
Chapter 13
Pattern Recognition and Reconstruction

R. Frühwirth, E. Brondolin, and A. Strandlie

13.1 Track Reconstruction

13.1.1 Introduction

Track reconstruction is the task of finding and estimating the trajectory of a charged
particle, usually embedded in a static magnetic field to determine its momentum and
charge. It involves pattern recognition algorithms and statistical estimation methods.
Depending on the physics goals, not all charged tracks have to be reconstructed. For
instance, in many cases there is a physically motivated lower limit on the momentum
or transverse momentum of the particles to be found. Other examples are short-range
secondary particles, such as δ-electrons, that normally need not be reconstructed. It
may also be useful to reconstruct electron-positron pairs from photon conversions
in order to check the distribution of material in the detector. Track reconstruction
frequently proceeds in several steps:

1. Pattern recognition or Track finding: Finds the detector signals (hits) that are
generated by the same charged particle.

2. Track fitting: Estimates for each track candidate the track parameters and the
associated covariance matrix.

3. Test of track hypothesis: Tests for each track candidate whether all hits do indeed
belong to the track and identifies outliers.
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There are many different algorithms for track finding. A selection of them is
described in Sects. 13.1.2.1 and 13.1.2.2. For an extended treatment of the subject,
containing many examples, see the excellent exposition in [1]. The track fit takes a
track candidate and estimates the track parameters (location, direction, momentum
or curvature, see Sect. 13.1.3.2) from the detector hits (Sect. 13.1.3.4), taking into
account the equation of motion (Sect. 13.1.3.2) in the magnetic field (Sect. 13.1.3.1)
and the effects of the detector material on the trajectory (Sect. 13.1.3.3). In the test
stage (Sect. 13.1.3.5) outliers are identified, i.e., hits which apparently do not belong
to the track. If outliers are expected, the estimation procedure should be robust
so that the estimated track is not significantly biased by the outliers. Some robust
methods are discussed in Sect. 13.1.3.5. Section 13.1.4 treats track-based alignment,
and Sect. 13.1.5 contains many useful formulas for determining the approximate
momentum resolution of a tracking detector without extensive simulations.

13.1.2 Pattern Recognition

Pattern recognition or track finding methods can be divided into global and local
methods. In a global method, all detector hits are treated on an equal footing, and all
track candidates are found in parallel; in a local method, there is a privileged subset
of hits which is used to find initial track candidates, which are then completed to
full track candidates.

13.1.2.1 Global Methods

Typical global methods of track finding find the tracks in parallel, for instance by
identifying peaks in a one- or two-dimensional histogram, or by observing the final
state of a recurrent neural network.

Conformal Mapping

A popular method for finding circular particle tracks is the conformal mapping
method [2]. It uses the fact that the mapping

u = x

x2 + y2
, v = y

x2 + y2
,

transforms circles going through the origin of an x–y coordinate system into straight
lines of the form

v = 1

2b
− u

a

b
,
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Fig. 13.1 The original measurements (left) and the transformed measurements (right) of six
circular tracks

where the parameters a and b are defined by the circle equation

(x − a)2 + (y − b)2 = R2 = a2 + b2.

The distance of the line to the origin is equal to 1/(2R), so that for large radius
R it passes very close to the origin. The lines can be found by a histogramming
method. After transforming the measurements in the u–v plane to polar coordinates
and collecting the polar angle θ in a histogram, measurements belonging to the same
particle will tend to create peaks in the histogram.

As an example, the measured points of six circular tracks are shown in the left
hand panel of Fig. 13.1, while the transformed measurements are shown in the right
hand panel of Fig. 13.1. The resulting histogram of the polar angle θ is shown in
Fig. 13.2.

Hough Transform

In the general case of lines not passing close to the origin, a more general approach
is needed in order to find the lines. A very popular method for this purpose is the
Hough transform [3]. The principle of the Hough transform can be explained by
noting that a straight line in an x–y coordinate system, y = cx + d, can also
be regarded as a straight line in a c–d coordinate system by the transformation
d = −xc + y. For a fixed point (x, y), the line in c–d space (also denoted
parameter space) corresponds to all possible lines going through this point in x–
y space (also denoted image space). Measurements lying along a straight line in
image space therefore transform into lines in parameter space which cross at the
specific value of the parameters of the line under consideration in image space.
In practice, parameter space is discretized, and each measurement (x, y) leads to
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Fig. 13.2 Histogram of θ = arctan(v/u)

an increment of a set of histogram bins. Measurements lying along straight lines
tend to create peaks in the histogram, and the lines can be found by searching for
peaks in this histogram. The granularity of the discretization has to be optimized
for each specific application, as it depends on the amount of noise present and the
actual values of measurement uncertainties. A too fine-grained histogram can split
or destroy peaks if the measurement uncertainties are non-negligible. On the other
hand, a too course-grained histogram increases the sensitivity to noise, and nearby
tracks may merge into a single peak.

The basic formulation of the Hough transform is an example of a divergent
transform, i.e., one measurement in image space corresponds to a set of increments
of histogram entries in parameter space. The Hough transform can also be made
convergent by considering instead a pair of measurements in image space. A unique
line passes through any such pair, and only one entry in the parameter space
histogram needs to be incremented. A possible disadvantage of such an approach
is that the number of pairs grows quadratically with the number of measurements in
image space. In order to reduce computational complexity, one may consider only
a randomly selected subset of all the pairs. This is the basic feature of probabilistic
Hough transforms [4].

The Hough transform has turned out to be successful also for finding circles
passing through the origin. With this constraint, two parameters are enough to
uniquely describe the circle, and the task again amounts to finding peaks in a two-
dimensional histogram. With three or more parameters, one has to search for clusters
in multi-dimensional spaces, and in this case the Hough transform is in general less
powerful than in the two-dimensional case.



13 Pattern Recognition and Reconstruction 559

For track finding in drift tubes, with their inherent left-right ambiguity, the drift
circles can be transformed to sine curves in the (r, θ) space by applying a Legendre
transform [5]. The peaks at the intersections of several sine curves represent the
common tangents to a set of several circles.

Neural Networks

Recurrent neural networks of the Hopfield type [6] are used in finding solutions
to certain kinds of combinatorial optimization problems, i.e., problems that can be
formulated as finding the minimum of an energy function

E = −1

2

∑

i

∑

j

Tij SiSj

with respect to the configuration of n binary-valued neurons Si, i = 1, . . . , n and
fixed connection weights Tij , i, j = 1, . . . , n. It was realized independently in [7]
and [8] that the track finding problem can be formulated as a minimization problem
of this kind. The neurons are links between measurements which potentially belong
to the same track. The connection weights Tij have a structure which favors links
sharing a measurement and pointing in a similar direction. The standard network
dynamics leads to a solution corresponding to a local minimum of the energy
function. A better solution is to apply a mean-field annealing technique [9], which
introduces a temperature parameter and thereby allows the neurons to take all
values in the interval between the two original binary values. The network is
initialized at a high temperature, the mean-field equations are iteratively solved as
the network is cooled down, and the low-temperature limit is taken in the end. At
a significantly lower computational effort, the approximate solutions found by the
mean-field technique have been shown to be very close to the exact solutions [10].
For applications of the Hopfield network in experiments see e.g. [11–15].

The energy function of the Hopfield network can be generalized in order to take
into account the track model (see Sect. 13.1.3.2), i.e., the known parametric form
of the tracks. The resulting algorithm is called elastic tracking or elastic arms [16–
19]. A related generalization is the elastic net, originally used to tackle the traveling
salesman problem [20]. Applications to track finding are described in [21] and [22,
23].

13.1.2.2 Local Methods

A local track finding method finds the tracks sequentially, starting from an initial
track segment or an initial collection of measured points.
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Track Road

The track road method starts out with a set of measurements that potentially
belong to the same track, typically one close to the vertex area, one far out in
the tracking detector, and one in the middle. The track model can then be used,
either exactly or approximately, if speed is an important issue, to interpolate between
the measurements and create a road around the hypothesized track. Measurements
inside the road are then collected. The number of measurements and the quality of
the subsequent track fit are used to determine whether the track candidate should be
kept or discarded.

Track Following

A track following procedure takes a track seed as a starting point. A seed is often a
short track segment, potentially including a constraint of the position of the vertex
region. Seeds can be generated at the inner part of the tracking detector, where the
measurements frequently are of very high precision, or at the outer part, where the
track density is lower. From the seed, the track is extrapolated to the next detector
unit. As for the track roads method, this can be done either with the full track model
or with an approximate, simplified model. The measurement closest to the predicted
track is included in the track candidate, and the track is extrapolated again.

Kalman Filter

The Kalman filter [24–26] can be regarded as a statistically optimal track following
procedure. It works by alternating prediction and update steps. Starting from
the seed, the track parameters and their covariance matrix are extrapolated to
the next detector unit containing a measurement, using the full track model. If
the measurement is compatible with the prediction, it is included in the track
candidate, and the track parameters and their covariance matrix are updated with
the information from the measurement. The procedure is repeated until too many
detector units without compatible measurements are traversed or the end of the
tracking detector is reached.

In the original formulation of the method, the measurement closest to the
predicted track is included in the track candidate [27]. However, if the density
of measurements is high, the closest measurement might originate from another
particle or from noise in the detector electronics. Including the wrong measurement
could therefore lead to a wrong subsequent prediction and ultimately to the loss of
the track. The currently most popular approach, the combinatorial Kalman filter,
avoids such losses by splitting the track candidate into several branches when
several compatible measurements are found after the prediction [28]. In order to
take into account detector inefficiencies an additional branch with a missing hit can
be generated.
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Fig. 13.3 An example of the combinatorial Kalman filter (reprinted from R. Mankel [28], with
permission from Elsevier)

All branches are extrapolated to the next detector layer containing compatible
measurements. A branch is split again if several measurements are compatible with
the branch prediction. Branches are removed if too many detector units without
compatible measurements are traversed or if the quality of the track candidate,
in terms of the value of a χ2 statistic, is too low. If there are several surviving
candidates after the end of the detector has been reached, the candidate with most
measurements and the lowest value of the χ2 statistic is kept and regarded as the
final track candidate. An example is shown in Fig. 13.3.

A similar track finding method has been formulated in the language of cellular
automata [23, 29]. The combinatorial problem can also be solved by using general-
ized, adaptive versions of the Kalman filter [30–32].

13.1.3 Estimation of Track Parameters

13.1.3.1 Magnetic Field Representation

The presence of a magnetic field in a tracking detector causes a bending of the
trajectory of a charged particle, and, hence, allows a measurement of the particle
momentum. A precise knowledge of the magnetic field is therefore crucial for
accurate estimates of the particle momenta.

The magnetic field can be calculated by solving Maxwell’s equations, knowing
the detailed configuration of the current sources and the magnetic materials in
the detector volume. In the general case, a numerical solution of these equations
in terms of a finite-element analysis is needed. In special cases, the field can be
found by less general approaches. The simplest situation is a solenoidal magnet,
providing a homogeneous field in a large volume. Also, it is known that the field
inside a volume with no magnetic material can be determined by knowledge of the
field on the volume boundary only [33]. Measurements of the field on the volume
boundary allows an estimation of coefficients of polynomials obeying Maxwell’s
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equations. Field measurements inside the volume are used to evaluate the quality
of the calculated field. If the measurements inside the volume are precise enough,
they can be used to further refine the knowledge of the field by being included in
the estimation procedure of the abovementioned coefficients [34].

In a track reconstruction application, fast access to the value of the magnetic
field at any point inside the detector volume is crucial. For this purpose, a numerical
representation of the field is needed. A frequently used approach is to create a table
of the magnetic field values at a grid of points and to determine the field at points
between the grid nodes by linear or quadratic interpolation. An alternative approach
is to divide the detector volume into several sub-volumes and to fit the coefficients
of low-order polynomials to the known field values inside each sub-volume [35,
36]. If the number of sub-volumes is large, potentially many coefficients have to
be determined. On the other hand, once the coefficients are determined, the field
access is very fast. Also, the derivatives of the field, which are needed by some
track reconstruction algorithms, can be computed as fast as the field itself.

