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PAIR CORRELATION ESTIMATES FOR THE ZEROS OF THE ZETA FUNCTION

VIA SEMIDEFINITE PROGRAMMING

ANDRÉS CHIRRE, FELIPE GONÇALVES AND DAVID DE LAAT

Abstract. In this paper we study the distribution of the non-trivial zeros of the Riemann zeta-function ζ(s)

(and other L-functions) using Montgomery’s pair correlation approach. We use semidefinite programming

to improve upon numerous asymptotic bounds in the theory of ζ(s), including the proportion of distinct

zeros, counts of small gaps between zeros, and sums involving multiplicities of zeros.

1. Introduction

In this paper we give improved asymptotic bounds for several quantities related to the zeros of the

Riemann zeta-function (and other functions) using Montgomery’s pair correlation approach [36]. The key

idea is to replace the usual bandlimited auxiliary functions by the class of functions used in the linear

programming bounds developed by Cohn and Elkies [20] for the sphere packing problem. The advantage

of this framework is that it reduces the problems to convex optimization problems that can be solved

numerically via semidefinite programming. For all problems we considered this produces better bounds than

any bandlimited construction.

1.1. Background. Let ζ(s) be the Riemann zeta-function. It is well known that all non-trivial zeros of ζ(s)

are located in the critical strip 0 < Re s < 1, and the Riemann Hypothesis (RH) is the statement that all

these zeros are aligned on the line Re s = 1/2. Let N(T ) count the number of zeros ρ = β + iγ of ζ(s),

repeated according the multiplicity, such that 0 < β < 1 and 0 < γ ≤ T . The Riemann-von Mangoldt

formula (in its weaker form) states that

N(T ) = (1 + o(1))
T

2π
log T. (1)

Let

N∗(T ) :=
∑

0<γ≤T

mρ,

where the sum is over the non-trivial zeros of ζ(s) counting multiplicities1 and mρ is the multiplicity of ρ.

In addition to RH, it is also conjectured that all zeros of ζ(s) are simple, therefore it is conjectured that

N∗(T ) ∼ N(T ), (2)

as T → ∞. To study the distribution of the zeros of the Riemann zeta-function, Montgomery defined the

pair correlation function

N(x, T ) :=
∑

0<γ,γ′≤T
0<γ′−γ≤ 2πx

log T

1 (3)

Date: November 19, 2019.
1For every sum over zeros in this article the involved quantities should be repeated according to the multiplicity of the zero.
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for x > 0 and conjectured that

N(x, T ) ∼ N(T )

∫ x

0

(
1−

sin2(πy)

(πy)2

)
dy,

as T → ∞. Note that by (1) the average gap between zeros is 2π
log T , hence N(x, T ) is counting pairs of zeros

not greater than x times the average gap.

One line of research to understand and give evidence for the conjectures above is to produce bounds of

the form

N∗(T ) ≤ (c+ o(1))N(T ), (4)

and

N(x, T ) ≫ N(T ), (5)

with c > 1 and x > 0 as small as possible, as T → ∞.

These two problems have been widely studied with several improvements being made over the years. One

approach is to use a formula relating sums and integrals involving an auxiliary function f from a class A,

and then use this to derive an inequality involving the quantities we want to compare and the value of some

functional Q evaluated at f . Minimizing (or maximizing) the functional over the class A would then produce

the best possible bound with that specific approach. Nowadays, this idea is a standard technique in analytic

number theory (introduced first by Beurling and Selberg) and the following are some references (clearly not

a complete list) where the main approach is exactly that: Large sieve inequalities [31, 32]; Erdős-Turán

inequalities [15, 42]; Hilbert-type inequalities [12, 13, 15, 30, 31, 42]; Tauberian theorems [31]; Bounds in the

theory of the Riemann zeta-function and L-functions [5, 6, 7, 8, 9, 10, 11, 17, 19, 26, 27]; Prime gaps [14].

For problem (4) Montgomery [36] uses Fourier analysis to derive the inequality

N∗(T ) ≤
1

f(0)

(
f̂(0) +

∫ 1

−1

f̂(x)|x| dx+ o(1)

)
N(T ),

for any non-negative function f ∈ L1(R) with f̂ supported in [−1, 1], where

f̂(x) =

∫ ∞

−∞

f(y)e−2πxy dy.

Montgomery then gives a function f that proves the bound (4) with c ≤ 4/3. In [37] the optimal function in

this class is found and as mentioned in [18] gives the bound c ≤ 1.3275. We relax the condition on the support

of f̂ to the requirement f̂(x) ≤ 0 for |x| ≥ 1, which matches exactly with the conditions required by the

linear programming bounds for the sphere packing problem (see Section 3 for a detailed explanation). This

connection is what ultimately inspired us to attack the problem numerically and to find good test functions

for the functionals derived in Section 3. From our point of view, our main contribution is the realization

that methods from the sphere packing problem can applied in the theory of the Riemann zeta-function to

improve several asymptotic bounds and, to the best of our knowledge, it is the first time it has been done.
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2. Main Results

We now state our main results.

