(
A

D
)IL/CF (2.18)

Oscillation frequency, fosc

If the oscillation is one DOF in IL direction, the oscillation frequency is
fosc,IL, as long as there is CF component, the oscillation frequency is fosc,CF .
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Non-dimensional frequency, f̂

The non-dimensional frequency is defined as:

f̂ =
foscD

U
(2.19)

For a riser with uniform cross section shape exposed to sheared current, as-
suming the whole riser has unique response frequency, the non-dimensional
frequency increases with decreasing current velocity.

Reduced velocity, Ur

The reduced velocity is defined as:

Vr =
U

f0D
(2.20)

where f0 is the natural frequency of the cylinder in still water. This defini-
tion is in consist with (Aronsen, 2007; Dahl, 2008). In other literatures, it
is also named as ‘Velocity ratio’, U∗ (Jauvtis and Williamson, 2004), other
symbols such as Vr0 (Wu, 2011), Ur (Vikestad, 1998; Soni, 2008)

In order to compare with other results, we define ‘true reduced velocity’
as the ratio between the path length in flow direction per cycle and the
cylinder diameter by using oscillation frequency:

Ur =
Path length per cycle

Diameter
=
UTosc
D

=
U

foscD
(2.21)

same definition but with other symbols are: Ur,true (Vikestad, 1998), Vr
(Wu, 2011).

Relative strain

Based on the assumption that a flexible beam has sinusoidal modes in both
directions, and the order of dominating modes for IL is twice the order for
CF response, which is a tension dominated pipe (see Eq.2.7), the relative
bending strain from CF and IL response can be calculated as (Soni et al.,
2009):

εIL
εCF

=
4AIL/D

ACF /D
= 4

AIL
ACF

(2.22)

where εIL and εCF are bending strain in IL and CF directions.
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Correlation of the wake

In the turbulent wake regime (Re > 200), vortex shedding doesn’t occur
uniformly, but in cells along the length of the cylinder. The average length
of the cells (Lc) is listed in Table 2.3. The average length of vortex cells
increases considerably when the cylinder is oscillated in the cross-flow di-
rection.

Table 2.3: Average vortex cell lengths vs. Reynolds number of smooth
cylinders, from Sumer and Fredsøe (1997).

Re Lc Source

40 < Re < 150 (15-20)D Gerlach and Dodge (1970)
150 < Re < 105 (2-3)D Gerlach and Dodge (1970)
1.1 · 104 < Re < 4.5 · 104 (3-6)D El Baroudi (1960)
≥ 105 0.5D Gerlach and Dodge (1970)
2 · 105 1.56D Humphreys (1960)

The lift force acting on a section of cylinder with unit length can be given
by:

dF (t) =
1

2
ρCLU

2Dsin(2πfstt+ α) (2.23)

where CL is the lift coefficient, which has to be found from experiments.
Sarpkaya and Isaascon (1981) reported a value of 1.35; while Ottesen Hansen
(1982) recommended 0.9. CL varies with Re and oscillation amplitude of a
non-fixed pipe (Vandiver, 1993). α is a phase angle that will vary along the
cylinder. It is crucial for calculating the resulting force on a long cylinder
(Larsen, 2007).

To describe the variation of phase angle, the concept of correlation length
is introduced here (Ottesen Hansen, 1982; Larsen, 2007). Considering the
forces acting at two positions along the pipe, see Figure 2.8, the cross cor-
relation function is assumed to be exponential:

rij(|xi − xj |) = exp[−2|xi − xj |
lc

] (2.24)

where lc is the correlation length.



2.4. Vortex induced vibrations 25

                              

   ሻݐ௝ሺܨ               ሻݐ௜ሺܨ                                                  

 ݔ                                                     

ݔ                         ൌ ௜ݔ                    0 ௝ݔ                 ݔ                      ൌ ݈ 

Figure 2.8: Correlation between Fi and Fj .

The resulting force amplitude Fa on the cylinder shown in Figure 2.8 is
given by:

Fa =

√∫ l

0

∫ l

0
dFa(x1)dFa(x2)r12(|xi − xj |)dx1dx2 (2.25)

where r12 is given by Eq. (2.24) and dFa(x) = 1
2ρCL(x)U(x)2D(x).

Assume the flow is uniform and the cylinder has constant diameter, the
force is:

Fa = dFa

√∫ l

0

∫ l

0
exp[−2|xi − xj |

lc
]dx1dx2 (2.26)

The total force will be time varying:

F (t) = Fasin(2πfvt) =
1

2
ρC∗LU

2D (2.27)

where C∗L is called effective lift coefficient and it can be measured from
experiments.

C∗L = CL

√∫ l

0

∫ l

0
exp[−2|xi − xj |

lc
]dx1dx2 (2.28)

Once CL is known and C∗L is measured, lc can be found by using Eq. (2.28).
For a fixed cylinder, the correlation length is seen to be 1D to 5D.

2.4.3 Higher order motions/forces

Jauvtis and Williamson (2004) found a clear force component at 3 times of
the dominant frequency in addition to the fundamental frequency when the
amplitude in CF increased, which is attributed to the ‘2T’ vortex shedding
mode, see Figure 2.4.
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Based on the experiments at Lake Seneca and Gulf Stream, Vandiver et al.
(2006) found that the fatigue damage caused by the higher harmonic re-
sponse component could be twenty to forty times the fatigue damage of the
primary frequency in CF direction.

Aronsen (2007) compared experimental results of three different rigid cylin-
der forced motion test (pure CF, pure IL, combined IL and CF) with har-
monic motions, he concluded that higher order harmonic forces has close
relation with IL oscillations. Relative amplitude of higher order harmonic
CF forces to the first harmonic increases with increasing IL oscillation am-
plitude. This is also verified by Dahl (2008).

Modarres-Sadeghi et al. (2010) developed a method to estimate the fatigue
life of risers continuously along the span direction of the riser without in-
troducing more instruments mounted on the risers. The estimation of NDP
tests showed that higher harmonic strain and acceleration components are
important, a large 3rd harmonic contribution and sometimes a 5th harmonic
are observed for the majority of test cases: for linear sheared flow cases, the
higher harmonics are about 1/3 of total; while for the uniform flow cases,
they are around 50% of total. This calls for including higher harmonic
components when performing fatigue damage calculations.

2.4.4 Lock in

‘Added mass’ is defined as the hydrodynamic force component in phase with
the acceleration of the cylinder in IL or CF direction. In a given flow condi-
tion, varying added mass adjusts the eigenfrequency of the cylinder, causing
oscillation frequency fosc to become a compromise between f0 (eigenfre-
quency in still water) and fst (vortex shedding frequency of fixed cylinder),
confer Larsen (2000). Consequently, in actual flow condition, fosc = fv, and
it is also eigenfrequency of the cylinder, (Sarpkaya, 1995), this phenomena
is called ‘Lock-in’. The influence of added mass on the cylinder depends on
the dry mass of the cylinder, as for two cylinders with the same dimensions,
the lighter one will suffer more influence from added mass than the other,
see Figure 2.9.
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Figure 2.9: Response amplitude vs reduced velocity curve (Larsen, 2000).

2.4.5 Drag amplification

The average drag coefficient is defined as:

CD =
FIL,mean
1
2ρDLU

2
=

lim
k→∞

∫ t+kT
t FIL(τ)dτ

kT
1
2ρDLU

2
(2.29)

where FIL,mean is the average IL force.

It is known that average drag coefficient of a oscillating cylinder is larger
than that of a stationary cylinder, and that it is a function of transverse
amplitude. Skop et al. (1977); Vandiver (1983); Blevins (1990) suggested
amplified average drag coefficient taking into account of transverse ampli-
tude:

CD|ACF>0

CD|stationary
=





1 + 1.16[(1 + 2ACFD ) f0

fv
− 1]0.65, Skop et al. (1977)

1 + 1.043(2
ACF,rms

D )0.65, Vandiver (1983)

1 + 2.1ACFD , Blevins (1990)

(2.30)

2.4.6 Reynolds number effect

Norberg (2003) reviewed previous research on fluctuating lift force acting on
a stationary circular cylinder in CF direction, covering a range of Re from
47 to 2×105, from onset of vortex shedding to almost the end of subcritical
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flow regime (see Figure 2.5).

Moeller and Leehey (1984) (Tu ¼ 0:9%) and Mohr (1981) (Tu ¼ 1:0%). A summary of previous laboratory

measurements of both sectional and total lift fluctuations, for Reo3� 105 and Tup2%; is found in Table 1; numerical
simulations (2-D/3-D) are summarized in Appendix B.

The fluctuating lift on a finite cylinder segment is dependent on the degree of three-dimensionality in the shedding

flow close to the cylinder. One measure of this three-dimensionality is the spanwise or axial correlation length scaled

with the diameter, L=d (Section 2.1). The scarceness of data for this quantity is even larger than for the r.m.s. lift

coefficient (Ribeiro, 1992). In fact, up to now, there are no reliable measurements of L=d for Reo2� 103: In an attempt
to bridge this gap of information, a near-wake spanwise correlation study was carried out, extending down to Re ¼ 230

and using hot-wire anemometry (Section 5.2).

Knowledge of spanwise correlation also has a great significance for vortex-induced sound generation (Æ olian tones)

and for the important question of the necessary spanwise computational dimension to capture significant flow-dynamic

features in 3-D numerical simulations. A compilation of L=d versus Re with data from previous investigations

together with present results is shown in Fig. 3. As before, the solid line refers to empirical formulas (Appendix A).

For turbulent shedding conditions (Re > 2602300) and with increasing Re there is a general downward trend in L=d

versus Re: However, there is a local maximum at ReC5� 103; previously noted by Norberg (1987a); see also

Section 5.3, which coincides with the Reynolds number with inception of low-spectral-quality shedding (Fig. 1). The

critical value of ReC5� 103 has been suggested in Norberg (1998) to be due to a spanwise resonance phenomenon in
between vortical structures of mode B (Williamson, 1988b, 1996b) and shear-layer vortices (Bloor, 1964; Wu et al.,

1996).

The main objective of this work is to make an overview of the fluctuating lift acting on a circular cylinder, especially

regarding the influence of Reynolds number and the relation between fluctuating lift and flow features in the near-wake

region.

2. Fluctuating lift

The unsteady force on a segment having a finite spanwise (axial) length cc is the integrated result from a temporal–

spatial loading on that section. The time-averaged flow is assumed to be homogeneous in the spanwise direction, at least

within a significant central spanwise region. This central flow is supposed to be two-dimensional in the mean sense and

also independent of the actual spanwise length c of the cylinder, i.e., independent of the aspect ratio c=d: In laminar
shedding flows this might require some slight end modifications, see Williamson (1996a) for a review. At higher

Reynolds numbers, in transitional and turbulent shedding flows, the necessary minimum aspect ratio varies with

Reynolds number which in turn also, at least to some extent, is dependent on the end conditions (West and Apelt, 1982;

Szepessy and Bearman, 1992; Szepessy, 1993; Norberg, 1994). In Keefe (1962) and Szepessy and Bearman (1992), using

100 1000 E+4 E+5
Re

1

10

Λ
/d

Fig. 3. Normalized spanwise correlation length versus Reynolds number: &; Leehey and Hanson (1971); ~; Bearman and Wadcock
(1973); �; Kacker et al. (1974);B; Bruun and Davies (1975);J; Sonneville (1976); .; Novak and Tanaka (1977);X;Moeller (1982);
þ; Szepessy (1994); n; Iida et al. (1997); \; d ¼ 3mm; K; d ¼ 6mm; m; d ¼ 40mm; ——, formulas in Appendix A.

C. Norberg / Journal of Fluids and Structures 17 (2003) 57–96 61

Figure 2.10: Normalized spanwise correlation length versus Re: 2, Leehey
and Hanson (1971); ×, Kacker et al. (1974); 4, Iida et al. (1997); 3, Brunn
and Davies (1975); H, Novak and Tanaka (1975); #, Sonneville (1976);
�, d = 3mm;  , d = 6mm; N, d = 40mm; (Norberg, 2003).

Figure 2.10 shows the normalized spanwise correlation length vs Re. It
can be seen that there are two peaks in the plot. The first one hap-
pens at Re ' 300, where Λ/d ≈ 30. The second peak appears at around
Re = 5× 103, where Λ/d ≈ 15 (Norberg, 2003).

Morse and Williamson (2009) compared contour plots of fluid force on the
plane of normalized amplitude and wavelength (see Figure 2.15) at two
Reynolds number (4000 and 12000). The only difference is that the zero-
excitation contour in the 2PO regime has a distinctly higher amplitude at
Re = 12000. Both the fluid-force regimes and the shape of fluid excitation
contour are similar. But still, more evidence is needed to conclude that
results from at these two Reynolds number are valid through the whole
Reynolds number range.
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2.5 Experimental methods

The control equation of a simple one degree-of-freedom dynamic system is:

Mẍ+ Cẋ+Kx = FH (2.31)

where M is the oscillating structure mass, C is damping coefficient, K is the
stiffness, FH is the hydrodynamic force, x is the displacement.

Given that the force FH is harmonic, the response will also be harmonic:

x = Asin(ωt) (2.32)

ẋ = ωAcos(ωt) (2.33)

ẍ = −ω2Asin(ωt) (2.34)

where A is oscillating amplitude, ω is circular oscillation frequency, and t is
time.

The total hydrodynamic force FH which is the pressure resultant on the
surface of the model is defined as (Larsen, 2000):

FH = FH0sin(ωt+ φ)

= FH0sin(ωt)cos(φ) + FH0cos(ωt)sin(φ)
(2.35)

or:

FH = FAsin(ωt) + FEcos(ωt) (2.36)

where FH0 is the amplitude of hydrodynamic force, φ is the phase angle be-
tween hydrodynamic force and the motion. The first term in the right side in
Eq. (2.36) is the added mass force FA and the second is excitation force FE .

Insert Eqs. 2.32 to 2.36 into Eq.2.31, than it changes to:

M [−ω2Asin(ωt)] + C[ωAcos(ωt)] +K[Asin(ωt)]

=FH0sin(ωt+ φ)
(2.37)

or:

M [−ω2Asin(ωt)] + C[ωAcos(ωt)] +K[Asin(ωt)]

=FAsin(ωt) + FEcos(ωt)
(2.38)
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2.5.1 Rigid cylinder free vibration experiments

In free vibration experiments, the energy is balanced at steady state, so the
damping term and excitation force in Eqn. 2.38 disappear:

M [−ω2Asin(ωt)] +K[Asin(ωt)] = FAsin(ωt) (2.39)

then moving the added mass force into the left side:

(M +MA)[−ω2Asin(ωt)] +K[Asin(ωt)] = 0 (2.40)

CF free vibration

Free vibration of an elastically mounted rigid cylinder has been studied
by several researchers, and many fundamental topics are discussed in the
comprehensive reviews (Sarpkaya, 1979; Bearman, 1984; Williamson and
Govardhan, 2004).

Feng (1968)’s experimental results, in which the mass ratio is as high as
m∗ ≈ 250 were widely used, because the experiment was performed in the
air. Two response branches (initial branch and lower branch) are clearly
seen in Feng (1968)’s high mass ratio experiments, see Figure 2.11, and
there is a hysteretic mode between them.

From the ocean engineering point of view, however a much lower mass ratio
is encountered, normally of the order of 1 (see section 2.2).

Khalak and Williamson (1999) performed similar type experiment in wa-
ter with a much lower mass ratio (m∗ = 10.1) than Feng (1968), and they
observed another response branch, which is called ‘upper branch’. From
Figure 2.11 it is seen the transition between the initial and upper branches
shows a hysteresis, while the transition from the upper branch to the lower
branch shows an intermittent switching (Morse and Williamson, 2009).

Response amplitude results from pure CF free vibration experiments done
by Vikestad (1998) are shown in Figure 2.12. It shows that VIV takes place
for a wide range of reduced velocity for this case, this can also be seen in
Figure 2.11. While the mass ratio in Vikestad (1998) is 1.664, the reduced
velocity range for a higher mass ratio cylinder will be narrower, see Figure
2.9.
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Figure 2.11: Peak amplitude ratio plot versus reduced velocity. It shows
clearly the three response branches (initial, upper and lower). This low
m∗ type of response (m∗ = 10.1) is distinct from Feng (1968)’s high m∗

type (m∗ = 248), in which there are only two branches (initial and lower)
(Khalak and Williamson, 1999).

IL free vibration

Johansen (2004) and Huse (2004) performed pendulum tests in IL direction
to extract hydrodynamic force coefficients from the transient phase, both
excitation tests and decay tests were carried out.

Combined IL & CF free vibration

Moe and Wu (1990) conducted combined IL and CF free vibration experi-
ments at Re = 5, 000 ∼ 45, 000, and compared with pure CF free vibration
experimental results. Larger CF response amplitudes are seen in two de-
grees of freedom than pure CF experiments. In order to compare the free
vibration of a cylinder with forced vibrations, the true reduced velocity (or
non-dimensional frequency) must be kept the same between them.
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Figure 5.12: Displacement vs. reduced velocity

the still water natural frequency, is that this will be the most correct one for a partly excited

cable or riser. The results given here are always presented using reduced velocity based on the

still water natural frequency, f0, if not otherwise noted. ( Moe and Wu (1989) introduced the

\true reduced velocity", where they used the observed oscillation frequency.) Figure 5.12 shows

the cylinder displacement as a function of reduced velocities. Results from the three di�erent

tests are denoted \�rst", \second", and \third". Figure 5.12(a) shows the displacement vs.

the reduced velocity, while Fig. 5.12(b) uses the \true reduced velocity". As one can see, the

discrepancies are larger when using the \true reduced velocity". From Fig. 5.12(a) we see that

there is a small di�erence between the three tests for Ur < 6. The peak displacement A=D � 1:15

occurs at Ur � 6. For Ur from 4 to 5 the displacement increases from 0.2 A/D up to nearly the

maximum response. For Ur from 6.5 to 10 the displacement is reduced nearly linearly. From 10

to 13 the amplitude ratio is nearly constant 0.5. In Fig. 5.12(b) the reduced velocity range is

reduced from 3|13 to 5|8. At Urtrue = 5.5 there is a instantaneous jump in amplitude response.

We also note that the range for maximum response is only from 5.5 to 6.5. Scale e�ects in the

two plots may make the discrepancies more visual in Fig. 5.12(b). An other way of presenting

the \true reduced velocity" results, are to introduce the non-dimensional frequency,

f̂ =
foscD

U
(5.32)

The non-dimensional frequency is the inverse of the \true reduced velocity", and shows the

actual Strouhal number. In Fig. 5.13 the displacement is plotted as function of f̂ . This �gure

can be compared to the forced oscillation test conducted by Gopalkrishnan (1993) as his PhD

work. The actual plot is of the lift coeÆcient in phase with velocity, as a function of f̂ , and is

also found as Fig. 3 in Gopalkrishnan, Grosenbaugh, and Triantafyllou (1992). The line marking

zero lift has the same shape as Fig. 5.13. If there was absolutely no structural damping of the

apparatus, the lines giving the displacement should more or less correspond to zero lift.

Figure 2.12: CF response amplitude results from Vikestad (1998)’s free
vibration experiments.

In Sarpkaya (1995)’s experiments, two ratios between IL and CF natural
frequency were applied (1:1 and 2:1), and he also observed a different CF
response amplitude in two degrees of freedom than pure transverse experi-
ments. When the natural frequency ratio was equal to one, a much larger
(A/D)CF and a shift of peak response to higher reduced velocity were seen.
The CF amplitude response curve had two peaks at different reduced veloc-
ities.

Jauvtis and Williamson (2004) conducted a series of combined IL & CF
free vibration tests over a mass ratio range 1 < m∗ < 10 at 1, 000 < Re <
15, 000. A main difference from Moe and Wu (1990) and Sarpkaya (1995)
was that the mass and natural frequencies in IL and CF directions were
exactly the same. One finding is that when 6 < m∗ < 25, IL motions al-
most have no influence on the body dynamics, response branches and wake.
However, when m∗ < 6, a new CF amplitude response branch which is
called ‘super-upper’ branch appears together with significant IL motion, see
Figure 2.13. The ACF can be as high as 1.5D, and ‘2T’ vortex shedding
mode was found (Figure 2.4).

Dahl (2008) tuned the natural frequency ratio between CF and IL from 1:1
to 2:1 in his free vibration experimental results, and the phenomenon such
as large CF response amplitude, drag amplification were showed. Large
3rd harmonic force component in CF direction was highlighted. He also
observed periodic orbital motion at a natural frequency ratio 1.9, while
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Figure 5. Response of the system for ‘low’ mass ratios (m∗ =2.6). Response amplitudes (A∗
X
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Y ) are plotted versus normalized velocity (U ∗). The overlap
regime between the super-upper branch (SU) and the lower branch (L) exhibits a hysteresis,
indicated by the arrows. In these plots, (m∗ + CA)ζ =0.013.

Although the super-upper branch will be shown later to correspond with a vortex
mode different from the 2P mode, it is interesting that it starts at a (low-amplitude)
2P boundary, and also terminates at a (high-amplitude) 2P mode boundary in the
Williamson–Roshko map (after which the vortex formation desynchronizes from the
body motion in this map). The significance of the super-upper branch for X,Y
vibrations terminating at the 2P boundary (relevant to Y -only motion), is not clear,
and might represent a coincidence. Another surprising feature of such a presentation
is the remarkably large region of overlap between the super-upper and lower branches,

Figure 2.13: Combined IL and CF response for low mass ratio (m∗ = 2.6).
Response amplitudes ans transverse frequency are plotted with reduced ve-
locity. The overlap regime between the super-upper branch and the lower
branch exhibits a hysteresis (Jauvtis and Williamson, 2004).
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dual lock-in showed at a ratio equals to 2.

2.5.2 Rigid cylinder-forced motion experiments

By reorganizing the terms in Eq. 2.37, we have:

M [−ω2Asin(ωt)]− FH0sin(ωt+ φ) = Measured force (2.41)

(M +MA)[−ω2Asin(ωt)]− FEcos(ωt) = Measured force (2.42)

In Eq. (2.42), the hydrodynamic force was decomposed into two parts, one is
in phase with acceleration (added mass), the other is in phase with velocity
(excitation force).

Pure CF harmonic forced motion

Many researchers put their efforts into experiments with a cylinder under-
going forced motions perpendicular to the incoming flow (CF). This work
can be found as early as Bishop and Hassan (1964). They found a phase
shift of lift force when the vibration takes place near Strouhal frequency,
and that the wake can both excite and damp the oscillation.

Williamson and Roshko (1988) tried to establish an amplitude-wavelength
map that connects the response and vortex shedding mode, vortex shedding
modes such as ‘2S’ and ‘2P’ were named.

The most widely used hydrodynamic coefficient database for VIV predic-
tion is given by Gopalkrishnan (1993). He carried out a series of pure CF
forced oscillation tests on a rigid cylinder at a fixed Re = 10, 000. Figure
2.14 shows the contour plots of hydrodynamic excitation and added mass
coefficients that he established.

Morse and Williamson (2009) conducted forced motion experiments with
prescribed pure CF oscillation over a wide regime of amplitudes and fre-
quencies. High-resolution contour plots of fluid force in the plane of nor-
malized amplitude and wavelength at two different Re number (4,000 and
12,000) were produced, see Figure 2.15. A new vortex shedding mode ‘2PO’
which is similar to 2P mode but with a weaker second vortex of each pair
was observed. The force-contour data make it easier to predict the response
of a freely vibrating rigid cylinder.
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(a) Pure CF excitation coefficients

(b) Pure CF added mass coefficients

Figure 2.14: Contour plots of excitation coefficients and added mass coeffi-
cients from pure CF force oscillation tests at Re = 10, 000 by Gopalkrishnan
(1993).
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(for zero damping) as a function of the Reynolds number, compiled for free vibration
experiments by Govardhan & Williamson (2006),

A∗
PEAK = log (0.41Re0.36), (A 2)

Figure 2.15: Contours of (a) the force in phase with velocity, normalized
‘fluid excitation’, and (b) the effective added mass, for Re = 12, 000. Bound-
aries between modes are indicated by the dashed lines. Lack of data in the
upper left corner. Contour interval is 0.2 for (a) and 0.1 for (b). From
Morse and Williamson (2009).
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Pure IL harmonic forced motion

Over decades, few researchers has paid attention to vibration in the direc-
tion of free stream, Mercier (1973) found the drag coefficients of a cylinder
oscillating in line with steady flow for varying Re, Vr and KC numbers. The
conclusion was at reduced velocities lower than 3, the drag coefficient was
strongly dependent on KC, while as reduced velocities increased, the drag
coefficient was less and less dependent on KC.

Aronsen (2007) performed forced motion experiment on a cylinder with 10
cm diameter and 2 m length with pure IL motions at Re = 24, 000. Contour
plots of excitation coefficients and added mass coefficients were created, see
Figure 2.16. His results are used to predict VIV of free span pipelines at
low reduced velocity where response in CF direction is not seen. However,
considering the response with both IL and CF directions, the amplitude
of IL is much larger than pure IL response. This indicates that Aronsen
(2007)’s coefficients database is not valid for combined IL and CF VIV
prediction.
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6.2. HYDRODYNAMIC FORCE IN IL DIRECTION 71
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Figure 6.5: Contour plot of added mass coefficient in IL direction. The thick black line
is the zero contour of the dynamic excitation coefficient, Figure 6.4, included to illustrate
the excitation regions

ratio of 0.13, while the 2nd instability region ranges from 0.27 to 0.375 with a maximum
amplitude ratio of 0.11.

Added mass coefficient, Ca,IL. Figure 6.5 shows a contour plot of the added mass
coefficient which is based on the force in phase with acceleration as shown in Eqn. (4.11).
The thick black line shows the zero contour of the dynamic excitation coefficient and has
been included to indicate the two excitation regions. The figure shows that the added mass
coefficient is mainly dependent on the nondimensional frequency and less influenced by the
amplitude. This is especially the case if we look at the added mass coefficient along the
zero contour, which can be considered as an estimate of the oscillation amplitude for free
vibrations.

Drag coefficient, CD Contours of the drag coefficient are shown in Figure 6.6. Also
in this figure the zero contour of the dynamic excitation coefficient has been included, as
a thick black line, to indicate the two excitation regions. The drag coefficient is defined
from the mean value of the force in IL direction, see Eqn. (4.9). Note that the mean value
of the drag coefficient found in the stationary cylinder experiments was 1.33. Figure 6.6

(b) Pure IL added mass coefficients

Figure 2.16: Contour plots of excitation coefficients and added mass co-
efficients from pure IL force oscillation tests at Re = 24, 000 by Aronsen
(2007).
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Combination of IL and CF harmonic forced motion

Jeon and Gharib (2001) demonstrated the IL effect from two aspects: Firstly,
the phase between IL and CF motion will influence the phase between lift
force and motion, which furthermore influences the energy transfer. Sec-
ondly, the wake mode could be changed due to presence of IL motion, they
discovered a change from ‘2P’ to ‘2S’ in the vortex shedding mode (see Fig-
ure 2.4).

Aronsen (2007) also did some two degree of freedom forced motion tests and
compared with pure IL and pure CF test results. An important discovery
was the relationship between higher order harmonic CF force and IL mo-
tion, as discussed in section 2.4.3.

Dahl (2008) performed a large set of forced motion experiments with 2304
individual tests at two Reynolds number (8760 for reduced velocities greater
than or equal to 6 and 6860 for reduced velocities less than 6). He used four
variables: CF amplitude ratio, IL amplitude ratio, phase angle between IL
and CF and reduced velocity. He found that third harmonic forces increase
almost linearly as a function of IL amplitude.

Combined of IL and CF forced motion using observed motion

Strip theory assumption

Considering a section of a long flexible riser, due to the fluid-structure in-
teraction, the hydrodynamic force coefficients must be functions of ACF ,
AIL, f̂ , θ (phase between IL and CF motion) and Re. In addition, ACF ,
AIL will have more than one harmonic component. A detailed diagram of
different types of forced motion experiments are shown in Figure 2.17. In
the figure, the forced motion experiments are classified by the motions: har-
monic motion and observed motion from flexible beams. The parameters
used to define the motions are illustrated with open circle and linked with
the experiment type. Resulting higher order force is marked as filled circle.
Non-periodic observed motion experiment is linked to each parameter with
dash dot lines since all the parameters are not fixed as other experiment
types.