13.1.3.2 Track Models

Consider a charged particle with mass m and charge Q = qe, e being the elementary
charge. Its trajectory x(t) in a magnetic field B(x) is determined by the equations
of motion given by the Lorentz force F ∝ qv × B, where v = dx/dt is the velocity
of the particle. In vacuum, Newton’s second law reads [37]

dp

dt
= kqv(t) × B(x(t)), (13.1)

where p = γmv is the momentum of the particle, γ = (1 − v2/c2)−1/2 is the
Lorentz factor, and k is a unit-dependent proportionality factor. If p is in GeV/c,
x is in meters, and B is in Tesla, k = 0.29979 GeV/c T−1 m−1. The trajectory is
uniquely defined by the initial conditions, the six degrees of freedom specified for
instance by the initial position and the initial velocity. If these are tied to a surface,
five degrees of freedom are necessary and sufficient. Geometrical quantities other
than position and velocity can also be used to specify the initial conditions. The
collection q of these quantities is called the initial track parameters or the initial
state vector.

Equation (13.1) can be written in terms of the path length s(t) along the trajectory
instead of t , giving [37]

d2x

ds2 = kq

|p| · dx

ds
× B(x(s)) = F(s, x(s), ẋ(s)). (13.2)

In simple situations this equation has analytical solutions. In a homogeneous
magnetic field the trajectory is a helix; it reduces to a straight line in the limit
of a vanishing field. In the general case of an inhomogeneous field, numerical
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methods can be used, such as Runge–Kutta integration of the equations of motion or
parametrization by polynomials or splines [37]. Among Runge–Kutta methods, the
Runge-Kutta-Nyström algorithm is specially designed for second-order equations
such as Eq. (13.2). In the fourth-order version a step of length h, starting at s = sn,
is computed by [37]

xn+1 = xn +hẋn +h2(k1 + k2 + k3)/6, ẋn+1 = ẋn +h(k1 + 2k2 + 2k3 + k4)/6,

with

k1 = F(sn, xn, ẋn),

k2 = F(sn + h/2, xn + hẋn/2 + h2k1/8, ẋn + hk1/2),

k3 = F(sn + h/2, xn + hẋn/2 + h2k1/8, ẋn + hk2/2),

k4 = F(sn + h, xn + hẋn + h2k3/2, ẋn + hk3),

where xn is the position of the particle at s = sn and ẋn is the unit tangent vector.
The magnetic field needs to be looked up for the calculation of k2, k3 and k4,
i.e., three times per step. If the field at the final position xn+1, which is the starting
position of the next step, is approximated by the field used for k4, only two lookups
are required per step. If the field is (almost) homogeneous, as for example in a
solenoid, the step size h can be chosen to be constant; otherwise a variable step size
is more efficient. The step size can be optimized using an adaptive version of the
Runge-Kutta-Nyström algorithm [38]. Note that the error of a step of length h may
be larger than O(h5) if the magnetic field does not have smooth derivatives, as is
the case if it is computed by linear interpolation. If the field is represented by low-
order polynomials in sub-volumes, Runge–Kutta steps should terminate at volume
boundaries.

Different detector geometries often lead to different choices of the parametriza-
tion. However, the parametrization of the trajectory should comply to some basic
requirements: the parameters should be continuous with respect to small changes of
the trajectory; the choice of track parameters should facilitate the local expansion
of the track model into a linear function; and the uncertainties of the estimated
values of the parameters should follow a Gaussian distribution as closely as possible.
For example, curvature should be used rather than radius of curvature, and inverse
(transverse) momentum rather than (transverse) momentum.

The track model, given by the solution of the equations of motion, describes how
the state vector qk at a given surface k depends on the state vector at a different
surface i:

qk = f k|i (qi ),

where f k|i is the track propagator from surface i to surface k. When analytical solu-
tions of the equations of motion exist, the track propagator is also analytical. Even in
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a homogeneous magnetic field, the path length can be determined analytically only
for propagation to cylinders with symmetry axis parallel to the field direction or to
planes orthogonal to the field direction. Otherwise, a Newton iteration or a parabolic
approximation has to be used to find the path length.

For track reconstruction purposes, the covariance matrix of the estimated track
parameters needs to be propagated along with the track parameters themselves. The
track propagator is often a non-linear function of the track parameters at the initial
surface, but the covariance matrix has to be transported under the assumption of
a linear track model. This procedure, called linear error propagation, is based on
a Taylor expansion of the track propagator, keeping only first-order terms. These
first-order terms, defining the Jacobians of the track model, are given by

F k|i = ∂qk

∂qi

∣∣∣∣
q̆i

,

where q̆i is the expansion point in surface i. For analytical track models, the
Jacobian is also analytical. If, for example, the magnetic field is homogeneous,
the general case of propagation to a plane of arbitrary spatial orientation uses a
curvilinear coordinate frame moving along with the trajectory as a means of deriving
the required Jacobians [39].

In the general case of a non-analytical track model, the Jacobians cannot be
computed analytically either. The most straightforward approach is to calculate the
relevant derivatives in a purely numerical way. The basis for these calculations
is a reference trajectory corresponding to the expansion point. In addition, five
other trajectories are created, corresponding to small variations in each of the
track parameters. By propagating these five trajectories to the destination surface,
numerical derivatives can be obtained. A potential disadvantage of such an approach
is its computational complexity, as six trajectories have to be propagated instead of a
single one. Much less computational load is introduced by transporting the Jacobian
terms in parallel to the track parameters during the Runge–Kutta integration [40, 41],
avoiding the need for propagating auxiliary trajectories.

The measurement model describes the functional dependence of the measured
quantities on the state vector at a detector surface k:

mk = hk(qk).

The vector of measurements mk usually contains the measured coordinates, but may
contain also other quantities, e.g. measurements of direction or even momentum. In
a pixel detector or in a double-sided silicon strip detector, mk is two-dimensional; in
a one-sided strip detector, it is one-dimensional. In a drift chamber or a multi-wire
proportional chamber with several layers, the measurement may be a track segment
resulting from an internal track reconstruction. In this case the vector mk may be
four- or five-dimensional, depending on whether the curvature can be estimated or
not.
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In most cases the function hk(qk) includes a transformation of the state vector
qk into the local coordinate system of the detector. For use in track reconstruction,
the Jacobian of this transformation is needed:

H k = ∂mk

∂qk

∣∣∣∣
q̆k

, (13.3)

where q̆k is the expansion point in surface k. In many cases the Jacobian contains
only rotations and projections, and thus can be computed analytically.

The measurement is always smeared by a measurement error:

mk = hk(qk) + εk.

The mean value and the covariance matrix of εk depend on the detector type
and the detector geometry and have therefore in general to be calibrated for each
detector unit independently. The measurement error is often assumed to follow a
Gaussian distribution, but frequently exhibits tails which are incompatible with this
assumption. In this case a Gaussian mixture is a more appropriate model.

13.1.3.3 Material Effects

A charged particle crossing a tracking detector interacts with the material of
the detector. The most important types of interactions in track reconstruction
are multiple Coulomb scattering, energy loss by ionization, and energy loss by
bremsstrahlung. For an in-depth treatment of material effects see Chapter 2.

Multiple Coulomb Scattering

Elastic Coulomb scattering of particles heavier than the electron is dominated by
the atomic nucleus. For small angles the differential cross-section is approximately
equal to

dσ

dθ
= 2π

(
2Ze2

pv

)2
1

θ3 ,

where θ is the polar angle of the scattering, Z is the charge of the nucleus in units
of the elementary charge e, v is the velocity of the scattered particle, and p is its
momentum [42]. Because of screening effects and the finite size of the nucleus the
differential cross-section is modified to [43]

dσ

dθ
= 2π

(
2Ze2

pv

)2
θ

(θ2 + θ2
min)

2
, 0 ≤ θ ≤ θmax.
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If the momentum p is given in GeV/c, the lower and upper limits are approximately
equal to

θmin ≈ 2.66 · 10−6Z1/3

p
, θmax ≈ 0.14

A1/3p
.

The average number of scattering processes in a layer of thickness d (in cm) is given
by

N(d) = dσ
NAρ

A
,

where σ is the integrated elastic cross section, NA is the Avogadro constant, ρ is
the density of the material (in g/cm3), and A is the atomic mass of the nucleus. In
track reconstruction it is convenient to work with the projected scattering angles
in two perpendicular planes. The projected multiple scattering angle θP is equal to
the sum of the projected single scattering angles, and its variance can be obtained
by multiplying the variance of the projected single scattering angle by the average
number of scatters, the projected single scattering angles being uncorrelated. With
increasing thickness d the distribution of the projected scattering angle approaches
a normal distribution, and the two projected angles become independent. For thin
scatterers, however, the width of the Gaussian core is notably narrower than is
indicated by the variance [42]. This is taken into account by Highland’s formula
for the standard deviation of the projected scattering angle [44]:

σP = E(θ2
P)1/2 = 0.0136

βp

√
d/X0 [1 + 0.038 ln(d/X0)] ,

where X0 is the radiation length of the material in cm, β = v/c is the particle
velocity in units of c, and p is the particle momentum in GeV/c. The logarithmic
correction ceases to be applicable above d ≈ X0.

If a scatterer is sufficiently thin, the transverse offset of the track due to multiple
scattering can be neglected. Only the track direction is affected in this case. If the
direction is represented by the polar angle θ and the azimuthal angle ϕ, their joint
covariance matrix is given by

var(�θ) = σ 2
P , var(�ϕ) = σ 2

P / sin2 θ, cov(�θ,�ϕ) = 0.

If the direction is represented by the direction tangents tx = dx/dz and ty = dy/dz,
the covariance matrix is [45]

Var[(�tx,�ty)
T] = σ 2

P (1 + t2
x + t2

y )

(
1 + t2

x tx ty

tx ty 1 + t2
y

)
.
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If the direction is represented by the direction cosines cx = dx/ds and cy = dy/ds,
the covariance matrix is [45]

Var[(�cx,�cy)
T] = σ 2

P

(
(1 − cx)

2 −cxcy

−cxcy (1 − cy)
2

)
.

In all cases the projected variance σ 2
P takes into account the effective amount of

material crossed by the track.
If the transverse offset cannot be neglected, its variance and its correlation with

the angle have to be taken into account. Assume that the particle passes a scatterer of
length d, traveling along the z-axis. Neglecting the curvature of the track, the joint
covariance matrix of the offset �x and the scattering angle θx in the x–z projection
is

var(�x) = σ 2
0 d3/3, var(θx) = σ 2

0 d, cov(�x, θx) = σ 2
0 d2/2,

where σ 2
0 is the variance of the projected scattering angle per unit length. If the

particle enters the scatterer at z = 0 with direction (tx, ty), the joint covariance
matrix of the offsets �x,�y and the angles �tx,�ty at z = d is

Var

⎡

⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎝

�x

�y

�tx

�ty

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦
= σ 2

0 (1+t2
x+t2

y )

⎛

⎜⎜⎜⎜⎝

(1 + t2
x )D3/3 tx tyD3/3 (1 + t2

x )D2/2 tx tyD2/2

tx tyD3/3 (1 + t2
y )D3/3 tx tyD2/2 (1 + t2

y )D2/2

(1 + t2
x )D2/2 tx tyD2/2 (1 + t2

x )D tx tyD

tx tyD2/2 (1 + t2
y )D2/2 tx tyD (1 + t2

y )D

⎞

⎟⎟⎟⎟⎠
,

where D = (1 + t2
x + t2

y )1/2d is the effective thickness crossed. If the direction
is represented by θ and ϕ, the covariance matrix can be computed via the
transformation

tx = tan(θ) cos(ϕ), ty = tan(θ) sin(ϕ),

and linear error propagation with the Jacobian

T = ∂(θ, ϕ)

∂(tx, ty)
=

⎛

⎝
tx√

t2
x +t2

y (1+t2
x +t2

y )

ty√
t2
x +t2

y (1+t2
x +t2

y )

− ty

t2
x +t2

y

tx
t2
x +t2

y

⎞

⎠ =
(

cos(ϕ)

1+tan2(θ)

sin(ϕ)

1+tan2(θ)

− sin(ϕ)
tan(θ)

cos(ϕ)
tan(θ)

)
.

For analogous formulas in cylindrical coordinates, see [46].
If the curvature of the track cannot be neglected, the simplest approach is

a stepwise integration of the equation of motion, assuming the validity of a
helical track model within each step and considering each such step as a thin
scatterer [39, 47].
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Energy Loss

For particles other than electrons the energy loss in material is almost exclusively
due to scattering on electrons. The momentum correction �p in a material layer of
thickness d is calculated by integrating the Bethe-Bloch formula [37]:

�p =
∫ d

0

dp

dx
dx =

∫ d

0

1

β

dE

dx
dx =

∫ d

0

K

β3

[
ln

2mec
2β2γ 2

〈I 〉 − β2
]

dx, (13.4)

where K is a constant depending on the material, me is the electron mass, 〈I 〉 is
the average ionization potential of the material, and β = v/c and γ = E/mc2

are the usual kinematic parameters. The ratio 〈I 〉/Z is about 20 eV for hydrogen
and helium, between 12 and 16 eV for light nuclei, and around 10 eV for heavy
nuclei [44]. For practical purposes, the differential energy loss dE/dx is a function
only of β. For small β, it decreases like 1/β2. It has a minimum, the position of
which drops with increasing Z from βγ ≈ 3.5 (carbon) to βγ ≈ 3 (lead). In terms
of momentum, the minimum is at p = βγmc and thus depends on the mass of the
particle. This dependency is used for particle identification. The energy loss at the
minimum can be parameterized for Z ≥ 6 by [44]:

(dE/dx)min = (2.35 − 0.64 ln10 Z) MeV g−1cm2.