Theorem 1. Assuming RH, we have

N∗(T ) ≤ (1.3208 + o(1))N(T ).

Assuming the Generalized Riemann Hypothesis for Dirichlet L-functions (GRH), we have

N∗(T ) ≤ (1.3155 + o(1))N(T ).

Montgomery [36] was the first to show the constant 4/3 = 1.3333.... Later Montgomery and Taylor [37]

improved on this and found the bound 1.3275 as mentioned by Cheer and Goldston in [18]. Assuming the

generalized Riemann Hypothesis GRH, Goldston, Gonek, Özlük and Snyder [28] improved it to 1.3262.

Theorem 1 has an important application to estimating the quantity of simple zeros of ζ(s). Let

Ns(T ) :=
∑

0<γ≤T
mρ=1

1.

Using the fact that

Ns(T ) ≥
∑

0<γ≤T

(2−mρ) = 2N(T )−N∗(T ). (6)

we obtain the following corollary.

Corollary 2. Assuming RH, we have

Ns(T ) ≥ (0.6792 + o(1))N(T ).

Assuming GRH, we have

Ns(T ) ≥ (0.6845 + o(1))N(T ).

Using the pair correlation approach, the previous best result known is due by Cheer and Goldston [18]

showing that 67.27% of the zeros are simple. Assuming GRH, Goldston, Gonek, Özlük and Snyder [28] showed

that 67.38% are simple. In this way, we improved all these bounds. However, by a different technique, still

assuming RH, Bui and Heath-Brown [4] improved the result to 19/27 = 70.37...%, which currently is the

best.

Combining the above result of Bui and Heath-Brown with Theorem 1 and an argument of Ghosh, we can

bound the proportion of distinct zeros of the Riemann zeta-function. Let

Nd(T ) :=
∑

0<γ≤T

1

mρ
,

be the number of distinct zeros of ζ(s) with 0 < γ ≤ T . Using the inequality

2Ns(T ) ≤
∑

0<γ≤T

(mρ − 2)(mρ − 3)

mρ
= N∗(T )− 5N(T ) + 6Nd(T ). (7)

in conjunction with the estimate

Ns(T ) ≥

(
19

27
+ o(1)

)
N(T )

and Theorem 1, we deduce the following corollary.
3



Corollary 3. Assuming RH, we have

Nd(T ) ≥ (0.8477 + o(1))N(T ).

Assuming GRH, we have

Nd(T ) ≥ (0.8486 + o(1))N(T ).

Using the pair correlation approach, the best previous result known is due to Farmer, Gonek and Lee

[24] with constant 0.8051. By a different technique, assuming RH, Bui and Heath-Brown [4] improved the

constant to 0.8466.

We also obtain the best known results for the minimal nonzero value of Montgomery’s pair correlation

function.

Theorem 4. Assuming RH and (2), we have

N(0.6039, T ) ≫ N(T ).

Assuming GRH and (2), we have

N(0.5769, T )≫ N(T ).

Montgomery [36] showed that N(0.68..., T ) ≫ N(T ), and in [28] it is pointed out that it is not difficult

to modify Montgomery’s argument to derive the sharper constant 0.6695. This result was improved by

Goldston, Gonek, Özlük and Snyder [28] with constant 0.6072. Later, Carneiro, Chandee, Littmann and

Milinovich [8] improved the constant to 0.6068.... Assuming GRH and (2), Goldston, Gonek, Özlük and

Snyder showed the constant 0.5781....

2.1. Results for zeros of Dirichlet L-functions. To obtain averaged bounds for the percentage of simple

zeros of primitive Dirichlet L-functions we use the framework established by Chandee, Lee, Liu and Radziwiłł

[16]. Let Φ be a real-valued smooth function supported in the interval [a, b] with 0 < a < b < ∞. Define its

Mellin transform by

MΦ(s) =

∫ ∞

0

Φ(x)xs−1 dx.

For a character χ mod q, let L(s, χ) be its associated Dirichlet L-function. Under GRH, all non-trivial zeros

of L(s, χ) lie on the critical line Re s = 1/2. Let

NΦ(Q) :=
∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∑

γχ

∣∣MΦ(iγχ)
∣∣2,

where W is a non-negative smooth function supported in (1, 2), and where the last sum is over all non-trivial

zeros 1
2 + iγχ of the Dirichlet L-function L(s, χ). In [16, Lemma 2.1] it is shown that

NΦ(Q) ∼
A

2π
Q logQ

∫ ∞

−∞

∣∣MΦ(ix)
∣∣2 dx,

where

A = MW (1)
∏

p prime

(
1−

1

p2
−

1

p3

)
.

Let

NΦ,s(Q) =
∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∑

γχ

simple

∣∣MΦ(iγχ)
∣∣2.
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The quantity

lim inf
Q→∞

NΦ,s(Q)

NΦ(Q)

then measures (in average) the proportion of simple zeros among all primitive Dirichlet L-functions.