It is impossible to consider each parameter individually, simply because VIV
is a complex fluid-structure coupled phenomenon. However, considering a
flexible pipe, and assuming that forces depend on local motions and there



40 Problem Description & Theory

OBSERVED
HARMONIC

Forced motion experiment

,1CF

A
D

 
 
  ,2IL

A
D

 
 
  f̂ θ Re Higher 

order
disp

Pure CF Pure IL Com CF&IL Com CF&IL
Periodic

Com CF&IL
Observed

Higher 
order
force

Figure 2.17: Different types of forced motion rigid cylinder tests.

is no hydrodynamic communications along the pipe, following steps could
be used to find hydrodynamic coefficients:

1. Select a set of cross sections along the flexible pipe.

2. Identify the orbits of each cross section.

3. Keep amplitude ratio, f̂ and Re the same, run forced motion test with
identified orbits.

4. Calculate hydrodynamic coefficients.

5. Build a data base and use it to predict VIV of risers and pipelines.

Soni (2008) first applied orbits measured from flexible beam experiments
as forced motion orbits in rigid cylinder experiments. A flexible pipe was
towed in the towing tank III at MARINTEK, Trondheim. By processing
measured acceleration signals, the motions of the pipe were calculated and
used for forced motion tests. His flexible pipe tests were all subjected to
uniform flow.
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2.5.3 Flexible riser

Brika and Laneville (1993) used a long flexible circular cylinder with a as-
pect ratio L/D ≈ 100. Using smoke visualization techniqe, they first verified
that initial response branch and lower branch associate with two different
vortex shedding modes ‘2S’ and ‘2P’ respectively.

Large scale field test with a 90 m long riser subjected to shear current were
performed in 1997 at Hanøytangen 30 km north of Bergen, Norway. The
geometry model scale was about 1 : 15, which means the results could be
used for production risers with length up to 1500 m length. Huse et al.
(1998) found VIV may induce resonant axial vibrations causing dramatic
stresses. Baarholm et al. (2006) performed fatigue analysis on Hanøytangen
tests. They observed that fatigue damage was proportional to U7 and U4 (U
is flow velocity) when natural frequencies of the riser were tension stiffness
dominated and bending stiffness dominated respectively. The transition
point between two regions seems equal to the current velocity where the
eigenfrequency to a tensioned string is approximately equal to the eigenfre-
quency to an un-tensioned beam. For the lowest modes, corresponding to
tensioned dominated risers, IL has a significant contribution to fatigue dam-
age; while at highest current speeds, related to bending stiffness dominated
risers, CF dominates the fatigue.

Lie and Kaasen (2006) processed the Hanøytangen high mode test data. An
interesting observation from this work is that the average r.m.s CF displace-
ment along the riser is independent of towing speed and has a magnitude
around 0.25D, which is lower than previous experiments. In IL direction,
this value is 0.05-0.08D.

High mode VIV model tests with long flexible reiser model were initiated
by NDP, and is reported in Braaten and Lie (2005). Both bare riser and
risers with different types of strakes were tested under uniform and trian-
gular shear flow conditions.

Trim et al. (2005) investigated the NDP experimental results and confirmed
that IL fatigue damage was as important as CF fatigue damage. Response
of bare riser was quite different from riser covered with helical strakes, which
means that strakes of different dimensions and types are effective in reduc-
ing VIV fatigue of flexible risers. However, performance of the 5.0D/0.14D
(pitch/height) strakes in uniform or uniform-like currents was found to be
worse than the 17.5D/0.25D (pitch/height) in mitigating VIV damage. This
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calls for a parameter study to find the most effective strakes. The exper-
imental results indicate that partially covered risers (from the end with
highest velocities) will have a response that is dominated by the highest
vortex shedding frequency from the bare part of the riser. They suggested
when applying partial strake coverage strategy, the flow field experienced
by the exposed riser section should also be considered.

Trough analyses of NDP High Mode VIV Tests, Modarres-Sadeghi et al.
(2011) claimed that chaotic response is a generic feature of VIV of flex-
ible risers, more details are introduced in section 7.1.2. In general, the
riser response is irregular (broad-banded or chaotic, Modarres-Sadeghi et al.
(2011)) and the degree of irregularity increases with the current speed.

A research group at Massachusetts Institute of Technology (MIT) and Deep-
star Consortium conducted two field experiments in and near the Gulf
Stream from the Research Vessel, Walton Smith in 2004 and 2006. The
two experiments are referred to as Miami I and Miami II respectively (Van-
diver et al., 2006, 2009). The presence of higher harmonic vibrations were
demonstrated, and the fatigue induced by 3rd harmonic was estimated.
They concluded that higher order harmonics should be considered for risers
subjected to strong currents.

Travelling/Standing waves

The Miami II (Vandiver et al., 2009) experiments showed that for a tension
dominated riser in sheared current and with high mode response, travelling
waves are dominant. It also showed that travelling waves are linked to re-
duced velocity.

Wu (2011) classified combined IL and CF response types into five different
groups with respect to travelling wave or standing wave response.

2.6 VIVANA

2.6.1 General introduction

VIVANA is a semi-empirical software for prediction of VIV of slender ma-
rine structures subjected to ocean current (Larsen et al., 2009). A finite
element model with tensioned beam elements is used.
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A brief summary of analysis procedure is listed below (Larsen et al., 2009;
Larsen, 2000):

1. Non-linear static analysis of the structure by considering gravity, buoy-
ancy, boundary condition and current.

2. Eigenvalue analysis using still water values for added mass.

3. Identification of possible excitation frequencies.

4. Iteration to find actual response frequencies, and frequency dependent
added mass.

5. Identification of dominating and secondary response frequencies.

6. Calculation of CF response at all possible frequencies; calculation of
IL response at twice the CF frequencies.

7. Calculation of fatigue damage by assuming concurrent response fre-
quencies or time sharing and drag magnification.

2.6.2 Excitation force model

For pure CF VIV, VIVANA uses a excitation coefficient model based on
Gopalkrishnan (1993) with some modifications from flexible beam tests.

It is seen from Figure 2.14a that at a given f̂ , CeCF is a function of
(A/D)CF . Instead of using a two-parameter contour plot, VIVANA defines
excitation coefficient curve with a set of parameters, which are functions of
the non-dimensional frequency f̂ . Sketches of excitation coefficient curves
are shown in Figure 2.18a (CF) and Figure 2.18b (IL). These curves are
defined from three points and has the maximum value at point B. AB and
BC are two 2nd order polynomial, (Larsen et al., 2009).

� Point A gives the excitation coefficient value when there is no response,
Ce,CF |(A/D)CF=0.

� Point B is defined by the maximum value of the excitation coefficient,
Ce,CF,max and corresponding amplitude ratio, A/D|Ce,CF,max .

� Point C defines the A/D that gives zero excitation force for the actural
non-dimensional frequency, A/D|Ce,CF=0. This is the same amplitude
that will occur for free, un-damped oscillations for the same flow con-
dition.
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Figure 2.18: VIVANA built-in excitation force coefficient curves (Larsen
et al., 2009).

Figure 2.19 shows the numerical values of coordinates of points A, B and C
as a function of f̂ for CF VIV (Larsen et al., 2009).

2.6.3 Time sharing in VIVANA

As is shown in Figure 2.20, that a flexible riser modelled in VIVANA may
have an excitation zone with more than one response frequency overlapped,
but only one frequency will be seen (Lie et al., 1997) .

Time sharing assumes that at a time instant, only one single frequency
responses is allowed. The relative duration of these response is found by
ranking the response frequencies using the same excitation parameters when
several frequencies are active simultaneously.

Two methods are coded:

1. Simultaneously active frequencies, no overlap of zones.

2. Consecutive response frequencies, with overlapping zones.
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The integral for the excitation parameter is taken over the excitation zone for each frequency, Le,i. 
The parameter (A/D)Ce=0 is the non-dimensional amplitude where the excitation coefficient shifts 
from positive to negative value, see Figure 9.2. This parameter is needed for ranking of cases 
with uniform current since all actual frequencies will have the same normal velocity UN and 
hydrodynamic diameter DH. The result of this calculation is that the response frequency 
candidates can be ranked according to the magnitude of the excitation parameter. The frequency 
with largest E is referred to as “the dominating response frequency”. 
 
The interpretation and use of the excitation zones Lei and parameters Ei  has two different options 
in VIVANA depending on the assumption for multiple frequency response. The two assumptions 
are: 

 simultaneously acting frequencies 
 time sharing between frequencies 

 
Use of the parameters will be described in the following sections. 
 

8.2 Simultaneously acting frequencies 
The vortex shedding process at a specific position on the structure can not take place at several 
frequencies at the same time. Hence, if excitation zones for various frequencies overlap, there is 
need for a rule to decide the frequency that actually will become active. 
 
Observations from laboratory experiments with flexible beams indicate that even if several 
response frequencies could become active, only one frequency will be seen (Lie et al. (1997)). 
This is the background for allowing the dominating frequency to take its total excitation zone, 

Figure 2.20: Overlapping excitation zone on a riser with constant diameter
subjected to sheared current, from Larsen et al. (2009).
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2.7 A time-domain method

Besides classical frequency domain models, Mainçon (2010) developed a
time domain model which may capture the IL/CF interaction, higher order
frequency components, drag amplifications and structural non-linearities.

For each cross section of a slender structure model, recent history of the
relative velocity is described as a combination of Laguerre polynomials (see
Figure 2.21). The compressed information is further used to enter an inter-
polation function which can predict the instantaneous hydrodynamic force
and thereby allow to conduct time domain dynamic analysis (Mainçon, 2010;
CeSOS Annual Report, 2011). A large database of forces found from exper-
iments with forced motions of a rigid cylinder must be available. The orbits
should represent realistic motion pattern of flexible beams.

with
D ≡W ◦ L (22)

where the functions D used for analysis consists of the
Laguerre duals (Figure 2, middle. Not to be confused
with the Laguerre functions introduced in Equation 27)

D(t, i) = Di(−t/tw) (23)

= Li(−t/tw)
e

t
tw

tw
(24)

Although

D
T
◦ L = I (25)

the functions in D and L do not span the same space.
Hence the appellation “dual base” is abusive.

4.4 Convergence

Laguerre functions, which can be defined as

F (t, i) ≡ Fi(−t/tw) (26)

≡ Li(−t/tw)
e

t
2 tw

2tw
(27)

or, in matrix notation

F =

√
W ◦ L (28)

have been extensively studied. Series of Laguerre func-
tions are known to converge almost everywhere (under
some conditions of continuity) [18]. In matrix notation
this result can be stated as

lim
n→∞

∣∣∣∣F · F
T
◦ f − f

∣∣∣∣ = 0 (29)

This can be used to obtain a result on the convergence of
series of Laguerre polynomials. We introduce the change
of variables

f =

√
W ◦ g (30)

so that
∣∣∣∣F · F

T
◦ f − f

∣∣∣∣ =

∣∣∣∣F ·D
T
◦ g −

√
W ◦ g

∣∣∣∣ (31)

=

∣∣∣∣
√
W ◦

(
L ·D

T
◦ g − g

)∣∣∣∣(32)

=

∣∣∣∣L ·D
T
◦ g − g

∣∣∣∣
w

(33)

We hence have convergence in terms of the quality of
approximation that we are seeking, with emphasis on the
recent past. Further, on any finite (or “compact”) interval,
convergence in the w-norm is equivalent to convergence
almost everywhere. So under some conditions of continu-
ity on g, the series of Laguerre polynomials obtained using
D as analysis functions converges almost everywhere to-
wards g in any finite interval.

Figure 3 illustrates how Laguerre coefficients indeed pro-
vide a “summary” of the trajectory
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Figure 3: Example of Laguerre approximation for two
components of a velocity history (arbitrary scaling). The
red dot marks the present time. The red curve is the
original cyclic signal and the black curves are Laguerre
approximations for two different instants

4.5 Differential equation for Laguerre co-
efficients

In the finite element analysis, we need to update the La-
guerre coefficients at each iteration of each time step, for
every Gauss point of every node of the system. The ex-
plicit calculation of Equation 21 for every update is hence
a CPU-time critical operation, taking in the order of n×N
floating point operations (flops), where n is the number
of Laguerre polynomial used, and N the number of time
steps that the dual functions take to decay to a negligible
value. Further, for each Gauss point, 2N velocity values
need to be stored, a severe memory requirement.

In the present Section and the next it is shown how the
computation of Equation 21 can be carried out by a re-
cursive operation requiring no other storage than that of
the Laguerre coefficients and the last velocity values, and
taking in the order of n× n flops, which is advantageous
because n� N . In this Section it is shown that τ verifies
a differential equation driven by the history v of the veloc-
ity component. In Section 4.6, this differential equation
is solved time-step by time-step in a recursive update.

Equation 21 can be rewritten without matrix notation,
and differentiated

∂τi
∂t

=

∫ +∞

0

e−θLi (θ)
∂v

∂t
(t− twθ) dθ (34)

= − 1

tw

∫ +∞

0

e−θLi (θ)
∂v

∂θ
(t− twθ) dθ (35)

Multiplying by tw and integrating by parts yields

tw
∂τi
∂t

= −
[
e−θLi (θ) v (t− twθ)

]

+

∫ +∞

0

[
−e−θLi (θ) + e−θ

∂

∂θ
Li (θ)

]

v (t− twθ) dθ (36)

6

Figure 2.21: A comparison between measured relative velocity components
(red line) and approximation by Laguerre polynomials (black line), from
Mainçon (2010).

Figure 2.22 shows a comparison between measured force from forced motion
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experiment and approximation by using Laguerre polynomials for one cross
section of a flexible beam subjected to uniform current. Simultaneous force
and displacement information at discrete points in a time history were used
to establish the model, and the model can predict the whole time history,
despite sometimes the prediction is not good enough.

This concept is promising, but more work is needed to understand orbit
stability and related issues. In order to establish a more complete database,
there is a call for more forced motion experiments of rigid cylinder section
with measured motion orbits. It can be expected that with a more robust
database, this time domain method can be used in prediction of any VIV
response.
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CF force, test TN2030, node 5
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Figure 2.22: A comparison between measured force time history (red line)
and force approximation given by Laguerre polynomials (black line), from
Mainçon (2010).
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2.8 Numerical methods

2.8.1 Basic equations

Equation of continuity

The equation of continuity is:

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.43)

where ρ is the fluid density, ~∇ is the vector gradient operator, (·) is the
vector dot product and ~u is the velocity vector.

If the fluid is incompressible, the equation becomes

∇ · ~u = 0 (2.44)

Navier-Stokes Equations

The second order non-linear partial differential equations named after C.L.M.H.
Navier (1785-1836) and Sir George G. Stokes (1819-1903) can be started as:

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) =

∂2

∂x2
j

(µui)−
∂p

∂xi
− ρgi (2.45)

where gi is the gravity acceleration vector.

Regardless gravity, Eq. 2.45 can be written like:

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) = 2

∂

∂xj
(µSij)−

∂p

∂xi
(2.46)

where Sij = 1
2( ∂ui∂xj

+
∂uj
∂xi

).

2.8.2 Turbulence modelling

Standard k − ε model

The transport equations of turbulence kinetic energy, k, and its rate of
dissipation, ε, are:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
[(µ+

µt
σk

)
∂k

∂xj
] +Gk +Gb− ρε−YM +Sk (2.47)
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and

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj
[(µ+

µt
σε

)
∂ε

∂xj
] +C1ε

ε

k
(Gk +C3εGb)−C2ερ

ε2

k
+Sε

(2.48)
where Gk represents the turbulence kinetic energy generated by the mean
velocity gradients; Gb is the turbulence kinetic energy generated by buoy-
ancy; Ym represents the fluctuating dilatation in compressible turbulence
to the overall dissipation rate; C1ε, C2ε and C3ε are constants; σk and σε
are turbulent Prandtl numbers for k and ε respectively; Sk and Sε are user-
defined source terms.

The turbulence viscosity, µt, is computed as:

µt = ρCµ
k2

ε
(2.49)

where the model constants have the following default values:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 (2.50)

More details about standard k−ε model could be found in ANSYS FLUENT
User’s Guide Release 13.0 (2010).

Large Eddy Simulation (LES)

The theory introduced in this section is based on White (2003), Pope (2000),
FLUENT 6.3 User’s Guide (2006) and ANSYS FLUENT User’s Guide Re-
lease 13.0 (2010).

Each transient fluid variable φ , could be described as:

φ = φ̄+ φ′ (2.51)

where φ̄ is the large scale average component, which is called filtered vari-
able, is directly solved by LES. φ′ is small scale component, which describes
the influence from small scale motions, also called subgrid-scale variable.

Filtered variable φ̄ can be obtained by:

φ̄ =

∫

D
φG(x, x′) dx′ (2.52)

where D is the fluid domain, G(x, x′) is the filter function that defines the
scale of resolved eddies, which means that large scale eddies and small scale
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eddies are solved separately. x is the space coordinate in true fluid domain,
while x′ is the space coordinate in the large scale space after filtering.

G(x, x′) =

{
1/V, x′ ∈ V
0, x′ /∈ V

(2.53)

where V is the volume of a computational cell.

After filtering process, The equation of momentum becomes

∂

∂t
(ρūi) +

∂

∂xj
(ρuiuj) =

∂

∂xj
[µ(

∂ūi
∂xj

+
∂ūj
∂xi

)]− ∂p̄

∂xi
(2.54)

where p̄ is filtered pressure, uiuj is non-linear filtered advection term.

The filtered advection term can be split up as:

ρuiuj = τij + ρūiūj (2.55)

where τij is the subgrid-scale stress (SGS). Then Eq.(2.46) becomes:

∂

∂t
(ρūi) +

∂

∂xj
(ρūiūj) =

∂

∂xj
[µ(

∂ūi
∂xj

+
∂ūj
∂xi

)]− ∂p̄

∂xi
− ∂τij
∂xj

(2.56)

Smagorinsky-Lilly Model

The subgrid-scale turbulence models in FLUENT 6.3 User’s Guide (2006)
employ the Boussinesq hypothesis Hinze (1975), computing subgrid-scale
turbulent stresses from

τij −
1

3
τkkδij = −2µtS̄ij (2.57)

where τkk is the isotropic part of the subgrid-scale stresses. τkk is not
modelled, but added to the filtered static pressure term. µt is the subgrid-
scale turbulent viscosity. S̄ij is the rate-of-strain tensor for the resolved
scale defined by

S̄ij =
1

2
(
∂ūi
∂xj

+
∂ūj
∂xi

) (2.58)

In Smagorinsky-Lilly Model, the eddy-viscosity is modeled as:

µt = ρL2
s|S̄| (2.59)

where |S̄| =
√

2S̄ijS̄ij . Ls is the mixing length for subgrid scales and in

FLUENT is computed by:
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Ls = min(κd,CsV
1/3) (2.60)

where κ is the von Kármán constant, d is the distance to the closest wall,
Cs is the Smagorinsky constant, has a default value of 0.1 in FLUENT. V
is the volume of the computational cell.

2.8.3 Research of forced motion of a rigid cylinder using LES

There is a large number of publications related to the use of CFD on VIV,
since present study applies LES method on a rigid cylinder with forced mo-
tion, related works will be introduced herein.

When the Reynolds number is larger than the DNS capability, LES is con-
sidered to be the most accurate solution for the problem of a steady flow
past a stationary circular cylinder (Al-Jamal and Dalton, 2004). Reynolds-
averaged Navier-Stokes equations (RANS) based standard two-equation tur-
bulence models (k − ε and k − ω) can’t predict turbulence flows accurately
where the local isotropy of the turbulent stress play an important role, (Ma-
jumdar and Rodi, 1985).

Most recent solutions of steady flow past a fixed cylinder are Breuer (1998),
Rocchi and Zasso (2002), Catalano et al. (2003), Fröhlich and Rodi (2004),
Hansen and Forsythe (2004), Al-Jamal and Dalton (2004) (for the flow past
a fixed cylinder), Young and Ooi (2007) and Cao et al. (2010). The Reynolds
number varies from 60 to 106.

Zhang and Dalton (1996) performed 2D LES study of a rigid cylinder oscil-
lating freely in CF direction at the Reynolds number at 13,000. Lock-in was
observed at the fst/f0 range from 1.0 to 1.3. (A/D)CF = 0.26 and damping
ratio of 0.02 was obtained.

Al-Jamal and Dalton (2004) did similar calculations with two mass ratios
(1.67 and 7.85), with several damping ratios (0.0 ≤ ζ ≤ 0.1) at Reynolds
number of 8,000. For 0.555 < fst/f0 < 1.59, expected response were shown.
Beating phenomena was examined and was found to be decreased signifi-
cantly when the damping ratio was increased to 0.1. What should be paid
attention is that the wake response results disagreed with Williamson and
co-authors. Reasons such as large fixed Reynolds number and non-harmonic
oscillations were emphasized.
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Tutar and Holdø (2000) modelled a circular cylinder with forced CF motions
at Re = 10, 000 to 100, 000 using Large Eddy Simulation (LES) based on a
Smagorinsky Sub-Grid Scale (SGS) turbulence model. The comparison be-
tween 2D and 3D shows that 3D results match Bearman and Currie (1979)’s
experimental results better than 2D results, and three dimensionality in the
near wake flow were reflected by the deviations between 2D and 3D.

Atluri et al. (2009) applied 2D LES model to simulate a flow past a cir-
cular cylinder undergoing constant CF amplitude force oscillation with Re
number in the range of 500 to 8000. By adjusting the oscillating frequency,
non-periodic motions could be achieved. The 2D results shown a disagree-
ment with the wake mode map in Williamson and Roshko (1988) except in
the low Re and amplitude ratio range. Another finding was modulating the
oscillating frequency affected the vortex shedding modes clearly.

Huang et al. (2009) used Large Eddy Simulation (LES) method to simulate
a rigid cylinder undergoing 2D harmonic motion, and compared their re-
sults with Aronsen (2007). 3D vortex shedding modes were presented, and
some hydrodynamic coefficients could be matched with experimental results.
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Chapter 3

NDP High Mode VIV Tests

The experimental work in this thesis are based on measurements and se-
lected results from the NDP High Mode VIV Tests (Braaten and Lie, 2005;
Trim et al., 2005). This chapter presents the experimental set-up for these
experiments; the riser model, instrumentation and calibration procedure.
This set of tests was carried out by MARINTEK and all the raw data and
reports were provided as data files to the author. The modal analysis was
performed by Kristansen and Lie (2005), and this part is also described in
Trim et al. (2005). Use of results from the NDP tests to define orbits for use
in the second set of experiments was, however, carried out by the author,
confer section 3.3.5.

3.1 Test set-up

3.1.1 MARINTEK Ocean Basin

The NDP tests were performed in the Ocean Basin at MARINTEK, Trond-
heim in 2003, see Figure 3.1. The Ocean Basin is 50 m wide and has a
length of 80 m from the wave maker to intersection between beach and wa-
ter surface. The depth of the basin itself is 10.0m, but it has an adjustable
depth from 0.0 to 8.7m over an adjustable floor area (48m × 42m). The
basin is fitted with two sets of wave makers, but they were not used in the
tests.

3.1.2 Test rig

A 40 m long riser was mounted in a rig and installed horizontally in the
Ocean Basin (see Figure 3.2). The rig comprises:
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Figure 3.1: NDP high mode VIV setup (Braaten and Lie, 2005).

� Clump weights with springs at both ends to control motion and tension
of the model

� An inclined pendulum arm connecting the clump weights to the gon-
dola or crane

� A horizontal framework where the springs in the towing direction are
connected to the test rig

Figure 3.2: Principle sketch of the rig (Braaten and Lie, 2005).

The test set-up is presented in Figure 3.3. For the tests with uniform cur-
rent, both ends of the riser were fixed to clump weights and the riser was
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towed along the basin by use of the gondola and the transverse crane. For
the case with triangular shear current the riser had a clump weight in one
end, but the other end was connected to the wall of the basin. The free end
was towed in a circular track by the gondola.

(a) Uniform flow.

 

(b) Triangular shear flow.

Figure 3.3: Principal sketch of test set-up in uniform and sheared flow
(Braaten and Lie, 2005).

3.1.3 Riser model

The riser model was made from fiber-glass and was instrumented with about
80 transducers.
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Table 3.1: Physical properties of bare riser model.

Parameter Unit Symbol Dimension

Total length between pinned ends [m] L 38.0
Outer diameter [mm] D 27.0
Wall thickness of pipe [mm] t 3.0
Bending stiffness [Nm2] EI 37.2
Young modulus for pipe [N/m2] E 3.62 · 1010

Axial stiffness [N ] EA 5.09 · 105

Mass (air filled), measured [kg/m] 0.761
Mass (water filled), estimated [kg/m] 0.933
Mass ratio [-] m∗ 1.62

Table 3.1 shows the physical properties of the riser model. The mass and
the effective length of the riser model was between the centers of the univer-
sal joints at the ends (pin to pin). The riser model was flooded with water.
An electrical pump was connected at one end of the riser to make sure that
the riser was water filled during the testing period.

The riser was composed of 4 pipes. Two and two are glued together with
both inside and outside sleeves. Then a special connection flange connected
the two sections of the riser together.

A fatigue test of a section of the model was performed for reliability and
safety precautions. No visual damage was observed and the stiffness prop-
erties were found to be identical before and after the test.

Prior to the model test, the bare riser model was weighted both air-filled
and water-filled in air. The mass ratio of the water-filled, bare riser, defined
as the total mass flooded divided by the displaced mass. These data are
also given in Table 3.1.

Since the strain gauges and the accelerometers were glued to the outside of
pipe surface, the riser diameter was locally increased at the instrumented
sections (bumps), see Figure 3.4.

3.1.4 Coordinate systems

The coordinate system was as follows (see Figure 3.5):
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   Photo - 9

  

 
 
Picture 15   Riser instrumentation. Strain gauge to the right and accelerometer to the left. 
 
 

 
 
Picture 16   Accelerometer during the coating process where 12 layers of coating where put 
on the riser instrumentation as waterproofing. 
 

512394.00.01 

Figure 3.4: Riser instrumentation, strain gauge to the right and accelerom-
eter to the left (Braaten and Lie, 2005).

� Right-handed, orthogonal

� Origin at the centre of the universal joint in the bottom end (with
zero velocity for shear flow cases) of the riser

� Positive z-axis pointing vertically out of paper

� Positive x-axis pointing in the towing direction.

 

x

y 

z

Figure 3.5: Test principals and coordinate system of NDP High Mode VIV
Tests (Trim et al., 2005).
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3.1.5 Instrumentation and measurements

The riser was instrumented by strain gages and accelerometers in both IL
and CF directions. The number of transducers on the riser model is limited
by the internal space of the riser model and the diameter of the instrument
cables. Table 3.2 shows the instrumentation plan of the riser model.

Table 3.2: Instruments of riser model (Braaten and Lie, 2005).

Instruments In-line Cross-flow

Strain gauges 40 24
Accelerometers 8 8

In addition to the transducers on the riser model, the following response
parameters were recorded:

Table 3.3: Additional instruments (Braaten and Lie, 2005).

Signal Direction Transducer

Accelerations of left clump weight x, y and z Linear accelerometers
Accelerations of right clump weight x, y and z Linear accelerometers
Riser force left end x, y and z Strain gauge transducer
Riser force right end x, y and z Strain gauge transducer
Towing velocity x and y Potentiometer

3.1.6 Data acquisition

One master MGCplus unit (A data acquisition system, HBM (2012)) and
five slave units were connected with synchronization cables in a daisy chain.
The master unit provide a clock signal for the slaves to synchronize data
sampling. More details can be found in Braaten and Lie (2005). All sig-
nals were filtered with a 250 Hz Butterworth filter intrinsic to the MGCplus
modules.

In order to prevent aliasing (folding of high frequency response (noise) onto
the low frequency response), filter type, cut-off frequency and data sampling
frequency were chosen with respect to the maximum expected response fre-
quency. The data sampling frequency was 1200 Hz.
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3.2 Test program and test procedures

3.2.1 Instrumentation verification and calibration tests.

In order to check the total instrument chain from the transducer to the
printout, all force transducers and accelerometers on the clump weights
were short-circuited or excited one by one.

3.2.2 Air and In-Water Decay Tests

Decay test in air were performed manually to record natural frequencies up
to the fourth order. The measured value matched the theoretical eigenfre-
quencies well. Material damping of bare riser model has an value of 0.4%
or less of critical damping.

Decay test of the risers were performed by exciting the riser manually in
water also to determine the natural frequencies of riser model. Both naked
and straked riser were tested. However, the tests were very difficult to
analyse due to large hydrodynamic damping.

3.2.3 Riser VIV Tests

The complete test program can be found in Braaten and Lie (2005). In this
thesis, only the ‘bare riser VIV test’ is used, including both uniform and
triangular sheared flow cases. The total number of bare riser tests is 44.
Table 3.4 shows the cases being used for this thesis.

Table 3.4: NDP test runs need to be calculated.

Velocity [m/s] Re(Remax) Uniform Shear

0.50 12385 2030
0.60 14190 2340
0.90 21285 2370
1.20 29724 2100
1.50 35475 2430
1.80 44587 2160

Re: Reynolds number of uniform flow cases;
Remax: maximum Reynolds number of sheared flow cases.
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3.3 Data processing and preparation to forced mo-
tion test

3.3.1 Time window

Selection of time window from the measurements to use in model analysis
was based on the towing velocity. The velocity was increased from 0 to
required test velocity, kept constant and then decreased to 0. Nominal start
time was set to the instant when the towing velocity reached its maximum,
and the end time to the instant when the towing velocity started to decrease.
The period from nominal start time to stop time was denoted as nominal
time window. In order to avoid transient effects and for simplicity and
consistency, the last 2/3 of the nominal time window was chosen for all
tests to be used for analysis, see Figure 3.6. Due to the computer memory
capacity, the time window was further shortened for all tests with towing
velocity less than 0.8 m/s (Kristansen and Lie, 2005).

