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Abstract The red-listed, amphi-Atlantic sedge Carex

rufina is highly specialized to certain alpine snowbeds, and

threatened by current changes in snow cover duration and

moisture conditions. Here we address its range-wide

genetic diversity, history, and conservation using amplified

fragment length polymorphisms (AFLPs). Despite exten-

sive primer testing, we detected very low overall diversity

(4.1% polymorphic markers). Only a single AFLP pheno-

type was found throughout Norway and across the Atlantic

to Iceland and Greenland, while another was found in

Canada, suggesting glacial survival in one East and one

West Atlantic refugium. East Atlantic C. rufina has prob-

ably been heavily bottlenecked in a small refugium, pos-

sibly situated within the maximum limits of the ice sheets.

Its lack of diversity is likely maintained through local

clonal growth causing longevity of genotypes. Habitat

availability appears as the main limiting factor for C. rufi-

na, and its currently occupied habitats need to be preserved

to ensure its long-time survival.

Keywords AFLPs � Amphi-Atlantic disjunction �
Conservation � Fragmented populations � Snowbeds

Introduction

Snowbeds are particularly vulnerable to the ongoing chan-

ges in land use and climate, and plant species highly spe-

cialized to snowbeds are likely to be negatively impacted

(ACIA 2005; Björk and Molau 2007; Granmo 1993; Schöb

et al. 2009; Theurillat and Guisan 2001). Arctic-alpine

vegetation is heterogeneous even at small spatial scales,

because the prevailing winds result in patchy and recurring

patterns of snow accumulation due to local topographic

gradients, and thus variable distribution of moisture and

duration of the growing season. Snowbeds are therefore

naturally fragmented habitats, characterized by a long-last-

ing snow cover and low soil temperatures during a short

growing season (e.g., Gjærevoll 1956). Climate warming

results in earlier and complete thawing of snowdrifts, less

moisture, and higher growth season temperatures; thus

reducing the spatial extent of snowbeds, and increasing the

fragmentation of specialized snowbed plants.

The short growing seasons in snowbeds are hypothe-

sized to select for high selfing ability in snowbed plants

(Scheffknecht et al. 2007). Selfing combined with habitat

fragmentation make populations of snowbed species vul-

nerable to reduced gene flow and increased genetic drift

and inbreeding (Frankham et al. 2010). Persistence of

specialized snowbed plants, following further fragmenta-

tion of snowbeds due to environmental changes, will

depend on their abilities to adapt to changing conditions

based on their standing genetic diversity, and on their

effective dispersal abilities.

After the last glaciation (*110,000–10,000 years BP),

arctic-alpine plant species experienced large latitudinal

range shifts during colonization of the North Atlantic region,

which influenced their genetic structure and diversity in

various ways. Some species were able to maintain high
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levels of genetic diversity because they expanded broad-

frontedly into the previously glaciated areas (Alsos et al.

2009; Eidesen et al. 2007). Others experienced repeated

bottlenecks leading to reduced genetic diversity in the entire

region, as populations were successively founded by a few

individuals (leading-edge colonization; Ehrich et al. 2007;

Schönswetter et al. 2006). Although long-distance dispersal

now is acknowledged as an important and relatively frequent

migration process in plants (Alsos et al. 2007; Nathan 2006),

it may be difficult for long-distance immigrants of pioneer

species to establish and contribute to a gene pool once an

area is already colonized (Hewitt 1999). Thus, plant species

having highly disjunctive ranges and fragmented popula-

tions today may display a strong genetic structure due to

restricted gene flow.

For many arctic-alpine plant species studied to date, the

source regions for colonization of the North Atlantic region

are inferred to be in the east or south (e.g., in the Alps;

Schönswetter et al. 2003). However, some 30 amphi-

Atlantic disjuncts are absent from the Alps, as well as from

areas to the east of the last ice sheets (the west-arctic species;

e.g., Nordal 1987). These species have been central in a

century-long debate concerning possible in situ glacial sur-

vival in northern Europe. This Greenlandic/North American

element in the Scandinavian flora has its current European

occurrence confined to previously glaciated areas. The

European distribution can alternatively be explained by

in situ glacial survival, postglacial colonization from North

America, or postglacial colonization from a central or

eastern European refugium where populations subsequently

went extinct. The main argument in favour of the in situ

glacial survival hypothesis has been the lack of specialized

adaptations for long-distance dispersal in these species (for a

review, see Brochmann et al. 2003).

