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ABSTRACT. Inspired by so-called TVD limiter-based second-order schemes for hyper-
bolic conservation laws, we develop a formally second-order accurate numerical method
for multi-dimensional aggregation equations. The method allows for simulations to be
continued after the first blow-up time of the solution. In the case of symmetric, λ-convex
potentials with a possible Lipschitz singularity at the origin we prove that the method
converges in the Monge–Kantorovich distance towards the unique gradient flow solution.
Several numerical experiments are presented to validate the second-order convergence rate
and to explore the performance of the scheme.

1. INTRODUCTION

In this paper we derive and analyze a formally second-order accurate numerical method
for the aggregation equation

(1.1) ∂tρ = ∇ ·
((
∇W ∗ ρ

)
ρ
)
, ρ(0) = ρ0

where ρ = ρ(t) ∈ P(Rd) is a time-parametrized probability measure on Rd and ρ0 ∈
P(Rd) is given. The interaction potential W : Rd → R is assumed to satisfy some or all
of the following conditions:

(A1) W is Lipschitz continuous, W (x) = W (−x) and W (0) = 0.
(A2) W ∈ C1

(
Rd \ {0}

)
.

(A3) W is λ-convex for some λ > 0, i.e W (x) + λ
2 |x|

2 is convex.
Potentials satisfying (A1)–(A3) with a Lipschitz singularity at the origin are the so-called
pointy potentials. When W is a pointy potential, weak solutions to (1.1) might concentrate
into Dirac measures in finite time. The finite time blow-up of solutions has attracted a lot
of attention, see [44, 9, 5, 8, 33], wherein almost sharp conditions were given for finite time
blow-up and typical blow-up profiles were studied. This finite time blow-up phenomenon
explains the necessity of considering measure valued solutions of (1.1). By utilizing the
gradient flow structure of (1.1), Carrillo et al. [15] proved existence and uniqueness of
solutions to (1.1) when W satisfies (A1)–(A3).

Aggregation equations of the form (1.1), being the continuum limits of particle systems
described by

ẋi = −
∑
i 6=j

mj∇W (xi − xj),
∑
i

mi = 1, mi > 0,(1.2)

where xi are the particle positions and mi the weights, are ubiquitous in modelling con-
centration in applied mathematics. They find applications in physical and biological sci-
ences, to name a few: granular materials [4, 44, 12, 18], particle assembly [32], swarm-
ing [49, 52, 47, 53, 39], bacterial chemotaxis [38, 27, 34], and opinion dynamics [48].
Furthermore, attraction-repulsion potentials have recently been proposed as very simple
models of pattern formation due to the rich structure of the set of stationary solutions, see
[50, 3, 55, 56, 2, 40, 6] for instance.
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The numerical method proposed in this paper is motivated by the fact that the Burgers-
type equation

(1.3) ∂tu+ ∂xf(u) = 0, f(u) = ±(u− u2)

and the one-dimensional aggregation equation

(1.4) ∂tρ = ∂x
((
W ′ ∗ ρ

)
ρ
)

with W (x) = ±|x| are equivalent, see [9, 10]. Indeed, defining the primitive u(x, t) =∫ x
−∞ ρ(dy, t), we see that

W ′ ∗ ρ = ± sgn ∗ ρ = ±(2u− 1).

Integrating (1.4) over (−∞, x] therefore gives (1.3). Thus, formally speaking, differenti-
ating (1.3) in x yields (1.4). This intuition was made rigorous in [10] in which entropy
solutions to (1.3) for nondecreasing initial data are shown to be equivalent to gradient flow
solutions to (1.4) for measure valued initial data.

Our starting point is a formally second-order accurate finite volume method for solu-
tions of Burgers’ equation (1.3). By “differentiating the method” in x we obtain a numer-
ical method for (1.4) with W (x) = ±|x|. This method is then extended to the class of
potentials W satisfying (A1), (A2) and any dimension d. The order of accuracy of the
method is preserved when measured in the right metric, namely the Monge–Kantorovich
distance d1. Indeed, the Monge–Kantorovich distance d1 at the level of (1.4) corresponds
to the L1 norm at the level of (1.3) in one dimension due to the relation

d1(µ, ν) = sup
‖ϕ‖Lip61

∫
R
ϕ(x) d(µ− ν)(x) =

∫
R

∣∣(µ− ν)((−∞, x])
∣∣ dx = ‖u− v‖L1(R).