In addition, for the following theorem, we require that Φ(x) and MΦ(ix) are non-negative functions.

We note that we can also further relax the conditions on Φ so to include the function given by MΦ(ix) =

(sinx/x)2, as was established in [16] and [41].

Theorem 5. Assuming GRH, we have

NΦ,s(Q) ≥ (0.9350 + o(1))NΦ(Q).

Using the pair correlation approach, Chandee, Lee, Liu and Radziwiłł [16] showed that 91.66% of the

zeros are simple. The best previous result known is due to Sono [41], showing that 93.22% of the zeros are

simple. On another hand, Özlük [39] obtained a similar lower bound but for all Dirichlet L-functions rather

than just the primitive L-functions, showing that 91.66% of the zeros are simple (in some sense).

2.2. Results for zeros of ξ′(s). We can extend our analysis to the zeros of ξ′(s), where

ξ(s) =
1

2
s(s− 1)π− s

2Γ

(
s

2

)
ζ(s).

It is known that ξ′(s) has only zeros in the critical strip 0 < Re s < 1 and that RH implies that all its

zeros are also on the line Re s = 1/2. Let N1(T ) count the number of zeros ρ1 = β1 + iγ1 of ξ′(s) (with

multiplicity) such that 0 < γ1 ≤ T . It is also known that

N1(T ) = (1 + o(1))
T

2π
logT.

We can then similarly define the function

N∗
1 (T ) :=

∑

0<γ1≤T

mρ1 ,

where mρ1 is the multiplicity of the zero ρ1, and derive the sharpest known upper bound for N∗
1 (T ).

Theorem 6. Assuming RH, we have

N∗
1 (T ) ≤ (1.1175 + o(1))N1(T ).

Defining the functions N1,s(T ) and N1,d(T ) (quantity of simple and distinct zeros respectively) for ξ′(s)

and using the inequalities

N1,s(T ) ≥ 2N1(T )−N∗
1 (T )

and

N1,d(T ) ≥
3

2
N1(T )−

1

2
N∗

1 (T ),

that can be derived using the analogues of (6) and (7) for ξ′(s), we obtain the following corollary.

Corollary 7. Assuming RH, we have

N1,s(T ) ≥ (0.8825 + o(1))N1(T ).

and

N1,d(T ) ≥ (0.9412 + o(1))N1(T ).
5



The best previous result is due to Farmer, Gonek and Lee [24], showing that more than 85.83% of the

zeros of ξ′(s) are simple.

3. Derivation of the optimization problems

Let ALP be the class of even continuous functions f ∈ L1(R) satisfying the following conditions:

(1) f̂(0) = f(0) = 1;

(2) f̂ ≥ 0;

(3) f is eventually non-positive.

By eventually non-positive we mean that f(x) ≤ 0 for all sufficiently large |x|. We then define the last sign

change of f by

r(f) = inf
{
r > 0 : f(x) ≤ 0 for |x| ≥ r

}
.

It is easy to show that if f ∈ ALP , then f̂ ∈ L1(R).

A remarkable breakthrough in the sphere problem was achieved by Cohn and Elkies in [20], where they

showed that if ∆(Rd) is the highest sphere packing density in R
d, then

∆(Rd) ≤ Q(f)

for any f ∈ ALP (R
d) (this is the analogous class in higher dimensions defined for radial functions f), where

Q(f) =
πd/2

(d/2)!2d
r(f)d.

With this approach they generated numerical upper bounds, called linear programming bounds, for the

packing density for dimensions up to 36 (nowadays it goes much higher) that improved every single upper

bound known at the time and still are the current best. These upper bounds in dimensions 8 and 24 revealed

to be extremely close to the lower bounds given by the E8 root lattice and the Λ24 Leech lattice, revealing

that in these special dimensions the linear programming approach could exactly act as the dual problem.

This is what inspired Viazovska et. al. [43, 23] to follow their program and solve the sphere packing problem

in dimensions 8 and 24. What is interesting and surprising to us is that the same space ALP can be used

(but with a functional different than Q(f)) to produce numerical bounds in analytic number theory.

The general strategy to study problems (4) and (5) is based on Montgomery’s function

F (x, T ) =
1

N(T )

∑

0<γ,γ′≤T

T ix(γ−γ′)w(γ − γ′),

where the sum is over pairs of ordinates of zeros (with multiplicity) of ζ(s) and w(u) = 4
4+u2 . For each

T , the function x 7→ F (x, T ) is even, real, and as observed independently by Mueller and Heath-Brown,

non-negative. The first step is to use Fourier inversion to obtain

∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) = N(T )

∫ ∞

−∞

ĝ(x)F (x, T )dx, (8)

for suitable functions g, and use some known asymptotic estimate for F (x, T ) as T → ∞ (which is proven

only under RH or GRH). Secondly, after a series of inequalities, we produce a minimization problem over

ALP for some functional Z. We then approach the problem numerically, using the class of functions used

for the sphere packing problem in [20] and sum-of-squares/semidefinite programming techniques to optimize

over these functions. The same basic strategy can be, in principle, carried out for other functions where we
6



have a pair correlation approach. Indeed, we will also derive functionals related to the zeros of ξ′(s) and a

certain average of primitive Dirichlet L-functions.