From this the constant K in Eq. (13.4) can be calculated. For large βγ the energy
loss increases like ln(βγ ); this is called the relativistic rise. For momenta in the
vicinity of the minimum dE/dx can be considered as constant, giving �p ≈
(dE/dx)min · dρ/β, ρ being the density of the material.

Bremsstrahlung

For an electron (or positron) passing through matter the most significant contribution
to energy loss is bremsstrahlung, the emission of photons in the electric field of
an atomic nucleus. In the Bethe–Heitler model [48] the relative energy loss is
distributed independently of the energy. Let d be the path length in the material
in units of radiation length, and z the fraction of energy remaining after the material
is traversed. Then the distribution of z is given by the following probability density
function:

f (z) = (− ln z)c−1

(c)
, 0 ≤ z ≤ 1,

where (x) is Euler’s gamma function and c = d/ln 2. For high energy electrons
p ≈ E, so the momentum correction is �p ≈ p(z − 1). The first two moments of
�p are

E(�p) = p(2−c − 1), var(�p) = p2(3−c − 4−c).
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The moments can be used for a Gaussian representation of bremsstrahlung as an
additional process noise in the Kalman filter (see Sect. 13.1.3.4). As this is a very
crude approximation, more sophisticated methods have been developed that take
into account the actual shape of the distribution. One of them is the Gaussian-
sum filter [49, 50], see Sect. 13.1.3.5. A computationally less intensive approach
is described in [51].

13.1.3.4 Estimation Methods

The main task of the track fit is to estimate the values of a set of parameters
describing the state of a particle somewhere in the detector, often at a reference
surface close to the interaction vertex. The information from the measurements
created by the particle while traversing the tracking detector should be processed
in an optimal manner. If the track model is truly linear, i.e., if the measurements
are strictly linear functions of the track parameters, and all stochastic disturbances
entering the estimation procedure are Gaussian, the linear least-squares method is
the optimal one [37]. Since track parameter propagation in general is a nonlinear
procedure, strict linearity holds very rarely in practice. The relation between the
track parameter vector q0 at a reference surface and the measurement vector mk at
a detector layer k is a function dk given by

mk = dk(q0) + γ k,

where γ k is a noise term containing the measurement error of mk and all multiple
scattering in front of mk . The function dk is a composition of the measurement
model function hk and the track propagator functions f i|i−1 (see Sect. 13.1.3.2):

dk = hk ◦ f k|k−1 ◦ · · · ◦ f 2|1 ◦ f 1|0.

For the linear least-squares method dk has to be linearized around some expansion
point, providing the Jacobian Dk of each dk:

Dk = H kF k|k−1 · · · F 2|1F 1|0,

with H k from Eq. (13.3). The covariance matrix of γ k is obtained by linear error
propagation:

var(γ k) = V k + H k(Fk|1Q1Fk|1T + · · · + Fk|k−1Qk−1Fk|k−1
T + Qk)H k

T,

where V k is the covariance matrix of the measurement error εk of mk , and Qj is the
covariance matrix of multiple scattering after layer j −1 up to and including layer j .
The part of Qj originating from scattering between the layers has to be transported
to layer j by the appropriate Jacobian. Because of the cumulative effect of multiple
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scattering γ i and γ k are correlated. If i < k, the covariance is given by

cov(γ i , γ k) = H i (Fi|1Q1Fk|1T + · · · + Fi|i−1Qi−1Fk|i−1
T + QiFk|iT)H k

T.

The observations mk , the functions dk , their Jacobians Dk , and the noise γ k are
now collected in single vectors and a matrix:

m =

⎛

⎜⎜⎝

m1

·
·

mn

⎞

⎟⎟⎠ , d =

⎛

⎜⎜⎝

d1

·
·

dn

⎞

⎟⎟⎠ , D =

⎛

⎜⎜⎝

D1

·
·

Dn

⎞

⎟⎟⎠ , γ =

⎛

⎜⎜⎝

γ 1
·
·

γ n

⎞

⎟⎟⎠ ,

where n is the total number of measurement layers. This gives the following model:

m = d(q0) + γ ,

which now can be linearized into

m = Dq0 + c + γ ,

where c is a constant vector. The global least-squares estimate of q0 is given by

q̃0 = (DTGD)−1DTG (m − c),

where V = G−1 is the non-diagonal covariance matrix of γ . The quality of the
initial expansion point can be monitored by using the obtained estimate as a new
expansion point, and the state vector estimate can hence be re-calculated. Such a
procedure is repeated until convergence, defined by a suitable stopping criterion.

If the track model is a circle and multiple scattering and energy loss can be
neglected, the estimation can be simplified substantially. Explicit estimators are
given in [52] for the center and radius of the circle, and in [53] for the curvature,
the direction and the distance from a fixed point. Other algorithms are based on
conformal mapping in the plane [2] or on a mapping to the Riemann sphere [54–
56].

If there is strong multiple scattering, the estimated track can be quite far away
from the real track. In order to follow the actual track more closely, two projected
scattering angles can be explicitly estimated at each detector layer or at a set of
virtual breakpoints inside a continuous scatterer [45, 57]. The breakpoint method,
also known as General Broken Lines [58], and the global least-squares method are
equivalent, as far as the estimate of the state vector q0 is concerned [59].

If the number of measurements or the number of breakpoints is substantial,
the computational cost of these methods can be high due to the necessity of
inverting large matrices during the estimation procedure. The Kalman filter, a
recursive formulation of the least-squares method, requires the inversion of only
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small matrices and exhibits the same attractive feature as the breakpoint method of
following the actual track quite closely [26, 60].

As mentioned earlier, the Kalman filter proceeds by alternating prediction and
update steps. The prediction step is the propagation of the track parameter vector
from one detector layer containing a measurement to the next,

qk|k−1 = f k|k−1(qk−1|k−1),

and the associated covariance matrix,

Ck|k−1 = F k|k−1Ck−1|k−1F k|k−1
T + Qk.

The update step is the correction of the predicted state vector due to the information
from the measurement in layer k:

qk|k = qk|k−1 + Kk

[
mk − hk(qk|k−1)

]
,

where the gain matrix Kk is given by

Kk = Ck|k−1H k
T
(
V k + H kCk|k−1H k

T
)−1

.

The update of the covariance matrix is given by

Ck|k = (I − KkH k) Ck|k−1.

The information filter is a mathematically equivalent, but numerically more stable
formulation of the Kalman filter. In the information filter, the update of the state
vector reads

qk|k = Ck|k
[(

Ck|k−1
)−1

qk|k−1 + H k
TV −1

k mk

]
,

whereas the update of the covariance matrix is given by

Ck|k =
[(

Ck|k−1
)−1 + H k

TV −1
k H k

]−1
.

The implementation of the Kalman filter requires the computation of the Jacobians
F k|k−1 and H k . A compilation of analytical formulas for two important cases (fixed-
target configuration and solenoidal configuration) is given in [61].

Full information of the track parameters at the end of the track is obtained when
all n measurements in the track candidate have been processed by the filter. The full
information can be propagated back to all previous estimates by another iterative
procedure, the Kalman smoother. A step of the smoother from layer k + 1 to layer
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k is for the state vector

qk|n = qk|k + Ak(qk+1|n − qk+1|k),

where the smoother gain matrix is given by

Ak = Ck|kF k+1|kT(Ck+1|k)−1.

The smoothed covariance matrix is

Ck|n = Ck|k − Ak(Ck+1|k − Ck+1|n)Ak
T.

The smoother can also be realized by combining two filters running in opposite
directions: a forward filter from m1 to mn and a backward filter from mn to m1. The
smoothed states are the weighted mean of the predicted states of one filter and the
updated states of the other filter. This approach is numerically more stable than the
gain matrix formulation of the smoother.

13.1.3.5 Track Quality and Robust Estimation

Robust estimators are insensitive to outliers, i.e., measurements that are biased or do
not originate from the particle creating the majority of the hits in a track candidate.
Some estimators are inherently robust by construction; other estimators can be made
robust by finding and discarding outliers.

In the Kalman filter, the residual of the measurement in layer k with respect to
the updated state vector is

rk|k = mk − hk(qk|k),

and the covariance matrix of this residual is

Rk|k = V k − H kCk|kHT.

The chi-square increment in layer k is

χ2
k,+ = rk|kTR−1

k|krk|k,

and the total chi-square of the track is found by summing up the chi-square
increments for all measurements in the track candidate. The total chi-square is
used to evaluate the quality of the track candidate. A too large value of this test
statistic indicates that one or more of the measurements of the track candidate do
not originate from the particle creating the majority of the measurements. Such
measurements are called outliers.
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An outlier rejection procedure can make use of the chi-squares of the mea-
surements with respect to the smoothed predictions, i.e., a weighted mean of the
predicted states of a forward and a backward Kalman filter. The measurement with
the largest value of the chi-square is removed, and the total chi-square is again
calculated. This procedure is repeated until the value of the total chi-square falls
below a defined threshold.

In the presence of a potentially large fraction of outliers in a track candidate,
the sequential outlier rejection procedure outlined above might become unstable,
because the smoothed predictions may themselves be biased by outliers. An
alternative approach is the Gaussian-sum filter [62]. This algorithm is based on
the assumption that the probability distribution of the measurement error can
be modeled as a two-component Gaussian mixture, where a narrow component
represents the hypothesis that the measurement is real and a wider component
represents the hypothesis that the measurement is an outlier. It takes the form of
a set of Kalman filters running in parallel, each Kalman filter representing a specific
hypothesis of a subset of the measurements that should be classified as outliers.
A weight attached to each Kalman filter can be interpreted as the probability of
correctness of the hypothesis. In the end, the Kalman filter with the largest weight
or a weighted mean of the different filters can be taken as the final estimate.

The Gaussian-sum filter can also be used to deal with a mixture model of the pro-
cess noise, i.e., the stochastic disturbance of the track because of interactions with
the detector material [63]. In the case of bremsstrahlung, a successful application to
the reconstruction of electrons is described in [50].

For the treatment of outliers, the Gaussian-sum filter has two disadvantages.
First, it may create a large number of Kalman filters running in parallel because
of poor knowledge of the track parameters in the early stages of the filter, making
the approach expensive in terms of computing time. Second, an explicit outlier
model is required. A faster and even more robust alternative is the Deterministic
Annealing Filter [64]. This filter is an iterated Kalman filter with annealing, which
assigns small weights to measurements far away from the track. A temperature
parameter is introduced, facilitating convergence to the globally optimal solution.
The iterations start at a high temperature, continue with a gradual lowering of the
temperature and converge at the nominal value of the temperature. The procedure is
easily generalized to the situation of several measurements being present in the same
detector layer. In this case the measurements compete for inclusion in the track. As
opposed to a standard outlier rejection approach, the assignment of measurements
is soft. This means that several measurements in the same detector layer might
contribute to the final estimate of the track parameters, each with a weight equal to
the assignment probability. A further generalization is the multi-track filter, where
several tracks are allowed to compete for compatible hits in all detector layers [65].
For an experimental application, see [66].
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13.1.3.6 Jet Reconstruction

Jets are bundles of collimated hadrons, reflecting hard scattering processes at
the parton level. In order to carry out detailed comparisons between parton-level
predictions and hadron-level observations a well-defined “jet finder” is required. In
the jet finding information from both the tracking devices and the calorimeters is
used.

Jet finding can be understood as finding clusters in the set of reconstructed tracks,
including neutral tracks. As in the case of vertex finding (see Sect. 13.2.2), various
types of clustering methods have been proposed and investigated. The performance
strongly depends on the underlying physics, and usually a jet finder is optimized for
specific physics requirements. For instance, the widely used k⊥ clustering algorithm
comes in several versions, for instance one for e+e− collisions [67], and one for
hadron-hadron collisions [68].