Here we focus on Carex rufina Drejer (Cyperaceae), a

west-arctic, perennial sedge restricted to wet, peaty, sandy or

gravelly substrates in middle and low arctic-alpine, late

snowbeds or pond marginals. It forms flat, dense tufts of

leaves, among which the culms with 2–3 lower female

spikes and one bisexual terminal spike are more or less

hidden. Although explicit data on its breeding system are

lacking, pollination of Cyperaceae is generally wind medi-

ated. Carex rufina reproduces vegetatively by short rhi-

zomes (Hylander 1966), and it is likely to be mainly self-

fertilizing. It might be locally abundant in mountains in

Norway, Sweden, Iceland, and South Greenland, but it is

only known from a few stations around Hudson Bay in

Canada (Fig. 1). Most sites are found in the oceanic western

parts of the southern Scandinavian mountain range, but

habitat loss due to drier conditions and species invading

from adjacent vegetation has led to population decline the

last 30 years, causing C. rufina to be listed as near threatened

Fig. 1 AFLP phenotypes

identified in C. rufina (star and

open circles), and total

geographic distribution (black
dots: Blondeau 2004; Devold

and Scholander 1933; Feilberg

1984; Fredskild 1994; Hultén

and Fries 1986; The Icelandic

Institute of Natural History,

http://vefsja.ni.is/website/

plontuvefsja/). Map in North

pole Azimuthal equidistant pro-

jection. Inset KB Westergaard
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on the Norwegian Red List (www.biodiversity.no). It is

challenging to identify management units (MUs) for con-

servation in little known species. To suggest MUs for

C. rufina, we will use genetic tools in combination with

available information on population ecology in order to

identify genetically distinct and diverse population groups,

and assess the level of gene flow.

In a study of amplified fragment length polymorphism

(AFLP) variation in North Atlantic species of Carex sec-

tion Phacocystis, only one AFLP phenotype was found in

C. rufina, but this study only included four individuals

from two South Norwegian populations (Nakamatte and

Lye 2007). Here we use the highly sensitive and repro-

ducible AFLP markers to investigate genetic structure,

diversity and relationships among the fragmented popula-

tions of C. rufina range-wide. In particular, we ask whether

these high-resolution markers will reveal more genetic

diversity on a range-wide scale. If a pattern of local, dis-

tinctive genetic groups are observed, we ask whether they

indicate locations of glacial refugia and postglacial

migration routes. Further, we aim to provide recommen-

dations for conservation based on levels and patterns of

genetic diversity and distinctiveness.

Materials and methods

A total of 69 individuals from 11 populations of C. rufina

were sampled in the field, covering most of its range except

that we were not able to localize the species in West

Greenland (Table 1; Fig. 1). The individuals were sampled

as far from each other as possible given the spatial extent of

the population, which ranged from a few square decimetres

to a few meters, in order to reduce the probability of

duplicating genets. If possible, leaf material from ten

individuals per population was collected and dried in silica

gel. Voucher specimens are deposited at the Botanical

Museum, University of Oslo (O), and silica material and

DNA extracts are stored in the DNA bank of the National

Centre for Biosystematics (NCB), University of Oslo.

The DNA extraction and AFLP analyses followed

Westergaard et al. (2011). Because we did not observe any

variation in initial tests, we included as many as 48 primer

combinations with two or three selective bases for MseI in

an extended test, including 4–8 individuals from different

geographic regions. However, this extended test did neither

reveal any variation. We selected the following primer

combinations for full-scale analysis because they yielded

the highest number of well-separated fragments (fluores-

cent dye in parenthesis): EcoRI-AGA (6FAM)—MseI-

CAT, EcoRI-ATG (VIC)—MseI-CTA, and EcoRI-ACC

(NED)—MseI-CTG. To test for reproducibility (Bonin

et al. 2004), three samples were included in all runs, and

eight DNA samples were duplicated and analyzed twice.

Results

The three primer combinations resulted in a dataset of 122

markers, of which only five (4.1%) were polymorphic.

Only two AFLP phenotypes were observed: one in the only

Canadian population available for analysis, and the other in

all Greenlandic, Icelandic, and Norwegian populations.

The Canadian phenotype had three private markers, and

lacked two markers present in the others. The reproduc-

ibility of the data set was complete (100%). The extremely

low level of genetic diversity made further statistical tests

unnecessary.

Table 1 Collection information of the investigated populations of C. rufina

Pop ID Geographic origin Latitude Longitude Year Collector(s)* n

KW06-61 Norway, Troms, Tromsø, Djupdalen 69.595 19.042 2006 KBW, EB 9

KW08-1 Norway, Nordland, Narvik, N of Forsvatnet 68.129 17.191 2008 KBW, EB 6

KIF-06-3 Norway, Sør-Trøndelag, Oppdal, S of Høgvardtjønna 62.510 9.804 2006 KIF 8

Lye-440 Norway, Møre og Romsdal, Stranda, Geiranger 62.033 7.283 2004 KAL 1

AKW-07-1 Norway, Hordaland, Ulvik, Finse Research Station 60.605 7.501 2007 AKW 7

Lye-377 Norway, Vest-Agder, Sirdal, Suleskard 59.019 6.985 2004 KAL 5

KW07-29 Iceland, Kjölur, Hvitarvatn 64.535 -19.782 2007 KBW, TD 7

KW07-40 Iceland, Akureyri, Leirdalsheiði 65.991 -18.064 2007 KBW, TD 5

KW06-42 Greenland (DK), Narsarsuaq, Blomsterdalen 61.219 -45.304 2006 KIF, BBF 8

Kulusuk Greenland (DK), Kong Christian IX Land, Kulusuk 65.576 -37.135 2009 SB, IEBS 10