3.1. Bounding N∗(T ) and N(x, T ). Ultimately, the functionals we need to define depend on the asymptotic

behavior of F (x, T ). To analyze the function N∗(T ) we define the functionals

Z(f) = r(f) +
2

r(f)

∫ r(f)

0

f(x)xdx

and

Z̃(f) = r(f) +
2

r(f)

∫ r(f)

0

f(x)xdx+ 3

∫ 3
2 r(f)

r(f)

f(x)dx−
2

r(f)

∫ 3
2 r(f)

r(f)

f(x)xdx.

Lemma 8. Let f ∈ ALP . Assuming RH, we have

N∗(T ) ≤ (Z(f) + o(1))N(T ).

Assuming GRH, for every fixed sufficiently small δ > 0, we have

N∗(T ) ≤ (Z̃(f) +O(δ) + o(1))N(T ).

Proof. We start assuming only RH. Refining the original work of Montgomery [36], Goldston and Mont-

gomery [29, Lemma 8] proved that

F (x, T ) =
(
T−2|x| logT + |x|

)
(1 + o(1)), (9)

uniformly for |x| ≤ 1. Let f ∈ ALP and let g(x) = f̂(x/r(f))/r(f). We can then use formula (8) in

conjunction with the asymptotic formula above to obtain

∑

0<γ,γ′≤T

g

(
(γ − γ′)

log T

2π

)
w(γ − γ′) = N(T )

[
ĝ(0) +

∫ 1

−1

ĝ(x)|x| dx+

∫

|x|>1

ĝ(x)F (x, T )dx+ o(1)

]
,

where the o(1) above is justified since ĝ is continuous and T−2|x| logT → δ0(x) as T → ∞ (in the distribu-

tional sense). Moreover, since F (x, T ) is non-negative and ĝ(x) ≤ 0 for |x| ≥ 1 we deduce that

∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) ≤ N(T )

[
ĝ(0) + 2

∫ 1

0

ĝ(x)xdx+ o(1)

]
= N(T )

[
Z(f)

r(f)
+ o(1)

]
.

On the other hand, clearly we have

∑

0<γ,γ′≤T

g

(
(γ − γ′)

log T

2π

)
w(γ − γ′) ≥ g(0)

∑

0<γ≤T

mρ =
N∗(T )

r(f)
. (10)

Combining these results we show the first inequality in the theorem.

Assume now GRH. It is then shown in [28] that for any fixed and sufficiently small δ > 0 we have

F (x, T ) ≥
3

2
− |x| − o(1), (11)

7



uniformly for 1 ≤ |x| ≤ 3
2 − δ as T → ∞. Using this estimate together with (9) and the fact that ĝ(x) ≤ 0

for |x| ≥ 3/2− δ, we obtain

∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) ≤ N(T )

[
ĝ(0) + 2

∫ 1

0

ĝ(x)xdx+ 2

∫ 3
2−δ

1

ĝ(x)

(
3

2
− x

)
dx+ o(1)

]

= N(T )

[
Z̃(f)

r(f)
+ o(1) +O(δ)

]
.

Arguing as before, using (10), we complete the proof of the lemma. �

To analyze N(x, T ) we define the functional

P(f) = inf
{
λ > 0 : pf(λ) > 0

}
,

where

pf (λ) = −1 +
λ

r(f)
+

2r(f)

λ

∫ λ
r(f)

0

f̂(x)xdx,

and the functional

P̃(f) = inf
{
λ > 0 : p̃f(λ) > 0

}
,

where

p̃f (λ) = −1 +
λ

r(f)
+

2r(f)

λ

∫ λ
r(f)

0

f̂(x)xdx+ 3

∫ 3λ
2r(f)

λ
r(f)

f̂(x)dx−
2r(f)

λ

∫ 3λ
2r(f)

λ
r(f)

f̂(x)xdx.

Note that these functionals are well defined since pf and p̃f are C1 functions that assume −1 at λ = 0, and

using the fact that f̂ ∈ L1(R) one can show

lim
λ→∞

pf (λ)

λ
= lim

λ→∞

p̃f (λ)

λ
=

1

r(f)
> 0.

Lemma 9. Let f ∈ ALP and ε > 0. Assuming RH and (2), we have

N(P(f) + ε, T ) ≫ N(T ).

Assuming GRH and (2), we have

N(P̃(f) + ε, T ) ≫ N(T ).

Proof. Let f ∈ ALP , λ > 0, and set g(x) = f(r(f)x/λ). Assuming RH, we have

∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) = N(T )

∫ ∞

−∞

ĝ(x)F (x, T )dx

≥ N(T )

[
ĝ(0) + 2

∫ 1

0

ĝ(x)xdx+ o(1)

]

= N(T ) [1 + pf(λ) + o(1)] .