Hierarchical cluster algorithms offer a large variety of jet finders, differing
mainly by the definition of the measure of distance between objects (tracks and jets),
but sometimes also by the order in which the objects are combined. Some examples
of agglomerative clustering algorithms are described and studied in [69]. Table 13.1
gives a summary of the distance measures used. The names refer to the ones used
in [69]. Ei is the energy of cluster i, pi is its momentum, θij is the opening angle
between the momentum vectors of the two clusters, and Evis is the visible energy.

A divisive hierarchical clustering algorithm is described in [76]. It is based on
the following measure of distance between two tracks:

dij = θ2
ij

pipj

,

Table 13.1 Some distance measures used for agglomerative jet finding with respective references

Name Distance dij References

Jade
2 EiEj (1 − cos θij )

E2
vis

[70]

Durham, k⊥
2 min(E2

i , E2
j )(1 − cos θij )

E2
vis

[67, 68, 71–73]

Luclus
2 p2

i p
2
j (1 − cos θij )

(pi + pj )2E2
vis

[74]

Geneva
8

9

EiEj (1 − cos θij )

(Ei + Ej )2 [75]

Cambridge
2 min(E2

i , E2
j )(1 − cos θij )

E2
vis

[71]
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but can be generalized to any other measure of distance. The method first constructs
a minimum spanning tree [77] in the edge-weighted graph connecting all particles
with each other and then proceeds to cut the tree along its longest edges. The
procedure stops when the longest remaining edge is shorter than a fixed multiple
of the median of all edge lengths.

Several non-hierarchical cluster algorithms have been proposed as well. Some
of them employ general unsupervised learning methods, such as deterministic
annealing [78] or k-means [79]. Others are specially designed for jet finding, for
instance the cone algorithm described in [72]. It is an iterating procedure which
constructs jets out of seeds. In contrast to the hierarchical clustering method the
jets may overlap and a unique assignment has to be forced at the end. A modified
cone algorithm suitable for the much larger multiplicity of heavy-ion collisions is
proposed in [80]. A specialized jet finder for the reconstruction of hadronic τ -decays
is described in [81].

13.1.4 Detector Alignment1

Alignment is the general term used in experimental high energy physics to refer to
the process of obtaining and applying corrections to the nominal setup of a given
experiment. These corrections are typically related to geometrical displacements of
devices with a spatial resolution, in contrast to calibrations, where the corrections
are usually extracted from pedestal or reference measurements to compensate for
offsets in scalar measurements. Misalignment compromises tracking and vertex
finding [82] and thus directly affects physics measurements such as momentum
and invariant mass resolutions, or the efficiency of b-tagging algorithms. There are
various possibilities for the treatment of alignment corrections, ranging from simple
translations and rotations, equivalent to those of a rigid body, to more complex
deformations, like sags or twists.

To this end experiments typically use several independent strategies [83]. For
testing the long-term stability or the alignment of sub-detectors with respect to
each other, very often so-called hardware alignment is utilized, where special
reference markers are measured directly e.g. via optical systems or photogrammetry.
However, these techniques reach only a limited precision in the range of several
tens to hundreds of microns. If the intrinsic resolution of a tracking device is
smaller, an improved resolution can only be obtained with track-based alignment,
where the information from recorded particle tracks is used to obtain the alignment
parameters [83, 84]. For various examples of the track-based alignment methods
used in experiments since the LEP era, see [85–100].

1The section on detector alignment was contributed by E. Widl (Institute of High Energy Physics,
Vienna; now at Austrian Institute of Technology).
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13.1.4.1 General Overview

The basis of all track-based alignment algorithms is an extended track model d,
where the measurements m depend not only on the true track-parameters q0, but
also on a set of alignment parameters p0 that describe the effects of sufficiently
small deviations from the ideal geometry:

m = d(q0,p0) + γ , cov(γ ) = V .

The stochastic term γ , which describes the intrinsic resolution of the tracking
devices and the effects of multiple scattering, is dealt with via its covariance matrix
V . Since typically high momentum particles are used, energy-loss effects can be
assumed to be deterministic and hence directly taken care of in the track model d

itself.
With an initial guess q̆ for the track parameters and p̆ for the alignment

parameters, this model allows to define residuals that are functions of the unknowns
q and p:

r(q,p) = m − d(q,p) ≈ m − d̆ − Dq�q − Dp�p (13.5)

with

d̆ = d(q̆, p̆), �q = q − q̆, �p = p − p̆,

Dq = ∂d

∂q

∣∣∣∣
q̆,p̆

, Dp = ∂d

∂p

∣∣∣∣
q̆,p̆

.

The goal of a track-based alignment algorithm is to determine p from the residuals
r , by minimizing the quadratic form χ2 = rTV −1r , using a sufficiently large set
of recorded tracks. The methods used are quite diverse, but can be grouped into two
categories: biased and unbiased algorithms.

Biased algorithms initially ignore the fact that the initial guess of the track
parameters q0 is in general biased by the factual misalignment. In other words,
by setting q = q̆ for every track, the residuals become a function of p alone,
i.e., r(q,p) → r(p). In general, the influence of the biased track information
has to be compensated by iterating several times over the track sample, where at
each iteration step the previously determined parameters are applied to the track
reconstruction.

Unbiased algorithms on the other hand, minimize the residuals or the normalized
residuals, respectively, estimating at the same time the track parameters. The
problem with such an approach is the resulting huge number of parameters. In
the presence of N alignment parameters and a sample of M tracks with m track
parameters each, a total of N + m · M parameters have to be dealt with. While the
value of N depends on the experimental setup, and m usually equals 5, the number
of tracks M has always to be of considerable size to acquire reasonable statistics.
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On the other hand, unbiased algorithms usually do not require iterations, with the
possible exception of problems like non-linearities or rejection of outliers.

Besides the differences between various algorithms it should be noted that the
final result of any track-based alignment is always limited by the tracks used. Basic
quality cuts, like the selection of high momentum tracks to minimize the influence of
multiple scattering or cuts on the minimum number of hits, have a strong influence
on the convergence. More subtle is the effect of an unbalanced mixture of tracks
or the complete absence of some types of tracks, such as tracks from collisions
and cosmic events or tracks taken with and without a magnetic field. This is due
to the fact that any kind of tracks has several unconstrained degrees of freedom,
usually referred to as weak modes, weakly defined modes or χ2-invariant modes.
As an example, typical weak modes for straight tracks are shears but not bends, and
vice versa for curved tracks. Combining the information of both kinds of tracks is
therefore a reasonable strategy to avoid these deformations in the final result. The
most obvious weak mode is a translation or rotation of the entire tracking device,
which can be only fixed with some kind of reference frame, be it an external system
or by definition. This, however, is less severe and sometimes even not considered at
all, as it does not affect the internal alignment of the tracking device.

Once a set of alignment parameters is calculated, it should always be vali-
dated [83, chapter 11]. Apart from checking the improvement of the residuals,
several physics measurements can be utilized, especially to probe for remaining
weak modes. Known charge, forward-backward or ϕ-symmetries of distinct physics
processes can be used. Distributions of the signed curvature or the signed transverse
impact parameter are also sensitive observables.

13.1.4.2 Examples of Alignment Algorithms

Some modern experiments deploy large tracking devices that require a large number
of alignment parameters, of the order of 105. In such a case the computation
of parameters by using straightforward recipes might become unreasonably slow
or cause numerical problems. The two algorithms presented in this section are
examples of how to cope with such challenging circumstances.

The HIP Algorithm

The HIP algorithm [101] is a straightforward and easy-to-implement biased align-
ment algorithm. It computes the alignment parameters for each alignable object
separately. Only when iterating on the track sample a certain kind of indirect
feedback between the alignable objects is established due to the track refit.

Since only individual alignable objects are regarded, Eq. (13.5) can be parti-
tioned. This is simply done by evaluating the corresponding expressions for each
alignable object i together with its associated parameters pi :

r i (pi ) = mi − d i (q̆,pi ) ≈ mi − d̆ i − Dpi�pi
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with

d̆ i = d i (q̆, p̆i ), �pi = pi − p̆i , Dpi = ∂d i

∂pi

∣∣∣∣
q̆, p̆i

.

The result is determined by minimizing the normalized squared residuals from a
given set of tracks, again for each alignable object separately. The formal solution
is given by

�pi =
(

∑

tracks

Dpi
TV −1

i Dpi

)−1 ( ∑

tracks

Dpi
TV −1

i r i (p̆i )

)

The Millepede Algorithm

The Millepede algorithm [102] is an unbiased algorithm that minimizes the sum of
the squared residuals of all tracks at once. To this end a system of linear equations,
equivalent to the formal solution of an ordinary χ2-fit, is solved. However, to
achieve this within a reasonable amount of time, only the solution for the alignment
parameters is computed, while the computation of the improved track parameters
is skipped. This is possible because of the special structure of the system: Firstly,
the coefficient matrix is symmetric and, mostly due to the independence of the
individual tracks, relatively sparse. Secondly, only the alignment parameters are
common parameters for all track measurements, while the specific track parameters
are only relevant for each corresponding track. Due to the latter, the solutions for
the alignment and track parameters are only coupled via coefficient matrices of the
form

G = Dp
T V −1Dq .

To set up the reduced system of equations, for each track the following information
has to be extracted:

� = Dq
T V −1Dq, β = Dq

T V −1
(

m − d̆ − Dp �p′ ) .

Here �p′ = p′ − p̆ may already include an estimate p′ on the actual alignment.
Then compute

�C = Dp
T V −1Dp − G �−1GT, �g = Dp

T V −1
(

m − d̆ − Dp �p′ + Dq �−1β
)

.
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Note the expression −�−1β instead of �q. These are all necessary terms, including
implicitly the full information from all track parameters. The complete system of
equations to determine the alignment parameters then reads

C �p = −g,

with

C =
∑

tracks

�C, g =
∑

tracks

�g.

The solution by matrix inversion is only feasible if the number of parameters is
fairly small (N ≤ 103). The matrix C is usually relatively sparse, so that less
time-consuming and more reliable methods can be used, such as the GMRES
algorithm [103].

It is also possible to introduce constraints into the solution, which allows to align
on various hierarchical levels at once. When aligning for instance on module- and
layer-level at the same time, these constraints can remove redundant degrees of
freedom by forcing the average movement of all modules within one layer to zero.

Millepede is a well-tested algorithm. To use it efficiently, some knowledge of
its inner workings is of advantage. The HIP algorithm is simpler to implement, but
less suitable for very large setups than Millepede. Another unbiased algorithm is
the Kalman Alignment Algorithm [104]. It is a sequential method, derived from the
Kalman filter (see also [105]).

13.1.5 Momentum Resolution

The momentum resolution that can be achieved by a tracking detector is determined
by the magnetic field, the arrangement and precision of the tracking detectors, and
the amount of material crossed by the particle. Simple approximate formulas can be
obtained for two cases:

(a) A spectrometer consisting of a central bending magnet and two arms of tracking
detectors in front of and behind the magnet. This is a typical arrangement for a
fixed-target experiment with small track multiplicities.

(b) A set of cylindrical tracking detectors immersed in a homogeneous magnetic
field. This is a typical arrangement for the barrel part of a collider experiment,
for instance layers of silicon or a TPC.

The units are the same as in Sect. 13.1.3.2: momentum in GeV/c, length in meters,
and magnetic field in Tesla.
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13.1.5.1 Two-arm Spectrometer

We assume that the trajectory of the particle is parallel to the z axis and that By is
the only significant component of the magnetic field. The angle of deflection is then
given by [37]

α ≈ −kq

p

∫

L

By dz = −kq

p
B̄yL,

where L is the length of the magnet, B̄y is the average value of the field along the
trajectory, p is the momentum, and q, k are as in Eq. (13.2). Assuming that |q| = 1,
linear error propagation gives

σ(p)

p
= pσ(α)

k|B̄y |L
.

Assume that each arm consists of m identical position detectors spread over a length
l, and that the standard deviation of the measurement error of x is equal to δ. The
best angular resolution is obtained if in each arm half of the detectors is placed at
each end of the arm. Neglecting all multiple scattering, it is equal to

σ(α) = 2δ

l
√

m/2
.

The relative momentum resolution due to measurement errors is therefore

σme(p)

p
= 2pδ

l
√

m/2k|B̄y |L
.

Although this arrangement optimizes the precision in terms of geometry, it offers
little redundancy for track finding and should be used only in setups with trivial
pattern recognition requirements, for instance in the forward direction of fixed target
experiments.