Figure 3.6: Time window selection of NDP high mode VIV tests (Braaten
and Lie, 2005).

3.3.2 Band-pass filter

The raw signals were band-pass filtered to reduce the noise. Details regard-
ing cut-off frequency and filter characteristics can be found in Appendix E
of Kristansen and Lie (2005).

3.3.3 Modal analysis

Under the assumption that the deformed shape of a riser at any time could
be expressed as a sum of eigenfunctions, modal analysis was conducted
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by Kristansen and Lie (2005) using both signals from strain gauges and
accelerometers along the beam.

Control Equation

The displacements along the riser for one direction can be written as:

x(z, t) =

∞∑

n=0

wn(t)φn(z) (3.1)

where wn(t) are the time-varying modal weights, and φn(z) are the eigen-
modes which are functions of the position along the riser model (z). If
we assume that the tension is constant and the beam is straight lined, the
sinusoidal eigenmodes described by Eq. (2.6) can be applied.

Using both curvature and acceleration

Both strain and acceleration signals were used in the modal analysis. A
linear system was established and solved in Fourier space by using the least
squares method. In the end, modal weight factors were found for each mode
as a function of time.

The first step was to convert the strain signals, ε, into curvature, κ, applying
the following relation:

κ = ε/R (3.2)

where R is the radius of the pipe cross section.

Then both the second spatial derivative (κ = x
′′
) and second time derivative

(a = ẍ) of the displacement eigenfunctions were available, applying Eq.
(3.1) with a finite number of modes, N :

κ(z, t) =
N∑

n=1

wn(t)φ
′′
n(z) (3.3)

a(z, t) =

N∑

n=1

ẅn(t)φn(z) (3.4)

Information about curvature and accelerations are only available at a finite

number of locations along the riser, z = zi with i = 1, 2, . . . ,M
IL/CF
a/k , where

the subscript a denotes acceleration, and κ denotes the curvature. In NDP
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tests, M
IL/CF
a = 8; M IL

k = 40 and MCF
k = 24/23 (naked uniform: 24;

others: 23), also see Table 3.2. Then for a given instant in time, there were
M = Mκ+Ma equations with N unknowns. To avoid un-determined system
of equations, N ≤M was required. When N = M , the system of equations
has a single, unique solution; when N < M , the system may be solved by
using the least squares method.

It is easy to solve this system in Fourier space, denoting the Fourier trans-
form in time by ŷ = F{y}, and F{ÿ} = −ω2ŷ.

κ̂(z, t) =
N∑

n=1

ŵn(ω)φ
′′
n(z) (3.5)

â(z, t) = −ω2
N∑

n=1

ŵn(ω)φn(z) (3.6)

The system might be described by a linear system:

Aŵ = b̂ (3.7)

where the system matrix A contains the discrete eigenvectors and b contains
the measurements. In more detail:

A =




φ
′′1
1 φ

′′1
2 . . . φ

′′1
N

φ
′′2
1 · . . . ·
... · · ·

φ
′′Mκ
1 φ

′′Mκ
2 . . . φ

′′Mκ
N

φ1
1 φ1

2 . . . φ1
N

φ2
1 · . . . ·
... · · ·

φMa
1 φMa

2 . . . φMa
N




ŵ =




ŵ1

ŵ2
...
ŵN


 b̂ =




κ̂1

κ̂2
...

κ̂Mκ

− â1
ω2

− â2
ω2

...

− âMa
ω2




(3.8)

where φin = φ(zi). κ̂i is the complex Fourier component of the curvature
signal at position zi, and âi is the complex Fourier component of the accel-
eration signal at position zi.

The modal weight factors become

ŵ = (ATA)−1AT b̂ (3.9)
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and the solution of the system, the modal weight factor vector can be ob-
tained by inverse Fourier transform, i.e. w(t) = F−1{ŵ(ω)}.

In order to eliminate the noise effect from the strain signals on low modes,
the lowest participating mode Nlow and total number of participating mode
Ntot were selected, then highest participating mode is Nhigh = Nlow+Ntot−
1. A modified system matrix A, denoted by Ã, is used to find the modal
weights from weights from mode number Nlow to Nhigh:

Ã =





0






φ
′′
Nlow+N0

. . . φ
′′
Nhigh





φNlow . . . φNhigh







(3.10)

where the zero sub-matrix has dimensions Mκ ×N0, where typically N0 �
N − n + 1. This technique provided improved modal analysis for the case
with low modes participation. The modal weights factors are found by using
least squares method :

ŵ = (ÃT Ã)−1ÃT b̂ (3.11)

The above method is described in detail in Kristansen and Lie (2005), and
can also be found in Trim et al. (2005).

The dominating and participating modes of selected cases are shown in
Table 3.5.

Model weight factors of uniform current and shear current are shown in
Figure 3.7a and 3.7b respectively.
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Table 3.5: Dominating and participating modes, from Appendix E of Kris-
tansen and Lie (2005).

Test No.
IL CF

dominate range dominate range

2030 7 1-15 4 1-10
2100 14 10-20 8 4-12
2160 20 10-20 9 9-12
2340 7 1-15 4 2-10
2370 10 2-20 6 2-12
2430 12 10-20 7 5-12

(a) Uniform current cases. (b) Shear current cases.

Figure 3.7: Contour plots of modal weights, from Appendix E of Kristansen
and Lie (2005).
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3.3.4 Choice of cases for forced motion tests

Red lines in Figure 3.7a and 3.7b indicate the cases chosen for the present
study (see also Table 3.4). More sheared flow cases were initially chosen,
but were not conducted due to the limitation of instruments in the labora-
tory.

The three uniform flow cases have different properties:

� Case 2030: Both IL and CF are dominated by low mode and modal
weights are strong.

� Case 2100: IL has higher order modes and with medium strength
modal weight; the dominating CF mode is not so distinct.

� Case 2160: Both IL and CF response show a large range of partici-
pating modes, but the modal weights are low for both directions.

The three linear sheared flow cases have these characteristics:

� Case 2340: IL has a broad band of participating modes, but CF has
a clear dominating mode.

� Case 2370: IL does not have a strong dominating mode, and the
dominating CF mode is not so strong as for case 2340.

� Case 2430: Both IL and CF response are dominated by high mode
order.
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3.3.5 Definition of periodic orbits

A consequence of the stochastic nature of VIV is that the CF/IL motion at
a given position on the oscillating beam is not periodic. However, periodic
orbits are required for identification of force coefficients. Periodic orbits were
therefore defined by selecting two successive orbits and generate a smooth
transition from the last part of the first cycle to the next. Figure 3.8 shows
this process. In Figure 3.8a, the orbit for more than one cycle can be seen,
there is an overlapped part. A number of points on each of the two orbits
were used with a weight function to create a series of points between them
(red line), and hence define a periodic orbit, see Figure 3.8b. The weight
function is defined as:

xIL/CF,new,i =
i

N
xIL/CF,C1,i +

N − i
N

xIL/CF,C2,i (3.12)

where N is interpolating points within the overlapped part; i is the ith

point; xIL/CF,new,i is new displacement value of the ith point of the red line;

xIL/CF,C1,i is the displacement value of the ith point of the overlapped part

of the first cycle; xIL/CF,C2,i is the displacement value of the ith point of
the overlapped part of the second cycle.

Figure 3.8c shows the time varying observed orbits from flexible beam test,
and illustrates the variability of the orbit during the test period.
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Figure 3.8: Smoothing process of a non-periodic orbit and time varying
observed orbits of the same section (Yin and Larsen, 2010).



Chapter 4

Forced Motion Experiments

This chapter presents the experimental work of the thesis, including the
experimental set-up, signal processing, a description of the test matrix and
a summary of the PIV techniques. Except for the author’s own main test
matrix, all of the other experimental work, including calibration, set-up,
and verification tests, was conducted in collaboration with Aglen (2012).

4.1 Test set-up

4.1.1 Facilities

The forced motion experiments took place in NTNU’s Marine Cybernet-
ics Laboratory (MCLab), (MCLab Carriage Remote Control User Manual,
2008). MCLab is equipped with a towing tank, which has dimensions of
40m× 6.45m× 1.5m (L×B×D) and an overhead towing carriage. Five de-
grees of freedom can be achieved by a computer-controlled simulator located
on the main carriage. Figure 4.1 shows a sketch and photo of the rig.

The apparatus was designed and used by Aronsen (2007) and later used by
Soni (2008). The test model used for the forced motion tests was a rigid
cylinder with a 10 cm outer diameter and 2 m length, resulting in an L/D
ratio of 20. The rig was attached to the simulator on the carriage by a
yoke. Oscillatory motions were created by simultaneously moving the yoke
horizontally (IL) and vertically (CF). All parameters needed to control the
motions, such as carriage speed and the local positions (IL and CF) of the
rig were input into a PC on the carriage. Initialisation of each test was
controlled by a master input file on the same PC. The ends of the cylinder
were capped to keep the cylinder air filled to keep its mass as low as possible.
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Miscellaneous 

 The Position windows in the bottom part show the current position of the carriage in absolute coordinates. 
 The Velocity windows show the commanded velocity from the controller. (and NOT the measured carriage 

velocity). 
 When  Broadcast is on, the position is written to a global variable global_array.vi. This is for 

example used in the scope vi (MCLscope.vi). 
 
 

Axes 
The axis limits given in the table refers to the absolute coordinates in the remote control system. The ranges are the safe 
and practical limits, as of  May 2005. These may be subject to change. Normal Speed is the speed used when returning to 
reference position. 
 
Axis Min 

[m] 
Max  
[m] 

Pos Error 
[mm] 

Normal Speed 
[m/s] 

Max Speed 
[m/s] 

Max Acc 
[m/s^2] 

X Main Carriage (Gantry) -15.5 8.5 ±20 0.5 2.0 0.5 
Y Transverse carriage -2.4 2.4 ±5 0.2 1.0 1 
U small Carriage in X direction -0.4? 0.4? ±1 0.2 1.0 1 
C Rotation Table   ±.1    
Z Vertical Axis -0.2? 0.2? ±0.5 0.1 0.5 2 
W Vertical Axis -0.2? 0.2? ±0.5 0.1 0.5 2 

 
 
Positive direction is based on a maneuvering type coordinates with Z and W positive downwards.  
 

         
 
 
The limits on amplitude and frequency for harmonic oscillations are: 

Figure 4.1: MC Lab, taken from MCLab Carriage Remote Control User
Manual (2008).

Table 4.1: Limits of apparatus in MC Lab (MCLab Carriage Remote Con-
trol User Manual, 2008).

Axis Description Min Max Pos Error UN Umax Amax

[m] [m] [mm] [m/s] [m/s] [m/s2]

X Main Carriage -15.5 8.5 ±20 0.5 2.0 0.5

U small Carriage (IL) -0.4 0.4 ±1 0.2 1.0 1.0

Z/W vertical Axis (CF) -0.2 0.2 ±0.5 0.1 0.5 2.0

Two end-plates (7D × 5D) were installed to reduce three-dimensional end
effects. A schematic description of the experimental set-up is shown in
Figure 4.2.

4.1.2 Instruments

Force transducers

Two strain gauges were mounted orthogonally to measure the force in the IL
and CF directions. The strain gauges were type PW2CMR/18kg, produced
by Hottinger. Figure 4.3a shows a ‘cross’ of force strain gauges mounted on
one end-plate. The forces on both sides were measured. The strain gauges
were calibrated in three steps: individually, in a cross and in a cross on the
cylinder. Details of the calibration process are given in Appendix A.
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(a) Seen from the port side.

(b) Front view.

Figure 4.2: MC Lab setup.

Accelerometers

Both 3D and 1D accelerometers were used during the experiments. Figure
4.3b shows one of the 3D accelerometers.

Two accelerometers that can measure acceleration in 3 dimensions (3D)
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(a) ‘Cross’ of strain gauges mounted in one
end-plate.

(b) A 3-D accelometer.

Figure 4.3: Instruments used in forced motion experiments.

were mounted on the outside of the housing of the ‘cross’ strain gauges,
which is also a part of the end-plate. As the motion of the end-plates is the
same as the cylinder model, measured accelerations on the plate were used
as the accelerations of the cylinder model. Only two of the three directions
(x and z) were used to record acceleration signals in both the IL and CF
directions.Two additional 1D accelerometers were mounted on the carriage
to measure carriage vibrations. The recorded acceleration of the towing
carriage can also be used to derive the towing velocity and displacement of
the carriage.

String potentiometers

Two string potentiometers were used to record the IL and CF model dis-
placement signals. The string potentiometer measuring the IL displacement
was placed horizontally, with one end was clamped onto the carriage, and
the other end was clamped on the yoke. The other string potentiometer was
installed in a similar manner but oriented vertically.

Leveller

A leveller was used to ensure that the cylinder was mounted horizontally.
Distances from both ends of the cylinder to a ‘base plane’ are measured and
kept the same, in order to make sure the cylinder is perpendicular to the
incoming flow.
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PIV set-up

Particle-Image Velocimetry (PIV) is a technique that uses particles as mark-
ers, measuring the motion of a small region of the fluid field by observing
the locations of the markers in the images at two or more times in succes-
sion, as described by Adrian (1991).

The experiment using PIV equipments used the same setup as Soni (2008).
The experimental work related to PIV was performed with technical help
from Visscher (2011).

94 CHAPTER 6. EXPERIMENTAL SET-UP: RIGID PIPE

Figure 6.2: Schematic presentation of the experimental set-up.

6.1 The apparatus
The black-painted aluminium cylinder model with a diameter (D) of 10 cm and a length
(L) 2 m, giving an L/D ratio of 20, is towed horizontally in the MC lab. The cylinder is
installed on a yoke which is connected to the tow carriage. Model oscillations are achieved
by oscillating the yoke which allows the model to move in any combination of CF and
IL components. A microprocessor-controlled servomotor controls the oscillations. The
cylinder is plugged in at both ends to prevents the water from penetrating. End plates are
installed to reduce the end e�ects at the cylinder ends. The test set-up is schematize by
Figure 6.2.

6.1.1 The PIV system
Particle Image Velocimetry (PIV) is a whole-�ow �eld technique providing instantaneous
velocity vector measurements in a cross section of a �ow. Two velocity components are
measured, but the use of a stereoscopic approach permits all three velocity components to
be recorded, resulting in instantaneous 3-D velocity vectors for the whole area.

Figure 4.4: PIV setup (Soni, 2008).
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The PIV system was mounted downstream of the cylinder in order to cap-
ture the fluid field within the measuring frame. The entire system was
composed of a 10 Hz double-pulse laser, two highly sensitive 10 Hz CCD
cameras with 1, 600× 1, 200 active pixels, light-sheet optics and tracer par-
ticles.

Several steel frames were mounted on the carriage platform. Tubes were
mounted on the steel frames to support the laser and cameras installation.
Two cameras were fastened in the underwater housings with glass windows.
The observation area in this study is 5D × 7D, which is larger than that
used by Soni (2008). Figure 4.4 shows the arrangement of equipments of
the PIV equipment.

Particles were evenly mixed with water in a bucket, and then injected into
the mid-section of the towing tank. After the water had settled, the lights
in the towing tank were turned off, the laser was turned on, the carriage
movement was started, and the laser was synchronised with the CCD cam-
eras at two consecutive points in time. The particles were reflected in the
light of the laser, and as their locations changed in the measurement field,
they were captured by the cameras. Through processing of the pictures,
the velocity flow field in the model was calculated, and a vorticity field was
obtained.

Signals were recorded on 18 different channels, as shown in Table 4.2.

4.1.3 Coordinate system

The coordinate system is defined in Figure 4.5. The positive direction of
the X-axis (IL) is opposite to the incoming flow, and the positive direction
of the Z-axis (CF) is upwards. The Y-axis is not used in this thesis.

4.1.4 Definition of phase angle

Aronsen (2007) used the following two equations to describe harmonic mo-
tions with CF and IL components:

CF : xCF (t) = ACF cos(ωosct)

IL : xIL(t) = AILsin(2ωosct+ θ)
(4.1)

This thesis will follow the same definitions. There is another definition of
the phase angle, which shows a phase shift from the present work ((Jauvtis
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Table 4.2: Channels in MC Lab.

NO. Parameter Unit

1 IL acceleration, starborad side [m/s2]

3 CF acceleration, starborad side [m/s2]

4 IL force, starborad side [N ]

5 CF force, starborad side [N ]

6 IL force, port side [N ]

7 CF force, port side [N ]

8 IL acceleration, port side [m/s2]

9 CF acceleration, port side [m/s2]

11 IL displacement, string potentiometer [m]

12 CF displacement, string potentiometer [m]

13 IL acceleration, on carriage [m/s2]

14 CF acceleration, on carriage [m/s2]

15 IL displacement, U axis in carriage [m]

16 CF displacement, Z axis in carriage [m]

17 Carriage position [m]

18 PIV trigger signal [V ]

and Williamson, 2004; Dahl, 2008; Wu, 2011) as follows:

CF : xCF (t) = ACF sin(ωosct)

IL : xIL(t) = AILsin(2ωosct+ θ)
(4.2)

The phase angle between the hydrodynamic force (see section 4.5.4) and
displacement in the IL direction is as follows:

Hydrodynamicforce : Fhydro,IL,2(t) = Fhydro,IL,2,0sin(2ωosct+ θ + φX)

Displacement : xIL(t) = AILsin(2ωosct+ θ)

(4.3)

The phase angle between the hydrodynamic force and displacement in the
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XY

Z

U

Cylinder

Figure 4.5: Coordinate system of forced motion tests in MCLab.

CF direction is as follows:

Hydrodynamicforce : Fhydro,CF,1(t) = Fhydro,CF,1,0sin(ωosct+ φY )

Displacement : xCF (t) = ACF sin(ωosct)
(4.4)

Phase angle diagram

Figure 4.6a shows the definition of the phase angle between the IL and
CF displacements. Figure 4.6b shows a sketch of both the phase angle
between displacements and the phase angle between the displacement and
hydrodynamic forces in each direction.

4.2 Modelling laws

The main test matrix for the tests performed at MCLab was based on the
measurements of NDP high-mode VIV tests. Similarity rules were applied
when scaling from the NDP model to the MCLab model, (Aarsnes and
Steen, n.d.).

4.2.1 Geometric similarity

The scale factor between NDP tests and the MCLab forced motion experi-
ment is as follows:

λ =
DNDP

DMC
=

0.027

0.1
= 0.27 (4.5)

where DNDP and DMC are the diameters of the model in the NDP tests
and MCLab tests respectively.
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Figure 4.6: (a) Definition of phase angle θ between 1st CF harmonic dis-
placement component and 2nd IL harmonic displacement component, the
flow direction is from left to the right. (b) Definition of the phase angle
φ between a harmonic hydrodynamic force component and harmonic dis-
placement component in CF and IL directions.

4.2.2 Reynolds number

The Reynolds number was held constant to obtain the correct hydrodynamic
forces, as shown below:

Re =
UNDPDNDP

ν
=
UMCDMC

ν
(4.6)

where UNDP is the velocity of the current selected section and UMC is the
towing velocity of the corresponding case. From this relationship, the towing
velocity for the MCLab test is determined as follows:

UMC = UNDP · λ (4.7)

4.2.3 Non-dimensional frequency

The non-dimensional frequency defined by Eq. (2.19) was held constant
between two experiments using the following relationship:

f̂ =
fosc,NDPDNDP

UNDP
=
fosc,MCDMC

UMC
(4.8)
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where fosc,NDP and fosc,MC are the oscillation frequencies of each test case.

Therefore, the oscillation frequency for the MCLab test cases can be calcu-
lated as follows:

fosc,MC = fosc,NDP · λ2 (4.9)

4.2.4 Amplitude ratio

The IL and CF oscillating amplitude ratios were held constant between the
NDP tests and MCLab tests using the following equations:

(
A

D
)CF/IL =

ACF/IL,NDP

DNDP
=
ACF/IL,MC

DMC
(4.10)

ACF/IL,MC =
ACF/IL,NDP

λ
(4.11)

4.3 Test procedure

All of the tests numbers outside the author’s own test matrix are mainly
from Aronsen (2007), others are from Szwalek and Larsen (2009).

4.3.1 Decay tests

The decay tests (also named ‘pluck tests’, (Aronsen, 2007)) were conducted
both in air and water to determine the eigenfrequencies and damping of the
system.

Consider a one-degree-of-freedom damped system, see Eq. (2.31).

The critical damping is given by:

ckr = 2mω0 = 2
√
mk (4.12)

where ω0 is the natural frequency for an un-damped system.

The damping ratio is defined as follows:

ξ =
c

ckr
=

c

2mω0
(4.13)

For real structures, the most common case is that the damping ratio ξ � 1.
Free oscillation of a damped system will take place at a ‘damped natural
frequency’ given by:
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ωd = ω0

√
1− ξ2 (4.14)

The method used to determine the damping in this thesis is to compare
two amplitudes of the force signal with an interval of an integer number of
periods: Td = 2π/ωd.

ui
ui+n

= enξω0Td (4.15)

here ui represents force signal.

The logarithmic decrement Λ is defined as follows

Λ = ln(
ui
ui+n

) = nξω0Td = 2πn
ξ√

1− ξ2
' 2πnξ (4.16)

The approximation is made based on the fact that ξ is typically a small
number.

Then an approximate expression for the damping ratio is given by:

ξ ' 1

2πn
ln(

ui
ui+n

) (4.17)

Finally, the damped eigenfrequency can be calculated by Eq. (4.14). Details
of this method can be found in Larsen (2007).

Alternatively, the damped frequency can be found directly in the frequency
domain by using the FFT.

In air

Before the tank was filled with water, decay tests were performed manually
in both the IL and CF directions. The measured natural frequency in air
was above 30 Hz in both directions.

In water

When the tank was filled with water and ready for regular tests, decay tests
were manually conducted again, both in the IL and CF directions. The
measured damped eigenfrequency in water was higher than 6 Hz.

The natural frequency in both air and in water was much higher than the
response frequency, which is smaller than 1Hz. Therefore, the noise caused
by the system was filtered out.
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4.3.2 Stationary tests

Stationary tests indicated that the cylinder was towed with constant speed,
with no motion in the IL or CF directions. Table 4.3 shows the list of
stationary tests performed.

In air

The stationary tests in air are conducted primarily to measure the noise of
the system, and through analysis in the frequency domain, to determine the
frequency range of the noise and filter it out.

In water

The same tests were performed in water, to determine the drag coefficient
and Strouhal number with varying Re.

4.3.3 Harmonic forced motion tests

There are three different types of harmonic forced motion tests, as described
in section 2.5.2. Harmonic motions were applied in the IL, CF and combined
IL and CF directions before the tank was filled with water to estimate the
capacity of the experimental system by using the tests with the maximum
and minimum amplitude ratios. These tests were also used to judge the
variability of the non-dimensional frequency.

Pure CF tests in air

Table 4.3 shows the results of the pure CF harmonic tests in air. All of the
tests have the maximum (A/D) = 1. The non-dimensional frequencies were
0.143 and 0.220.

Pure IL tests in air

For pure IL tests, the amplitude was in the range of [0.05, 0.175], and the
non-dimensional frequency was in the range of [0.524, 1.179], as shown in
Table 4.3.

Combined IL and CF tests in air

The combined IL and CF tests in air have small amplitude ratios, as they
were taken from Aronsen (2007). Aronsen’s tests were performed with
a constant amplitude ratio of 2 between the CF and IL directions, and
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(A/D)CF = 0.3. The two selected runs had different phase angles, as shown
in Table 4.3.

Pure CF tests in water

The pure CF tests in water had the same Reynolds number Re = 24000.
The amplitude ratio was 0.6 for all tests, and the non-dimensional frequency
was in the range of [0.13, 0.2].

Pure IL tests in water

The amplitude ratio of the pure IL tests was held constant at 0.175, and
the frequency range was [0.2, 0.45].

Combined IL and CF tests in water

Three ‘figure 8’ tests with different Re values and phase angles between the
IL and CF directions were performed in water, as shown in Table 4.3.

Similar to the procedure of the harmonic tests in air, pure CF, pure IL and
combined IL and CF tests were also performed in water, and the results
were verified using the results obtained by Aronsen (2007).

4.3.4 Daily test

One stationary test and one ‘figure 8’ test were performed twice daily (before
and after the main test matrix). Table 4.3 shows the properties of these two
tests. The daily tests were important because the stationary tests were used
to check the operation of all force transducers, connections and carriage
equipment, and the ‘figure 8’ test was used to check the functioning of
accelerometers and potentiometers.

4.3.5 Main test matrix

Definition of 19 sections of the NDP test model

For each NDP 38 m-long pipe, the provided displacement data is a matrix,
which contains displacement time series of 200 discrete locations along the
pipe in IL and CF directions.
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Table 4.3: Test runs outside main test matrix.

Type Test NO. Re (A/D)CF (A/D)IL f̂ θ [◦]

SA/W

8900 10100

8901 18349

8902 24000

8903 27523

8904 32110

8905 36697

8906 38500

8907 41284

8908 45872

CFA

5060 10100 0.4 0.130

5064 10100 0.4 0.200

5090 10100 1.0 0.130

5094 10100 1.0 0.200

ILA

8060 24000 0.05 0.200

8065 24000 0.05 0.45

8084 24000 0.175 0.200

8089 24000 0.175 0.45

CF&ILA
8920 24000 0.3 0.15 0.163 0

8925 24000 0.3 0.15 0.163 180

CFW

5370 24000 0.6 0.130

5371 24000 0.6 0.145

5372 24000 0.6 0.160

5373 24000 0.6 0.175

5374 24000 0.6 0.200

ILW

8084 24000 0.175 0.200

8085 24000 0.175 0.250

8086 24000 0.175 0.300

8087 24000 0.175 0.350

8088 24000 0.175 0.400

8089 24000 0.175 0.450

CF&ILW

8921 10100 0.3 0.15 0.163 0

8924 38500 0.3 0.15 0.100 0

8925 24000 0.3 0.15 0.163 180

DW
8902 24000

8924 38500 0.3 0.15 0.100 0

Type: S: stationary tests; CF: pure CF harmonic forced motion tests;
IL: pure IL harmonic forced motion tests; CF&IL: combined CF and
IL harmonic forced motion tests; D: daily tests. Subscript: A: in air;
W: in water.
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The following formula was used to select 19 sections from the ‘top end’
(where the velocity is maximum for sheared flow cases) to the ‘bottom end’:

li = (i× 10− 1)l i = 1, 2, . . . 19 (4.18)

where li is the distance from the top end to section i and l = 38/199 m.

The local velocity for shear flow cases is as follows:

Ui = Umax · (1−
li
38

) i = 1, 2, . . . 19 (4.19)

To run each case in MCLab, the modelling laws described in section 4.2 were
applied. The towing velocity and oscillating frequency were calculated, and
the amplitude ratio was held constant.

Definition of different types of forced motion experiments

In section 2.5.2, ‘observed orbits’ were defined as the measured motion of a
cross section of the flexible pipe. There are three applications of ‘observed
orbits’:

1. Periodic tests: Select the displacement in one cycle, make the orbit
close (see section 3.3.5), and apply it to the forced motion tests.

2. Filtered harmonic tests: Based on a periodic test orbit, using the
FFT, filter out higher order frequency components, transform them
back into a time series, and apply them to the forced motion tests.

3. Observed orbit tests: Select a displacement duration that has N cycles
and apply it directly to the forced motion tests without smoothing.

Table 4.4 shows the main test matrix performed in MCLab. The PIV tests
used the same orbit as the periodic tests, with PIV measuring equipments
installed.

4.4 Execution of the experiment

Each test run was performed in MCLab as follows:

1. Load the input file with suffix .mcl into the Mclc.vi LabVIEW front
panel. Synchronise the computer with the carriage.

2. Perform the zero settings of all channels.
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Table 4.4: Main test matrix.

Type Test NO. Runs Test NO. Runs

Periodic

N2030x 19 N2340x 19

N2100x∗ 19 N2370x∗ 19

N2160x∗ 19 N2430x∗ 19

N23405 2

Periodic orbit N234018 2

variation N23702 2

N23707 2

Filtered H23405 2

harmonic H234018 2

Observed orbit TN2030x 19 TN2340x 19

PIV

P2030x 3 P2340x 8

P2100x∗ 4 P2370x∗ 8

P2160x∗ 1 P2430x∗ 8

Total 84 112

x = 1, 2, . . . , 19.
Cases with superscript ∗ has a modified oscillation frequencies due to
the limit of experimental equipment, see section 4.1.1 and Appendix B.