8



Applying formula (8) in conjunction with (9), while assuming GRH, and using in addition (11), we have

∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) = N(T )

∫ ∞

−∞

ĝ(x)F (x, T )dx

≥ N(T )

[
ĝ(0) + 2

∫ 1

0

ĝ(x)xdx+ 2

∫ 3
2−δ

1

ĝ(x)

(
3

2
− x

)
dx+ o(1)

]

= N(T ) [1 + p̃f(λ) + o(1)] .

Since f̂ ≥ 0, we have ‖f‖∞ = f(0) = 1. Recall now the pair correlation function N(x, T ) defined in (3). We

have
∑

0<γ,γ′≤T

g

(
(γ − γ′)

logT

2π

)
w(γ − γ′) = N∗(T ) + 2

∑

0<γ,γ′≤T
0<γ−γ′

f

(
(γ − γ′)

r(f) log T

2πλ

)
w(γ − γ′)

≤ N∗(T ) + 2
∑

0<γ,γ′≤T
0<γ−γ′≤ 2πλ

log T

f

(
(γ − γ′)

r(f) log T

2πλ

)
w(γ − γ′)

≤ N∗(T ) + 2N(λ, T )

= (1 + o(1))N(T ) + 2N(λ, T ),

where in the last step we have used (2). We then obtain, assuming RH, that

N(λ, T )

N(T )
≥

pf (λ)

2
+ o(1).

Similarly assuming GRH. Noting that N(λ, T ) increases with λ, so we can choose λ arbitrarily close to P(f),

we obtain the desired result. �

3.2. Bounding NΦ,s(Q). Define the following functional over ALP

L(f) =
r(f)

2
+

4

r(f)

∫ r(f)
2

0

f(x)xdx+ 2

∫ r(f)

r(f)
2

f(x)dx.

We have the following lemma.

Lemma 10. Let f ∈ ALP . Assuming GRH, for every fixed small δ > 0 we have

NΦ,s(Q) ≥ (2− L(f) +O(δ) + o(1))NΦ(Q).

Proof. For Q > 1 and x ∈ R, we define the pair correlation function FΦ by

FΦ(Q
x,W ) =

1

NΦ(Q)

∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∣∣∣∣
∑

γχ

MΦ(iγχ)Q
iγχx

∣∣∣∣
2

.

Using the asymptotic large sieve, Chandee, Lee, Liu and Radziwiłł [16] showed the following asymptotic

formula under GRH

FΦ(Q
x,W ) (12)

= (1 + o(1))

[
1− (1− |x|)+ +Φ

(
Q−|x|

)2
logQ

(
1

2π

∫ ∞

−∞

∣∣MΦ(it)
∣∣2 dt

)−1]
+O

(
Φ(Q−|x|) log1/2 Q

)
,

9



which holds uniformly for |x| ≤ 2− δ as Q → ∞, for any fixed and sufficiently small δ > 0. Let

N∗
Φ(Q) :=

∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∑

γχ

mρχ

∣∣MΦ(iγχ)
∣∣2,

where mρχ
denote the multiplicity of the nontrivial zero ρχ = 1

2 + iγχ of L(s, χ). Since
∑

γχ

simple

∣∣MΦ(iγχ)
∣∣2 ≥

∑

γχ

(2−mρχ
)
∣∣MΦ(iγχ)

∣∣2

we obtain

NΦ,s(Q) ≥ 2NΦ(Q)−N∗
Φ(Q). (13)

For any g ∈ L1(R) with ĝ ∈ L1(R) we have the following formula (Fourier inversion):

∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∑

γχ,γ′

χ

MΦ(iγχ)MΦ(iγ′
χ) ĝ

(
(γχ − γ′

χ) logQ

2π

)
= NΦ(Q)

∫ ∞

−∞

g(x)FΦ(Q
x,W )dx.

Letting f ∈ ALP and g(x) = f(r(f)x/(2 − δ)), for any primitive character χ (mod q) we obtain

∑

γχ,γ′

χ

MΦ(iγχ)MΦ(iγ′
χ) ĝ

(
(γχ − γ′

χ) logQ

2π

)

=
∑

γχ

mρχ

∣∣MΦ(iγχ)
∣∣2 ĝ(0) +

∑

γχ 6=γ′

χ

MΦ(iγχ)MΦ(iγ′
χ) ĝ

(
(γχ − γ′

χ) logQ

2π

)

≥
2− δ

r(f)

∑

γχ

mρχ

∣∣MΦ(iγχ)
∣∣2.

This implies that

∑

Q≤q≤2Q

W (q/Q)

ϕ(q)

∑

χ (mod q)
primitive

∑

γχ,γ′

χ

MΦ(iγχ)MΦ(iγ′
χ)g

(
(γχ − γ′

χ) logQ

2π

)
≥

2− δ

r(f)
N∗

Φ(Q).