At low energies, multiple scattering can no longer be neglected. Whereas
σ(p)/p arising from position measurement errors only is proportional to p, the
term σms(p)/p arising from multiple scattering is proportional to 1/(β|B̄y |L),
which is large for small β and constant for high momenta (β ≈ 1). Under the
same assumptions about the detector positions as above, the following formula is
obtained:

σms(p)

p
= 0.0136

βk|B̄y |L
(

md

X0

)1/2

,
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where d/X0 is the thickness of the detectors in units of radiation length. The total
resolution is obtained by adding the corresponding variances and taking the square
root,

σ(p)

p
= σme(p)

p
⊕ σms(p)

p
= ap ⊕ b,

with a and b depending on the detector and the magnetic field.

13.1.5.2 Cylindrical Spectrometer

Assume that there are m cylindrical detectors immersed in a homogeneous magnetic
field Bz parallel to the z axis. The projection of the track on the x–y plane is a circle
with curvature κ . For high momentum the circle can be approximated by a parabola,
the detector cylinders can be approximated by planes, and multiple scattering can
be neglected. For this case closed formulas for the joint covariance matrix of κ and
the tangent tϕ = tan ϕ of the initial track direction ϕ can be given [106, 107]. For
equidistant detectors, uniform resolution δ and tϕ = 0 it is given by

Cov

(
tϕ

κ

)
= δ2

m(m + 1)(m + 2)

⎛

⎜⎜⎜⎝

12 (m − 1)(2m − 1)(8m − 11)

L2(m − 2)
−360 (m − 1)3

L3(m − 2)

−360 (m − 1)3

L3(m − 2)

720 (m − 1)3

L4(m − 2)

⎞

⎟⎟⎟⎠ ,

where L is now the track length in the x–y projection. L is approximately equal
to the radial distance between the innermost and the outermost detector. As κ =
kBz/pT,

σme(pT)

pT
= pT

k|Bz|L
δ

L

[
720 (m − 1)3

(m − 2)m(m + 1)(m + 2)

]1/2

.

There is a high negative correlation between 1/pT and the direction tangent tϕ . For
large m, the asymptotic values are

σme(pT)

pT
= pT

k|Bz|L
δ

L

[
720

m + 4

]1/2

, σ (tϕ) = δ

L

[
192

m + 3.875

]1/2

,

cov(tϕ, 1/pT) = −
√

15

4
= −0.968.

More general closed formulas for tϕ �= 0 are given in [107].
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Table 13.2 Values of Cm in Eq. (13.6)

m 3 4 5 6 7 8 9 10 > 10 m

Cm 1.16 1.06 1.04 1.03 1.02 1.02 1.01 1.01 ≈ 1 m

If one half of the detectors is placed at the center of the track and one quarter at
either end, the variance of the curvature is minimal, and the covariance matrix reads

Cov

(
tϕ

κ

)
= δ2

⎛

⎜⎜⎝

72

L2m
− 128

L3m

− 128

L3m

256

L4m

⎞

⎟⎟⎠ ,

which is considerably smaller than in the equidistant case. This arrangement,
however, is not particularly well suited for track finding and moreover difficult to
realize.

The contribution of multiple scattering to the transverse momentum resolution
can be approximated by

σms(pT)

pT
= Cm · s

βk|Bz|L
(

md

X0 cos λ

)1/2

, (13.6)

where d/X0 is the thickness of the detectors in units of radiation length, λ = π/2−θ

is the dip angle of the track, s = 0.0136(1 + 0.038 ln(d/X0)), k is as in Eq. (13.2),
and Cm is a factor depending on m. Values of Cm for small m, obtained by the
program described in [108], are given in Table 13.2. Note that the values are different
from the ones given in [106]. In a time projection chamber md/X0 has to be
replaced by L/X0, where X0 is the radiation length of the gas. The factor cos λ

in the denominator accounts for the actual amount of matter traversed by a track
with dip angle λ. Approximate formulas for the best possible resolution including
multiple scattering can be found in [109].

The total transverse momentum resolution is calculated by quadratic addition,

σ(pT)

pT
= σme(pT)

pT
⊕ σms(pT)

pT
,

which can be written in the form

σ(pT)

pT
= a pT√

m + 4
⊕ b

√
m√

cos λ
.

This shows that an optimal m exists for every pT and λ if the projected track length
L is kept fixed. Overinstrumentation will deteriorate the resolution for low momenta
unless additional measurements can be included without increasing the amount of
matter to be traversed.
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In order to calculate the error of the momentum p = pT/ cos λ the error in λ

must be taken into account:

σ 2(p) = σ 2(pT)/ cos2 λ + σ 2(λ) pT
2 sin2 λ/ cos4 λ,

the correlation between pT and λ being negligible in practice. Because of σ(p)/p =
pσ(1/p) it follows that:

σ(p)

p
= σ(pT)

pT
⊕ σ(λ) tan λ.

With the exception of very low momenta the track can be approximated by a
straight line in the r–z projection, where r = (x2 + y2)1/2. For m equidistant
detectors and uniform resolution δ, the variance of the direction tangent tλ = tan λ

due to the measurement errors is given by [106]:

σ 2
me(tλ) = δ2

L2

12(m − 1)

m(m + 1)

1

cos4 λ
.

If the measurement error in z is very small, the variance of tλ is dominated by
multiple scattering. For equidistant layers of uniform thickness d an approximate
formula can be given. Remarkably, it does not depend on the number of layers:

σ 2
ms(tλ) ≈ s2

p2

d

X0 cos λ

1

cos4 λ
= s2

pT
2

d

X0 cos λ

1

cos2 λ
,

with s = 0.0136(1 + 0.038 ln(d/X0)).
In the design and optimization phase of the detector a precise evaluation of the

resolution of all track parameters is mandatory. There are several software packages
that allow a fast track simulation plus reconstruction in a general detector setup, for
instance [110] (in FORTRAN), [111] (in Matlab/Octave), or [108] (in Java).

13.2 Vertex Reconstruction

13.2.1 Introduction

Vertex reconstruction is the task of finding and estimating the production point
of a set of particles. The pattern recognition algorithms and statistical estimation
methods involved are in many respects similar to the ones used in track reconstruc-
tion. For an overview of vertex reconstruction algorithms used in past or active
experiments see for instance [112–116].
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In practice it is useful to distinguish between several types of vertices:

1. The primary vertex is the point of collision of two beam particles (in a
collider experiment) or of a beam particle and a target particle (in a fixed-target
experiment).

2. A secondary decay vertex is the point where an unstable particle decays in the
detector volume or in the beam pipe. An example is the decay K0

S → π+π−.
3. A secondary interaction vertex is the point where a particle interacts with the

material of the detector. Examples are bremsstrahlung, pair production, and
inelastic hadronic interactions.

Vertex reconstruction frequently proceeds in several steps:

1. Vertex finding: Finds the tracks that belong to a common primary or secondary
vertex.

2. Vertex fitting: Estimates for each vertex candidate the location of the common
vertex and computes the associated covariance matrix.

3. Test of vertex hypothesis: Tests for each vertex candidate whether all tracks do
indeed belong to the vertex and identifies outliers.

4. Update: Uses the vertex constraint to improve the location and momentum
estimate of the tracks belonging to the vertex.

5. Kinematic fit: Kinematic constraints such as momentum and energy conservation
are imposed on the mother and daughter particles of a vertex, and mass
hypotheses are tested. Kinematic fits are most frequently applied to secondary
decay vertices.

Vertex finding can be accomplished in many different ways. A few of them will
be described in Sect. 13.2.2. The vertex fit takes a vertex candidate and estimates
the vertex location from the estimated track parameters of the outgoing particles
(Sect. 13.2.3). As a rule, only charged particles are used, but sometimes also neutral
particles contribute to the vertex fit. In the test stage (Sect. 13.2.3.2) outliers are
identified, i.e., particles that apparently do not belong to the estimated vertex.
As this can lead to a different assignment of particles to vertices, it can be
considered as a method of vertex finding. If outliers are expected, the estimation
procedure should be robust so that the estimated vertex is not significantly biased
by the outliers (Sect. 13.2.3.3). Kinematic constraints (Sect. 13.2.4) are usually
imposed via Lagrange multipliers. By repeating the kinematic fit under various mass
hypotheses of the mother and/or daughter particles the most likely mass assignment
can be found out.

13.2.2 Vertex Finding

Vertex finding is the process of dividing the reconstructed tracks in an event into
classes such that presumably all tracks in a class are produced at the same vertex.
The primary vertex in an event is usually easy to find, especially if prior information
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about its location is available (beam profile, target position). On the other hand,
secondary decay vertices of short-lived decays are hard to find, as some of the
decay products may also be compatible with the primary vertex. Vertex finding
methods can be roughly divided in three main types: generic clustering algorithms,
topological methods, and iterated estimators. The latter can be considered as a
special divisive clustering method.

13.2.2.1 Clustering Methods

As mentioned above in the context of jet finding (see Sect. 13.1.3.6), clustering
methods are based on a distance matrix or a similarity matrix of the objects to be
classified. A cluster is then a group with small distances (large similarities) inside
the group and large distances (small similarities) to objects outside the group. The
distance measure reflects only the geometry of the tracks.

Various clustering methods have been evaluated in the context of vertex finding,
of both the hierarchical and the non-hierarchical type [117]. Hierarchical clustering
can be agglomerative or divisive. In agglomerative clustering each track starts out as
a single cluster. Clusters are merged iteratively on the basis of a distance measure.
The shortest distance in space between two tracks is peculiar insofar as it does
not satisfy the triangle inequality: if tracks a and b are close, and tracks b and c

are close, it does not follow that tracks a and c are close as well. The distance
between two clusters of tracks should therefore be defined as the maximum of the
individual pairwise distances, known as complete linkage in the clustering literature.
Alternatively, the distance between two clusters can be the distance between the
two vertices fitted from the clusters. Divisive clustering starts out with a single
cluster containing all tracks. Further division of this cluster can be based on repeated
vertex estimation with outlier identification (see Sect. 13.2.2.3). Examples of non-
hierarchical clustering methods used in vertex finding are vector quantization, the
k-means algorithm and deterministic annealing [113].

13.2.2.2 Topological Methods

A very general topological vertex finder was proposed in [118]. It is related to
the Radon transform, which is a continuous version of the Hough transform used
for track finding (Sect. 13.1.2.1). The search for vertices is based on a function
V (v) which quantifies the probability of a vertex at location v. For each track a
Gaussian probability tube fi(v) is constructed. The function V (v) is defined taking
into account that the value of fi(v) must be significant for at least two tracks:

V (v) =
n∑

i=0

fi(v) −
∑n

i=0 f 2
i (v)

∑n
i=0 fi(v)



586 R. Frühwirth et al.

Due to the second term on the right-hand side, V (v) ≈ 0 in regions where fi(v)

is significant for only one track. The form of V (v) can be modified to fold in
known physics information about probable vertex locations. For instance, V (v) can
be augmented by a further function f0(v) describing the location and spread of the
interaction point. In addition, V (v) may be modified by a factor dependent on the
angular location of the point v.

Vertex finding amounts to finding local maxima of the function V (v). The search
starts at the calculated maxima of the products fi(v)fj (v) for all track pairs. For
each of these points the nearest maximum of V (v) is found. These maxima are
clustered together to form candidate vertex regions. The final association of the
tracks to the vertex candidates can be done on the basis of the respective χ2

contributions or by an adaptive fit (see Sect. 13.2.3.3). In [119] the topological
vertex finder was augmented by a procedure based on the concept of the minimum
spanning tree of a graph.

13.2.2.3 Iterated Estimators

Vertex finding can also be accomplished by iterated vertex fits (see Sect. 13.2.3).
The procedure can be summarized in the following way:

1. Fit one vertex with all tracks
2. Discard all incompatible tracks
3. Repeat step 1 with all discarded tracks

The iteration stops when no vertex with at least two tracks can be successfully fitted.
Step 2 might itself be iterative, especially if the vertex fit is not robust, so that
the incompatible tracks have to be removed sequentially. Iterative vertex finders
based on a least-squares fit (Sect. 13.2.3.1) and an adaptive fit (Sect. 13.2.3.3) are
implemented in the RAVE toolbox [120, 121].

13.2.3 Vertex Fitting

The input to the vertex fit is a vertex candidate, i.e., a set of estimated track
parameters {q̃1, . . . , q̃n} located at one or more reference surfaces, along with
their covariance matrices {C1, . . . ,Cn}. For instance, in the primary vertex fit in
a collider experiment the reference surface may be the beam tube. If possible, the
reference surface(s) should be chosen such that multiple scattering between the
vertex and the location of the track parameters is negligible.