3. Start logging data before starting the carriage.

4. Start the carriage. The carriage accelerates to the desired towing
velocity and continues to run at this velocity for N oscillation periods.

5. The carriage decelerates from the towing velocity to zero: simultane-
ously, the oscillations stop.

6. Data logging continues for approximately 10 seconds after the carriage
stops.

7. Stop logging data and save the data file in a binary format.



4.5. Signal processing procedure 87

8. Drive the carriage back at a fixed velocity 0.5m/s to the original posi-
tion for all test runs, and wait approximately 10 minutes for the water
to calm, before the next test.

4.5 Signal processing procedure

The signal pre- and post-processor were developed based on the methods
used by Aronsen (2007) and Soni (2008). As there are some differences be-
tween the present experiments and those performed in the previous studies,
the processors are also different.

4.5.1 Time window

The length of each rigid cylinder test was between 50 seconds and 4 minutes,
utilising the available length of the tank (20m). The data were sampled at
400 Hz. The cylinder started from rest, implying that the state at t = 0 was
that of a stationary cylinder in still water. At t > 0 the cylinder oscillated at
a prescribed motion. Simultaneously, the towing carriage accelerated to the
desired velocity, maintained a constant towing speed, and then decelerated
to zero speed at the end of the experiment. The time window to be used in
data processing was chosen based on the following principles:

� Avoid the acceleration and deceleration sections with varying towing
velocities.

� Avoid force/displacement transient effects.

� Find a period of an integer number of cycles by counting the up-
crossing points in the CF motion signal (use the IL motion signal if
IL is dominant). Calculate the oscillation frequency.

4.5.2 Carriage motion signals

� The towing velocity of the carriage was calculated by using the car-
riage position signal, and the Re number and non-dimensional fre-
quency were calculated based on the towing velocity of the carriage.

4.5.3 IL and CF motion signals

� The mean values for the IL and CF displacements were subtracted
from each displacement value to determine the maximum amplitude
for each direction.
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� In the frequency domain, the velocity and acceleration from the dis-
placement signals were calculated using a MATLAB script as follows:

1. FFT was used to transform the signal x(t) to frequency domain,
X(ω) = fft(x(t)).

2. A frequency vector with the same length as X was established.
The vector had a range from 0 to the Nyquist frequency and then
from a negative value of the Nyquist frequency to 0.

3. Both low- and high-pass filtering was performed by setting the
values of X outside the frequency band equal to 0.

4.5.4 Force signals

The force signals were processed in the following steps:

� The force signal was multiplied by the calibration factor and rotated
by the skew angle (see Appendix A).

� The mean IL and CF force components were subtracted from the force
signals.

� The mean drag coefficients were computed using the mean IL force.

� The inertia force component caused by the dry mass of the cylinder
was subtracted from the result to obtain the net hydrodynamic force.

4.6 Hydrodynamic coefficients

There are two methods of calculating the hydrodynamic coefficients: using
the Fourier series components of the displacements or filtering the displace-
ment signals around each frequency component. These two methods will be
introduced in the following sections.

4.6.1 Fourier series

The IL and CF displacement time series are defined as xIL(t) and xCF (t)
respectively. They can be expressed in Fourier series to obtain the harmonic
components as follows:

xIL/CF (t) =
aIL/CF,0

2
+

∞∑

n=1

[aIL/CF,ncos(
2nπ

T
t) + bIL/CF,nsin(

2nπ

T
t)]

(4.20)
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where

aIL/CF,n =
2

kT

∫ t+kT

t
xIL/CF (τ)cos(

2nπ

T
τ)dτ (n = 0, 1, 2, · · · ) (4.21)

bIL/CF,n =
2

kT

∫ t+kT

t
xIL/CF (τ)sin(

2nπ

T
τ)dτ (n = 1, 2, · · · ) (4.22)

and k is the number of oscillation cycles.

The IL and CF displacement time series of each frequency component
xIL/CF,n(t) are:

xIL/CF,n(t) = AIL/CF,ncos(
2nπ

T
t− θIL/CF,n) (n = 1, 2, · · · ) (4.23)

where the amplitude of each frequency is:

AIL/CF,n =
√
a2
IL/CF,n + b2IL/CF,n (n = 1, 2, · · · ) (4.24)

and the phase angle is:

θIL/CF,n = arctan(
bIL/CF,n

aIL/CF,n
) (n = 1, 2, · · · ) (4.25)

4.6.2 Band-pass filtering signal

Fourier series components can represent periodic orbits well. However, the
experimental data indicated that there was a bandwidth around each fre-
quency component of the hydrodynamic force. If the Fourier series compo-
nents of the force are used to calculate the hydrodynamic coefficients, then
the information beyond the discrete frequency value is lost.

To capture all of the important information of the hydrodynamic force, a
band-pass filtering method was applied both to the displacement and force
signals. For the nth order response frequency fosc,n = nfosc, a frequency
band [fosc,n − 0.2fosc, fosc,n + 0.2fosc] was applied.

4.6.3 Hydrodynamic coefficients for each frequency compo-
nent

The mean drag coefficient is defined as:

CD =
FIL,mean(τ)

1
2ρDLU

2
=

lim
k→∞

∫ t+kT
t FIL(τ)dτ

kT
1
2ρDLU

2
(4.26)
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where FIL,mean(τ) is the force in the IL direction.

The dynamic excitation coefficient corresponding to the nth harmonic com-
ponent ωn is defined as follows (Soni, 2008):

Ce,IL/CF,n =

2
xIL/CFn,0ωn

lim
k→∞

∫ t+kT
t Fhydro,IL/CF (τ) · ẋIL/CF,n(τ)dτ

kT
1
2ρDLU

2

(4.27)
The subscripts IL and CF on the hydrodynamic coefficients correspond to
the IL and CF directions, and the subscript n corresponds to the nth order
frequency. xIL/CFn,0 is the displacement amplitude at the nth order fre-
quency in IL or CF direction, see Eq. (4.23). The force coefficient defines
the energy transfer between the fluid and cylinder for each harmonic com-
ponent present in the time series. Positive coefficients indicate that energy
is transferred from the fluid to the cylinder, while negative coefficients in-
dicate energy dissipation through hydrodynamic damping.

The added mass coefficient represents the hydrodynamic force in phase with
the acceleration and is defined as follows:

Ca,IL/CF,n =
− 2
xIL/CFn,0ω

2
n

lim
k→∞

∫ t+kT
t Fhydro,IL/CF (τ) · ẍIL/CF,n(τ)dτ

kT
πD2

4 ρLω2
nxIL/CFn,0

(4.28)
This coefficient explains the physics of added mass for each harmonic com-
ponent.

The average power transfer, Ē, during a period of time, kT, is defined as
follows:

ĒIL/CF = lim
k→∞

∫ t+kT
t Fhydro,IL/CF (τ) · ẋIL/CF,n(τ)dτ

kT
(4.29)

Note that the integrals in Eqs. (4.27) to (4.29) must always be taken over
an integer number of oscillation periods (k = 1, 2, 3, . . . , N).

The total dynamic force coefficient is defined as follows:

Ct,IL/CF,n =

√
a2
IL/CF,n + b2IL/CF,n

1
2ρDLU

2
(4.30)
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where

aIL/CF,n =
2

kT

∫ t+kT

t
Fhydro,n,IL/CF (τ)cos(

2nπ

T
τ)dτ (4.31)

bIL/CF,n =
2

kT

∫ t+kT

t
Fhydro,n,IL/CF (τ)sin(

2nπ

T
τ)dτ (4.32)

The IL or CF rms-coefficient, is defined by the total hydrodynamic force as
follows:

Crms,IL/CF =

√√√√2 · 1
n

n∑

i=1

(Fhydro,IL/CF,i − F̄hydro,IL/CF )2

1
2ρDLU

2
0

(4.33)

4.7 Analysis of forced motion tests with observed
orbits

4.7.1 Drawback of the Fourier transform

A time-domain signal can be represented by a sum of discrete frequencies
using trigonometric functions with fixed amplitude. However, if we have a
signal such as:

x(t) = A(t)sin(ωt+ θ) (4.34)

where the amplitude is changing with time. To capture the variation of
amplitude A(t), more trigonometric functions are needed in addition to the
trigonometric function at ω.

4.7.2 Envelope detection

Another method that might be more valid is called ‘Envelope detection’
(details described in ‘MATLAB HELP’). The main principle is to find the
‘envelope’ (outline) of a signal. Two methods can be used:

� Squaring and low-pass filtering
The input signal is first squared and then sent through a low-pass filter.

� Hilbert transform
The analytic signal of the input is created using a Hilbert transform.
The envelope of the signal can be found by taking the absolute value
of the analytic signal.
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The analytic signal for a sequence x has a one-sided Fourier trans-
form, that is, negative frequencies are 0. To approximate the analytic
signal, the Hilbert transform calculates the FFT of the input sequence,
replaces those FFT coefficients that correspond to negative frequencies
with zeros, and calculates the inverse FFT of the result.

By applying the ‘Envelope detection’ technique to determine the amplitude
envelop of a signal, together with the FFT to find the frequency components,
such signals as that shown in Eq. (4.34) can be described accurately.

4.7.3 Statistical analysis

Both displacement and force signals from observed orbit tests are not stable;
instead, they show a chaotic characteristic (Modarres-Sadeghi et al., 2011).
Even for periodic tests, when the input motion is periodic, the force also
exhibits amplitude variations. Therefore, a statistical analysis is required in
those cases, and the first step is to compare statistical parameters between
the periodic orbits and observed orbits. The goal is to find a model to rep-
resent the response and force.

Different probability models are used for comparison purposes, as shown in
Table 4.5. Rayleigh distribution is related to individual maxima. Gumbel
distribution, two-parameter and three-parameter Weibull distributions are
extreme value distributions.

Table 4.5: Probabilistic models.

Model. Density function Cumulative distribution

Rayleigh fY (y) = y
σ2 exp{−1

2( yσ )2} FY (y) = 1− exp{−1
2( yσ )2}

Gumbel fY (y) = αexp{−α(y − u)− e−α(y−u)} FY (y) = exp{e−α(y−u)} −∞ ≤ y ≤ ∞
Weibull (2) fY (y) = λ

σ ( yλ)λ−1exp{−( yσ )λ} FY (y) = 1− exp{−( yσ )λ}
Weibull (3) fY (y) = λ

σ (y−µλ )λ−1exp{−(y−µσ )λ} FY (y) = 1− exp{−(y−µσ )λ}
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4.8 Processing and analysis of PIV data

4.8.1 Basic equations

Velocity

The local velocity, ~u, of a particle can be estimated as follows:

~u(~x, t)
.
=

∆~x(~x, t)

∆t
(4.35)

where ∆~x is the displacement of a particle located at ~x at time t over a
short time interval, ∆t.

Vorticity

The vorticity is defined as a measure of the rotational velocity of fluid
elements (Blevins, 1990) as follows:

ω =
∂v

∂x
− ∂u

∂y
(4.36)

where ω is the sum of the rotational velocities of two adjacent sides of the
fluid element.

4.8.2 PIV data post processing

Thousands of images were recorded during the PIV test runs. Commercial
software, VidPIV (VidPIV User Manual, 2005), was used to map the images
from two cameras, and velocity vectors were calculated. The wake behind
the cylinder model was captured, and a file containing the data was saved.
Then, MATLAB was used to process the data further to calculate the phase
average and vorticity. The plan was to compare the vortex field measured
with PIV to the CFD simulation results. But due to the particle-mixed
water was not clear, the images recorded from the underwater cameras are
too obscure to be processed. Only force measurements are used in this
study.
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Chapter 5

Uncertainty Analysis and
Quality Control

This chapter presents the uncertainty analysis used for the forced motion
test results. All of the error sources relevant to the hydrodynamic coeffi-
cients are discussed. The final results are given as a value with an error bar.
For the cases performed twice (PIV tests), special attention is given to the
stability of the force signals and the phase angle between the hydrodynamic
force and displacement.

5.1 General description

If property data and experimentally determined information is used in an
analytical solution, a quantitative estimate of the reliability of a measured or
calculated value should be provided. This measure is the basis of uncertainty
analysis. Here, a 95% confidence interval is used, i.e., the probability that
the true value to be within this interval is 0.95 (Aronsen, 2007; Coleman
and Steele, 1999).

5.1.1 Error and Uncertainty

The total measurement error is defined as the difference between the mea-
sured value and the true value. The total error (δ) is the sum of the sys-
tematic (bias) error and the random (precision) error. The bias error (β) is
constant for a specific parameter and test procedure. The random compo-
nent (ε) of the total error is also termed the repeatability or repeatability
error. Uncertainty is the statistical estimate of the error (Coleman and

95
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Steele, 1999; Aronsen, 2007).

Due to the change in precision error, the total error varies according to each
measurement as follow:

δi = β + εi (5.1)

To understand the difference between bias and precision error, the calibra-
tion of a single force sensor is used as an example. During this process, the
bias error is given by the possible error in the weight used to perform the
calibration. The precision error is typically given by the variation in cali-
bration coefficients found from different loading sequences (Aronsen, 2007).

Replication Level

When discussing errors and uncertainties in measurements, it is important
to distinguish between repetition and replication. Repetition means that
something is repeated. Replication level is defined by considering what
is repeated when repeating an experiment. Three replication levels were
defined by Aronsen (2007) and Coleman and Steele (1999):

0th order replication level The measured process is hypothesised to be
absolutely steady, meaning that it is independent of time. Random
errors arise only from the intrinsic variations in the the measuring
system. An example is measuring the length and diameter of the test
cylinder model.

1st order replication level In a time-dependent experiment, the time
marches forward, while all instrument identities are fixed. The vari-
ability of the measurement is caused by the variables that vary with
time during repeated trials. An example would be the measurements
of force during the fixed-cylinder towing test.

Nth order replication level The uncertainty of these levels includes the
random errors estimated by the first-order replication level together
with all systematic errors influencing the measurements. This step re-
quires performing a second test at a later time or performing a similar
experiment in a different laboratory.

Without changing the set-up, repeating the test at another time is recog-
nised as the 2nd order replication level. The higher replication level relates
to the PIV test phase in which the PIV equipment was mounted.
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5.2 Data Reduction Equations (DRE)

Key results of this experimental work are the hydrodynamic coefficients
derived from several variables. The propagation of elemental error related
to each variable to the final result is captured by the data reduction equation
(Coleman and Steele, 1999). A description of this equation and how it is
used in the uncertainty analysis is provided below.

5.2.1 General

The general data reduction equation is:

r = r(X1, X2, . . . , XN ) (5.2)

where r is an experimental result that is a function of n measured variables
Xi.

For a large-sample experiment (the number of degrees of freedom n of the
result r is 9 or more), the 95% confidence uncertainty analysis recommended
for use is:

U2
r = B2

r + P 2
r (5.3)

where Ur, Br and Pr are overall uncertainty, systematic uncertainty, and
random uncertainty respectively. The DRE is used to calculate B and P
individually.

B2
r =

N∑

i=1

θ2
iB

2
i + 2

N−1∑

i=1

N∑

k=i+1

θiθkBik (5.4)

where Bi is the systematic uncertainty of the variables Xi in Eq. (5.2), Bik
is the covariance estimator for the systematic errors in Xi and Xk, and

θi =
∂r

∂Xi
(5.5)

which is called the absolute sensitivity coefficient, defines how the results
are influenced by one specific measurement.

If the measurements of different variables are independent of each other, the
covariance terms are zero and Eq. (5.4) becomes

B2
r =

(
∂r

∂X1
B1

)2

+

(
∂r

∂X2
B2

)2

+ · · ·+
(

∂r

∂XN
BN

)2

(5.6)
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where for the Nth variable, XN , if there are J significant elemental bias
error sources and the corresponding systematic uncertainties are estimated
as (BN )1, (BN )2, . . . , (BN )J , the systematic uncertainty of the measurement
of XN is calculated as the root-mean-square combination of the elemental
systematic uncertainties as follows:

BN =

[
J∑

k=1

(BN )2
k

]1/2

(5.7)

and

P 2
r =

N∑

i=1

θ2
i P

2
i (5.8)

=

(
∂r

∂X1
P1

)2

+

(
∂r

∂X2
P2

)2

+ · · ·+
(

∂r

∂XN
PN

)2

(5.9)

where Pi is the random uncertainty of the variables Xi in Eq. (5.2). This
relation applies when it is assumed that the large-sample equation applies
and that the random uncertainty for each measured variable is determined
from a data set with Ni ≥ 10.

It is the degrees of freedom of the result, not the degrees of freedom of
the separate uncertainty sources, that dictates whether the large-sample
approximation is appropriate. If there are several variables with only a few
degrees of freedom, their combination in the calculation of the degrees of
freedom of the result will often show that the large-sample approximation
can be used to obtain a 95% confidence estimate of the total uncertainty
(Coleman and Steele, 1999).

The uncertainty in the result is given by

U2
r = (

∂r

∂X1
)2U2

X1
+ (

∂r

∂X2
)2U2

X2
+ · · ·+ (

∂r

∂Xn
)2U2

Xn =
∑

θ2
iU

2
Xi (5.10)

By dividing each term in Eq. (5.10) by r2 and multiplying each term on the
right-hand side by (Xi/Xi)

2 , which equals 1, Eq. (5.10) becomes

U2
r

r2
= (

X1

r

∂r

∂X1
)2(

UX1

X1
)2 + (

X2

r

∂r

∂X2
)2(

UX2

X2
)2 + · · ·+ (

Xn

r

∂r

∂Xn
)2(

UXn
Xn

)2

(5.11)
The term Xi

r
∂r
∂Xi

on the right side of Eq. (5.11) is the uncertainty magnifi-
cation factor (UMF). The UMF for a given Xi indicates the influence of the
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uncertainty in that particular variable on the uncertainty in the final result.
A UMF value greater than 1 indicates that the influence of the uncertainty
in the variable is magnified as it propagates through the data reduction
equation to the result, and vice versa. For simplicity, UMF was assumed to
be 1, which means that the uncertainty of each variable is neither magnified
nor diminished during the propagation process. Then, Eq. (5.11) can be
simplified as follows:

U2
r

r2
= (

UX1

X1
)2 + (

UX2

X2
)2 + · · ·+ (

UXn
Xn

)2 (5.12)

In this thesis, Eq.(5.10) is used as the DRE, while bias error and preci-
sion error are taken into account through Eq.(5.6) and Eq.(5.9), and total
uncertainty is calculated by Eq.(5.3).

5.2.2 DRE for the hydrodynamic coefficients

In this section, the absolute sensitivity coefficients for the three hydrody-
namic coefficients are determined.

Drag coefficient CD

(
UCD
CD

)2 = (
UFIL,mean
FIL,mean

)2 + (
UD
D

)2 + (
UL
L

)2 + (
2UU0

U0
)2 (5.13)

For the dynamic excitation coefficient, Ce, and the added mass coefficient,
Ca, the coefficients can have a value of zero. Thus, Eq. (5.12) cannot be
used because the denominator cannot be zero.

The CF and IL hydrodynamic excitation and added mass coefficients are
calculated from the hydrodynamic force in phase with the respective ve-
locity and acceleration components of the oscillating cylinder model. To
obtain these two components of the hydrodynamic force, the two following
integrations on k motion periods were computed:

ICe = lim
k→∞

∫ t+kT
t Fhydro,IL/CF (τ) · ẋIL/CF,n(τ)dτ

kT
(5.14)

ICa = lim
k→∞

∫ t+kT
t Fhydro,IL/CF (τ) · ẍIL/CF,n(τ)dτ

kT
(5.15)

where each part of the above equations is explained in Eqs. (4.27) and
(4.28).
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During the experiment, k cannot approach infinity, so Eqs. (5.14) and (5.15)
become:

ICe =

∫ t+kT
t Fhydro,IL/CF (τ) · ẋIL/CF,n(τ)dτ

kT
(5.16)

ICa =

∫ t+kT
t Fhydro,IL/CF (τ) · ẍIL/CF,n(τ)dτ

kT
(5.17)

The dynamic excitation coefficient (Ce) is defined by Eq. (4.27). The un-
certainty in Ce is calculated as follows:

(UCe)
2 = (θICe)

2(UICe)
2 + (θxIL/CF,n,0)2(UxIL/CF,n,0)2 + (θωn)2(Uωn)2

+ (θρ)
2(Uρ)

2 + (θD)2(UD)2 + (θL)2(UL)2 + (θU0)2(UU0)2 (5.18)

where the absolute sensitivity coefficients are given by:

θICe =
∂Ce
∂ICe

=
4

xIL/CF,n,0ωnρDLU
2
0

(5.19)

θxIL/CF,n,0 =
∂Ce

∂xIL/CF,n,0
= − 4ICe

x2
IL/CF,n,0ωnρDLU

2
0

(5.20)

θωn =
∂Ce
∂ωn

= − 4ICe
xIL/CF,n,0ω2

nρDLU
2
0

(5.21)

θρ =
∂Ce
∂ρ

= − 4ICe
xIL/CF,n,0ωnρ2DLU2

0

(5.22)

θD =
∂Ce
∂D

= − 4ICe
xIL/CF,n,0ωnρD2LU2

0

(5.23)

θL =
∂Ce
∂L

= − 4ICe
xIL/CF,n,0ωnρDL2U2

0

(5.24)

θU0 =
∂Ce
∂U0

= − 8ICe
xIL/CF,n,0ωnρDLU

3
0

(5.25)

The added mass coefficient (Ca) is defined by Eq. (4.28), and the uncer-
tainty in Ca is:

(UCa)2 = (θICa)2(UICa)2 + (θxIL/CF,n,0)2(UxIL/CF,n,0)2 + (θωn)2(Uωn)2

+ (θD)2(UD)2 + (θρ)
2(Uρ)

2 + (θL)2(UL)2 (5.26)
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where the absolute sensitivity coefficients are given by:

θICa =
∂Ca
∂ICa

= − 8

x2
IL/CF,n,0ω

4
nπρLD

2
(5.27)

θxIL/CF,n,0 =
∂Ca

∂xIL/CF,n,0
=

16ICa
x3
IL/CF,n,0ω

4
nπρLD

2
(5.28)

θωn =
∂Ca
∂ωn

=
32ICa

x2
IL/CF,n,0ω

5
nπρLD

2
(5.29)

θρ =
∂Ca
∂ρ

=
8ICa

x2
IL/CF,n,0ω

4
nπρ

2LD2
(5.30)

θL =
∂Ca
∂L

=
8ICa

x2
IL/CF,n,0ω

4
nπρL

2D2
(5.31)

θD =
∂Ca
∂D

=
16ICa

x2
IL/CF,n,0ω

4
nπρLD

3
(5.32)

For each hydrodynamic coefficient, the uncertainty of each error source was
estimated. Then, the absolute sensitivity coefficient corresponding to each
error source was calculated. Finally, Eqs. (5.18) and (5.26) were applied
to calculate the uncertainties of the excitation coefficient and added mass
coefficient respectively.

5.3 Individual uncertainties in the DRE

In this section the individual uncertainties, Ui, in the DRE are addressed.
Both bias and precision errors, which are denoted as B and P respectively,
are addressed.

5.3.1 Uncertainty in water density

Water density varies with temperature, as shown in Table 5.1. The towing
tank was filled with fresh water, and during the test, the water temperature
was measured several times at one side of the tank. In addition, during the
experiments with the PIV equipment, the water density may have changed
because of the particles added to the water, this effect was considered as an
additional bias of 0.1.

The mean value and precision error of the water temperature can be calcu-
lated from the measurements in Table 5.1. By interpolating the densities of
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Table 5.1: Mass density (ρ) and kinematic viscosity (ν) of fresh water.
(Faltinsen, 1990)

Temperature ρ(kg ·m−3) ν · 106(m2s−1)

0 � 999.8 1.59
5 � 1000.0 1.52

10 � 999.7 1.31
15 � 999.1 1.14
20 � 998.2 1.00

Table 5.2: Measured temperature and estimated error of water density.

Date (2010) Jan20th Jan21st Jan23rd Jan24th

Reading temperature � 14.1 13.4/13.5 12.5/12.9 12.8
Mean temperature � 13.2
STD. temperature � 0.58
t- value 2.571
Mean density kg ·m−3 999.32
Density error Bρ(kg ·m−3) 0.5

different temperatures in Table 5.2, the corresponding water density can be
determined. A constant density was used for all of the experiments. Thus,
the density variation was treated as a bias error.

5.3.2 Uncertainty in the cylinder diameter and length

In this study, the same rigid cylinder model as Aronsen (2007) was used.
The coating of the cylinder was repainted prior to the experiment. The
uncertainties in the cylinder diameter and length were taken as bias errors
and the values used in Aronsen (2007) were accepted as valid (see Table 5.3).

5.3.3 Uncertainty in the cylinder mass

The mass of the cylinder model was measured five times by an electronic
weight. All five readings were unchanged and equal to 9.775 kg. The error in

Table 5.3: Error in cylinder diameter, UD, and length, UL.

D [mm] BD[mm] L[mm] BL[mm]

100.0 0.1 2000 5
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cylinder mass was treated as a bias error of 0.01 kg to account for potential
uncertainty.

5.3.4 Uncertainties in the IL and CF displacements

The precision errors of the calibration factors of the IL and CF potentiome-
ters cause bias errors in the IL and CF displacements, respectively. As the
velocities and accelerations are derived from potentiometer measurements,
these errors propagate to the velocity and acceleration calculations. The
error is included through the use of Eqs. (5.16) and (5.17).

5.3.5 Uncertainty in towing velocity

The towing velocity, U , is derived from the towing carriage position mea-
surements. The instantaneous velocity vector (the derivative of the displace-
ment signal) was calculated to estimate the precision error, and the average
velocity (given by averaging the instantaneous velocity) was calculated and
used in the force coefficient calculation.

The bias error in the towing velocity is related to the calibration factor used
in the motion control system and can be estimated by the signals under zero
velocity. In this thesis, the bias used by Aronsen (2007), BU/U = 0.01, was
applied. The precision error was the variation over N oscillation cycles,
PU = 2 · SU/

√
N .

5.3.6 Uncertainty in drag force

The drag coefficient is calculated from the mean drag force, which was mea-
sured in a time window of an integer number of oscillation periods.

The errors in the calibration factors and IL/CF cross talk contributed to
the bias error of the drag force. The precision error can be calculated from
the variations of the mean drag force of each cycle.

5.3.7 Uncertainty in the decomposed force

Several elemental error sources contribute to the uncertainty of the decom-
posed force:

Bias errors

� Error in the calibration factors for the IL/CF force transducers.
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� Error in the cross-talk angle between the IL and CF force transducers.

� Error from the Fourier decomposing or filtering of the displacement
signal, as well as the derivation of the velocity and acceleration signal.

Precision errors

� Variation of the mean force in the IL and CF directions.

� Error due to the numerical calculation of the integration.

1. Error in the calibration factors and cross-talk angle

The calibration procedure is described in Appendix A. Each calibration
factor used in the data processing program used an average of 8 values
measured during the calibration process. This procedure caused a precision
error for each calibration factor, as shown in Table A.1.

2. Error in the rotation angle

The rotation angle, found in Step III of the force transducer calibration,
is discussed in detail in Appendix A. The error was estimated based on
40 values on each side, as shown in Table A.1. The errors in the calibra-
tion factors and rotation angles propagate into the force signal through the
following equations:

FIL,A = F20332 · cos(αA)− F20333 · sin(αA) (5.33)

FCF,A = F20332 · sin(αA) + F20333 · cos(αA) (5.34)

FIL,B = F20335 · cos(αB)− F20334 · sin(αB) (5.35)

FCF,B = F20335 · sin(αB) + F20334 · cos(αB) (5.36)

where the subscript number 2033x is the serial number of strain gauge used
in the experiment; F2033x = S2033x ·fc2033x, x = 2, 3, 4, 5; S2033x are the volt
values from the channels of the force transducers, F2033x is the preliminary
force signal after multiplying the volt values with the calibration factor,
fc2033x is the calibration factor and αA and αB are the rotation angles on
the A and B sides, respectively. The bias error of the force caused by these
two parameters can be calculated by Eq. (5.6). An additional bias error
comes from the cross talk between the IL and CF transducers, resulting in
2% bias error, as shown in Appendix A.
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3. Error in the derivation of velocity and acceleration from the
Fourier component or filtered motion signal

The displacement signals recorded from the string potentiometers in both
the IL and CF directions are used to derive the cylinder oscillation ve-
locity and acceleration. The following two methods are used to calculate
xIL/CF,n(τ).

� The IL and CF motion signals are decomposed into Fourier compo-
nents as a combination of sinusoidal signals (see section 4.6.1). If the
response or the hydrodynamic force has a frequency component that
is not a multiple of the oscillation frequency, the Fourier decomposi-
tion process will fail, as it only takes discrete-frequency values into
account.