On the other hand, observing that

Φ
(
Q−|x|

)2
logQ

(
1

2π

∫ ∞

−∞

∣∣MΦ(it)
∣∣2 dt

)
→ δ(x),

as Q → ∞ (in the distributional sense) and that

log1/2 Q

∫ 2−δ

−(2−δ)

g(x)Φ(Q−|x|)dx ≤ 2 log−1/2 Q

∫ 1

Q−(2−δ)

Φ(t)
dt
t

= O(log−1/2 Q),

we can use the asymptotic estimate (12) to obtain
∫ ∞

−∞

g(x)FΦ(Q
x,W )dx ≤

∫ 2−δ

−(2−δ)

g(x)FΦ(Q
x,W )dx

= g(0) +

∫ 2−δ

−(2−δ)

g(x)(1 − (1− |x|)+)dx+O(log−1/2 Q) + o(1)

=
2L(f)

r(f)
+O(δ) + o(1).

10



We then conclude that

N∗
Φ(Q) ≤ NΦ(Q) (L(f) +O(δ) + o(1)) .

Using (13) we finish the proof. �

3.3. Bounding N∗
1 (T ). Similarly to the case of the Riemann zeta-function, the functionals that we need to

define depend on the asymptotic behavior of the function F1(x, T ) defined by

F1(x, T ) = N1(T )
−1

∑

0<γ1,γ′

1≤T

T ix(γ1−γ′

1)w(γ1 − γ′
1), (14)

where x ∈ R, T > 0 and the sum is over pairs of ordinates of zeros (with multiplicity) of ξ′(s). To analyze

N∗
1 (T ) we define the following functional

Z1(f) = r(f) +
2

r(f)

∫ r(f)

0

x f(x)dx−
8

r(f)2

∫ r(f)

0

x2 f(x)dx+

∞∑

k=1

2ck
r(f)2k+1

∫ r(f)

0

x2k+1 f(x)dx,

where ck = 22k+1 (k−1)!
(2k)! .

Lemma 11. Let f ∈ ALP . Assuming RH, for every fixed small δ > 0 we have

N∗
1 (T ) ≤ (Z1(f) +O(δ) + o(1))N1(T ).

Proof. A result similar to (9) for the function F1(x, T ) defined in (14) is also known (see [24, Theorem 1.1]),

which is the following: for any fixed small δ > 0 we have

F1(x, T ) = T−2|x| logT + |x| − 4|x|2 +

∞∑

k=1

ck|x|
2k+1 + o(1)(1 + T−2|x| logT ),

uniformly for |x| ≤ 1 − δ as T → ∞, where ck = 22k+1 (k−1)!
(2k)! . The proof then follows the same strategy as

the proof for ζ(s) and we leave the details to the reader. �

4. Numerically optimizing the bounds

Going back to the sphere packing problem, since we obviously have ∆(R1) = 1, this shows r(f) ≥ 1 for

all f ∈ ALP . The last sign change equals 1 for two (suspiciously) well-known functions: the hat function

H(x) = (1− |x|)+,

whose Fourier transform is Ĥ(x) = sin2(πx)
(πx)2 , and Selberg’s function

S(x) =
sin2(πx)

(πx)2(1 − x2)
,

whose Fourier transform is supported in [−1, 1] and given by Ŝ(x) = 1 − |x| + sin(2πx)
2π for |x| < 1. In

particular, we can use these two functions to evaluate the functionals derived in Section 3 to obtain bounds,

but this does not result in the best possible bounds. To obtain better bounds we use the class of functions

used in the linear programming bounds by Cohn and Elkies [20] for sphere packing. That is, we consider

the subspace ALP (d) consisting of the functions f ∈ ALP of the form

f(x) = p(x)e−πx2

, (15)

where p is an even polynomial of degree 2d.
11



In [20], optimization over a closely related class of functions is done by specifying the functions by their

real roots and optimizing the root locations. For the sphere packing problem this works very well, where in

R
24 it leads to a density upper bound that is sharp to within a factor 1+ 10−51 of the optimal configuration

[22]. We have also tried this approach for the optimization problems in this paper, but this did not work

very well because the optimal functions seem to have very few real roots, which produces a strange effect in

the numerical computations, where the last forced root tends to diverge when you increase the degree of the

polynomial2. Instead we use sum-of-squares characterizations and semidefinite programming, as was done

in [34] for the binary sphere packing problem.

Semidefinite programming is the optimization of a linear functional over the intersection of a cone of

positive semidefinite matrices (real symmetric matrices with nonnegative eigenvalues) and an affine space.

A semidefinite program is often given in block form, which can be written as

minimize
I∑

i=1

tr(XiCi) :

I∑

i=1

tr(XiAi,j) = bj for j ∈ [m],

X1, . . . , XI ∈ R
n×n positive semidefinite,

where I ∈ N gives the number of blocks, {Ci} ⊆ R
n×n is the objective, and {Ai,j} ⊆ R

n×n, b ∈ R
m

give the linear constraints (for notational simplicity we take all blocks to have the same size). Semidefinite

programming is a broad generalization of linear programming (which we recover by setting n = 1 in the above

formulation), and, as for linear programming, there exist efficient algorithms for solving them. The reason

semidefinite programming comes into play here, is that we can model polynomial inequality constraints as

sum-of-squares constraints, which in turn can be written as semidefinite constraints; see, e.g., [2].