The second-order accuracy of the numerical method for Burgers’ equation is obtained
by reconstructing the numerical approximation into a piecewise linear function in every
timestep (see e.g. [29, 43]). A reconstruction also takes place in the proposed scheme, but
the result of the procedure is a reconstructed measure. This measure consists of a combi-
nation of constant values in the grid cells and Dirac deltas at the grid points. This mixed
reconstruction, Diracs plus piecewise constants, is the main difference between our method
compared to other methods (of lower order) to solve the aggregation equation with mea-
sure valued initial data [35, 17, 22, 23]. Other numerical schemes based on finite volumes
[13] or optimal transport strategies [30, 20, 21] have been proposed.

Above, and throughout the paper, we use the terms ‘formally second-order’ and ‘second-
order’ in the sense of having a local truncation error of order O(∆t∆x2). This nomencla-
ture is standard in the literature on numerical methods for hyperbolic conservation laws
[29, 41, 43]. Such truncation error estimates rely on Taylor expansions of the exact solu-
tion and hence requires the existence of a smooth solution. There are very few rigorous
convergence rate results available for such methods for general, non-smooth solutions (be-
yond the suboptimal O(∆x

1/2) estimate due to Kuznetsov [42]). We would expect that a
rigorous convergence rate estimate for the methods presented here (beyond our local trun-
cation estimate) would require a substantial amount of work, and only apply in a limited
number of scenarios. We refer to [23] for a proof of an O(∆x

1/2) convergence rate for a
numerical method for (1.1).

We derive the method for (1.4) with W (x) = ±|x| before generalizing it in one di-
mension to any potential satisfying (A1), (A2) in Section 3. We study its properties, and
show the convergence of the scheme for measure valued solutions in the distance d1 in
the main theorem. The scheme and the main theorem is generalized to any dimension in
Section 4. Section 5 is devoted to validating the scheme in known particular cases to-
gether with accuracy tests and numerical explorations for both potentials covered by the
theory and attractive-repulsive potentials not covered. Section 2 deals with the necessary
preliminaries about gradient flow solutions to the aggregation equation (1.1).
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2. PRELIMINARIES ON GRADIENT FLOW SOLUTIONS

We define the space of probability measures with finite p-th order moment, 1 6 p <∞
as

Pp(Rd) =

{
µ nonnegative Borel measure, µ(Rd) = 1,

∫
Rd

|x|pµ(dx) <∞
}
.

This space is endowed with the optimal transport distance dp defined by

dp(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
|y − x|p γ(dx, dy)

)1/p

where Γ(µ, ν) is the set of measures on Rd ×Rd with marginals µ and ν (see e.g. [54, 1]).
The particular cases that will be useful in our present work are the Euclidean Wasserstein
distance d2 and the Monge–Kantorovich distance d1. Let

(2.1) W(ρ) =
1

2

∫
Rd×Rd

W (x− y)ρ(dx)ρ(dy)

be the total potential energy associated to the aggregation equation (1.1). It is by now
classical that the aggregation equation (1.1) can be written as

∂ρ

∂t
= ∇ ·

(
ρ∇δW

δρ

)
,

with δW
δρ = W ∗ ρ the variational derivative of the functional W . This is the formal

signature of the d2-gradient flow structure of evolutions equations [1, 54, 18, 19].
We say that µ ∈ AC1/2

loc([0,+∞);P2(Rd)) if µ is locally Hölder continuous of exponent
1/2 in time with respect to the distance d2 in P2(Rd). A gradient flow solution associated
to (2.1) is defined as follows, see [1, 15].

Definition 2.1 (Gradient flow solutions). Let W satisfy the assumptions (A1)–(A3). We
say that a map ρ ∈ AC

1/2
loc

(
[0,+∞);P2(Rd)

)
is a gradient flow solution of (1.1) asso-

ciated with the functional (2.1), if there exists a Borel vector field v such that v(t) ∈
Tanρ(t)P2(Rd) for a.e. t > 0, i.e. ‖v(t)‖L2(ρ) ∈ L2

loc(0,+∞), the continuity equation

(2.2) ∂tρ+∇ · (vρ) = 0,

holds in the sense of distributions, and v(t) = −∂0W(ρ(t)) for a.e. t > 0. Here, ∂0W(ρ)
denotes the element of minimal norm in ∂W(ρ), the subdifferential ofW at the point ρ.