� The motion signals are band-pass filtered with an FFT to determine
the displacement component around each frequency. If there is a time-
varying amplitude, this method will produce better results. The band-
width will have an influence on the filtering results. A bandwidth of
0.4 times the oscillation frequency was chosen for this analysis.

Precision error of the decomposed force

The precision error of Eqs. (5.16) and (5.17) were estimated by the integral
of each oscillation period. The numerical errors of the filtered hydrodynamic
force component, velocity or acceleration signal and oscillation period con-
tribute to the precision error of the integral.

5.4 Additional Error Sources

5.4.1 Residual flow

Between tests, the carriage was towed back to the start position. There was
a waiting time of 10 minutes (Aronsen, 2007) before the next test started.
There may have been residual flow that influenced the towing velocity.

Ersdal (2004) suggested an empirical equation to estimate the residual flow
level based on far wake theory as follows:

u1

U
= 1.2(

Ut

CDD
)−

1
2 (5.37)
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Relatively large residual flow makes the true flow velocity different from
given velocity, this introduces uncertainties of the hydrodynamic coeffi-
cients.

5.4.2 Cylinder end conditions

To avoid ant 3D end effects from the finite length of the model, two end
plates designed by Aronsen (2007) were mounted on both ends of the cylin-
der. These end plates consisted of Plexiglas and were structurally attached
to the housing of the force sensors. There was a small gap between the
housing and the edge of the cylinder ends to avoid touching the cylinder
and influencing the force measurement .

5.4.3 Blockage effect

Zdravkovich (2002) defined the blockage effect as the confining effect on the
model induced by the walls in wind or water tunnels. The water surface
can also be a blockage effect source.

The blockage ratio is defined as the diameter of the cylinder divided by the
water depth. The blockage ratio in our experiments was less than 0.1 and
the Re number varied from 103 to 105. Therefore, the blockage effect was
negligible in this experiment.

5.4.4 Effective towing tank length

The number of oscillation cycles for each run is limited by the towing ve-
locity and the length of the towing tank. The test rig at MCLab has an
effective length of 21 m. The start and end of each time history were deleted
to eliminate the transient effects, and work with an integer number of cycles
of steady oscillations.

The effective time duration can be simply calculated as L/U , where L is the
effective length of the towing tank and U is the towing velocity. Assuming
that the oscillations are stable, at least N stable cycles (Tosc) are needed:

L

U
≥ NTosc (5.38)

where Tosc = 1/fosc, and the following limitation is obtained:

fosc
U
≥ N

L
(5.39)
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5.5 Uncertainty analysis results

The bias errors and precision errors of the drag coefficient, excitation coef-
ficient and added mass coefficient were calculated for each test case using
the DRE for the uncertainty analysis. The contribution of the error of each
element was compared to determine the most important error source. As
the forces were measured at both sides of the cylinder, the correlation of
the forces at both sides is examined. For the tests conducted once or twice
a day, the repeatability was also analysed.

5.5.1 Residual flow

The waiting time between two test runs (10 min) was established based
on the experimental work of Aronsen (2007). The relative velocity of the
residual flow was calculated by Eq. (5.37), and the results are shown in
Figure 5.1a. It can be seen that there is less than 10% of residual flow after
10 min of waiting when the towing velocity is larger than 0.05m/s. When
the towing velocity nears zero, the relative residual flow velocity increases
dramatically. The cases with such low towing velocity correspond to the
cross sections near the bottom end of a flexible beam exposed to shear
current.
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(a) Residual flow velocity relative to tow-
ing velocity.

0 1 2 3 4 5 6 7
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0
 

 

 β ,  A
 ε,  A
 β ,  B
 ε,  B

Err
or

D r a g  c o e f f i c i e n t  C D

(b) Error of drag coefficient.

Figure 5.1: Residual flow relative velocity and error of drag coefficients. β:
bias error; ε: precision error. A and B represent starboard and port sides
of cylinder model.



108 Uncertainty Analysis and Quality Control

5.5.2 Drag coefficient

The bias error and precision error of the drag coefficients are presented in
Figure 5.1b. The bias error of the drag coefficient arises from the mean IL
force, towing velocity, water density and cylinder properties (L and D). The
first two terms are the main contributors. The bias errors in the calibration
factor of the IL and CF strain gauges and the IL and CF interactions (see
Table A.1) result in a bias error in the mean IL force. A relative bias error of
0.01 was used for the towing velocity. The variations in the mean drag force
and towing velocity in each oscillation period result in precision errors in the
drag coefficient. The bias error increases linearly with the drag coefficients,
and the precision error is scattered, with most of the values below 0.1.

5.5.3 Excitation coefficient

Figures 5.2a and 5.2b show the errors in the excitation coefficients at the
dominating frequencies in the CF and IL directions. Generally, in both
directions, the bias error caused by the water density and cylinder properties
is negligible. The bias errors of the integration and the towing velocity
are significant. In the integration (Eq.5.16), the bias error of the force
calibration factors (see Table A.1) plays a more important role than the
error in the IL and CF cross talk. Figure 5.2a shows that the bias error
increases with increasing magnitude of the CF excitation coefficient. The
precision error arises from the numerical calculation process. The precision
errors for the zero excitation coefficients in the CF and IL directions are
0.08 and 0.04, respectively.
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(a) CF excitation coefficients
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Figure 5.2: Error of excitation coefficients. β: bias error; ε: precision error.
A and B represent starboard and port sides of cylinder model.
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5.5.4 Added mass coefficient

The uncertainties of the added mass coefficients are calculated by Eq. (5.26).
The results are shown in Figures 5.3a and 5.3b. The integration and am-
plitude errors contribute most to the bias error. In the integration (Eq.
5.17), the bias errors in the force calibration factors (see Table A.1) are
primary error source; in addition, the errors in accelerations derived from
displacement signals are also significant. Figure 5.3a shows that the bias
error increases with increasing magnitude of the added mass coefficients.
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Figure 5.3: Error of added mass coefficients. β: bias error; ε: precision
error. A and B represent starboard and port sides of cylinder model.

5.5.5 Repeatability

One stationary test and one ‘figure 8’ test were run before and after the
main test matrix every experimental day to ensure that the connections of
every transducer were unchanged and that they were working properly.

The period without PIV equipment installed is ‘Phase I’, which is com-
prised of 32 runs, and the period with PIV equipment is ‘Phase II’, which
is comprised of 14 runs. A and B represent the starboard and port sides,
respectively.

Stationary tests

The results of the stationary tests are presented in Table 5.4. The B side has
a higher mean drag coefficient than the A side in both phases. Compared
to the phase I tests, the phase II tests have higher Crms,CF and Crms,IL
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Table 5.4: Results from stationary tests. µ: mean value; σ: standard
deviation

.

Phase
CD St Crms,CF Crms,IL

µ σ µ σ µ σ µ σ

I, A 1.265 0.034 0.188 0.002 0.667 0.344 0.480 0.234
I, B 1.346 0.030 0.187 0.003 0.644 0.331 0.696 0.338
II, A 1.279 0.039 0.189 0.002 0.768 0.162 0.709 0.080
II, B 1.317 0.020 0.188 0.002 0.729 0.212 0.930 0.068

values, but the B side has higher Crms,IL values than the A side.

The Reynolds number of the stationary tests is 2.4 · 104, and the Strouhal
number agrees well with the results in Norberg (2003), as shown in Fig-
ure 5.4a. The rms lift coefficient is defined by Eq. (4.33), which is

√
2 times

of the R.M.S lift coefficient in Figure 5.4b. Phase I agrees well with the
results in Norberg (2003), but the lift coefficients for phase II are on the
upper boundary in Figure 5.4b.
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(b) R.M.S lift coefficient versus Re.

Figure 5.4: Strouhal number and rms lift coefficient, from Norberg (2003).

Figure 8 test

The definition of the daily ‘figure 8’ test is shown in Table 4.3.

The mean value and standard deviation of the drag coefficients, excitation
coefficients and added mass coefficients of phases I and II are presented
in Table 5.5. Generally, the phase II results show higher values for all
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Table 5.5: Results from figure 8 tests. µ: mean value; σ: standard deviation

Phase
CD Ce,CF Ce,IL

µ σ µ σ µ σ

I, A 1.353 0.020 0.333 0.082 -0.180 0.009
I, B 1.478 0.020 0.371 0.083 -0.211 0.009

II, A 1.390 0.036 0.370 0.072 -0.193 0.009
II, B 1.473 0.014 0.376 0.080 -0.217 0.010

Phase
Ca,CF Ca,IL

µ σ µ σ

I, A -3.216 0.498 -0.392 0.022
I, B -3.496 0.505 -0.337 0.025

II, A -3.422 0.408 -0.399 0.025
II, B -3.517 0.512 -0.347 0.028

coefficients for both the A and B sides. The A-side results show smaller
values for all of the coefficients than the B side except for the IL added
mass coefficient.

5.5.6 2nd order replication

Verification test results

A series of pure IL and pure CF tests were performed before running the
test matrix. The results were compared to previous experiments by Aron-
sen (2007) and Szwalek and Larsen (2009), with Re = 24000. A detailed
description of the tests is provided in Table 4.3.

The excitation coefficient, added mass coefficient and drag coefficient were
plotted against non-dimensional frequency, as shown in Figures 5.5 to Fig-
ure 5.7. Most of the results agree well with those of Aronsen (2007), except
the excitation coefficient of the pure IL tests. The results calculated from
the A- and B-side measurements agree with each other, except that the
B-side drag coefficients are slightly higher than those of the A side.

PIV repeat tests

Thirty-two test cases were repeated with the PIV equipment installed; they
are in the 2nd replication level. The relative error of each hydrodynamic
coefficient is defined as follows:
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Figure 5.5: Excitation coefficients of verification tests.
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Figure 5.6: Added mass coefficients of verification tests.

e =
xPIV − x̄

x̄
(5.40)

where xPIV is the hydrodynamic coefficient calculated from the PIV run
and x̄ is the average value between two runs for the same coefficient.

Figures D.1a and Figure D.1b (Appendix D) show the relative error of the
hydrodynamic coefficients in the CF and IL directions, respectively. In each
figure, the x-axis is the sequence number of the 32 PIV cases, and the y-axis
is the relative error of the coefficient. The two blue lines are the lower and
upper limits (10%) of the error, and the red stars are the relative error of
each test run. The cases with a relative error falling between the lower and
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Figure 5.7: Drag coefficients of verification tests.

upper limit were considered ‘stable’; otherwise, they were considered ‘un-
stable’. The errors of the A- and B-side excitation coefficients and added
mass coefficients for the cylinder model are presented for the CF and IL
directions. The test run without a data point of relative error shown in the
figure implies that the absolute value of the relative error is larger than 0.5.

Table D.1 shows the number of each coefficient at either side, among the 32
test cases, that have a relative error within 0.1. It also shows the percentage
in each range.

Among the 32 PIV runs, there were three different types of ‘force-coefficient’
relationships. Three representative test runs were selected for discussion.
In Figure D.1, they are marked with green frames, and the corresponding
NDP test numbers are marked at the bottom of each frame.

Figures D.2 to D.4 (Appendix D) show the filtered force component of ω1 to
ω4 in both the CF (a) and IL (b) directions. In each sub-figure, the upper
and lower rows show the time history of the force signal with and without
the PIV installed, respectively. The maximum values in each time history
are marked with red circles. The mean value and standard deviation of the
maxima are shown in Tables D.2 to D.4. Phase A occurred from October to
December in 2010 without PIV equipment installed, and Phase B occurred
in January in 2011.
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Stable force-stable results

As shown in Figure D.1 (Appendix D), in Case 21002, all of the coefficients
have a relative error less than 0.1. Figure D.2 and Table D.2 (Appendix
D) show that the filtered force components are nearly identical for the two
runs.

Stable force-unstable results

Case 24307 also has stable filtered force signals, but the hydrodynamic co-
efficients show large discrepancies between the two runs, as shown in Figure
D.1. This observation must be caused by the phase between the displace-
ment and force.

Unstable force-unstable results

Figure D.4 shows that Case 23407 has different force time histories for the
two runs, and in each run itself, the signal is clearly unstable, particularly
in the CF direction. From Table D.4, large differences can also be observed
when comparing the mean values. The standard deviation is also large.

The three selected cases imply that when using the results of forced motion
experiments with a short, rigid cylinder, the force signals, as well as the
coefficients, should be checked for stability. The instability of force signals
is a reflection of the wake around the cylinder, and PIV measurements are
necessary to check the wake and vortex pattern.
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Chapter 6

CFD numerical calculation

The flow close to an oscillating cylinder has been calculated by use of several
commercial programs based on CFD. The purpose of this chapter is to
describe the applied methods.

6.1 Pre-processing: computational model & mesh
generation

The pre-processing software package GAMBIT was used to create the model
and generate the mesh of the computing domain. Gambit is a pre-processor
to FLUENT. It provides both structural and non-structural meshes in 2D
and 3D (FLUENT 6.3 User’s Guide, 2006; ANSYS FLUENT User’s Guide
Release 13.0, 2010).

Two models were used during the calculation. The first model was modi-
fied based on Huang et al. (2009), and a second mesh was developed from
Huang’s 2D structured mesh, which is not published yet.

6.1.1 Mesh generation

Mesh strategy A

Figure 6.1 shows mesh A and the boundary conditions of the computa-
tional domain. The computational domain has dimensions of L(length) ×
B(width) × H(height)=45D × 30D × 8D, where D is the diameter of the
cylinder. The front region is a semi-circular shape with a radius of 15D.
The length of the cylinder model is 8D. A circle with a radius of 8D moves
rigidly with the cylinder model, including the mesh inside, and the mesh

117
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Figure 6.1: Mesh A generation and boundary conditions.

outside the circle deforms according to the movement of the circle. Inside
the circle, a semi-elliptical domain, a × b = 7.5D × 4D, had a finer mesh
around the cylinder and wake region to capture details of the flow domain.
A 2D X-Y plane view of the mesh is shown in Figure 6.2a.

In the X-Y plane, a non-structural triangular mesh was used, as shown in
Figure 6.2a. In the X-Z and Y-Z planes, structural rectangular meshes were
used. The resulting 3D elements consist of triangular prisms.

Mesh strategy B

The second model is cylindrical, as shown in Figure 6.3. In the X-Y plane,
the computational domain has a radius of 20D (where D is the diameter
of the cylinder model), as shown in Figure 6.4, and in the Z direction, the
length of the cylinder is 10D. A circle with a radius of 8D moves rigidly
with the cylinder model, including the mesh inside, and the mesh inside is
denser than that outside, particularly in the wake area behind the cylinder.
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(a) Mesh A in xy plain. (b) Boundary layer mesh.

Figure 6.2: Mesh A in xy plain and detail mesh around the cylinder.

Table 6.1: Two mesh generation strategies.

Mesh Nodes Elements Nc Nt Nz

A 1338553 1989400 160 40∗ 100

B 8568180 8467200 360 225 100

Nc : Number of nodes in the cylinder circumferential direction.
Nt : Number of nodes in the cylinder wall normal direction.
Nz : Number of nodes in the cylinder length direction.

Table 6.1 summarises the two mesh strategies.

6.1.2 Boundary conditions

As is shown in Figures 6.1 and 6.3, the boundary conditions are as follows:

Cylinder: Wall
Port/Starboard: Wall
Up/down (model ends): Symmetry
Inlet: Velocity inlet
Outlet: Pressure outlet
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Figure 6.3: Mesh B generation and boundary conditions.

Figure 6.4: Mesh B in xy plain.
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6.1.3 Time step

The time step ∆t in all of the simulations was held constant at 0.005s. The
dimensionless time step is defined as follows:

U ·∆t
D

(6.1)

6.1.4 Boundary layer

The non-dimensional wall distance (y+) is defined as follows:

y+ =
u∗y

ν
(6.2)

where u∗ is the friction velocity, y is the distance between the first-layer
mesh to the cylinder wall, and ν is the local kinematic viscosity of the fluid.

In the present study, the y+ value was assumed to be unity. The boundary
layer settings are shown in Table 6.2, and the boundary layer mesh is shown
in Figure 6.2b.

Table 6.2: Detail boundary layer setting.

First row Growth factor Number of rows

0.0005 1.2 10

6.1.5 Mesh independence test

A mesh independence test of Mesh A was performed by Huang et al. (2009),
in which the grid density in the Z direction was increased by a factor of 4.
However, the span-wise (Z direction) resolution is significant for LES (and
DNS) flow problems, as discussed by Breuer (1998). For Re = 3900, Breuer
suggested the number of grid points of 64 in the span-wise direction with
πD length. Dong and Karniadakis (2005) performed DNS of flow past a
stationary cylinder at Re = 10000 with a cylinder length of πD. Dong and
Karniadakis discovered that ‘drag coefficients, base pressure (base suction)
coefficients, and the Strouhal number from the simulations were in good
agreement with the experimental results for various grid numbers in the
spanwise direction (from 16 to 128), indicating that these physical quanti-
ties are generally not very sensitive to grid resolution. The lift coefficient,
however, demonstrates a higher sensitivity to grid resolution’.
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Based on the above findings, the mesh applied in this thesis is not considered
to have high resolution. So the present numerical results should not be used
to explain the detail physics of the flow field.

6.2 FLUENT solver

The CFD calculations in this thesis were performed using the commercial
fluid dynamic software package FLUENT. Tecplot 360 and MATLAB were
used to analyse the results.

6.2.1 Turbulence model

For the 2D simulations, the standard k − ε 2-equation model was applied.

For 3D simulations, LES was applied, as described in section 2.8.2.

6.2.2 Dynamic mesh

For mesh strategy A, which is described in section 6.1.1, a circular region
with diameter 15D was defined to move with the cylinder without distor-
tion, and the mesh outside the circle deformed according to the motion of
the cylinder and the fixed outer boundaries (Huang et al., 2009). A combi-
nation of a smoothing and re-meshing dynamic mesh strategy was applied
to simulate the vibrating cylinder with imposed motion in both the IL and
CF directions.

As all the computational cases were subjected to forced motion, a dynamic
mesh strategy was needed. The meshes inside the circle around the cylinder
model with radius 8D had exactly the same motion as the cylinder. The
motion is defined by the time-varying velocity vectors (IL and CF), which
was saved as .txt files. These were read into the model by a UDF executing
file.

The meshes outside the rigid moving circular area deformed according to a
certain rule. The 2.5D Surface Remeshing Method for a 3D model was used
for the deformation.

The model in this study is 3D, but the motion is 2D. The 2.5D Surface
Remeshing Method marks the faces on a deforming boundary, and then, the
marked faces are remeshed and smoothed on one side based on face skew-
ness and the minimum and maximum length scales. Finally, the changes
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are extruded along the Z axis (cylinder span direction) to the opposite side.
Rigid body motion is applied to the moving face zones (circle outside the
cylinder), while the triangular extrusion surface is assigned to a deform-
ing zone with remeshing and smoothing enabled. The opposite side of the
triangular mesh is also assigned to a deforming zone, with only smoothing
enabled (ANSYS FLUENT User’s Guide Release 13.0, 2010).

6.2.3 User Defined Functions (UDF)

ANSYS FLUENT allows users to embed user-defined functions (UDF) into
a computational model. A UDF was written in the C programming language
and defined using the DEFINE macros provided by ANSYS FLUENT.

In the present study, a UDF was used to read the velocity vectors saved
in the .txt file, apply them to the model, record the transient velocity,
displacement and force signals and save the results in another .txt file.

6.2.4 Parallel Computing

The parallel solver of ANSYS FLUENT is able to compute a solution by
using multiple processes that may be executing on the same computer or
different computers in a network.

The parallel processing is shown in Figure 6.5. It uses the interactions
between ANSYS FLUENT, a host process and a set of compute-node pro-
cesses. ANSYS FLUENT interacts with the host process and the collection
of compute nodes using a utility named cortex which manages the user inter-
face of ANSYS FLUENT and basic graphical functions (ANSYS FLUENT
User’s Guide Release 13.0, 2010).

High Performance Computing (HPC) at NTNU in Trondheim was used as
a platform to conduct the calculation.
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Chapter 7

Observations & Discussions

This chapter presents the results of both experiments and numerical simu-
lation. It contains three parts: Part 1 presents some results from the NDP
high mode VIV tests, and the results of the forced motion experiments
are shown in part 2. Part 3 presents the results of both 2D and 3D CFD
simulations.

7.1 Results of the NDP High Mode VIV Tests

The author was not involved in the NDP High Mode VIV Test program.
However, because the forced motion experimental work in this thesis is
strongly linked to the NDP tests, some important results will be presented
herein. The key results can be found in Braaten and Lie (2005), Kristansen
and Lie (2005), and Trim et al. (2005). The results without a reference in
this thesis are the work performed by the author based on the displacement
data from the NDP tests provided by Trygve Kristiansen.

7.1.1 Global responses of a flexible beam

Figure 7.1 shows the RMS values of the response amplitudes along the flexi-
ble beam for the NDP cases used in this thesis. The stars show the locations
of 19 cross sections selected for analysis (see also Appendix B), and the blue
and red colours represent the CF and IL directions, respectively. The values
in the figures are calculated from the displacement data provided by Trygve
Kristiansen. Figures 7.1a, 7.1b and 7.1c show the responses of three uniform
cases. Figures 7.1d, 7.1e and 7.1f show responses of three sheared flow cases
in the NDP test.
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Figure 7.1: RMS values of response amplitudes of flexible beam of different
NDP cases.

The contour plots of the displacements along the entire pipe as they vary
with time are given in Figure 7.2 for Case 2030, which is plotted in the
same manner as Fig 10(a) in Modarres-Sadeghi et al. (2011). The maxi-
mum current velocity is found at z = 0; the plots for the other cases used
in this thesis are shown in Appendix E. These plots illustrate the influence
of standing and travelling waves, and the dominating modes in the CF and
IL directions.
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Figure 7.2: CF & IL displacements in time and space for NDP uniform flow
case 2030, U = 0.5 m/s.

7.1.2 Local response: Characterisation of response types

CF response

Based on the data from the NDP tests, Modarres-Sadeghi et al. (2011) di-
vided the responses of the cross-sections of a flexible pipe in the CF direction
into three categories:

� The entire signal is quasi-periodic (Type-I).

� Quasi-periodic signal (Type-I) interrupted by bursts of chaotic oscil-
lations (Type-II).

� Entirely chaotic signal (Type-II) and even the smallest sub-signals
(the signal in a very small time window) confirm the chaotic features.

Figures 7.3a and 7.3b summarise the characteristics of the CF responses at
one specific location (z ' 4 m) along the beam under uniform and sheared



130 Observations & Discussions

7.2. Type-II riser response

As discussed in the last paragraph of Section 3, Type-II signals have relatively small third and fifth harmonic components.
As an example, the third harmonic component of the strain for case 2480, a sheared flow case with Umax=2 m/s, is 0.05 of the
total strain. One could then argue that because this is a negligible higher harmonic component, we can consider only
frequencies near the Strouhal frequency. If this is done, however, the resulting fatigue life will be over-predicted by 70%, as the
filtered strain provides a fatigue life of 13.7�104 years, while the actual fatigue life is 4.1�104 years. Hence, in general, it is
not safe to use the filtered part of the strain (around the Strouhal frequency) in order to calculate fatigue life, even when
the higher strain harmonics are small, because the signal might be of Type-II. The difference between fatigue life calculated
using a filtered VIV signal and the actual fatigue life is large when the signal is of Type-II, mainly because the spectrum is
broader-band.

7.3. Effect of filtering bandwidth on fatigue calculation

A major difference between the fatigue calculation of a Type-I and a Type-II signal is the impact of filtering: A fatigue
calculation for a Type-I response is practically independent of the filter used, since most energy is concentrated around the
Strouhal frequency, while the corresponding response for a Type-II response depends highly on filtering limits. To
demonstrate this, we have chosen two different responses that have comparably small third harmonic strain components
(around 0.03 of the total strain, for both cases); however, interval 1 is of Type-II (Fig. 13a and b), while interval 2 is of Type-I
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(a) Dynamic behavior of section at z ' 4 m for all NDP uniform flow cases.

versa, as is observed, e.g., in case 2420 (Umax=1.4 m/s), when the signal is of Type-I for t1�11–18 and t1�22–25 and of Type-II
for t1o11 and 18ot1o22. The scalogram of this signal (Fig. 7) shows wide-spread peaks for the Type-II region, and narrow-
banded large peaks for Type-I regions.

If the third harmonic component of a signal is small, the quasi-periodic (Type-I) oscillation does not show the period-3
structure. For example, Fig. 8 shows a sub-signal of case 2510 where the Poincaré map exhibits a single cluster of points, as the
third harmonic component is small. Also, the phase plane and PSD plots confirm a Type-I motion, not a Type-II (chaotic). When
the fifth harmonic component is large (as in case 2340), there are 5 distinct clusters of points in Poincaré map, which show a
period-5 quasi-periodic oscillation due to the influence of a large fifth harmonic (Fig. 9); the large fifth harmonic is obvious in
PSD plot at f5=5� f1=13.5 Hz. In some cases, even the smallest portions of sub-signals show Type-II (chaotic) oscillations.
These are cases where there is no Type-I region and the signal is entirely of Type-II, e.g., case 2480, with a maximum flow
velocity of Umax=2 m/s in Fig. 6.

Fig. 5. Scalogram of the entire acceleration signal for case 2430.
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Fig. 6. (a) Observed dynamical behavior for various NDP linearly sheared cases, a graphical representation of Table 2; red: Type-II; blue: Type-I; black: no

results (various cases have different durations). (b) The logarithm of overall length of Type-II region over that of Type-I region log(LType-II/LType-I). The positive

values represent mainly Type-II cases and negative values, mainly Type-I, while 2 represents purely Type-II oscillations and -2 purely Type-I.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Y. Modarres-Sadeghi et al. / Journal of Sound and Vibration 330 (2011) 2565–25792570

(b) Dynamic behavior of section at z ' 4 m for NDP linearly sheared flow cases.

Figure 7.3: Left: red: Type-II; blue: Type-I; black: no results. Right:
The logarithm of overall time length of Type-II region over that of Type-I
region. The positive values represent mainly Type-II cases and negative
values, mainly Type-I, while 2 represents purely Type-II oscillations and -2
purely Type-I. From Modarres-Sadeghi et al. (2011).

flow (Modarres-Sadeghi et al., 2011). The red colour indicates the time dura-
tion with chaotic responses, and blue indicates the quasi-periodic response.
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Most of the cases are dominated by chaotic responses. As described ear-
lier, the quasi-periodic response can be interrupted by the chaotic response
(Type-II), for instance, the NDP Case 2370 with a maximum flow velocity
of 0.9 m/s in Figure 7.3b; however, a chaotic signal can also change into a
quasi-periodic response. See the case in the same figure with a maximum
flow velocity of 0.6 m/s (NDP Case 2340).

As described in section 3.3.5, nearly all of the periodic forced motion tests
apply smoothed orbits selected from a time window with quasi-periodic
oscillations. The forced motion experiments with measured orbits from
NDP cases 2370 and 2430 have chaotic responses in the CF direction.

Combined IL and CF responses

The CF and IL responses interact with each other, and thus, the responses
in both directions should be considered simultaneously.

Figures 7.4 and 7.5 show 4 different response types of combined IL and CF
responses from NDP tests (2030: uniform flow. 2370, 2450, 2470: sheared
flow). Both signals are taken from a position of z = 9.5 m from the top end
(z = 0 m) and normalised by the diameter. Figure 7.4a shows that both
the CF and IL responses are fairly stable, which corresponds to a Type-I
response. In Figure 7.4b, the CF response exhibits quasi-periodic character-
istics while the IL response shows a distinct amplitude modulation during
the entire time duration. In the time section from 0 s to 12 s of Figure 7.5a,
a similar response type to Figure 7.4b is observed, while both CF and IL
exhibit a chaotic response (Type-II) thereafter. The CF response could be
classified as a combination of Type-I and Type-II responses. Figure 7.5b
shows chaotic responses in both the CF and IL directions (Type-II).

The IL response in Figure 7.4b has a modulated amplitude, where amplitude
modulation can be described as the low-frequency modulation of a signal
with a constant carrying frequency. This type of response can not be clas-
sified as quasi-periodic or chaotic. However, the CF response is still quasi-
periodic and apparently not influenced by the regular modulation of the IL
response. On the contrary, quasi-periodic IL and amplitude-modulated CF
responses are rarely observed in NDP tests.