4.1. Proof of Theorems 1, 5, and 6. To obtain the first part of Theorem 1 from Lemma 8 we need to

minimize the functional Z over the space ALP (d). We can see this as a bilevel optimization problem, where

we optimize over scalars R ≥ 1 in the outer problem, and over functions f ∈ ALP (d) satisfying r(f) = R in

the inner problem. The outer problem is a simple one dimensional optimization problem for which we use

Brent’s method [3].

A polynomial p that is nonnegative on [R,∞) can be written as s1(x)+ (x−R)s2(x), where s1 and s2 are

sum-of-squares polynomials with deg(s1), deg(s2(x)) + 1 ≤ deg(p); see, e.g., [40]. This shows that functions

of the form (15) that are non-positive on [R,∞) can be written as

f(x) = −
(
s1(x

2) + (x2 −R2)s2(x
2)
)
e−πx2

.

Let v(x) be a vector whose entries form a basis of the univariate polynomials of degree at most d. The

polynomials s1 and s2 are sum-of-squares if and only if they can be written as si(x) = v(x)TXiv(x) for some

positive semidefinite matrices Xi of size d+ 1. That is, we can parameterize functions of the form (15) that

are non-positive on [R,∞) by two positive semidefinite matrices X1 and X2 of size d+ 1.

The space of functions of the form (15) is invariant under the Fourier transform. Since a polynomial of

degree 2d that is nonnegative on [0,∞) can be written as s3(x) + xs4(x), where si(x) = v(x)TXiv(x) for

i = 3, 4 are sum-of-squares polynomials of degree 2d, we have that f̂ is of the form

f̂(x) =
(
s3(x

2) + x2s4(x
2)
)
e−πx2

.

2It is worth mentioning that, in a related uncertainty problem, Cohn and Gonçalves [21] discovered the same kind of instability
in low dimensions.
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Let T be the operator that maps x2k to the function k!
πkL

−1/2
k (πx2), where Lk is the Laguerre polynomial

of degree k with parameter −1/2. Then, for p an even polynomial, we have that (T p)(x)e−πx2

is the Fourier

transform of p(x)e−πx2

. We can now describe the functions of the form (15) that are non-positive on [R,∞)

and have nonnegative Fourier transform by positive semidefinite matrices X1, . . . , X4 of size d + 1 whose

entries satisfy the linear relations coming from the identity I(X1, . . . , X4) = 0, where

I(X1, . . . , X4) = T
(
− s1(x

2)− (x2 −R2)s2(x
2)
)
−
(
s3(x

2) + x2s4(x
2)
)
.

Here T (−s1(x
2)− (x2 −R2)s2(x

2)) is a polynomial whose coefficients are linear combinations in the entries

of X1 and X2, and the same for s3(x
2) + x2s4(x

2) with X3 and X4. The linear constraints on the entries

of X1, . . . , X4 are then obtained by expressing I(X1, . . . , X4) in some polynomial basis and setting the

coefficients to zero.

The conditions f(0) = 1 and f(R) = 0 are linear in the entries of X1 and X2, and the condition f̂(0) = 1

is a linear condition on the entries of X3 and X4. Finally, the objective Z(f) is a linear combination in the

entries of X1 and X2, which can be implemented by using the identity
∫

xme−πx2

dx = −
1

2πm/2+1/2
Γ
(m+ 1

2
, πx2

)
, (16)

where Γ is the upper incomplete gamma function. Hence, the problem of minimizing Z(f) over functions

f ∈ ALP (d) that satisfy r(f) = R is a semidefinite program.

To obtain the second part of Theorem 1 from Lemma 8 and to obtain Theorem 5 from Lemma 10 we use

the same approach with a different functional. To obtain Theorem 6 from Lemma 11 we also do the same

as above, but now truncate the series in the functional Z1 at k = 15 and add the easy to compute upper

bound 10−10 on the remainder of the terms.

4.1.1. Implementation and numerical issues. In implementing the above as a semidefinite program we have

to make two choices for the polynomial basis that we use: the basis defining the vector v(x), and the basis

to enforce the identity I(X1, . . . , X4) = 0. This choice of bases is important for the numerical conditioning

of the resulting semidefinite program. Following [34] we choose the Laguerre basis {L
−1/2
n (2πx2)}, as this

seems natural and performs well in practice (it multiplied by e−πx2

is the complete set of even eigenfunctions

of the Fourier transform). We solve the semidefinite programs using sdpa-gmp [38], which is a primal-dual

interior point solver using high precision floating point arithmetic. For the code to generate the semidefinite

programs and to perform the post processing we use Julia [1], Nemo [25], and Arb [33] (where we use Arb for

the ball arithmetic used in the verification procedure). For all computations we use d = 40. In solving the

systems we observe that X1 can be set to zero everywhere without affecting the bounds, so that r(f) = R

holds exactly for the function f(x) = (R2 − x2)v(x2)TX2v(x
2)e−πx2

defined by X2.