The parameters to be fitted are the vertex position v and the track momenta
pi at the vertex. The functional dependence of the track parameters on the vertex
parameters requires a track model, which depends on the shape of the magnetic field
in the vicinity of the vertex. If the field is homogeneous, the track model is a helix;
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if the field is zero, the track model is a straight line. In other cases the track model
may have to be computed numerically (see Sect. 13.1.3.2).

13.2.3.1 Least-Squares Methods

The conventional approach to estimating the vertex position is the minimization
of some quadratic objective function, yielding a least-squares estimate. There are
two main flavors of least-squares estimation in vertex fitting, constrained and
unconstrained minimization. In the first case the vertex constraint is introduced into
the objective function via a Lagrange multiplier, in the second case the constraint is
implicit in the track model.

As an example, consider a vertex fit with n straight tracks. The n straight tracks
originating from the common vertex v = (xv, yv, zv)

T can be represented by n

straight lines with parameters λi :

x = xv + λiai, y = yv + λibi, z = zv + λi, i = 1, . . . , n,

where ai and bi are the direction tangents at the vertex. At the reference surface
z = zref track i is specified by its parameter vector qi = (xi, yi, ai, bi)

T, consisting
of the intersection point (xi, yi) and the two direction tangents (ai, bi). The track
fit delivers estimates q̃ i and information matrices Gi for i = 1, . . . , n. In the
constrained problem the sum of the squared residuals

M(q1, . . . , qn) =
n∑

i=1

ei
TGiei , ei = q̃i − qi , (13.7)

must be minimized under the 2n nonlinear constraints

xv = xi + ai(z − zref), yv = yi + bi(z − zref), i = 1, . . . , n

There are 4n + 3 unknowns, 4n observations and 2n constraints, giving 4n + 2n −
(4n + 3) = 2n − 3 degrees of freedom. The resulting track parameters q̄i fit best,
in the least-squares sense, to the track fit estimates q̃i and at the same time have a
common vertex. For the solution of the constrained vertex fit see Sect. 13.2.4.2.

In the example, the constraints can be rewritten as

xi = xv + (zref − z)ai, yi = yv + (zref − z)bi, i = 1, . . . , n. (13.8)

Insertion of Eq. (13.8) into Eq. (13.7) gives the objective function of the uncon-
strained nonlinear least-squares problem:

M(v, a1, b1, . . . , an, bn) =
n∑

i=1

ei
TGiei , ei = q̃i − qi .
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There are now 4n observations and 2n + 3 unknown parameters, namely the vertex
position and the track directions at the vertex, giving again 4n − (2n + 3) = 2n − 3
degrees of freedom.

A generalization of this simple case to helix tracks can be found in [122–124].
In the general case, the unconstrained problem can be formulated in terms of the
unknown vertex position v and the unknown track momentum vectors pi at the
vertex [26, 59]. The measurement equation reads

qi = hi (v,pi ), i = 1, . . . , n, (13.9)

where the function hi incorporates the track model in the magnetic field. The
objective function is equal to

M(v,p1, . . . ,pn) =
n∑

i=1

ei
TGiei , ei = q̃i − qi .

Minimization of the objective function can proceed in several ways. For a detailed
exposition of non-linear least-squares estimation see e.g. [125].

Gauss-Newton Method

Assume that there are approximate values v̆ and p̆i for all i. Then Eq. (13.9) can be
approximated by an affine function:

qi ≈ hi (v̆, p̆i ) + Ai (v − v̆) + Bi (pi − p̆i ) = ci + Aiv + Bipi ,

with

Ai = ∂hi (v,pi )

∂v

∣∣∣∣
v̆,p̆i

, Bi = ∂hi (v,pi )

∂pi

∣∣∣∣
v̆,p̆i

, ci = hi (v̆, p̆i ) − Ai v̆ − Bip̆i .

The objective function then reads

M(v,p1, . . . ,pn) =
n∑

i=1

(q̃i − ci − Aiv − Bipi )
TGi (q̃i − ci − Aiv − Bipi ).

As M is now quadratic in the unknown parameters, the minimum can be computed
explicitly. The estimated vertex position and its covariance matrix are given by

ṽn = Cn

n∑

i=1

Ai
TGi

B(q̃i − ci ), Var(ṽn) = Cn =
(

n∑

i=1

Ai
TGi

BAi

)−1

,

(13.10)
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with

Gi
B = Gi − GiBiW iBi

TGi , W i = (Bi
TGiBi )

−1.

In general, the procedure has to be iterated. The measurement equation is expanded
at the new estimate, and the estimate is recomputed until convergence is obtained.
The formulas required for the implementation of two important cases, fixed-target
configuration and solenoidal configuration, are given in [61].

Once ṽn is known, the track momenta and the full covariance matrix can be
computed:

p̃n
i = W iBi

TGi (q̃i − ci − Ai ṽn),

Var(p̃n
i ) = Dn

i = W i + W iBi
TGiAiCnAi

TGiBiW i , (13.11)

Cov(p̃n
i , ṽn) = En

i = −W iBi
TGiAiCn.

The estimates can also be computed recursively, resulting in an extended Kalman
filter [25, 26, 59]:

ṽi = Ci[C−1
i−1ṽi−1 + Ai

TGi
B(q̃i − ci )], Ci = (C−1

i−1 + Ai
TGiAi )

−1

p̃i = W iB i
TGi (q̃i − ci − Ai ṽi ), Di = W i + W iBi

TGiAiCiAi
TGiBiW i ,

Ei = −W iB i
TGiAiCi .

The associated smoother is tantamount to recomputing the track momenta using the
last vertex estimate ṽn, i.e., Eq. (13.11).

Newton–Raphson Method

This method uses a local quadratic approximation to the objective function. In order
to simplify the notation we introduce α = (v,p1, . . . ,pn)

T, q̃ = (q̃1, . . . , q̃n)
T

and h = (h1, . . . ,hn)
T. Then the objective function can be written as

M(α) = [q̃ − h(α)]TG[q̃ − h(α)], G = diag(G1, . . . ,Gn).

If ᾰ is an appropriate expansion point, M(α) is approximated by

M(α) ≈ M(ᾰ) + gT(α − ᾰ) + 1
2 (α − ᾰ)T�(α − ᾰ),

where

g = ∂M

∂α
= −2HTG[q̃−h(ᾰ)], � = ∂2M

∂α∂αT
= 2HTGH −2

∂HT

∂αT
G[q̃−h(ᾰ)]
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are the gradient and the Hessian of M , respectively, evaluated at ᾰ, and H is the
Jacobian of the track model h(α). If � is positive definite, M has a minimum when
its gradient is zero, leading to

α̃ = ᾰ − �−1g.

If the second term of the Hessian is set to zero, the Gauss–Newton method is
recovered. Clearly, the Newton–Raphson method is more complex, but it gives some
additional information about the problem. In particular, a Hessian that is not positive
definite indicates that the expansion point is too far from the true global minimum.

Levenberg–Marquardt Method

In this method the matrix HTGH is inflated by a diagonal matrix kI . As a
consequence, the direction of the parameter update is intermediate between the
direction of the Gauss–Newton step (k = 0) and the direction of steepest descent
(k→∞). An example of a vertex fit with the Levenberg–Marquardt method is given
in [122].

Fast Vertex Fits

The estimated track parameters q̃i are frequently given at the innermost detector
surface or at the beam tube. If the q̃i are propagated to the vicinity of the presumed
vertex, the vertex estimation can be speeded up by applying some approximations.

The “perigee” parametrization for helical tracks was introduced in [123], with a
correction in [124]. The track is parameterized around the point of closest approach
(the perigee point vP) of the helix to the z-axis. The variation of transverse errors
along the track is neglected in the vicinity of the perigee, and the track direction
and curvature at the vertex is considered to be constant. The approximate objective
function of the vertex fit can then be written entirely in terms of the perigee points:

M(v) =
n∑

i=1

(vi
P − v)TT i (vi

P − v), (13.12)

where T i is a weight matrix of rank 2. The vertex estimate is then

ṽ =
(

n∑

i=1

T i

)−1 ( n∑

i=1

T ivi
P

)
.

The Jacobians required to compute the T i are spelled out in [123, 124].
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A further simplification was proposed in [126]. In the vicinity of the vertex
the track is approximated by a straight line. The estimated track parameters are
transformed to a coordinate system the x-axis of which is parallel to the track.
The vertex is then estimated by minimizing the sum of the weighted transverse
distances of the tracks to the vertex. The resulting objective function has the same
form as in Eq. (13.12), again with weight matrices of rank 2. The estimate is exact
for straight tracks.

A different type of a fast vertex fitting algorithm is described in [127]. It is
based on approximating the tracks by straight lines both in the x–y plane and in
the x–z plane. In either projection, the lines representing the tracks are Hough-
transformed to points in the dual plane of line parameters. The vertex coordinates
are then obtained by a weighted linear least-squares fit in the dual plane.

Adding Prior Information

If the vertex to be fitted is the primary vertex, there may be prior information about
the vertex position from the beam profile in a collider experiment or the target
location in a fixed target experiment. The prior information usually comes in the
form of a position v0 plus a covariance matrix C0. The objective function is then
augmented by an additional term

(v0 − v)TC−1
0 (v0 − v).

For instance, the Gauss–Newton estimate Eq. (13.10) is modified in the following
way:

ṽn = Cn

[
C−1

0 v0 +
n∑

i=1

Ai
TGi

B(q̃ i − ci )

]
, Var(ṽn) = Cn =

(
C−1

0 +
n∑

i=1

Ai
TGi

BAi

)−1

.

Similar modifications apply to the Newton–Raphson estimate and the fast vertex
fits.

13.2.3.2 Vertex Quality and Outlier Removal

Some tracks used in the vertex fit may be outliers in the sense that they do not
actually belong to the vertex. Also, the estimated track parameters may be distorted
by outliers or distorted hits in the track fit. Both types of outliers distort the vertex
estimate and need to be identified.

In the case of Gaussian errors and a linear model the contribution of each track
to the minimum value of the objective function is distributed according to a χ2-
distribution with two degrees of freedom. The contribution χ2

i of track i has to
be computed relative to the vertex estimated without track i. For instance, in the
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Gauss–Newton algorithm:

χ2
i = rn

i
TGir

n
i + (ṽn − ṽ−i

n )T(C−i
n )−1(ṽn − ṽ−i

n ),

where rn
i = q̃i − ci − Ai ṽn − Bip̃

n
i is the residual of track i and ṽ−i

n is the vertex
estimate with track i removed:

ṽ−i
n = C−i

n

[
C−1

n ṽn − Ai
TGi

B(q̃i − ci )
]
, C−i

n =
(
C−1

n − Ai
TGi

BAi

)−1
.

Analogous but somewhat simpler formulas hold for the fast vertex fits.
The test statistic χ2

i can be computed for all i, and the track with the largest χ2
i

is a candidate for removal. This procedure can be repeated until all χ2
i are below

the cut. Even if there is only a single outlier, all χ2
i are no longer χ2-distributed and

the power of the test is impaired. This loss of power can be compensated by robust
estimation of the vertex.

13.2.3.3 Robust and Adaptive Estimators

Robust estimators are less influenced or not influenced at all by outlying observa-
tions. This can be achieved by downweighting outliers or by excluding them from
the estimate. For example, in the case of a one-dimensional location estimate, the M-
estimator [128] downweights outliers, whereas the LMS (least median of squares)
estimator [129] uses only one half of the sample (the one spanning the shortest
interval) and ignores the other one.

Robust estimators tend to be statistically less efficient and computationally more
expensive than least-squares estimators. On the other hand, estimation and outlier
detection are performed in parallel, whereas a least-squares estimator has to be
recomputed after an outlier has been identified and removed.

One of the earliest proposals for a robust vertex fit is in [130]. The method is
an M-estimator with Huber’s ψ-function [131]. It is implemented as a re-weighted
least-squares estimator. The initial vertex estimate is a plain least-squares estimate.
Then, for each track, the residuals are rotated to the eigensystem of the covariance
matrix of the track, and weight factors are computed according to

wi = ψ(ri/σi)

ri/σi

=
{

1, |ri | ≤ cσi,

cσi/|ri |, |ri | > cσi,

where ri is one of the residuals in the rotated frame, σi is the standard deviation in
the rotated frame, and c is the robustness constant, usually chosen between 1 and 3.
The weight factors are applied and the estimate is recomputed. The entire procedure
is iterated until convergence.
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A different kind of re-weighted least-squares estimator is proposed in [132]. The
weights are computed according to Tukey’s bi-square function [128]:

wi =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − r2

i /σ 2
i

c2

)2

, |ri | ≤ cσi,

0, otherwise,

where r2
i is the squared residual of track i with respect to the vertex, σ 2

i is its
variance, and c is again the robustness constant. The estimator is now equivalent to a
redescending M-estimator, and consequently less sensitive to outliers than Huber’s
M-estimator.