VIV can also show the ‘beating’ of responses at two slightly different frequen-
cies, where the difference between the two frequencies is small relative to the
response frequency. The response contains both the sum and the difference
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of two close frequencies. Beating has been observed by Alexander (1981),
Grosenbaugh et al. (1991) and others. This phenomenon was explained in
Gopalkrishnan (1993). Given a long, flexible riser in a sheared current, the
variation of the flow velocity will lead to a variation in the vortex shedding
frequency along the riser. Each cross section responds primarily to the local
hydrodynamic force at the local vortex shedding frequency. This response
may create a travelling wave that will propagate in both directions along the
beam and damp out within several wavelengths. In this way, the response
at each cross section is not only dominated by the local vortex shedding
frequency but also affected by other frequency components from adjacent
cross sections along the riser. In addition, dynamic tension variations will
adjust the eigenfrequencies and thereby lead to amplitude modulation.
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Figure 7.4: CF and IL responses of a cross section from NDP riser model,
Yin and Larsen (2012).
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Figure 7.5: CF and IL responses of a cross section from NDP riser model,
Yin and Larsen (2012).
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7.2 Results of the forced motion experiments

In this section, the results of the different types of forced motion tests de-
scribed in Chapter 4 are presented. Some important observations and con-
clusions from other researchers are also introduced. As shown in Figure 2.17,
there are a number of different types of forced motion experiments, and a
comparison is performed step by step to approach a complete understanding
of the hydrodynamic forces extracted from forced motion experiments.

7.2.1 Stationary: Drag coefficient and Strouhal number

Prior to the forced motion tests, the cylinder was towed without oscillatory
motions at different velocities. These stationary tests were conducted twice
with the opposite towing directions (‘Run 1’ and ‘Run 2’). The Strouhal
number and the drag coefficients from the starboard side (A) and the port
side (B) are shown in Figure 7.6. They are compared with the values from
Schewe (1983) and Szwalek and Larsen (2009), and results at two other
fixed Re are shown in Table 7.1.
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Figure 7.6: Strouhal number and drag coefficients of stationary tests.

Table 7.1: Stationary test results at two Re.

Re St CD Author

10000 0.193 1.186 Gopalkrishnan (1993)
24000 0.188 1.325∗ Aronsen (2007)

* From starboard.
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Generally, the Strouhal number agrees well with the values from other exper-
iments; the calculated drag coefficients fall between those of Schewe (1983)
and Szwalek and Larsen (2009). Szwalek and Larsen (2009) used the same
set-up as that for these experiments but had higher drag coefficients.

7.2.2 Harmonic: IL & CF vs. pure CF

The contour plots of the excitation coefficients and the added mass coeffi-
cients from the pure CF harmonic forced motion experiments performed by
Gopalkrishnan (1993) are shown in Figure 2.14. The Reynolds number was
fixed at 10, 000.

Aronsen (2007) conducted both pure CF and combined IL and CF harmonic
forced motion tests at four non-dimensional frequencies: 0.147, 0.163, 0.175,
and 0.195. The Reynolds number was fixed at 24, 000. He showed that the
shape of the orbit, which is defined by a phase angle between IL and CF
(see Eq. 4.1) can affect the coefficients significantly. For a non-dimensional
frequency of 0.147, distinct branches are observed at a phase angle of 70°,
while a general trend in this critical phase angle was not observed.

Another finding by Aronsen (2007) is that the 3rd harmonic forces in the
CF direction are attributed to IL motions, and the maximum 3rd harmonic
force observed is proportional to (A/D)IL. Moreover, this higher order force
is significantly lower in the pure CF forced motion test, which confirms the
influence of the IL motion.

Dahl (2008) conducted a large number of forced vibration experiments at
two Reynolds numbers: 8760 and 6860. By fixing the reduced velocity and
analysing the zero power contours, he found that the maximum (A/D)CF
increases when the reduced velocity increases while the phase angle (see Eq.
4.2) decreases.

Dahl (2008) discovered that the combination of a small (A/D)CF and a large
(A/D)IL with a phase of 135°(Eq. 4.2) lead to small 3rd harmonic forces
in the CF direction. With the exception of this region, the 3rd harmonic
forces tend to increase with increasing (A/D)IL, which was the conclusion
drawn by Aronsen (2007).

7.2.3 Harmonic: IL & CF vs. pure IL

Aronsen (2007) also compared the coefficients in the IL direction calculated
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from the combined IL and CF forced motion tests with the results of the
pure IL test. A general trend was not found. However, the importance
of the phase angle between the IL and CF motions was clear, and the 3rd

harmonic forces in the CF direction were comparable between the pure IL
test and the combined IL and CF forced motion test.

The main work presented in this thesis involves the forced motion experi-
ments in which the orbits observed in the NDP tests with a flexible beam
are applied. The following sections will present the results from these tests.

7.2.4 Periodic: Sensitivity of orbits

Because the orbits used for periodic forced motion tests were obtained by
smoothing the observed motions of the cross sections of a flexible beam (see
Figure 3.8), the choice of time window will influence the shape of the orbit
and thus the estimated coefficients.

Soni (2008) investigated the variation of periodic orbits and compared them
to filtered harmonic orbits. His Test-21629 and Test-21625 are selected for
illustration. For each test, three periodic orbits were selected with the use
of different time windows, and two harmonic orbits were used to represent
the orbits (Var1 and Var2) with one harmonic component in each direction.
Figure 7.7a and Figure 7.7c show all orbits that were used for each test.

The results in terms of the drag, the excitation and the added mass coeffi-
cients of each orbit and the average values are shown in Figures 7.7b and
7.7d. The added mass coefficients in the IL direction have almost the same
values for all cases, but the CF added mass coefficients are more sensitive
to the shape of the orbit. The CF and IL excitation force coefficients vary
significantly. The overall trend found by comparing the results from the
observed orbits and the harmonic orbits is that harmonic orbits may give
reasonable values for many cases, especially for the cases with orbits close
to harmonic orbits (Test-21629), but some significant discrepancies can also
be observed for the case with a strong higher order displacement component
(Test-21625) (Soni, 2008).

A similar comparison was conducted by Yin and Larsen (2011). The ‘best-
fit orbit’ and two alternative orbits similar to the main orbit were tested.
For Case 23405 and Case 234018, two harmonic orbits defined by the IL
and CF harmonic components of the two alternative periodic orbits were
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loop was tested. The examples are shown in Figure 7.14. The purpose of testing the 'har-
monic' loops is to gain some experience regarding the feasibility of using coe�cients from
harmonic tests in an empirical model for combined IL and CF response. The comparison
in terms of hydrodynamic coe�cients is presented statistically in Table 7.3 and in form of
histograms in Figure 7.15. The deviation of added mass coe�cient in IL direction Ca,IL is
very small for all the four cases when comparing the harmonic pro�les with periodic ones.
For other coe�cients, no signi�cant deviation in values is observed, but for the added mass
coe�cients in CF direction.
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Figure 7.15: The hydrodynamic coe�cients are compared by histograms for periodic and
harmonic pro�les

Drawing a conclusion based only on a few number of cases is not an easy task. However
considering the 19 pro�les analyzed, the conclusion that can be drawn is that assuming
the response as harmonic gives reasonable values for the excitation coe�cients for both IL
and CF response if the primary component of response is the dominating frequency. Also
the added mass coe�cient in IL direction is a stable candidate, but the CF added mass
might not give the correct results as seen in all the cases. The test-21625 contains higher
harmonics in both the CF and IL response amplitude. The coe�cients in IL direction do
not vary much whereas for the added mass coe�cient in CF direction, large positive values
are seen for periodic pro�les in comparison to the harmonic cases where very small positive
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loop was tested. The examples are shown in Figure 7.14. The purpose of testing the 'har-
monic' loops is to gain some experience regarding the feasibility of using coe�cients from
harmonic tests in an empirical model for combined IL and CF response. The comparison
in terms of hydrodynamic coe�cients is presented statistically in Table 7.3 and in form of
histograms in Figure 7.15. The deviation of added mass coe�cient in IL direction Ca,IL is
very small for all the four cases when comparing the harmonic pro�les with periodic ones.
For other coe�cients, no signi�cant deviation in values is observed, but for the added mass
coe�cients in CF direction.
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Figure 7.15: The hydrodynamic coe�cients are compared by histograms for periodic and
harmonic pro�les

Drawing a conclusion based only on a few number of cases is not an easy task. However
considering the 19 pro�les analyzed, the conclusion that can be drawn is that assuming
the response as harmonic gives reasonable values for the excitation coe�cients for both IL
and CF response if the primary component of response is the dominating frequency. Also
the added mass coe�cient in IL direction is a stable candidate, but the CF added mass
might not give the correct results as seen in all the cases. The test-21625 contains higher
harmonics in both the CF and IL response amplitude. The coe�cients in IL direction do
not vary much whereas for the added mass coe�cient in CF direction, large positive values
are seen for periodic pro�les in comparison to the harmonic cases where very small positive

(d) Coefficients from alternative or-
bits for test-21625.

Figure 7.7: Comparison between orbits and corresponding coefficients (Soni,
2008).

also tested; see Figure 7.8.

The coefficients are shown as histograms in Figure 7.9. Case 23405 should
be the best case to use in a discussion of the validity of the hydrodynamic
coefficients from harmonic orbits. According to Figure 7.9a, the harmonic
orbits give much higher Ce,CF values than the periodic orbits, and the first
harmonic orbit shows a lower Ca,CF than the other orbits. The Ca,IL value
found using two harmonic orbits is close to the result of the main orbit, but
the results using two other periodic orbits vary significantly, which is also
shown in Figure 7.9c and Figure 7.9d.

The deviation of Ca,IL is very small for Case 234018 when comparing the
harmonic orbits with the periodic ones. A similar observation was found
by Soni (2008). For Case 234018, large discrepancies were found for Cd,
Ce,IL and Ce,CF . The most probable reason is that this case applies the
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Figure 9 Different tested trajectories for comparison. 

 
The coefficients are showed as histograms in Figure 10. 
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the validity of hydrodynamic coefficients from harmonic 
trajectories. From Figure 10 (a), it is easy to observe that, 
harmonic trajectories give much higher Ce,CF values than the 
natural loops, and the first harmonic loop shows a lower Ca,CF 
than the others. It is interesting to see that Ca,IL found from two 
harmonic trajectories are close to the result from the main loop, 
but the results from two other realistic trajectories vary 
significantly. This can also be seen from Figure 10 (c) (d). 
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Figure 10 Hydrodynamic coefficients comparison by histograms 

for periodic and harmonic profiles. 
 
The deviation of Ca,IL is very small for case 234018 when 

comparing the harmonic trajectories with periodic ones. Similar 
observation was found by Soni (2008). For case 234018, large 
discrepancies were found for Cd, Ce,IL and Ce,CF. The most 
probable reason is that this case applies the trajectory from a 

section very close to the end with zero flow velocity. The 
hydrodynamic coefficients will hence have large uncertainties 
confer Eq. (1). 

DISCUSSION 
Trajectories of the six cases marked in Figure 5 and 6 are 

shown in Annex A. X and Y axes are the amplitude ratios of IL 
and CF direction respectively. Blue lines are the periodic 
trajectories found from NDP high mode VIV tests and then 
applied as forced motion in the rigid cylinder tests. The red 
lines are the harmonic trajectories found by filtering the 
periodic loops with small bandwidth around f1 in CF and f2 in 
IL direction.  

From Table 3 and Figure 12 in Annex A, we can clearly 
see that for Group 1 (A, B, C): 3 cases have similar (A/D)CF at 
ω1, which is about 0.6. A has largest (A/D)IL, while C has the 
smallest IL motion; B has the largest higher order motions in 
both CF and IL direction. Significant IL motion components 
are found at ω4 and even for ω6.  

For Group 2 (D, E and F) we can observe that 3 cases have 
the main (A/D)IL around 0.2. Their CF amplitudes show minor 
variability. F has the highest value of 0.89, and E has the lowest 
value of 0.726; all of these 3 cases have strong higher motion 
component in IL direction. 

Figure 13 shows the relationship between the influence 
factors (dominating amplitude ratios, higher amplitude ratios 
and phase angle) and hydrodynamic coefficients. Here we only 
consider the hydrodynamic coefficients at ω1 in CF and ω2 in 
IL direction.  

Non-dimensional frequency 
All of the six cases discussed above belong to the same 

flexible beam case with uniform current. Hence, they have the 
same non-dimensional oscillation frequency, which is 
approximately 0.15. 

IL/CF components of forces and displacements  
To evaluate the influence from varying CF amplitude, the 

amplitude in IL direction should be fixed, and vice versa. 
Figure 13 in Annex B illustrates the influence from motion 
parameters on hydrodynamic coefficients in a qualitative way. 
The hydrodynamic coefficients are presented in Table 4. A 
dotted line between a motion parameter and a coefficient 
indicates that the coefficient is seen to increase for increasing 
value of the parameter, while a solid line indicates the opposite 
trend. The absence of a connecting line indicates that no clear 
trend is observed. From Figure 13(a), we have almost the same 
(A/D)CF,1, while the other factors vary. Only Ce,CF,1 follows the 
same trend as (A/D)CF,3. Hydrodynamic excitation coefficient 
and added mass coefficients decrease with increasing (A/D)IL,2, 
while Ca,CF,1 increases with increasing IL amplitude ratio. 

In Figure 13(b), (A/D)IL,2 is fixed. The only obvious trend 
is that hydrodynamic excitation coefficient and added mass 
coefficient decrease with increasing (A/D)CF,3. The other 
parameters have weak influences. As the CF amplitude for this 
group has a smaller variation than for Group 1, one may 
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Figure 7.8: Alternative orbits for the same test (Yin and Larsen, 2011).

orbit from a cross section very close to the end with zero flow velocity. The
hydrodynamic coefficients will thus have large uncertainties (see Eqs. 4.27,
4.28, 4.26). In addition, because the towing velocity is very small, which
leads to a relatively large residual flow (see Figure 5.1a), a direct reflection
is the drag coefficient.

In summary, on one hand, the comparison between alternative periodic
orbits shows that the coefficients are sometimes sensitive to the shape of
the orbit; on the other hand, the comparison between periodic orbits and
harmonic orbits shows that there are discrepancies between the results. It
is reasonable to believe that the discrepancy depends on the scale of the
higher order displacement component.
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Figure 9 Different tested trajectories for comparison. 

 
The coefficients are showed as histograms in Figure 10. 

Case 23405 should be the best case to use in a discussion on 
the validity of hydrodynamic coefficients from harmonic 
trajectories. From Figure 10 (a), it is easy to observe that, 
harmonic trajectories give much higher Ce,CF values than the 
natural loops, and the first harmonic loop shows a lower Ca,CF 
than the others. It is interesting to see that Ca,IL found from two 
harmonic trajectories are close to the result from the main loop, 
but the results from two other realistic trajectories vary 
significantly. This can also be seen from Figure 10 (c) (d). 
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Figure 10 Hydrodynamic coefficients comparison by histograms 

for periodic and harmonic profiles. 
 
The deviation of Ca,IL is very small for case 234018 when 

comparing the harmonic trajectories with periodic ones. Similar 
observation was found by Soni (2008). For case 234018, large 
discrepancies were found for Cd, Ce,IL and Ce,CF. The most 
probable reason is that this case applies the trajectory from a 

section very close to the end with zero flow velocity. The 
hydrodynamic coefficients will hence have large uncertainties 
confer Eq. (1). 

DISCUSSION 
Trajectories of the six cases marked in Figure 5 and 6 are 

shown in Annex A. X and Y axes are the amplitude ratios of IL 
and CF direction respectively. Blue lines are the periodic 
trajectories found from NDP high mode VIV tests and then 
applied as forced motion in the rigid cylinder tests. The red 
lines are the harmonic trajectories found by filtering the 
periodic loops with small bandwidth around f1 in CF and f2 in 
IL direction.  

From Table 3 and Figure 12 in Annex A, we can clearly 
see that for Group 1 (A, B, C): 3 cases have similar (A/D)CF at 
ω1, which is about 0.6. A has largest (A/D)IL, while C has the 
smallest IL motion; B has the largest higher order motions in 
both CF and IL direction. Significant IL motion components 
are found at ω4 and even for ω6.  

For Group 2 (D, E and F) we can observe that 3 cases have 
the main (A/D)IL around 0.2. Their CF amplitudes show minor 
variability. F has the highest value of 0.89, and E has the lowest 
value of 0.726; all of these 3 cases have strong higher motion 
component in IL direction. 

Figure 13 shows the relationship between the influence 
factors (dominating amplitude ratios, higher amplitude ratios 
and phase angle) and hydrodynamic coefficients. Here we only 
consider the hydrodynamic coefficients at ω1 in CF and ω2 in 
IL direction.  

Non-dimensional frequency 
All of the six cases discussed above belong to the same 

flexible beam case with uniform current. Hence, they have the 
same non-dimensional oscillation frequency, which is 
approximately 0.15. 

IL/CF components of forces and displacements  
To evaluate the influence from varying CF amplitude, the 

amplitude in IL direction should be fixed, and vice versa. 
Figure 13 in Annex B illustrates the influence from motion 
parameters on hydrodynamic coefficients in a qualitative way. 
The hydrodynamic coefficients are presented in Table 4. A 
dotted line between a motion parameter and a coefficient 
indicates that the coefficient is seen to increase for increasing 
value of the parameter, while a solid line indicates the opposite 
trend. The absence of a connecting line indicates that no clear 
trend is observed. From Figure 13(a), we have almost the same 
(A/D)CF,1, while the other factors vary. Only Ce,CF,1 follows the 
same trend as (A/D)CF,3. Hydrodynamic excitation coefficient 
and added mass coefficients decrease with increasing (A/D)IL,2, 
while Ca,CF,1 increases with increasing IL amplitude ratio. 

In Figure 13(b), (A/D)IL,2 is fixed. The only obvious trend 
is that hydrodynamic excitation coefficient and added mass 
coefficient decrease with increasing (A/D)CF,3. The other 
parameters have weak influences. As the CF amplitude for this 
group has a smaller variation than for Group 1, one may 
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Figure 7.9: Hydrodynamic coefficients comparison by histograms for peri-
odic and harmonic orbits (Yin and Larsen, 2011).

7.2.5 Periodic: Contour plots

Without considering the effect of Re, the hydrodynamic excitation coef-
ficients and the added mass coefficients are presented as contour plots in
Figure 7.10 and 7.12. The coefficients are calculated by using Eqs. (4.27)
and (4.28), and the filtered amplitude ratios are defined by Eq. (4.24). The
drag coefficients are plotted with non-dimensional frequency and amplitude
ratio in CF in Figure 7.13.

In the three shear flow NDP cases, the results for the hydrodynamic co-
efficients are sensitive to imperfect measurements because the four cross
sections close to the fixed end are exposed to very low flow velocities. The
values found for these positions are therefore not included in this thesis.
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CF excitation coefficient

The pure CF excitation coefficient contour plot by Gopalkrishnan (1993)
(see Figure 2.14a) contains two excitation regions. Inside the excitation re-
gion, the energy is transferred from the fluid to the structure and vice versa
outside. Comparing Figure 7.10a with Figure 2.14a, the first excitation re-
gion is present, and the second region appears in the high non-dimensional
frequency-low (A/D)CF area. The zero contour lines define the CF response
amplitude for a rigid cylinder on a spring without mechanical damping.
In Figure 2.14a, the first excitation region covers the non-dimensional fre-
quency range of [0.12, 0.18], with a maximum (A/D)CF at approximately
0.85. While the result of this study shows a wider excitation region and the
maximum (A/D)CF can reach as high as 1, this result is close to the finding
of Soni (2008). Similar to Soni (2008), there are also ‘islands’ with negative
values inside the excitation region.

It is important to note that the excitation for high non-dimensional fre-
quency was also found by Chasparis et al. (2009) and Wu et al. (2010). The
results may thus be correct and will support an extension of the excitation
zone for structures in sheared flow when the non-dimensional frequency is
beyond 0.3, which is often used as an upper value today.

IL excitation coefficient

Aronsen (2007) produced contour plots based on his pure IL forced motion
experiments, and he refers to the area surrounded by the zero contour lines
as ‘instability regions’, see Figure 2.16a. He defines the first instability re-
gion with a non-dimensional frequency ranging from 0.375 to 0.76, and the
maximum (A/D)IL is 0.13. The non-dimensional frequency of the second
instability region ranges from 0.27 to 0.375, and the maximum (A/D)IL is
0.11. To prevent confusion, this study defines the 1st instability region as
having a higher non-dimensional frequency range than the 2nd instability
region. Figure 7.10b shows that the 1st instability region ranges from 0.62
to 0.91 and that it has a maximum (A/D)IL at approximately 0.15; the
2nd instability region ranges from 0.2 to 0.5 and has a maximum (A/D)IL
at approximately 0.15. These two regions are equivalent to those found by
Aronsen (2007).

However, this study also found a third instability region around the am-
plitude ratio of 0.25. These amplitudes are not present for the pure IL
response, but they are often found for the combined IL and CF cases. The
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Figure 7.10: Contour plots of excitation coefficients from periodic tests.
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results are hence realistic and will help to identify the excitation coefficients
for the IL response in combination with the CF response.

In addition, the 2nd instability region is much wider, and there is a large gap
between the two regions. Both regions have a much larger amplitude ratio
in the IL direction. This high (A/D)IL also appears in the IL excitation
coefficient contour plot of Soni (2008). The differences between the contour
plots from pure IL experiments and the current study indicate that the CF
component has a strong influence on the forces in the IL direction.

CF added mass coefficient

The added mass coefficient contour plot of the pure CF forced oscillation
tests is shown in Figure 2.14b. This figure shows that the added mass
coefficient is almost independent of the amplitude ratio. By taking the
values at (A/D)CF = 0.5, Larsen et al. (2009) employed the added mass
model shown in Figure 7.11. This study also shows that the added mass
coefficients in the CF direction due to periodic motions are less independent
of the amplitude ratio, and the non-dimensional frequency range from 0.1
to 0.15 is occupied by negative values; see Figure 7.12a.
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Larsen et al. (2009).
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IL added mass coefficient

The added mass coefficients in the IL direction are shown in Figure 7.12b.
This coefficient is less influenced by the amplitude ratio compared with the
non-dimensional frequency. In general, it tends to increase with increasing
non-dimensional frequency, which complies with the pure IL added mass
coefficients found by Aronsen (2007); see Figure 2.16b.

Drag coefficient

The drag coefficients from the periodic motion tests are presented in Figure
7.13. As introduced in section 2.4.5, the drag coefficient is amplified if there
is motion in the CF direction. According to Figure 7.13a, an increasing
trend with (A/D)CF seems to exist while the contour plot with (A/D)IL is
disordered; see Figure 7.13b.
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Figure 7.12: Contour plots of added mass coefficients from periodic tests.
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Figure 7.13: Contour plots of drag coefficients from periodic motion tests.
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Excitation coefficient amended with the relative velocity

Two harmonic orbits with phase angles of 0 and 180 degrees (see Figure
4.1) were tested by Aronsen (2007). Given the coefficients and the results
from the PIV experiment, he discovered that the orbital direction can in-
fluence the results significantly. Huang et al. (2009) performed numerical
simulations of these two cases and investigated the influence from the or-
bital direction.

To include this orbital direction effect, the relative velocity is introduced; see
Figure 7.14. The IL velocities of the oscillating cylinder at the maximum and
minimum CF amplitudes are defined as uIL |(A

D
)CF,max

and uIL |(A
D

)CF,min
,

respectively. For harmonic orbits, they are equal, while periodic orbits are
not symmetric. In this case, their mean values are used to define the relative
velocity ur: 

                                                                                                                                   
,max( )CF

IL A

D

u  

 

 

 

 

                                                                               
,min( )CF

IL A
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u  

 

Travel Report of OMAE 2011 

Decao Yin 

 

I attended OMAE 2011 held in Rotterdam from June 19th to 24th, The Netherland this 
summer. The full program can be found in http://www.asmeconferences.org/OMAE2011/ 
and all of the papers can be found in the CD at library. 

There were 13 Symposia and I mainly attended the CFD & VIV symposia. I presented my 
paper OMAE2011-49438 ‘Experimental and numerical analysis of forced motion of a 
circular cylinder.’ I got several questions from the audience. 

There was call for the benchmark study of both experimental work and numerical 
calculation related to VIV. From experimental point of view, there is still a lack of Particle 
Image Velocimetry (PIV) data, which can give more information of the wake after a 
circular cylinder directly. On the other hand, there was a discussion about the validation 
and verification of CFD work, which will form a workshop in OMAE2012. 

Several key persons in the research of VIV also attended the conference:  

Prof. Carl. M. Larsen, NTNU. 

Prof. Kim Vandiver, MIT. 

Prof. Mike Triantafyllou, MIT. 

 

 

 

 

CF

U 
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Figure 7.14: Illustration of relative velocity.

ur = U − 1

2
[uIL |(A

D
)CF,max

+uIL |(A
D

)CF,min
] (7.1)

The relative velocity is used to calculate the non-dimensional frequency, and
the amended non-dimensional frequency is defined as

f̂r =
foscD

ur
=
foscD

ur
· U
U

= f̂ · U
ur

(7.2)

where U is the towing velocity.
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The contour plots of the excitation coefficients using f̂r are shown in Figure
7.15.

According to a comparison of Figure 7.15 with Figure 7.10, the non-dimensional
frequency range of the excitation regions generally decreases. In the CF di-
rection, the f̂r ranges from 0.04 to 0.1 approximately. In the IL direction,
the first instability region disappears while f̂r of the 2nd instability region
ranges from 0.1 to 0.3.

To summarise this section, contour plots are used to present the excitation
coefficients, the added mass coefficients and the drag coefficients. Several
aspects require attention:

1. Data from periodic motion tests with varying Re were used to produce
the plots.

2. Periodic motions have higher order displacement components.

3. The phase angle between (A/D)CF,1 and (A/D)IL,2 was not consid-
ered here; see Figure B.2.
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Figure 7.15: Contour plots of excitation coefficients from periodic tests.
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7.2.6 Periodic: Higher order components

The higher order harmonic force components were found in harmonic forced
motion experiments with IL motions (Aronsen, 2007; Dahl, 2008) and in
a field test by Vandiver et al. (2006). Higher order harmonic force com-
ponents are important because their high frequency can cause significant
fatigue damage to the vibrating structure.

One difference between this study and other rigid cylinder forced oscillation
experiments is that the orbits are not harmonic and thus contain higher
order displacement components. As a consequence, it is more difficult to
interpret the higher order force components because they are coupled with
higher order displacement components. However, for the forced motion
experiments using harmonic orbits, the higher order harmonic force com-
ponent is irrelevant to the higher order displacement components simply
because there are no higher harmonic displacement components in the or-
bits.

Higher order displacement components

The displacements in the IL and CF directions are filtered around multiple
times with frequency up to ω6; the filtered amplitudes are presented in Fig-
ure F.1 and Figure F.2 (Appendix F) for the uniform and shear flow NDP
cases, respectively.

Generally, there are more higher order displacement components in the IL
direction than in the CF direction. For the shear flow cases, (A/D)IL,1 be-
comes relatively larger as the length to the top end (with maximum current
velocity) increases. However, as the Re increases, this influence becomes
smaller; see Figure F.2b, F.2d and F.2f (Appendix F).

Higher order force components

Figure F.3 and Figure F.4 (Appendix F) show the total hydrodynamic force
coefficients normalised by the Crms,CF/IL. The relative magnitudes of the
hydrodynamic force at ω1 to ω6 are illustrated.

The third-order harmonic total hydrodynamic force coefficients Ct,CF,3 are
presented in Dahl (2008). It is shown that Ct,CF,3 is related to several pa-

rameters: (A/D)CF , (A/D)IL, θ, Vr (1/f̂) and Re. The (A/D)IL is a key
parameter: when other parameters are fixed, Ct,CF,3 increases with increas-
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ing (A/D)IL. In addition, the phase angle θ between IL and CF and Vr also
has an influence on Ct,CF,3, but the influence is much weaker.

This study contains more parameters than the harmonic motion experiments
because there are higher order displacement components in the orbits; see
Figure F.1 and Figure F.2 (Appendix F). The phase angle θ is varying; see
Figure B.2 (Appendix B). Re is not fixed, and thus, there are insufficient
data to create a plot similar to that in Dahl (2008).

7.2.7 Periodic: Broad band and frequency drift

Some periodic oscillation tests do not produce stable periodic hydrodynamic
forces; see Figure 7.16 and Figure 7.17. In each figure, the force spectrum
and the time series are shown in both the CF and IL directions. Test
N216010 has a stable IL hydrodynamic force, but in the CF direction, the
force is unstable and has a broad frequency band, and the dominant fre-
quency is not at the oscillation frequency, which is 0.5 Hz. Test N216011
also has an oscillation frequency of 0.5 Hz, but both the CF and IL forces
are unstable. The force spectrum shows that the frequency components are
not at multiples of the oscillation frequency. Therefore, the total hydro-
dynamic force coefficients calculated around multiple oscillation frequencies
are much smaller.