In [15] it is shown that when W satisfies (A1)–(A3) we have ∂0W = ∂0W ∗ ρ, where
∂0W (x) = ∇W (x) for x 6= 0 and ∂0W (0) = 0. Hence,

(2.3) ∂0W(x, t) =

∫
x6=y
∇W (x− y)ρ(dy, t)

is the unique element of minimal norm when W satisfies (A1)–(A3).

Theorem 2.2 (Well-posedness of gradient flow solutions [15]). LetW satisfy assumptions
(A1)–(A3). Given ρ0 ∈ P2(Rd) there exists a unique gradient flow solution of (1.1), i.e.
a curve ρ ∈ AC1/2

loc([0,+∞);P2(Rd)) satisfying (2.2) in D′([0,∞) × Rd) with v(x, t) =
−∂0W ∗ ρ and ρ(0) = ρ0.

Let us connect this notion of solution to more classical concepts of weak solutions for
PDEs.
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Definition 2.3. A locally in time absolutely continuous in dp curve ρ : [0,+∞) →
Pp(Rd), 1 6 p < ∞ is said to be a dp-weak measure solution to (1.1) with initial da-
tum ρ0 ∈ Pp(Rd) if and only if ∂0W ∗ ρ ∈ L1

loc((0,+∞);L2(ρ(t))) and∫ +∞

0

∫
Rd

∂ϕ

∂t
(x, t) ρ(dx, t) dt+

∫
Rd

ϕ(x, 0) ρ0(dx)

=

∫ +∞

0

∫
Rd

∫
Rd

∇ϕ(x, t) · ∂0W (x− y) ρ(dy, t) ρ(dx, t) dt,

(2.4)

for all test functions ϕ ∈ C∞c ([0,+∞)× Rd).

In [15] it is proven that the concept of gradient flow solutions to (1.1) under the assump-
tions (A1)–(A3) is in fact equivalent to the concept of d2-weak measure solutions. As a
consequence, the uniqueness of gradient flow solutions imply the uniqueness of d2-weak
measure solutions, see [15, Section 2.3].

Observe that d1-weak measure solutions to (1.1) are also d2-weak measure solutions to
(1.1). Indeed, since ‖v(t)‖L2(ρ) ∈ L2

loc((0,+∞)), we can apply [1, Theorem 8.3.1] which
implies the absolute continuity with respect to d2 of the curve of probability measures ρ(t).
This fact will be the key to identifying the limit of the numerical schemes below.

The notion of gradient flow solutions has been proven to be equivalent to the notion of
duality solutions in one dimension [36], the Fillipov flow solutions [17], and, as mentioned
in the introduction, it is equivalent to the notion of entropy solutions of the one-dimensional
Burgers’ equation in the particular case of W (x) = ±|x|, see [10].

Let us finally mention that global existence of measure valued solutions in one dimen-
sion to (1.1) with ∂xW ∗ρ replaced by a(∂xW ∗ρ), where a is a C1 function, was obtained
by James and Vauchelet [36] using the notion of duality solutions, introduced by Bouchut
and James [11].

3. A NUMERICAL SCHEME FOR THE 1D AGGREGATION EQUATION

Based on the relation

(3.1) u(x, t) = ρ((−∞, x], t)

between solutions to the one-dimensional aggregation equation (1.4) and Burgers’ equa-
tion (1.3) in the case W (x) = ±|x|, we will derive a (formally) second-order accurate
method for the aggregation model (1.4). As ρ is assumed to be a probability measure in
x, we can assume that u will be a nondecreasing function satisfying u(−∞, t) = 0 and
u(+∞, t) = 1. We will later generalize the resulting method to general potentials and
multiple dimensions.

3.1. Second-order schemes for Burgers’ equation. We discretize the space-time do-
main R × R+ as xi−1/2 = (i− 1/2)∆x and tn = n∆t for i ∈ Z and n ∈ N0, where
∆x,∆t > 0 are the discretization parameters. We define also the computational cell
Ci := [xi−1/2, xi+1/2). A finite volume approximation of (1.3) aims to approximate the cell
averages

uni ≈
1

∆x

∫
Ci
u(x, tn) dx .