The above optimization approach uses floating point arithmetic and a numerical interior point solver. This

means the identity I(0, X2, X3, X4) = 0 will not be satisfied exactly, and, moreover, because the solver can

take infeasible steps the matrices X2, X3, and X4 typically have some eigenvalues that are slightly negative.

In practice this leads to incorrect upper bounds if the floating point precision is not high enough in relation

to the degree d. Here we explain the procedure we use to obtain bounds that are guaranteed to be correct.

This is an adaptation of the method from [35] and [34].

We first solve the above optimization problem numerically to find R and f for which we have a good

objective value v = L(f). Then we solve the semidefinite program again for the same value of R, but now

we solve it as a feasibility problem with the additional constraint L(f) ≤ v + 10−6. The interior point
13



solver will try to give the analytical center of the semidefinite program, so that typically the matrices are

all positive definite; that is, the eigenvalues are all strictly positive. Then we use interval arithmetic to

check rigorously that X2, X3, and X4 are positive definite, and we compute a rigorous lower bound b on the

smallest eigenvalues of X3 and X4.

Using interval arithmetic we compute an upper bound B on the largest coefficient of I(0, X2, X3, X4) in

the basis given by the 2d+1 entries on the diagonal and upper diagonal of the matrix (R2−x2)v(x2)v(x2)T.

If b ≥ (1 + 2d)B, then it follows that it is possible to modify the corresponding entries in X3 and X4 such

that these matrices stay positive definite and such that I(0, X2, X3, X4) = 0 holds exactly [35]. This proves

that the Fourier transform of the function f(x) = (R2 − x2)v(x2)TX2v(x
2)e−πx2

is nonnegative.

The only remaining problem is that the identities f(0) = 1 and T f(0) = 1 will not hold exactly. We

can, however, for instance write the first part of Theorem 1 as follows: Suppose f is a continuous function

in L1(R) with f(x) ≤ 0 for |x| ≥ R and with f̂ ≥ 0, then N∗(T ) ≤ (Z(f) + o(1))N(T ), where we use the

following modified definition for Z(f):

Z(f) =
1

f̂(0)

(
f(0)r(f) +

2

r(f)

∫ r(f)

0

f(x)xdx

)
.

Since the function f defined by X1 has been verified to satisfy all the constraints, the only thing we still

need to do is to compute a rigorous upper bound on Z(f) (or on similar modifications of the functionals

Z̃(f), Z1(f), or L(f)), for which we use identity (16) and interval arithmetic.

Remark 1. In the arXiv version of this paper we attach the files ‘Z-40.txt’, ‘tildeZ-40.txt’, ‘L-40.txt’, and

‘Z1-40.txt’ that contain the value of R on the first line and the matrices X2, X3 and X4 on the next 3 lines (all

in 100 decimal floating point values). For convenience it also contains the coefficients of f in the monomial

basis on the last line (but these are not used in the verification procedure). We include a script to perform

the above verification and compute the bounds rigorously, as well as the code for setting up the semidefinite

programs, using a custom semidefinite programming specification library.

4.2. Proof of Theorem 4. To obtain the first part of Theorem 4 from Lemma 9 we need to minimize

the function P over the space ALP . We can formulate this as a bilevel optimization problem in which we

optimize over R ≥ 1 in the outer problem. In the inner problem we perform a binary search over Λ to find

the smallest Λ for which there exists a function f ∈ ALP (d) that satisfies f(R) = 0, f(x) ≤ 0 for |x| ≥ R,

and pf (Λ) ≥ 0.

To get a bound whose correctness we can verify rigorously we replace the constraints f(0) = 1, f̂(0) = 1,

and pf (Λ) ≥ 0 by f(0) = 1 − 10−10, f̂(0) = 1 + 10−10, and pf(Λ) ≥ 10−10. We then use the above

optimization approach to find good values for R and Λ. We then add 10−6 to Λ and solve the feasibility

problem again to get the strictly feasible matrices X2, X3, and X4. By performing the same procedure as in

4.1.1 we can verify that the Fourier transform of the function f defined by X2 is nonnegative everywhere,

and using interval arithmetic we can check that the inequalities f(0) ≤ 1, f̂(0) ≥ 1, and pf (Λ) > 0 all hold.

Note that this verification procedure does not actually check that Λ is equal to or even close to P(f), but

the proof of Lemma 9 also works if we replace P(f) by any Λ for which pf (Λ) is strictly positive. To obtain

the second part of the theorem, we do the same except that we replace pf by p̃f .

Remark 2. In the arXiv version of this paper we attach the files ‘P-40.txt’, ‘tildeP-40.txt’, that have the

same layout as the files mentioned in 4.1.1, with an additional line containing the value of Λ. We again

include the code to perform the verification and to produce the files.
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