By checking the parameters of these two tests and comparing them with
Figure 2.15, it is clear that both tests have λ∗ values of approximately 9.8
and (A/D)CF less than 0.8. In the contour plots of Figure 2.15, these values
are located in the area with no synchronised vortex shedding pattern. Even
these two tests have higher Re numbers than the contour plots in Morse
and Williamson (2009), who compared contour plots between Re = 4000
and Re = 12000, but the general conclusions are quite similar.
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Figure 7.16: IL and CF hydrodynamic force time series and power spectra
of test 216010.
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Figure 7.17: IL and CF hydrodynamic force time series and power spectra
of test 216011.
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7.2.8 Periodic tests of uniform flow cases

Orbits taken from three uniform NDP cases are shown in Figure B.3, Fig-
ure B.4 and Figure B.5 (see Appendix B). Their Re numbers are shown in
Table 3.4. The smallest IL and CF amplitude ratios are approximately 0.1
and 0.25, respectively, while the largest IL amplitude ratio is 0.4, and the
largest CF amplitude is above 1.5.

Because the rigid pipe apparatus places limitations on the towing speed and
the orbital accelerations, the orbits from NDP cases 2100 and 2160 could
not be tuned to the correct non-dimensional frequencies. By adjusting the
non-dimensional frequency by a factor (see Table B.2, Appendix B), the
tests could be conducted in an acceptable way.

Figure 7.18 shows the relative strain of the IL and CF directions for all
uniform flow cases, which is defined by Eq. (2.22). The horizontal red line
indicates equal strain from CF and IL. Among the 57 uniform cases, there
are 48 cases with a higher IL strain than CF strain, which indicates that
the IL response contributes more to fatigue damage than the CF response.
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Figure 7.18: Relative strain of uniform flow cases.

Figure 7.19 shows the excitation coefficients at primary frequencies in the
CF and IL directions. All three cases have a visual trend of decreasing with
increasing A/D, which has been recognised as leading to the self-limiting
feature of VIV. However, for almost the same amplitude ratio (Figure 7.19a,
data points A, B and C, and Figure 7.19b, data points D, E and F), we have
almost identical CF and IL amplitudes for the primary frequencies, while
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the excitation coefficients vary significantly. This variation will be discussed
in detail later.

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6

- 4

- 3

- 2

- 1

0

1

2

 

 

 N 2 0 3 0
 N 2 1 0 0
 N 2 1 6 0

C e,C
F,1

 [-]

( A / D ) C F , 1  [ - ]

B

A
C

(a) CF excitation coefficients

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

 N 2 0 3 0
 N 2 1 0 0
 N 2 1 6 0

C e,I
L,2

 [-]
( A / D ) I L , 2  [ - ]

D

E

F

(b) IL excitation coefficients

Figure 7.19: Excitation coefficients for CF and IL directions of periodic
forced motion tests, corresponding to uniform cases in NDP.

Figure 7.20a and b show the added mass coefficients in the CF and IL di-
rections, respectively. The coefficients are scattered for both the IL and CF
directions. However, they tend to converge to zero with increasing ampli-
tude ratio.
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Figure 7.20: Added mass coefficients for CF and IL directions of periodic
forced motion tests, corresponding to uniform flow cases in NDP.

The orbits of the six cases marked in Figure 7.19 are shown in Figure 7.21.
The X and Y axes are the IL and CF amplitude ratios, respectively. The
blue lines are the periodic orbits found in the NDP tests and then applied as
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the forced motion in the rigid cylinder tests. The red lines are the harmonic
orbits created by filtering the periodic loops with a small bandwidth around
ω1 in the CF direction and ω2 in the IL direction.
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ANNEX A 
Table 3 Amplitude ratio and phase angle of six cases. 

 (A/D)CF (A/D)IL ε(IL/CF) (A/D)CF,1 (A/D)IL,2 ε(IL,2/CF,1) (A/D)CF,3 (A/D)IL,4 (A/D)IL,6 

A 0.666 0.341 168.5 0.591 0.307 183.3 0.081 0.044 0.002 

B 0.807 0.302 314.5 0.602 0.110 210.8 0.185 0.021 0.184 

C 0.569 0.104 333.3 0.587 0.042 294.2 0.057 0.043 0.016 

D 0.830 0.305 256.9 0.763 0.206 294.8 0.090 0.024 0.095 

E 0.726 0.300 205.6 0.650 0.200 237.8 0.079 0.055 0.082 

F 0.890 0.315 268.8 0.743 0.187 257.4 0.153 0.050 0.080 

 
Table 4 Hydrodynamic and total dynamic force coefficients of six cases. 

 Ce,CF,1 Ce,IL,2 Ca,CF,1 Ca,IL,2 Ct,CF,1 Ct,CF,3 Ct,CF,5 Ct,IL,2 Ct,IL,4 Ct,IL,6 Ct,CF,2 

A -0.138 -0.220 2.582 0.349 2.258 0.991 0.575 0.669 0.780 1.127  

B 0.560 -0.173 1.662 0.437 1.562 2.430 1.033 0.330 0.278 9.165  

C -0.478 -0.065 -0.478 0.573 1.165 0.747 0.106 0.165 1.241 0.373  

D -0.005 -0.173 -0.074 0.923 0.080 0.533 0.373 1.072 0.420 4.664 0.758 

E 0.099 0.118 0.531 1.006 0.516 0.934 0.264 1.185 1.344 4.127  

F -0.621 0.620 -0.709 1.379 0.975 2.690 0.349 1.596 1.378 4.375  
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Figure 12 Periodic and harmonic trajectories of the six cases. 
Figure 7.21: Periodic and harmonic orbits of six locations on the same
flexible pipe subjected to uniform current, case 2030 (Yin and Larsen, 2011).

Three cases for Group 1 (A, B, C) have similar (A/D)CF at ω1, which is
at approximately 0.6. Case A has the largest (A/D)IL, while Case C has
the smallest IL motion; B has the greatest higher order amplitudes in both
the CF and IL directions. Significant IL motion components are found at
ω4 and even for ω6. For Group 2 (D, E and F), three cases have a main
(A/D)IL of approximately 0.2. Their CF amplitudes show minor variabil-
ity. F has the highest value of 0.89, and E has the lowest value of 0.726;
all three of these cases have a strong higher-motion component in the IL
direction.

Figure 7.22 shows the relationship between the influence factors (which dom-
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inate the amplitude ratios, the higher amplitude ratios and the phase angle)
and the hydrodynamic coefficients. Here, we only consider the hydrody-
namic coefficients at ω1 in CF and ω2 in the IL direction.
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(a) GROUP 1                                        (b) GROUP 2 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Schematic overview of the relationship between hydrodynamic coefficients and motion parameter 
Dotted line: Coefficient is seen to increase for increasing parameter 
 Solid line: Coefficient is seen to decrease for increasing parameter 
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Figure 7.22: Schematic overview of the relationship between hydrodynamic
coefficients and motion parameter. Dotted line: coefficient is seen to in-
crease for increasing parameter; solid line: coefficient is seen to decrease for
increasing parameter (Yin and Larsen, 2011).

Non-dimensional frequency

All six of the cases discussed above belong to the same flexible beam case
with a uniform current. Hence, they have the same non-dimensional oscil-
lation frequency, which is approximately 0.15.

IL/CF components of forces and displacements

To evaluate the influence of the variation of the CF amplitude, the am-
plitude in the IL direction should be fixed, and vice versa. Figure 7.22
illustrates the influence of the motion parameters on the hydrodynamic co-
efficients in a qualitative way. A dotted line between a motion parameter
and a coefficient indicates that the coefficient increases when the value of
the parameter increases while a solid line indicates the opposite trend. The
absence of a connecting line indicates that no clear trend is observed. Fig-
ure 7.22a shows almost the same (A/D)CF,1, while the other factors vary.
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Only Ce,CF,1 follows the same trend as (A/D)CF,3. The hydrodynamic exci-
tation coefficients and the added mass coefficients decrease with increasing
(A/D)IL,2, while Ca,CF,1 increases with increasing IL amplitude ratio.

In Figure 7.22b, (A/D)IL,2 is fixed. The only obvious trend is that the
hydrodynamic excitation coefficient and the added mass coefficient decrease
with increasing (A/D)CF,3. The other parameters have a weak influence.
Because the CF amplitude for this group has a smaller variation than that
for Group 1, one may conclude that this is the main reason for the difference
between the trends.

Phase angle

Another influencing factor is the phase angle between the IL and CF mo-
tions at the dominant frequencies, which is defined by Eq. (4.2) and shown
in Table 7.2. An interesting observation is found: if (A/D)CF,1 is fixed
(A,B,C), the phase angle decreases with increasing (A/D)IL,2; however, the
phase angle increases with increasing (A/D)CF,1 if (A/D)IL,2 is fixed. It
is too early to conclude that the phase is controlled by the CF amplitude
rather than the IL amplitude in nature, but at least these samples indicate
such a trend.

Table 7.2: Phase angle and total dynamic force coefficients of six tests.

θ [°] Ct,CF,1 Ct,CF,3 Ct,CF,5 Ct,IL,2 Ct,IL,4 Ct,IL,6
A 183.3 2.258 0.991 0.575 0.669 0.780 1.127
B 210.8 1.562 2.430 1.033 0.330 0.278 9.165
C 294.2 1.165 0.747 0.106 0.165 1.241 0.373
D 294.8 0.080 0.533 0.373 1.072 0.420 4.664
E 237.8 0.516 0.934 0.264 1.185 1.344 4.127
F 257.4 0.975 2.690 0.349 1.596 1.378 4.375

Higher order forces

Table 7.2 shows the total dynamic coefficients of the six cases. These coeffi-
cients are linked to the IL and CF directions and the frequency components
and are defined by Eqs. (4.30), (4.31) and (4.32).

Aronsen (2007) found that the main higher order force components are at
ω3 in the CF direction and ω4 in the IL direction. He also showed that the
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force at ω3 in the CF direction is approximately 30% of the force at the
primary frequency ω1 for cases with significant IL displacements. His re-
sults were based on tests with harmonic orbits and a constant ratio between
(A/D)IL and (A/D)CF of 0.5.

Among the six tests considered, only A has an IL/CF amplitude ratio close
to 0.5. Table 7.2 shows that the dynamic force at ω3 for this case is 44%
of the force at ω1, which is close to the finding of Aronsen (2007). B and F
have the highest CF force at ω3. B also has a considerable force component
at ω5. B, D, E and F have large dynamic forces at ω6 in the IL direction.

7.2.9 Periodic: Self-excited transition

Periodic case 20309 was conducted twice: once with a PIV measurement
and again without it. The forced oscillation orbits were the same for these
two runs; however, measured forces were unstable and different from each
other. Figure 7.23 shows the filtered hydrodynamic force and the normalised
displacement signals on the dominating frequency in the IL and CF direc-
tions.

Figure 7.23 shows the normalised displacement and the hydrodynamic force
in the CF direction for both runs. Figure 7.23a shows that there is a tran-
sition of the hydrodynamic force magnitude and a phase shift between the
force and the displacement in the CF direction. Figure 7.23b shows that
this transition occurs at the very beginning of the time window. Before the
transition, the hydrodynamic force is out of phase with the displacement,
but it becomes in phase after the transition and also more stable than before
the transition. This transition also occurs to IL signals but at a later time
point; see Figure 7.24.

A similar observation was reported in Carberry et al. (2005) from the results
of controlled oscillation experiments. Carberry et al. (2001) first defined
this phenomenon as a self-excited transition: it is reflected by a jump in
the phase and the amplitude of the lift coefficient, which corresponds to a
change in the vortex shedding mode and phase. This transition can occur
to both varying oscillation frequencies and a constant oscillation frequency.
Figure 7.25 shows the lift coefficient from a pure CF forced oscillation case
at a constant frequency, and the vortex shedding mode changes from ‘2P’
to ‘2S’ as the ‘low-frequency state’ shift to ‘high-frequency state’. There is
an obvious increase of the lift coefficient, and the phase between force and
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Figure 7.23: CF dominating displacement and hydrodynamic force of peri-
odic case 20309.
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Figure 7.24: IL dominating displacement and hydrodynamic force of peri-
odic case 20309.
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Figure 7.25: An example of self-excited transition at a single oscillation
frequency fe/fo = 0.815, fe: oscillation frequency; fo: vortex shedding
frequency of a fixed cylinder in uniform flow (Carberry et al., 2005).

displacement changes from 180◦ to 0◦.

By varying the control parameters, such as A/D, fosc and Re, together with
an analysis of wake field using the PIV technique, Carberry et al. (2005)
verified the robustness of the major features of the wake states. The differ-
ence between this work and their work is the use of observed orbits, which
contain both IL and CF motions and higher order components, in contrast
to harmonic forced motions. This difference introduces many influencing
factors, and it is natural to ask whether the self-excited transition in this
type of experiment will have different characteristics.

7.2.10 Energy transfer for Case N2340, periodic motions

The energy transfer rate between the fluid and the oscillating beam can be
found by using Eq. 4.29. The amplitude ratios of all cross sections for the
NDP flexible beam Case 2340 are shown in Figure 7.26.

Figure 7.27 shows the average energy transfer rate in the CF and IL di-
rections, respectively (see Eq. 4.29). Positive values indicate that energy
is transferred from the fluid to the cylinder, while negative values indicate
damping. The maximum flow velocity is at x = 0 m, while the velocity is
zero at x = 38 m. The energy transfer is determined by measurements with
the motion-controlled rigid cylinder and not from the flexible beam tests.

The IL and CF energies shown in Figure 7.27a and 7.27b contain the pri-
mary and secondary frequencies in both directions. The energy is trans-
ferred from the fluid to the beam at high flow velocities. It is also easy to
observe that large amplitudes lead to damping, which illustrates the well-
known self-limiting feature of VIV.
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Figure 9.  Response components and rate of energy transfer along the beam for test 2340. 

 

(b) IL amplitude ratio

Figure 7.26: Amplitude ratio of CF (a) and IL (b) for Case 2340 (Yin and
Larsen, 2010).
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Figure 9.  Response components and rate of energy transfer along the beam for test 2340. 

 

(b) Energy transfer rate, IL ω2 and ω4

Figure 7.27: Average energy transfer rate of CF (a) and IL (b) for Case
2340 (Yin and Larsen, 2010).

Figure 7.28 shows the total energy picture for the IL and CF directions and
the sum of the two. The net energy is positive and approximately 4% of the
total energy transfer from the fluid to the structure. This imbalance can
be caused by an insufficient number of cross sections along the beam or the
contributions from the frequency components that have been neglected. The
structural damping in the flexible beam will also contribute to a positive
energy transfer. This contribution should be assumed to be low but is still
an explanation for part of the positive energy transfer.
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Figure 9.  Response components and rate of energy transfer along the beam for test 2340. 

 

Figure 7.28: Total energy transfer rate for Case 2340 (Yin and Larsen,
2010).
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7.2.11 Non-periodic: Observed orbit experiments

A cross section of the flexible beam will not have a perfectly periodic mo-
tion. The frequency will be close to constant, but the IL and CF amplitudes
and the phase between them will show some variations (see Figure 3.8). We
may therefore ask the question: Do the selected periodic orbits represent
the real oscillations adequately? One way of testing this question is to use
the non-periodic observed orbits for cross section motions as forced mo-
tions for the rigid cylinder and compare the average coefficient from this
test to the coefficients found in the periodic orbit test. One NDP uniform
flow case (2030) and two shear flow cases (2340 and 2370) were selected
for comparison. The hydrodynamic excitation coefficients and the added
mass coefficients are presented in Figure 7.29, Figure 7.30 and Figure 7.31,
respectively. The primary and first higher order frequency components in
both directions (ω1 and ω3 for CF, ω2 and ω4 for IL) are included.

According to Figure 7.29 and Figure 7.30, most of the coefficients from peri-
odic tests agree well with the results of non-periodic observed motion tests,
except that the higher order added mass coefficients have relatively larger
discrepancies. In general, non-periodic results have larger uncertainties.

The good agreement is attributed to the fact that both the CF and IL non-
periodic observed motions exhibit quasi-periodic characteristics (Type-I) for
cases 2030 and 2340; see Figure 7.2, Figure E.3 (Appendix E), Figure B.9
and Figure B.10 (Appendix B).

For Case 2370, only Ce,CF,1, Ce,IL,2 and Ca,CF,1 are comparable for the first
half-span of the flexible beam (the high-velocity region). The other coeffi-
cients deviate between the periodic and non-periodic tests. The reason is
that the response type of case 2370 is quasi-periodic (Type-I) plus chaotic
(Type-II); see Figure E.4 (Appendix E) and Figure 7.5a. All of the peri-
odic orbits were selected from a time window with quasi-periodic responses;
though the non-periodic observed motion tests started from a time instant
within the quasi-periodic time window, where it ended depended on the lo-
cal velocity. Because it is a shear flow case, the regions with high velocities
required less running time in MCLab than the low-velocity regions, which
included less chaotic responses because, as it approaches the low-velocity re-
gion, the running time in MCLab increases and presents increasingly chaotic
responses; see Figure E.4 (Appendix E) and Figure B.11 (Appendix B).

In summary, the comparison between the results from periodic and non-
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Figure 7.29: Comparison of hydrodynamic coefficients between periodic and
non-periodic orbits, Case 2030, Yin and Larsen (2012).
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Figure 7.30: Comparison of hydrodynamic coefficients between periodic and
non-periodic orbits, Case 2340, Yin and Larsen (2012).
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Figure 7.31: Comparison of hydrodynamic coefficients between periodic and
non-periodic orbits, Case 2370, Yin and Larsen (2012).
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Figure 7.32: Comparison of hydrodynamic coefficients between periodic,
quasi-periodic and chaotic orbits, Case 2370.
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periodic motion tests shows that results from the flexible beam with quasi-
periodic responses in both the IL and CF directions shows that the peri-
odic tests are adequate to obtain satisfactory results. However, the more
chaotic the response is, the larger the disagreement between the periodic and
non-periodic motion tests is. An alternative might be to apply statistical
methods to estimate the fatigue damage due to these responses.
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7.3 Numerical simulation results

Both two-dimensional (2D) and three-dimensional (3D) numerical simula-
tions were performed. The methods are described in Chapter 6. The results
of the numerical simulations are presented in this section.

7.3.1 Two-dimensional analysis of Case N2030

The hydrodynamic coefficients for six cross sections from NDP uniform case
2030 with a uniform flow were presented in section 7.2.8. To understand the
variability of the coefficients, two-dimensional simulations were conducted
by using the commercial software FLUENT (FLUENT 6.3 User’s Guide,
2006). The standard k − ε turbulence model was applied to resolve the
Navier-Stokes equations. The dimensionless time step U · δt/D was 0.0065
for all simulations. The computational domain and mesh are shown in Fig-
ure 6.2a and Figure 6.2b, respectively. The details of the mesh generation
and dynamic mesh strategy can be found in section 6.1.1.

Figure 7.33 shows the vortex shedding pattern at typical time instants.
The corresponding positions on the orbits are marked with black dots and
numbers in Figure 7.21. The notations of the vortex shedding patterns are
referred to in Figure 2.4.

In Group 1, A and C have a ‘2P’ vortex shedding pattern, which means
that a pair of vortices is shed into the wake during each half cycle. B has a
‘2T’ vortex shedding pattern: in each half cycle, after a pair of vortices has
been shed, there is another single vortex shed into the wake. This vortex
pattern is linked to the large higher order motion component in the IL di-
rection for these cases; see Figure 7.21. The result shows large higher order
dynamic force components both in the CF and IL directions (see Table 7.2).

In Group 2, D has a ‘P+T’ vortex shedding mode. When the cylinder moves
downwards, a pair of vortices is shed into the wake, while 3 vortices are shed
when the cylinder moves upwards. E has a ‘2T’ vortex pattern, which is
also the case for F. In this group, a strong higher order component in the IL
direction is observed, which induces the larger dynamic force components
at ω3 in the CF direction and at ω6 in the IL direction.
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Figure 7.33: Vorticity contour plots of six cross sections of NDP 2030.
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7.3.2 3D analysis of harmonic ‘Figure 8’ orbits

Two ‘figure 8’ orbits with phase angles of 0 and 180 degrees were compared
by Aronsen (2007), and the hydrodynamic force coefficients were found to
be different for these two orbits with opposite directions. Huang et al.
(2009) performed a 3D LES simulation of these two cases, using a method
that was the basis for the present study. In this section, the hydrodynamic
forces obtained from these three studies are presented and discussed.

θ = 0°

The ‘figure 8’ orbit with phase angle 0 and the corresponding hydrody-
namic forces measured by Aronsen (2007) are shown in Figure 7.34a. His
PIV results show that θ = 0°case has a ‘2C’ vortex shedding mode. In
Figure 7.34b, the hydrodynamic force in the CF direction is seen to have
the same magnitude as that obtained experimentally, but the force in the
IL direction is significantly higher than the corresponding experimental re-
sult. Figure 7.34c shows the numerical results from the present study. The
hydrodynamic force in the CF direction is modelled very well, but the IL
force is slightly smaller than the experimental result. However, the higher
order IL hydrodynamic forces are not seen in any of the numerical results.
By compare Figure 7.34b and Figure 7.34c, a improvement of numerical
results is seen, which is due to denser grid in the span-wise direction of the
cylinder.

θ = 180°

The ‘figure 8’ orbit with phase angle 180 and the corresponding hydrody-
namic forces measured by Aronsen (2007) are shown in Figure 7.35a. His
PIV results show that θ = 0°case has a ‘2T’ vortex shedding mode. The
results obtained by Huang et al. (2009) also correspond well with the ex-
perimental results, except for the higher order IL hydrodynamic forces (see
Figure 7.35b). Figure 7.34c shows that within each half cycle, the first peak
of the CF hydrodynamic force becomes even higher than the second peak
value. In contrast to experimental results, the higher order IL forces present
do not appear in present numerical study.
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Figure 8.11: PIV results for α=0, f̂CF=0.163 and (A/D)CF=0.3.(a) Experimental measurements from Aronsen (2007).

(b) Numerical results from Huang et al.
(2009).
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Figure 7.34: Comparison of hydrodynamic forces between experimental
measurement, previous numerical results and present numerical results,
θ = 0°, Re = 24000, f̂ = 0.163, (A/D)CF = 0.3, (A/D)IL = 0.15, cur-
rent from the left to the right.
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Figure 8.12: PIV results for α=180, f̂CF=0.163 and (A/D)CF=0.3.(a) Experimental measurements from Aronsen (2007).

(b) Numerical results from Huang et al.
(2009).
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Figure 7.35: Comparison of hydrodynamic forces between experimental
measurement, previous numerical results and present numerical results,
θ = 180°, Re = 24000, f̂ = 0.163, (A/D)CF = 0.3, (A/D)IL = 0.15,
current from the left to the right.



7.3. Numerical simulation results 175

7.3.3 3D simulation of Case N2340: Drag coefficients

The drag coefficients calculated from the IL forces of the 3D CFD simula-
tions were compared with the experiment results; see Figure 7.36 and Figure
7.37. The drag coefficients are plotted against Re. Most of the CFD results
match the experimental results. The experimental results also show that,
as Re decreases, the uncertainty of the drag coefficient increases.
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Figure 7.36: Drag coefficients vs Reynolds number, both experimental and
numerical results of Case N2340.
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Figure 7.37: Comparison of drag coefficients between forced motion exper-
iments and CFD simulation, selected cases of 2340.
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7.3.4 3D simulation of Case N2340: Vortex shedding modes
contour plot

Numerical simulations using LES were performed for 19 selected cross sec-
tions of Case N2340. The key parameters of cross sectional orbits are listed
in Table 7.3.

There has so far been no systematic comparison between results from 3D
LES simulations and the experiments for the combined IL and CF forced
motion tests. Based on the pure CF controlled harmonic forced motion
tests, Morse and Williamson (2009) published vortex shedding mode con-
tour plots, such as Figure 2.15. This study attempts to relate the current
numerical simulations and the experimental results to this contour plot.

Table 7.3: Key parameters of 19 cross sectional orbits of Case N2340.

NO. λ∗ Re
ACF,max

D
AILmax

D
ACF,1
D

AIL,2
D

23401 7.82 14222 0.521 0.235 0.456 0.138
23402 7.47 13470 0.696 0.289 0.700 0.213
23403 7.20 12721 0.655 0.288 0.642 0.199
23404 6.78 11983 0.577 0.163 0.497 0.071
23405 6.15 11223 0.531 0.304 0.513 0.155
23406 5.84 10477 0.749 0.365 0.567 0.213
23407 5.30 9730 0.690 0.232 0.651 0.060
23408 5.05 8981 0.876 0.328 0.764 0.189
23409 4.65 8236 0.785 0.268 0.679 0.210
234010 4.12 7483 0.517 0.141 0.473 0.057
234011 3.72 6737 0.720 0.422 0.650 0.205
234012 3.33 5986 0.820 0.340 0.838 0.078
234013 2.87 5237 0.771 0.328 0.712 0.108
234014 2.52 4493 0.472 0.340 0.429 0.152
234015 2.00 3745 0.389 0.163 0.384 0.016
234016 1.69 2991 0.708 0.336 0.609 0.155
234017 1.26 2244 0.698 0.307 0.702 0.091
234018 0.82 1499 0.593 0.299 0.604 0.090
234019 0.41 748 0.396 0.286 0.357 0.130

λ∗, normalized wavelength, λ
D = U

foscD
.

To illustrate how the vortex shedding pattern may influence the forces found
in the present CFD analyses, the following attempt was made: regardless
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of the IL displacement component, the CF amplitude ratios of 19 orbits
from Case N2340 are plotted in the same way as in Figure 2.15; see Figure
7.38. It is important to mention that neglecting IL components is a great
simplification because the influence of the IL component is significant. This
situation was discussed in section 7.2.8. However, there is no contour plot
similar to Figure 2.15, which relates the vortex shedding modes with the
amplitude ratio and the non-dimensional wavelength, except for the pure
CF forced motion experiments in Morse and Williamson (2009).

In addition to the IL amplitude component, Re is another factor that must
be considered. Case 2340 is a shear flow case, where Re decreases from
section 1 to 19. Figure 2.15 has a unique Re of 12000, and Morse and
Williamson (2009) also made a similar plot with Re = 4000. They suggested
that ‘the same general conclusions made in their paper remain valid over a
whole range of the Reynolds number ’.

7.3.5 3D simulation of Case N2340: Comparison of force
time histories

Figure 7.39 to Figure 7.45 show the comparison between the total hydrody-
namic force according to experimental measurements and CFD simulations.
The comparison in the CF and IL directions are shown in two figures for
each case. The non-dimensional displacement and the hydrodynamic forces
are plotted for three oscillation cycles. The orbits of these cases can be
found in Figure B.6 (Appendix B).

A comparison between the experimental results and the numerical simula-
tion is shown in Figure 7.39. Both the CF and IL hydrodynamic forces
are in phase with the displacements, which tells that the excitation force
is much smaller than the force linked to added mass, and that added mass
is negative. The force amplitudes measured in the experiment are slightly
higher than that found in the simulation.

The comparisons of cases N23402 and N23403 are shown in Figure 7.40 and
Figure 7.41, respectively. Both cases have distinct CF and IL displacements
at primary frequencies without large higher order components. There is a
small phase lag between the displacement and the hydrodynamic force in
the CF direction. A generally good comparison between the experiment
and the simulation is observed. In the IL direction, the force is almost in
anti-phase with the displacement, but it seems that the numerical simula-
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Figure 7.38: Maps of vortex shedding patterns,pure CF tests Morse and
Williamson (2009); total and primary CF amplitude ratios of Case N2340
from present study, see Table 7.3.  : total CF amplitude ratio; H#: primary
CF amplitude ratio.
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Figure 7.39: Hydrodynamic force comparison, Case N23401.
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tion fails to quantify the higher order force components for both cases; see
Figures 7.40b and 7.41b.
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Figure 7.40: Hydrodynamic force comparison, Case N23402.
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Figure 7.41: Hydrodynamic force comparison, Case N23403.

A mismatch between the experiment and the numerical simulation for Case
N23404 is shown in Figure 7.42, especially in the CF direction; see Figure
7.42a. The hydrodynamic forces calculated from CFD are much smaller
than the experimental measurements. According to Figure 7.38, case 23404
has λ∗ = 6.78 and A

Dmax
= 0.577 and is located close to the boundary be-

tween the 2P and 2PO vortex shedding modes. It might be the case that the
experiment has a 2P mode and the CFD simulation has 2PO modes or vice
versa, in which ‘the secondary vortex in each pair is much weaker than the
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primary vortex ’, according to Morse and Williamson (2009). The reason for
the mismatch of forces is not obvious.
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Figure 7.42: Hydrodynamic force comparison, Case N23404.

For case 23406, Figure 7.43a shows a good match in the CF direction. For
the IL direction, however, CFD gives much larger IL forces than the exper-
iments, and there is also a phase lag; see Figure 7.43b. According to Figure
7.38, this case has λ∗ = 5.84, and it is also located close to the boundary
between the 2P and 2PO vortex shedding modes.
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Figure 7.43: Hydrodynamic force comparison, Case N23406.
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Case N234010: The hydrodynamic forces predicted by CFD are in good
agreement with the experimental measurements; see Figure 7.44. A detailed
discussion is in section 7.3.6.
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Figure 7.44: Hydrodynamic force comparison, Case N234010.