367-07 Canada, Quebec, Nunavik, Ivujivik 62.497 -78.078 2007 KIF, BBF 3

Pop ID refers to the collection code; n is the number of individuals used in the AFLP analyses

* Collectors: AKW Anders K. Wollan, BBF Bergfrid Bjerkan Flatberg, EB Espen Bakke, IS Idunn Elisabeth Borgen Skjetne, KAL Kåre Arnstein

Lye, KBW Kristine Bakke Westergaard, KIF Kjell Ivar Flatberg, SB Siri Birkeland, TD Tina Dahl
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Discussion

Trans-Atlantic AFLP uniformity

Surprisingly, we only observed a single, trans-Atlantic

AFLP phenotype in the highly disjunct populations of

C. rufina from Norway, Iceland, and southern Greenland.

The Canadian population only had a slightly different phe-

notype (4.1%; Fig. 1). Although technical limitations of the

AFLP procedure may hamper detection of genetic diversity,

even if we tested 48 different primer combinations to detect

potential variation, it is obvious that C. rufina contains much

less genetic variation than most other arctic-alpine plants

studied so far (e.g., Alsos et al. 2007; Brochmann and

Brysting 2008). The lack of genetic diversity in C. rufina can

have historical as well as ecological causes.

Although slight, the genetic difference between the

Canadian population and the remaining Atlantic populations

is based on several private markers, and probably indicate

that these two groups originate from separate glacial refugia.

Recent analyses of two other west-arctic species, Arenaria

humifusa and Sagina caespitosa, revealed higher levels of

genetic diversity and a distinct separation into one East and

one West Atlantic group, suggesting survival in glacial

refugia on both sides of the North Atlantic ocean throughout

the last glaciation (Westergaard et al. 2011). Based on their

patterns of genetic diversity and distinctiveness, A. humifusa

and S. caespitosa were considered most likely to have per-

sisted throughout the last glaciation in situ in the East

Atlantic region. Although the lack of AFLP variation in

C. rufina precludes further elaboration on refugial regions

and postglacial dispersal routes, the observed pattern is

consistent with in situ glacial survival also of this species,

probably in Scandinavia. The dynamics of the ice sheets may

have made extensive and suitable snowbeds available in

Scandinavia during most of the last glacial period (West-

ergaard et al. 2011, and references therein). Alternatively,

C. rufina may have occurred south of the North European ice

sheets during the last glaciation, where an extensive glacial

fossil record exists of another, although less specialized

snowbed species (Salix herbacea; Alsos et al. 2009).

Little information is available on the reproductive

biology of C. rufina, but long-living perennials able to

reproduce clonally may buffer the genetic effects of frag-

mentation by delaying the time between generations

(Honnay and Bossuyt 2005, and references therein).

Studies of other autogamous pioneer species that typically

occur in snowbeds have also reported low or absent genetic

diversity across highly disjunctive ranges in the North

Atlantic region. Virtually no detectable AFLP variation

was found in Ranunculus pygmaeus (Schönswetter et al.

2006) and Saxifraga stellaris (Westergaard et al. 2008), or

in the partly selfing Arabis alpina (Ehrich et al. 2007), and

no isozyme variation was found in the clonal and selfing

grass Vahlodea atropurpurea (Haraldsen et al. 1991).

During the final stages of the last glaciation, when the large

ice sheets retracted and exposed open habitats, such

snowbed species probably had favourable conditions. They

may have acted as ‘invasive’ species, which are well

known to undergo genetic bottlenecks leading to low or

absent genetic diversity in invaded areas (Le Roux et al.

2007). Thus, a plausible explanation for the low levels of

genetic diversity in C. rufina and other snowbed species is

rapid, leading-edge colonization of the North Atlantic

region from strongly bottlenecked source populations. For

C. rufina, the lack of genetic variation may have been

maintained by a pronounced local clonality.

Dispersal and implications for conservation

Our results suggest that although C. rufina has been able to

disperse post-glacially across the North Atlantic region, it

relies heavily on propagation by local clonal growth. In

addition to genetic drift, the low variation in AFLP markers

and morphology (Hultén 1958; Nakamatte and Lye 2007)

can possibly be ascribed to selection for adaptation to a

very narrow niche. Due to the contemporary limitations of

suitable habitat, C. rufina has restricted opportunities to

expand its range and population sizes, which again renders

it threatened by ongoing and future habitat loss.

Based on the assumed lack of contemporary gene flow

among geographically separated populations and limited

genetic diversity, the Canadian population could be treated

as a separate management unit (Waples and Gaggiotti

2006), and the populations in southern Greenland, Iceland,

and Norway as another. However, the latter mentioned

populations are distributed along a considerable geographic

gradient. Even if we only observed a single AFLP pheno-

type and little morphological variation along this gradient,

we cannot exclude that adaptive genetic differences

exist due to varying local selection (Höglund 2009).

Habitat availability is probably the main limiting factor for

C. rufina, and an appropriate focus of management would

be to preserve as many as possible of the currently occu-

pied habitats. This is particularly important where popu-

lations of C. rufina may be affected, or even exterminated,

by flooding or habitat loss caused by water regulation

schemes, a consequence which has been reported from

northern Norway (Granmo 1993).
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