The combination of a redescending M-estimator with the concept of determinis-
tic annealing [133] leads to the adaptive method of vertex fitting [113, 117, 134,
135]. The concept of the adaptive vertex fit is derived from the Deterministic
Annealing Filter [64] (see Sect. 13.1.3.5). The weights are computed according to

wi = exp
(−χ2

i /2T
)

exp
(−χ2

i /2T
) + exp

(−χ2
cut/2T

) ,

where χ2
i is the χ2-contribution of track i, χ2

cut is a cutoff value, and T is a
temperature parameter. The computation of the redescending M-estimator can be
interpreted as an EM (expectation–maximization) algorithm [136, 137]. Alterna-
tively it can be viewed as the minimization of the energy function of an elastic
arm algorithm [18, 19]. If annealing is employed, the iteration starts at high T . The
temperature is then gradually decreased. At low T the weights approach either zero
or one. The final weights can be used for classification of the tracks as inliers or
outliers. A comparison of the adaptive method with other robust estimators can be
found in [138]. The adaptive estimator has been extended to a multi-vertex estimator
fitting several vertices simultaneously, including competition of all vertices for all
tracks [139].

Iterated re-weighted least-squares estimators require a good starting point, in
order to ensure convergence to the global minimum and to minimize the number of
iterations required. In many cases a standard least-squares estimate is sufficient. In
the presence of a large number of outliers also the starting point should be estimated
robustly, preferably by an estimator with a high breakdown point [129]. Several such
initial estimators have been proposed and studied in [117].

The M-estimators and the adaptive estimator presented above do not presuppose
an explicit outlier model. If it is possible to describe the outliers by a Gaussian
mixture model, estimation of the vertex can be carried out by the Gaussian-sum
filter [140].

Several of the estimators described here are implemented in RAVE, a detector-
independent toolkit for reconstruction of interaction vertices [120, 121].
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13.2.4 Kinematic Fitting

Kinematic fitting imposes physical constraints on the particles participating in an
interaction and thereby improves the measured track momenta and positions. At the
same time hypotheses about the interaction and the participating particles can be
tested.

13.2.4.1 Lagrange Multiplier Method

The most commonly used method of imposing constraints on the measured tracks is
by way of Lagrange multipliers [141]. Let q̃ = (q̃1, . . . , q̃n)

T be the unconstrained
estimated parameters of a set of n tracks, along with their joint information matrix
G = diag(G1, . . . ,Gn) = V −1. The r functions describing the constraints can be
written as g(q) = 0. Taylor expansion around a suitable point q̆ yields the linearized
equation

ğ + D(q − q̆) = 0,

where D is the Jacobian of g with respect to q, evaluated at q̆, and ğ = g(q̆). The
obvious expansion point is q̆ = q̃. The constrained track parameters q̄i are obtained
by minimizing the objective function

M(q,λ) = (q − q̃)TG(q − q̃) + 2λT [
ğ + D(q − q̆)

]

with respect to q and λ. λ is a vector of r unknowns, the Lagrange multipliers. The
solution is

q̄ = q̃ − V DTλ̄, with λ̄ = GD

[
ğ + D(q̃ − q̆)

]
and GD = (DV DT)−1.

The covariance matrix V̄ and the χ2 statistic are given by

V̄ = V − V DTGDDV , χ2 = λ̄
T
G−1

D λ̄ = λ̄T [
ğ + D(q̃ − q̆)

]
.

If required, the constraint function g can be re-expanded at the new point q̆ = q̄,
and the constrained track parameters can be recomputed.

The Jacobian D depends both on the parametrization of the tracks and on the
type of constraint to be imposed. For kinematic constraints it is often convenient
to choose a parametrization that uses physically meaningful quantities. In [142]
it is proposed to use the four-momentum and a point in space, i.e., q =
(px, py, pz, E, x, y, z). With this parametrization the following constraints can be
formulated in a straightforward manner (for further examples see [142]).
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1. Invariant mass constraint. The equation that constrains a track to have an invariant
mass mc is

E2 − px
2 − py

2 − pz
2 − mc

2 = 0.

Expanding at q̆ = (p̆x, p̆y, p̆z, Ĕ, x̆, y̆, z̆) yields

D = (−2p̆x −2p̆y −2p̆z 2Ĕ 0 0 0
)
, ğ = Ĕ2 − p̆x

2 − p̆y
2 − p̆z

2 − mc
2 .

2. Total energy constraint. The equation that constrains a track to have a total energy
Ec is

E − Ec = 0.

It follows that

D = (
0 0 0 1 0 0 0

)
, ğ = Ĕ − Ec.

3. Total momentum constraint. The equation that constrains a track to have a total
momentum pc is

√
px

2 + py
2 + pz

2 − pc = 0.

Expanding at q̆ = (p̆x, p̆y, p̆z, Ĕ, x̆, y̆, z̆) yields

D =
(

p̆x

p̆

p̆y

p̆

p̆z

p̆
0 0 0 0

)
, ğ =

√
p̆x

2 + p̆y
2 + p̆z

2 − pc.

13.2.4.2 Vertex Constraint

If a vertex constraint is added to the kinematic constraints, the constraint functions
depend on the unknown vertex position v and are extended to g(q, v) = 0. Taylor
expansion around a suitable point (q̆, v̆) yields the linearized equation

ğ + D(q − q̆) + E(v − v̆) = 0,

where E is the Jacobian of g with respect to v, evaluated at v̆, and ğ = g(q̆, v̆). It is
assumed that there is prior information about the vertex position, represented by the
position ṽ and the covariance matrix C. The position ṽ can be used as the expansion
point v̆.
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The constrained track parameters q̄i and the estimated vertex position v̄ are
obtained by minimizing the objective function

M(q, v,λ) = (q−q̃)TG(q−q̃)+(v−ṽ)TC−1(v−ṽ)+2λT [
ğ + D(q − q̆) + E(v − v̆)

]

with respect to q, v, and λ. The solution is

λ̄ = W
[
ğ + D(q̃ − q̆) + E(ṽ − v̆)

]
, v̄ = ṽ − CETλ̄, q̄ = q̃ − V DTλ̄,

with W = (
DV DT + ECET

)−1
. The covariance matrices are

Var(v̄) = C−CETWEC, Var(q̄) = V −V DTWDV , Cov(q̄, v̄) = −V DTWEC.

The χ2 statistic is

χ2 = λ̄TW−1λ̄ = λ̄T [
ğ + D(q̃ − q̆) + E(ṽ − v̆)

]
,

with r degrees of freedom, where r is the number of constraint functions. If the
vertex constraint is the only constraint imposed on the tracks, the χ2 has 2n degrees
of freedom. If there is no prior information about the vertex, the prior vertex position
is assigned an infinitely large covariance matrix, and W is replaced by its limiting
value:

W = lim
C→∞

(
DV DT + ECET

)−1 = GD − GDE(ETGDE)−1ETGD.

The number of degrees of freedom is reduced to 2n − 3.

13.3 Track Reconstruction in the LHC Experiments

13.3.1 ALICE

ALICE [143] is the experiment at the LHC that is devoted to the physics of
high energy ion collisions. Its main goal is to investigate the physics of strongly
interacting matter and the quark-gluon plasma at extreme values of energy density
and temperature in nucleus-nucleus collisions. Among the four experiments at
the LHC, ALICE is equipped with the largest number of subdetectors in order
to face the reconstruction complexity of ion physics events. In particular, three
subdetectors focus on measuring the passage of charged particles using the bending
power of the magnetic field. They are assembled in a cylindrical fashion: the
Inner Tracking System (ITS) with six planes of high-resolution silicon pixel,
drift, and strip detectors, the cylindrical Time-Projection Chamber (TPC) and the
Transition Radiation Detector (TRD). The principal functions of the ITS are the
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identification and reconstruction of secondary vertices, the track reconstruction of
low-pT particles and the improvement of the impact parameter and momentum
resolution. The TPC is the most important tracking sub-detector. Thanks to its
time information, it can provide an efficient and robust tracking also in a very
high multiplicity environments (in the order of 10,000 charged particles). Finally,
the TRD is also used for tracking in the central region and for improving the pT
resolution at high momentum.

The first step in the track reconstruction in ALICE is the clusterization, which
is performed separately for each of the three subdetectors [144]. Tracking then
proceeds by determining the preliminary interaction vertex using tracklets defined
as lines built with pairs of clusters in the first two layers of the ITS. The preliminary
interaction vertex is thus found as a space point to which a maximum number of
tracklets converge. In the next step, track finding and fitting is performed in three
stages using a inward-outward-inward strategy:

• Initially, tracks in the TPC are searched for using the Kalman filter technique and
the outermost layers of the TPC for the seed. A preliminary particle identification
is also possible at this stage based on the specific energy loss in the TPC gas.
Then, the reconstructed TPC tracks are propagated to the outermost ITS layer
and become the seeds for finding tracks in the ITS. In Fig. 13.4 the ITS–TPC
matching efficiency as a function of the transverse momentum for 2010–2013
data and Monte Carlo for pp and heavy ion collisions is shown. Finally, the last
step is performed in order to recover tracks of particle with pT down to 80 MeV.
It performs a standalone ITS reconstruction with those clusters that were not used
in the ITS–TPC tracks.

• All reconstructed tracks are then extrapolated to their point of closest approach to
the preliminary interaction vertex, and are extrapolated from the innermost layer
to the outermost one. Tracks are refitted by the Kalman filter using the clusters
found at the previous stage. After the reconstruction in the TRD subdetectors, the
track is matched with a possible TRD tracklet in each of the six TRD layers. In a

Fig. 13.4 ITS–TPC matching efficiency vs. pT for data and Monte Carlo for pp (left) for Pb-Pb
(right) collisions in the ALICE experiment [144]
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similar way, the tracks reaching the time-of-flight (TOF) detector are matched to
TOF clusters.

• At the final stage of the track reconstruction, all tracks in both ITS and TPC
subdetectors are propagated inwards and refitted one last time to determine the
final estimate of the track position, direction, inverse curvature, and its associated
covariance matrix.

The final interaction vertex is then re-determined using the all tracks reconstructed
in TPC and ITS. The precise vertex fit is performed using track weighting to
suppress the contribution of any remaining outliers. For data-taking conditions
where a high pileup rate is expected, a more robust version of vertex finding inspired
by the algorithm described in [132] is used. It is based on iterative vertex finding and
fitting using Tukey bisquare weights to suppress outliers. The algorithm stops when
no more vertices are identified in the scan along the beam direction. Once the tracks
and the interaction vertex have been found, a search for photon conversions and
decays of strange hadrons such as K0

S and �0 concludes the central-barrel tracking
procedure.

13.3.2 ATLAS

ATLAS [145] is the largest of the four LHC experiments, measuring 25 m in
diameter and 44 m in length. Its magnet system is composed of a Central Solenoid
Magnet with a 2 T field, a Barrel Toroid and an Endcap Toroids with 4 T each.
The Inner Detector (ID) is very compact and highly sensitive in order to measure
accurately the decay products of each collision. It consists of three different
systems of sensors immersed in the solenoid magnetic field: the Pixel Detector,
the Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT).
The Pixel Detector is situated closest to the interaction point and has the highest
granularity with about 80 million readout channels. The intrinsic spatial resolution
of the Pixel Detector sensors is 10µm in r–φ and 115µm in z. The SCT is a silicon
microstrip detector surrounding the Pixel Detector. It provides eight measurements
per track with an overall resolution of 16µm in r–φ and 580µm in z. In the
outermost region, the TRT is placed. It is a light-weight detector composed of
proportional gas counters (70% Xe, 27% CO2 and 3% O2 straws) embedded in a
radiator material and its operational drift radius accuracy is about 130µm. The TRT
contributes both to the track pattern recognition stage, featuring typically around 30
hits per track, and to particle identification.

The basic concepts of the ATLAS track reconstruction are described in [146,
147]. The tracking in the ID consists of two principal sequences: an initial inside-out
tracking, and a subsequent outside-in tracking. Inside-out tracking starts with space
point formation in the silicon part of the ID. Using the space points, track seeds
are generated with or without a constraint on the longitudinal vertex position. The
seeds are then followed through the SCT by a combinatorial Kalman filter/smoother.
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After ambiguity solving, the remaining track candidates are extended into the TRT.
Outside-in tracking first finds track segments in the TRT, using a Hough transform
of the straw centers. A Kalman filter/smoother using also the drift times builds the
final track segments. These track segments are then extrapolated back into the SCT
and the Pixel Detector. Muons are reconstructed in the ID like any other charged
particles; for the standalone reconstruction of muons in the muon system and the
combined reconstruction, see [148].