Cases N234015 to N234019 are the last five cross sections along the pipe,
which have the lowest velocities (Re) and smallest normalised wave length
λ∗; see Table 7.3 and Figure 7.38. The hydrodynamic force comparison for
Case 234015 is shown in Figure 7.45. Comparisons for Cases N234016 to
N234019 are shown in Appendix G. In general, for these low Re cases (780
to 4000), the CFD simulation yields forces that are in agreement with the
results from the experiments except for the IL force of Case N234019 (see
Figure G.8b in Appendix G).
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Figure 7.45: Hydrodynamic force comparison, Case N234015.
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7.3.6 3D simulation of Case N2340: Transient z vorticity

In this section, the time history of hydrodynamic forces and the normalised
displacement are shown in Figures 7.46, 7.49 and 7.52, respectively. Time
instances for vorticity pictures are also included.

The 3D vorticity iso-surfaces in the z direction for cases N23401, N23405
and N234010 are presented. Figures 7.47, 7.48, 7.50, 7.51, 7.53, and 7.54
show the vorticity iso-surfaces behind the oscillating cylinder at the nine
time instances during one complete oscillating cycle. The orbits and the
positions of the cylinder along the orbits at the actual time instances are
also shown in the figures.

N23401

Case N23401 has λ∗ = 7.82 and Re=14222, which is in the sub-critical
regime (see Table 7.3). From Figure 7.38 it is seen that this case is located
close to the lower boundary of ‘2P’ vortex shedding region.

The hydrodynamic forces are in phase with motions in both the IL and
CF directions, see Figure 7.46. Numerical results are slightly smaller than
experimental results.

Figure 7.47 shows strong 3D effect along the cylinder: the vortices shed
in the first half oscillation cycle are very disordered, vortices with opposite
directions couple with each other. However, in the second half cycle, distinct
vortex tube is seen in Figure 7.48, but the vortex shedding mode is difficult
to identify.
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(a) t=5T/8 (b) t=3T/4

(c) t=7T/8 (d) t=T

Figure 7.48: N23401 3D simulation (2).
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N23405

Case N23405 has λ∗ = 6.15 and Re=11223, which is in the sub-critical
regime (see Table 7.3). It is in the left boundary of the ‘2PO’ vortex shed-
ding region in Figure 7.38.

The hydrodynamic forces presented in Figure 7.49 are roughly in phase with
the displacements. In the CF direction, the hydrodynamic force calculated
numerically is slightly lower than the experimental result, and the higher
order force is significantly stronger than the experimental results. In the IL
direction, the hydrodynamic force are modelled well.

At t = 0, one green vortex tube (clockwise) is nearly dissipated, and one blue
vortex tube (anti-clockwise) reaches a maximum magnitude, one clockwise
vortex tube appears (see Figure 7.50b). From t = T/8 to T/2, the anti-
clockwise vortex tube dissipates, the clockwise vortex tube develops, and
another vortex tube in the same direction appears (see Figure 7.50).

At t = 5T/8, two anti-clockwise vortex tubes develop and shed into the
wake. The tubes couple together, and one of them dissipates rather quickly
(see Figure 7.51a). At t = T , a vortex tube in the clockwise direction begins
to shed into the wake (see Figure 7.51d).

In each half cycle, there appears to be a triplet of vortices shed into the
wake, and the vortex shedding mode is close ‘2T’.
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Figure 7.49: Comparison of hydrodynamic forces, Case N20305.
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(a) t=5T/8 (b) t=3T/4

(c) t=7T/8 (d) t=T

Figure 7.51: N23405 3D simulation (2).
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N234010

Case N234010 has λ∗ = 4.12 and Re=7483, which is also in the sub-critical
regime (see Table 7.3). Figure 7.38 shows that it is in the ‘2S’ vortex shed-
ding region.

The hydrodynamic forces predicted numerically are compared with experi-
mental results (see Figure 7.52). It shows that numerical results are in good
agreement with the experimental results for this case. In the CF direction,
hydrodynamic force has two peaks in each half cycle.

A large number of small scale vortices is seen in Figure 7.53 and 7.54. Strong
3D effect is shown along the cylinder, see the curved vortex tube marked
with green colour.

Figure 7.53 shows the vortex shedding process of the first half cycle. The
curved clockwise vortex tube loses its energy, following by a vortex tube with
opposite sign; another clockwise vortex tube forms and sheds into the wake,
all three vortex tubes forms a triplet. In Figure 7.53e and 7.53f, a pair of
vortex tubes with opposite directions forms just after the first triplet. Then
in Figure 7.53, the new-formed clockwise vortex tube dissipates quickly, and
another anti-clockwise vortex tube forms and sheds from the cylinder (see
Figure 7.54c and 7.54d). So, for this case, the vortex shedding mode is also
‘2T’.

In summary, the hydrodynamic forces predicted numerically are comparable
to the experimental results for some Re values and orbits. The identified
vortex shedding modes are clearly different from the map of Morse and
Williamson (2009), which illustrates the influence of IL motion and higher
order CF motion.
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Figure 7.54: N234010 3D simulation (2).
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Chapter 8

Conclusions

8.1 Principle Contributions

8.1.1 Forced motion experiments

A series of forced motion experiments were conducted in MCLab of NTNU,
Trondheim. In addition to conventional harmonic motions, periodic, non-
harmonic motions and measured motions were used in the experiment.

The periodic motions were taken from cross sections of a flexible pipe in
NDP high mode VIV test:

� Periodic orbits were achieved from two successive cycles of measured
motions based on a set of weighted points. For quasi-periodic re-
sponses, the periodic orbits can be considered representative of the
responses within a certain time window.

� The existing response type classification has been made from the pure
CF response. A more detail classification was performed for the com-
bined IL and CF VIV response.

An uncertainty analysis of the experiment and data processing was per-
formed to investigate the validity of the final results.

Periodic motion tests

Hydrodynamic coefficients were calculated from experiments using forced
motions of a rigid cylinder section. The general trend of the coefficients for
the CF components is similar to the results of the pure CF tests, while a
comparison of the IL coefficients and the results of the pure IL tests indicate
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that the pure IL response is significantly different from the response for
IL in combination with CF. Both response amplitudes and coefficients are
significantly greater in the combined case than in the pure IL case.

Periodic motion tests: Sheared flow cases

The IL motion component is a crucial factor affecting the force from vortex
shedding, and higher order displacements are often larger in IL direction
than in CF direction.

Higher order IL motion components were observed to cause larger higher
order hydrodynamic forces in both the IL and CF directions.

Observed motion tests

An experimental method with forced natural orbits has been applied to a
set of cases where the orbits are found from a flexible beam test with uni-
form and sheared currents.

Selected combined IL and CF response types were presented and discussed.
Responses with IL amplitude modulation were investigated, and it was ob-
served that the IL amplitude modulation can introduce higher order hydro-
dynamic forces in the CF direction.

The following conclusions can be made by comparing the hydrodynamic
coefficients:

� Periodic orbits can be used to represent time-varying orbits when the
responses are quasi-periodic (Type-I).

� When the responses are partly or fully chaotic, hydrodynamic coeffi-
cients calculated from tests with selected periodic orbits have larger
uncertainty or fail to represent the entire time history.

� In general, higher order hydrodynamic coefficients have larger uncer-
tainties than the primary frequency.

In general, hydrodynamic coefficients based on harmonic orbits will fail to
describe forces on cross sections with observed orbits, particularly for the
excitation coefficient in the CF direction.

Periodic orbit results can be used to predict excitation coefficients instead
of the true time history oscillation to a certain extent. The added mass
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coefficients obtained from these two methods differ significantly.

The present study will enrich the database of empirical models, particularly
for improving our understanding of the interactions between the IL and
CF responses and for quantifying the significance of higher order frequency
components.

This thesis presents results in terms of coefficients, but to date, it has not
been possible to find general trends between actual parameters that could
help to establish an empirical model for the combined IL and CF response
or higher order response components. Further testing and analysis of the
results from this work should be performed to improve empirical methods
used in VIV analyses.

8.1.2 2D and 3D CFD simulation

2D simulation

2-D CFD analyses were performed to identify the vortex shedding patterns
for orbits of six cross sections from a pipe under uniform current. The
results showed that the observed force components are clearly linked to
vortex shedding patterns. The combined use of observed orbits and CFD
analyses can help us to better understand VIV and the appearance of higher
order force components in particular.

3D simulation

3D CFD analyses were performed for a oscillating rigid cylinder under uni-
form current, the orbits are from cross sections of a flexible pipe subject
to sheared current, and the LES method was applied through a large Re
variation. The simulated hydrodynamic forces corresponded well with the
experimental results. The 3D vortex shedding modes are different from
pure CF forced motion, which emphasis the importance of the IL motion
and higher order displacements.

In some cases, there were large discrepancies, which can be attributed to
the model optimisation, Re dependence, vortex shedding mode transition,
and orbit shape.

The present study attempts, for the first time, to make a comparison of
this type of experiment for engineering purpose. The preliminary results
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encourage further research on this topic.

8.2 Recommendations for Future Work

Due to the limitations of the laboratory equipment, some cases could not
be investigated. Upgrading of the equipment might be carried out in the
future in order to conduct forced motion tests with higher Re number, large
oscillation amplitude and frequency. In addition, longer length of the tow-
ing tank can increase the number of effective oscillation cycles for observed
motion tests.

Particle Imaging Velocimetry (PIV) equipment should be applied more of-
ten for selected cases of the forced motion tests. These pictures will give
detailed information of the vortex shedding pattern behind the cylinder.
The same cases will also be analysed by use of numerical methods, PIV re-
sults can be used to calibrate CFD simulation. This effort will give valuable
information about the vortex shedding process and also about the capability
of numerical methods to handle VIV problems.

More effort should be put on CFD optimization. Different CFD models
with optimized mesh, time step and turbulence model should be established
according to different Re, oscillation amplitude and frequency. A detail val-
idation and verification should be done before large sets of analyses are
carried out. Further use of CFD may help to develop empirical models for
combined IL and CF response including higher order frequency components.

Systematic parameter studies are recommended to understand the influence
from various parameters. The present study applies observed orbits from
flexible pipe experiments, so that several parameters are varying simultane-
ously, which makes it difficult to compare with other research results and
identify trends. If any orbit can be described by a set of parameters in a
systematic way, then it is much easier to define trends and also apply the
results in empirical models.

Time domain solution for the VIV problem can be an alternative, which
needs a large database from controlled motion experiments. A good classi-
fication of response types and orbits can reduce this work significantly.
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Appendix A

Calibration

The calibration procedure utilized in this work was first used by Aronsen
(2007), and afterwards the same procedure was applied by Soni (2008) and
Szwalek and Larsen (2009). From the calibration, calibration factors of force
transducers, accelerometers and string potentiometers were found and later
used in the post-processing of the experimental data.

A.1 Calibration of force sensors

The calibration of the force sensors consisted of 3 steps. First, each strain
gauge was calibrated individually to find the calibration coefficient (in N/V).
Secondly, two and two sensors were mounted together to form a ’cross’ in
order to measure forces in two perpendicular directions. The ’cross’ sensors
were then calibrated to investigate if there was a force transfer between
orthogonal directions. The last step was conducted when the cylinder was
mounted in the test rig. Loads were applied on the cylinder to see whether
the two sensor crosses were rotated when installed, and if so, find the cross-
talk angle.

Step I, individual strain gauge calibration

Individual force sensor calibration was carried out for two times, before in-
stallation and after all runs completed.

The first step of force sensor calibration is to find the calibration factors for
each force sensor, which was done by applying known weights and recording
the output voltage.
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Figure A.1: Step I, force calibration results.

Before installation, weights were applied in the following sequence: 1, 2,
3, 4, 5, 6, 7, 8, 6, 4, 2 and 1kg. After all runs done, the sequence was
changed to: 0.5, 1, 1.5, 2, 3, 4, 5, 6, 4, 2, 1.5, 1 and 0.5kg. A typical
time series is shown in Figure A.1a. The load sequence was repeated two
times in both positive and negative direction. Four load sequences were
performed in each direction and the slope was estimated for every sequence.
A standard deviation for the slope was then estimated based on a mean
value of 1.0. The estimated relative error in the force coefficient was taken
as t95% times the estimated standard deviation, see Eq.(A.5). Calibration
results for strain gauge 20333 is shown in Figure A.1b.

Linear Regression

In Figure A.1b the calibration coefficient is estimated by linear regression.
The general expression for a linear regression is:

Y (X) = mX + c (A.1)

where m is the slope and c is the y-axis intercept. In the calibration proce-
dure X represents the output voltage and Y is the gravity force (N) given
by the applied weight.

The standard error (deviation) of the slope from the curve fit is given by
(Coleman and Steele, 1999, chap. 7):

Sm =

√
S2
Y

SXX
(A.2)
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SY =




N∑

i=1

(Yi −mXi − c)2

N − 2




1/2

(A.3)

SXX =
N∑

i=1

X2
i −

(

N∑

i=1

Xi)
2

N
(A.4)

Sm is an estimate of the standard deviation of Y , as no uncertainty is con-
nected to Xi. The criteria is not completely met for these results as there
are uncertainties related to the applied weights. However, the uncertainties
are found to be negligible.

The confidence interval for the mean value of the slope is given by:

m− t95%Sm ≤ µ ≤ m+ t95%Sm (A.5)

In the post-processing of experimental data, the measured voltage is mul-
tiplied by the inverse of the slope m. The estimated uncertainty in the
calibration coefficient is treated as a bias error in the force measurements.
Calibration factors and estimated bias errors for the four force sensors are
shown in Table A.1.

Step II, ‘cross’ strain gauges calibration

In step II, two and two force sensors were mounted together orthogonally, a
metal accessory manufactured specially was used to connect two sensors, see
Figure A.2a. Besides this connection accessory, two other metal accessories
were mounted onto each of two force sensors respectively. One metal acces-
sory has a tenon and can plug into the mortise in the end of the cylinder
model; the other metal piece has 3 holes for bolts connecting the end-plate
with the force sensor, see Figure A.2b.

Loads were applied on the sensor cross in four directions to check whether
the two sensors mounted orthogonally so that they could measure the IL
and CF force correctly. If force was applied on one sensor, there was mea-
surement from the other sensor, which is so called ‘cross-talk’, then the cross
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(a) Connection between two orthogonal
force sensors

(b) Another viewpoint of a ‘cross’

(c) Step II, calibration of a ‘cross’. (d) A load ‘cross’ mounted on one
endplate

Figure A.2: Connection and calibration of a load ‘cross’.

should be demounted and assemble again.

Figure A.2c shows the calibration setup. When calibration was performed
on one force sensor of the cross, the other force sensor was clumped onto
a vertical surface, a gradienter to ensure the surface was perfectly vertical.
Gravity force of the load was applied on one force sensor by a string (see
the red string in Figure A.2c).

The result for one sensor cross is shown in Figure A.3a. It could be seen
from the figure that when applying a force in CF direction, there was also
a small force component in IL direction. This could not be avoid and might
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be attributed to the way the two sensors are connected, see Figure A.2a.
A force in CF direction cause a moment that has to be taken up by the IL
sensor. The error seems to be linear and the two sensor crosses give similar
results, see Table A.1. This was taken as bias error in the uncertainty
analysis.
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Figure A.3: Step 2 and step 3 of calibration.

Step III, installed strain gauges calibration

When two ‘sensor crosses’ were calibrated, they were mounted onto end-
plates, see Figure A.2d; then the end-plates together ‘sensor crosses’ were
installed onto the rig, see Figure A.4. Calibration was carried out again
when all equipments were set up: first, check whether there was contact
between ‘sensor cross’ and end-plate, if so, demount and modify; secondly,
investigate if the ‘sensor cross’ has been rotated during installation and find
the rotation angle; finally, correct the force with rotation angle and compare
with applied load force.

The first condition was checked in this way: first, one side of the sensor
crosses was mounted onto the end-plates, see Figure A.2d. A piece of paper
was put between the edge of the cross and housing of the end-plate to see
whether they contact each other. Then the end-plates and the cylinder were
installed on the rig. A series of increasing loads were applied on each direc-
tion (similar to Step I), the maximum load was larger than the estimated
maximum IL and CF force, see Figure A.4. Measured forces were plotted
together, see Figure A.3b. A linear line proves that there is no contact be-
tween the cylinder and the housing; If the curve is not linear, the position



216 Calibration

Figure A.4: Calibration step III when the set-up was completed.

Table A.1: Summary of force calibration factors.

Step Parameter Mean Value Uncertainty 95%

I

fc20332, IL SB 16.4613 6.66 · 10−4

fc20333, CF SB -16.5039 8.32 · 10−4

fc20335, IL Port 16.6743 9.48 · 10−4

fc20334, CF Port -16.5260 5.52 · 10−4

II
IL CF interaction (SB) 1.64% 0.22%
IL CF interaction (Port) 1.84% 0.25%

III
Rotation angle (SB) -0.6316 [deg] 2.4075
Rotation angle (Port) -5.4708 [deg] 0.7551

of the sensor cross needed to be modified.

The second condition was investigated by checking whether the measured
force point fall onto X or Y axis (IL or CF). If it does not, the angle be-
tween the axis and linear line is the rotation angle during installation. When
post-processing the experimental data, this angle was taken into account.
Figure A.4 shows the calibration in negative CF direction at one end. The
force taken by the closer end should be FcL1/(L1 + L2), if the ’cross’ was
perfectly orthogonal, while rotated during installation, the rotation angle
could be calculated from the measured CF force at closer end. Figure A.3b
shows an example of the results. Crosses represent results from the cali-
bration and circles represent the same results after correction for cross-talk
angle.

Calibration coefficients of single load cells and cross talk angels with esti-
mated uncertainties for the two sides are listed in Table A.1.



A.2. Calibration of motion sensors 217

- 3 - 2 - 1 0 1 2 3
- 1 5

- 1 0

- 5

0

5

1 0

1 5

 

 
Fo

rce
 [N

]

V o l t a g e  [ V ]

y = 6 . 1 0 0 x + 0 . 0 8 4   R 2 = 0 . 9 9 9 6

y = - 3 . 9 4 6 x + 0 . 0 3 1 3   R 2 = 0 . 9 9 9 5  

(a) Calibration of accelerometer 16205.

- 1 0 0 1 0 2 0
- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

y 2 = 0 . 0 2 x + 0 . 0 0 0 8   R 2 = 1

 

 

Vo
lta

ge
 [V

]

D i s p l a c e m e n t  [ c m ]

y 1 = 0 . 0 1 9 9 x + 0 . 0 0 0 5   R 2 = 1

(b) Calibration of CF potentiometer.

Figure A.5: Calibration of accelerometer and potentiometer.

A.2 Calibration of motion sensors

Two types of sensors were used, accelerometer and string potentiometer.

Accelerometer calibration

The accelerometers were calibrated by using the gravity acceleration, g =
9.81m/s2 . The accelerometers were calibrated by rotating the accelerome-
ter so that the axis of interest would be horizontal (acc=0), vertical point
down (acc=-g), and vertical point up (acc=g). Calibration coefficients and
uncertainty were estimated in the same way as for the force sensors. One
example of the assembled results is given in Figure A.5a. The results are
given in Table A.2.

Table A.2: Calibration factors for accelerometers.

Accelerometer IL number 16217x 16217z 16205x 16205z

Mean value 4.385 -6.386 6.100 -3.946
Uncertainty, 95% 0.010 0.008 0.012 0.002

String potentiometer calibration

The string potentiometers were factory calibrated. The calibration coeffi-
cients were verified by use of a folding ruler in this way: first, the string
was pulled out 10 cm and zero setting was performed; then the length was
varied between 0 cm and 35 cm. The calibration factors of IL and CF poten-
tiometers are shown in Table A.3, and results of CF potentiometer is shown



218 Calibration

in Figure A.5b. The calibration factors were implemented into I/O settings.

Table A.3: Calibration factors for string potentiometers.

IL CF

Mean value 0.0041 0.02
Uncertainty, 95% 1.08 · 10−5 6.93 · 10−5

After installation on the carriage, the string potentiometers were calibrated
again by adjusting the position of the cylinder, it was showed that the string
potentiometer in IL direction over predicted the displacement by 5%. This
was discovered by comparing the input and output displacement signals,
and then corrected.

As the ruler had not been calibrated, an uncertainty value of 2% (95%
confidence interval) was used (Aronsen, 2007).



Appendix B

Orbits applied in forced
motion experiments

Figure B.1 illustrates the selected 19 sections with sheared flow case in NDP
tests. Table B.1 shows the exact position of each cross section. Z axis has
the direction along the riser and origin at top end which has maximum
velocity for shear flow cases. For all orbits shown from Figure B.3 to Fig-
ure B.11, the flow direction is from left to right.

Due to the limitation of MCLab, forced motion tests with most of the orbits
from NDP case 2100 and 2160 could not be carried out with fosc,MC . The
oscillation frequencies were scaled in order to run these cases. The scale
factors (w) are shown in Table B.2. The actual oscillation frequencies are
fosc,MC/w, where fosc,MC is the calculated oscillation frequency from Eq.
(4.8).

Phase angle calculated by Eq. (4.1) of all periodic orbits selected from 19
cross sections of NDP flexible beam are shown in Figure B.2. The legend

Table B.1: Positions of 19 cross sections along 38 m riser model.

NO. Z (m) NO. Z (m) NO. Z (m) NO. Z (m)

S1 1.719 S6 11.266 S11 20.814 S16 30.362
S2 3.628 S7 13.176 S12 22.724 S17 32.271
S3 5.538 S8 15.085 S13 24.633 S18 34.181
S4 7.447 S9 16.995 S14 26.543 S19 36.090
S5 9.357 S10 18.905 S15 28.452

219
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0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

S 1 9S 1

L e n g t h  t o  t o p  e n d

U m a x

L = 3 8  m

Figure B.1: Selected 19 cross sections along 38 m riser in NDP tests.

Table B.2: Scale factors on the oscillation frequencies of NDP case 2100
and 2160.

Sec. NO. 2100 2160 Sec. NO. 2100 2160

1 1.15 1.20 11 1.00 1.50
2 1.15 1.00 12 1.15 1.50
3 1.15 2.00 13 1.15 2.00
4 1.15 1.50 14 1.30 1.80
5 1.15 1.80 15 1.00 1.50
6 1.15 1.50 16 1.15 1.00
7 1.00 2.00 17 1.00 2.50
8 1.15 2.00 18 1.15 1.80
9 1.15 1.50 19 1.15 1.50
10 1.15 1.50

of the Figure is corresponding case number in NDP High Mode VIV Tests,
see Table 3.5.
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Figure B.3: Periodic orbits of 19 cross sections for NDP case 2030.
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Figure B.4: Periodic orbits of 19 cross sections for NDP case 2100.
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Figure B.5: Periodic orbits of 19 cross sections for NDP case 2160.
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Figure B.6: Periodic orbits of 19 cross sections for NDP case 2340.
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Figure B.7: Periodic orbits of 19 cross sections for NDP case 2370.
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Figure B.8: Periodic orbits of 19 cross sections for NDP case 2430.
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Figure B.9: Observed orbits of 19 cross sections for NDP case 2030.
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Figure B.10: Observed orbits of 19 cross sections for NDP case 2340.
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Figure B.11: Observed orbits of 19 cross sections for NDP case 2370.



Appendix C

Equations used in
uncertainty analysis

It is normal to assume that if a measurement is repeated infinitely many
times the measured values will follow a Gaussian distribution around a
mean. And the Gaussian distribution is called the parent distribution.

f(X) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (C.1)

Infinite number of samples

Mean: µ

Standard deviation: σ

Confidence interval of a sample: Prob(Xj − tσ ≤ µ ≤ Xj + tσ) = γ,

γ = 0.95, t ≈ 1.96

N samples

Mean: X̄ = 1
N

∑N
j=1Xj

Standard deviation (of the N samples) is: Sx =
√

1
N−1

∑N
j=1(Xj − X̄)2
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232 Equations used in uncertainty analysis

Confidence interval: Prob(t ≤ Xj−µ
Sx
≤ t) = γ

Xj−µ
Sx

is random and follows a Student’s t distribution with N-1 degrees of

freedom. t = F−1(1
2(1 + γ)).

The precision limit for a sample: Px = tSx

the mean value of N samples X̄

It is normally distributed with µ.

Mean: µ

Standard deviation: SX̄ = SX√
N

Precision limit (N repetitions): PX̄ = t
SX̄√
N

= zα/2
SX̄√
N

100(1− α)% confidence interval: (X̄ − zα/2 SX√N , X̄ + zα/2
SX√
N

)

As we consider 95% confidence interval, α = 0.05, zα/2 = 2.021.



Appendix D

2nd order replication level
cases

Table D.1: PIV runs with relative error less than 0.1.

32 CF IL

0.1 NO. % NO. %

Ce A side 22 68.75 23 71.88
Ce B side 22 68.75 21 65.63
Ca A side 23 71.88 24 75.00
Ca B side 23 71.88 24 75.00
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234 2nd order replication level cases

Table D.2: Phase angle between displacement and force at first 4 frequency
components of signals at B side for case 21002.

Bside CF 21002 Bside IL 21002

Phase A Phase B Phase A Phase B

Force Mean Std. Mean Std. Mean Std. Mean Std.

1ω 16.80 1.10 17.16 0.95 3.92 0.58 3.75 0.29
2ω 2.90 0.42 2.76 0.49 5.61 0.19 5.67 0.24
3ω 10.78 0.39 10.71 0.38 1.70 0.23 1.64 0.22
4ω 2.81 0.26 2.74 0.36 3.26 0.13 3.30 0.15

Table D.3: Phase angle between displacement and force at first 4 frequency
components of signals at B side for case 24307.

Bside CF 24307 Bside IL 24307

Phase A Phase B Phase A Phase B

Force Mean Std. Mean Std. Mean Std. Mean Std.

1ω 12.71 0.28 12.35 0.19 0.30 0.12 0.29 0.10
2ω 1.35 0.12 1.29 0.13 7.06 0.19 6.80 0.15
3ω 2.56 0.13 2.55 0.11 0.68 0.13 0.60 0.15
4ω 0.34 0.10 0.43 0.09 1.56 0.11 1.52 0.12

Table D.4: Phase angle between displacement and force at first 4 frequency
components of signals at B side for case 23407.

Bside CF 23407 Bside IL 23407

Phase A Phase B Phase A Phase B

Force Mean Std. Mean Std. Mean Std. Mean Std.

1ω 0.77 0.29 0.48 0.17 0.26 0.05 0.29 0.03
2ω 0.33 0.06 0.42 0.12 0.42 0.03 0.41 0.05
3ω 0.33 0.07 0.24 0.05 0.32 0.05 0.28 0.04
4ω 0.19 0.03 0.23 0.02 0.79 0.03 0.77 0.03
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Figure D.1: Relative error of hydrodynamic coefficients of 32 PIV cases.
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(a) CF force comparison of 21002.
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(b) IL force comparison of 21002.

Figure D.2: CF and IL hydrodynamic forces at first four harmonics of case
21002.
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(a) CF force comparison of 24307.
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Figure D.3: CF and IL hydrodynamic forces at first four harmonics of case
24307.
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Figure D.4: CF and IL hydrodynamic forces at first four harmonics of case
23407.



Appendix E

Displacements in time-space
of NDP cases
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Figure E.1: CF & IL displacement in time and space for NDP uniform flow
case 2100, U = 1.2 m/s.
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Figure E.2: CF & IL displacement in time and space for NDP uniform flow
case 2160, U = 1.8 m/s.
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Figure E.3: CF & IL displacement in time and space for NDP shear flow
case 2340, Umax = 0.6 m/s.
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Figure E.4: CF & IL displacement in time and space for NDP shear flow
case 2370, Umax = 0.9 m/s.
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Figure E.5: CF & IL displacement in time and space for NDP shear flow
case 2430, Umax = 1.5 m/s.



242 Displacements in time-space of NDP cases



Appendix F

Higher order harmonic
displacements and forces
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244 Higher order harmonic displacements and forces
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(b) NDP2030 IL
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(c) NDP2100 CF
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Figure F.1: Amplitude components of three NDP uniform flow cases.
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Figure F.2: Amplitude components of three NDP shear flow cases.
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Figure F.3: Forcee components of three NDP uniform flow cases.
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Figure F.4: Force components of three NDP shear flow cases.
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Appendix G

Additional 3D simulation
results of Case N2340
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Figure G.1: Hydrodynamic force comparison, Case N23405.
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Figure G.2: Hydrodynamic force comparison, Case N23407.
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Figure G.3: Hydrodynamic force comparison, Case N23408.
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Figure G.4: Hydrodynamic force comparison, Case N234013.
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Figure G.5: Hydrodynamic force comparison, Case N234014.
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Figure G.6: Hydrodynamic force comparison, Case N234016.
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Figure G.7: Hydrodynamic force comparison, Case N234017.
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Figure G.8: Hydrodynamic force comparison, Case N234019.
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