Based on the experience gained in Run 1, several improvements to track recon-
struction were made for Run 2 [149]. For example, the tracking was adapted to the
new insertable B-layer (IBL) [150], and track reconstruction in dense environments
(TIDE) was optimized [151]. This included an artificial neural network based
approach to identify pixel clusters created by multiple charged particles. The effect
of these two developments is shown in Fig. 13.5. In Fig. 13.5a the transverse impact
parameter as a function of track momentum resolution is shown for data taken in
2015 at 13 TeV with the inclusion of the IBL information and for data in 2012 at
8 TeV without the IBL. The data in 2015 was collected with a minimum bias trigger.
The data in 2012 is derived from a mixture of jet, tau and missing ET triggers [150].
Figure 13.5b shows the improvement of the track reconstruction efficiency in the jet
core due to the TIDE optimization [151].

ATLAS track reconstruction efficiency as a function of pseudorapidity and
transverse momentum with simulated data at a center-of-mass energy of 13 TeV
is shown in Fig. 13.6 [152].
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Fig. 13.5 (a) Upper panel: unfolded transverse impact parameter resolution measured from data
in 2015 at 13 TeV with the Inner Detector including the IBL, as a function of track pT for values
of 0.0 < η < 0.2, compared to that measured from data in 2012 at 8 TeV [150]; lower panel: ratio
of the resolution in 2015 over the resolution in 2012. (b) Improvement of the track reconstruction
efficiency due to the TIDE optimization, as a function of the angular distance of the particle from
the jet axis. The track selection is explained in [151]
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Fig. 13.6 The track reconstruction efficiency (a) as a function of pseudorapidity and (b) as
a function of transverse momentum, as predicted by Pythia 8 A2 simulation. The statistical
uncertainties are shown as black lines, the total uncertainties as green shaded areas [152]

13.3.3 CMS

CMS [153], together with ATLAS, is one of the two general-purpose experiments
at the LHC. Its main distinguishing feature is a 3.8 T superconducting solenoid.
With a length of 13 m and a diameter of 6 m, it provides a high bending power to
precisely measure the momentum of charged particles. The solenoid magnetic field
lines run parallel to the beam direction in the central region, where the tracking
system is placed. The tracking system is designed to provide a precise and efficient
measurement of particle trajectories using position-sensitive detectors. The CMS
tracker is a silicon-based system [154]. It splits into two parts, the Pixel Tracker
and the Strip Tracker and covers a pseudorapidity range up to |η| = 2.5. The Pixel
Tracker is the innermost CMS detector sub-system and is composed of 66 million
silicon pixels with dimensions 100 × 250 × 250µm, covering a total area of about
1 m2. In the barrel layers the magnetic field induces a Lorentz angle which increases
charge sharing between neighbouring pixels. Charge sharing in conjunction with
analog readout allows to achieve 10µm position resolution for the (r, φ) coordinate
and 15µm in the z direction. The pixel detectors in the forward direction are tilted
at an angle of 20◦ to induce charge sharing which allows to achieve 15µm and
20µm resolution respectively. This resolution is not only necessary for a precise
track reconstruction, but also for the determination of both the vertices produced in
the primary interaction and the decay vertices of short-lived particles.

The Strip Tracker constitutes the outer part of the tracking system. Its basic
building blocks are silicon strip modules. Each module is equipped with one or
two silicon sensors and a so-called Front-End hybrid containing readout electronics.
In total, the CMS silicon strip tracker has 9.3 million strips and covers 198 m2 of
active silicon area. The resolution in (r, φ) is �30µm in all layers. The inner layers
of the strip tracker are equipped with double-sided sensors, one side of which is
rotated by a stereo angle of 100 mrad, achieving a resolution along the z coordinate
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of about 230µm and allowing the reconstruction of the hit position in 3-D. In the
outer layers the sensors are single-sided, and the z resolution can be approximated
by the strip length over

√
12, or about 15 mm. In order to maintain excellent tracking

performance until the Long Shutdown 3 of LHC, the Pixel Tracker was replaced in
the year-end technical stop of 2016/2017 with a new Pixel Tracker composed of four
barrel layers and six forward disks providing four-hit pixel coverage up to |η| = 2.5.
After the Long Shutdown 3, the High Luminosity phase of the LHC (HL-LHC)
is scheduled where the accelerator will provide an unprecedented instantaneous
luminosity of 5−7.5×1034 cm−2 s−1. In [155] the new CMS silicon tracker and its
tracking and vertexing performance for different event types, pileup scenarios and
detector geometries are presented.

The CMS track reconstruction algorithm is based on an iterative approach [156].
The main idea is to search for easier-to-find tracks first, to mask the hits associated to
the found tracks, and to proceed to the next iteration. In this way the combinatorial
problem is reduced, and the search for more difficult classes of tracks is simplified.
Moreover, this approach introduces the possibility of developing special iterations
that can improve track reconstruction in high-density environments such as jets,
or to use the information from other subsystems such as muon chambers and
calorimeters. In each iteration, the Combinatorial Track Finder is run. It can be
divided into four different steps:

1. Seed generation: Using the information of three or four hits, the trajectory
parameters and the corresponding uncertainties of the initial track candidates are
computed.

2. Track finding: Staring from the seed, the current trajectory parameters and
their uncertainties are extrapolated to the next layer and compatible hits are
found. Each of them is added to a clone of the track candidate. Each of these
candidates is again extrapolated to the next layer and compatible hits are found.
This procedure is repeated for each candidate until there is more than one missing
hit or the extrapolation does not find another tracker layer.

3. Track fitting: A Kalman filter or a Gaussian-sum filter/smoother is performed to
obtain the final estimate of the track parameters at the interaction point exploiting
the full trajectory information.

4. Track selection: Tracks are grouped in classes according to different track
quality criteria.

As an example, the twelve tracking iterations foreseen for 2017 data taking is listed
in Table 13.3 [157]. The main difference between iterations is the configuration of
the seed generation and the target tracks.

Figure 13.7 shows the tracking efficiency, using a standard sample of tt events
simulated with

√
s = 13 TeV with different superimposed pileup conditions. The

contribution of different iterations for 2017 track reconstruction is also shown as a
function of the pT of the simulated particle. It can be seen how iterations targeting
low-pT tracks are more efficient in the region between 100 and 500 MeV.
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Table 13.3 List of different tracking iterations used after the Pixel Tracker upgrade with the
corresponding seeding configuration used and target tracks [157]

Iteration Step name Seeding Target tracks

0 Initial Pixel quadruplets Prompt, high pT

1 LowPtQuad Pixel quadruplets Prompt, low pT

2 HighPtTriplet Pixel triplets Prompt, high pT recovery

3 LowPtTriplet Pixel triplets Prompt, low pT

4 DetachedQuad Pixel quadruplets From b hadron decay, r ≤ 5 cm

5 DetachedTriplet Pixel triplets From b hadron decay, r ≤ 10 cm

6 MixedTriplet Pixel+strip triplets Displaced, r ≤ 7 cm

7 PixelLess Inner strip pairs Displaced, r ≤ 25 cm

8 TobTec Outer strip pairs Displaced, r ≤ 60 cm

9 JetCore Pixel pairs in jets High-pT jets

10 Muon inside-out Muon-tagged tracks Muons

11 Muon outside-in Standalone muons Muons
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Fig. 13.7 Track reconstruction efficiency as a function of simulated track pseudorapidity for 2017
tracker at different pileup conditions (left) and cumulative contributions to the overall tracking
performance from the twelve iterations in 2017 track reconstruction shown as a function of
the simulated track pT (right) [157]. The 2017 tracking reconstruction includes the Cellular
Automaton-based Hit Chain-Maker (CA) seeding [158]

Figure 13.8 shows the muon tracking efficiency and the corresponding ratios
between real and simulated data for 2016 collisions data coming from the Z
resonance using the tag and probe method. The measured track efficiency as a
function of |η| is found to be between 99.5% and 100% for the collection including
all tracks. It degrades, however, with increasing number of primary vertices.
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13.3.4 LHCb

As its name indicates, LHCb [159] focuses on physics involving bottom quarks
and investigates CP violation phenomena. These studies require the measurement
of the rare decays of Bd, Bs, and D mesons which are produced with a large cross-
section at the LHC. Given the fact that b hadrons are predominantly produced in
the forward or backward cone, the LHCb experiment is a single-arm spectrometer
in contrast to the other three experiments. In order to exploit this large number
of b hadrons, it requires a robust and flexible trigger and a data acquisition that
allows high bandwidth data taking and provides powerful online data processing.
Furthermore, superior vertex and momentum resolution are crucial to study the
rapidly oscillating Bs − Bs meson system. LHCb is thus equipped with the highly
sophisticated silicon microstrip detector close to the interaction point, the Vertex
Locator (VELO). It can be moved to a distance of only 7 mm from the proton beams
and measures the position of the primary vertices and the impact parameters of
the track with extremely high precision. A further silicon microstrip detector, the
Tracker Turicensis (TT) is placed before the dipole magnet. Its task is to improve
the momentum resolution of reconstructed tracks and reject pairs of tracks that in
reality belong to the same particle. The magnet is placed behind the TT. It bends the
flight path of the particles in the x − z plane and therefore allows the determination
of their momenta. The tracking system is completed by the T stations (T1-T2-T3),
which, together with the information from the VELO, determine the momentum and
flight direction of the particles. The T stations are composed of silicon microstrip
sensors close to the beam pipe and by straw tubes in the outer regions.
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Track reconstruction uses hits in the VELO, TT and T stations. Depending on
which detectors are crossed, different track types are defined [160, 161]:

• Long tracks traverse the full tracking system. They have hits in both the VELO
and the T stations, and optionally in TT. They are the most important set of tracks
for physics analyses.

• Upstream tracks pass only through the VELO and TT stations. In general their
momentum is too low to traverse the magnet and reach the T stations.

• Downstream tracks pass only through the TT and T stations. They are important
for the reconstruction of long-lived particles that decay outside the VELO
acceptance.

• VELO tracks pass only through the VELO. These tracks are particularly
important in the primary vertex reconstruction.

• T tracks pass only through the T stations. Like the downstream tracks, they are
useful for particle identification in the Ring Imaging Cherenkov detectors.

Reconstruction of long tracks starts in the VELO. There are two complementary
algorithms to add information from the downstream tracking stations to these VELO
tracks. The first one combines the VELO tracks with information from the T
stations. The second one combines the VELO tracks with track segments found
after the magnet in the T stations, using a standalone track finding algorithm. The
candidate tracks found by each algorithm are then combined, removing duplicates,
to form the final set of long tracks used for analysis. Finally, hits in the TT
consistent with the extrapolated trajectories of each track are added to improve their
momentum determination.

Downstream tracks are found starting with T tracks, extrapolating them through
the magnetic field and searching for corresponding hits in the TT. Upstream tracks
are found by extrapolating VELO tracks to the TT where matching hits are then
added in a procedure similar to that used by the downstream tracking. At least three
TT hits are required to be present by these algorithms.

The found tracks are fitted using a Kalman filter, taking into account multiple
scattering and energy loss due to ionisation. The χ2-statistic of the fit is used to
determine the quality of the reconstructed track. If two or more tracks have many
hits in common, only the one with most hits is kept.

The track reconstruction efficiency for the 2012 and the 2015 data as a function
of the momentum can be seen in Fig. 13.9 [162]. The results of the two periods are
compatible.
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Fig. 13.9 LHCb track
reconstruction efficiency for
the 2012 and the 2015 data as
a function of the momentum.
The efficiency is computed
using the “Long method”,
described in [161]
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13.4 Conclusion

An overview of current methods in track and vertex reconstruction and alignment
has been presented. Many of them have been developed in response to the
requirements of the current experimental program at the Large Hadron Collider.
The most difficult challenges are:

• Reliable reconstruction of signal events over a large background of non-signal
events, pileup events, and low-momentum tracks;

• Reliable reconstruction of secondary vertices with very short distances from the
primary vertex;

• Precise alignment of a large number of sensors.

Every experiment has to meet these challenges on its own terms. The outlines of
the solutions found by the four major LHC experiments are described in Sect. 13.3
and, in more detail, in the references given there. In addition, the repertory of the
methods discussed in this contribution can certainly not lay claim to completeness.
We have tried to select widely applicable methods, thereby neglecting by necessity
many experiment specific adaptations, improvements and innovations, for which we
again refer to the references.
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