Such schemes are generally first-order accurate, and a popular method of increasing the
order of accuracy is by reconstruction: Given cell averages uni , compute a piecewise linear
polynomial

Ru∆x(x, tn) = uni + σni (x− xi), x ∈ Ci
(see e.g. [29, 43]). The slopes σni ∈ R are selected using e.g. the minmod limiter, which
for increasing data uni 6 u

n
i+1 is given by σni = 1

∆x min
(
uni −uni−1, u

n
i+1−uni

)
. Defining
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the edge values un,±i+1/2 = Ru∆x(xi+1/2 ± 0, tn), a (formally) second-order accurate finite
volume method for (1.3) is given by

un+1
i = uni − β

(
F
(
un,−i+1/2, u

n,+
i+1/2

)
− F

(
un,−i−1/2, u

n,+
i−1/2

))
, β :=

∆t

∆x

u0
i =

1

∆x

∫
Ci
u0(x) dx.

(3.2)

Here, F is any monotone numerical flux function, such as the Lax–Friedrichs-type flux

F (u, v) =
f(u) + f(v)

2
− c

2
(v − u), c = max

i

(
|f ′(uni )|

)
.

This numerical flux is chosen here for its simplicity, and is a Lax–Friedrichs-type flux
where the usual constant 1/β is replaced by the maximum velocity c.

3.2. Second-order schemes for the aggregation model. In this section we transfer the
above approach to the one-dimensional aggregation equation (1.4), first for the Newtonian
potential W (x) = ±|x| in Section 3.2.1 and then to more general potentials in Section
3.2.2.

3.2.1. Newtonian potential. Analogous to the relation (3.1), we define ρ through the rela-
tion

ρni+1/2 =
uni+1 − uni

∆x
⇔ uni =

∑
j6i

∆xρnj−1/2, ρ−∞ = 0.

As a simplifying assumption, let us assume that the initial data for the conservation law
(1.3) has been sampled through point values, u0

i = u0(xi). For the initial data ρ0
i+1/2, this

relation and the definition u0 = ρ0((−∞, x]) yield

ρ0
i+1/2 =

1

∆x

(
u0(xi+1)− u0(xi)

)
=

1

∆x
ρ0((xi, xi+1]).

Taking the difference in i of (3.2) yields the following numerical method for (1.4) in the
case W (x) = ±|x|:

ρn+1
i+1/2 = ρni+1/2 +

β

2

[
∆x
∑
j 6=i

± sgn
(
xi − xj

)(
ρn,+j+1ρ

n,+
i+1 + ρn,−j+1ρ

n,−
i+1

− ρn,+j ρn,+i − ρn,−j ρn,−i

)
+ cn

(
ρn,+i+1 − ρ

n,−
i+1

)
− cn

(
ρn,+i − ρn,−i

)]
,

(3.3)

where

cn = ∆xmax
i

(∣∣∣∑
j 6=i

± sgn(xi − xj)ρn,−j
∣∣∣, ∣∣∣∑

j 6=i

± sgn(xi − xj)ρn,+j

∣∣∣)
and

(3.4) ρn,+i = ρni−1/2 −
1

2

(
σni+1 − σni

)
, ρn,−i+1 = ρni+1/2 +

1

2

(
σni+1 − σni

)
,

with initial data given by

(3.5) ρ0
i+1/2 =

1

∆x
ρ0((xi, xi+1]).

Observe that

ρn,±i =
un,±i+1/2 − u

n,±
i−1/2

∆x
.
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xi+1/2 xi+3/2xi−1/2

ui+1

xi xi+1

ui

(a) Cell averages of u∆x.

xi+1/2 xi+3/2xi−1/2

ui+1 + σi+1(x− xi+1)

xi xi+1

ui + σi(x− xi)

(b) The reconstruction Ru∆x.

xi+1/2 xi+3/2xi−1/2

∆xρi+1/2

xi xi+1

∆xρi+3/2

∆xρi−1/2

(c) Point masses of ρ∆x.

xi+1/2 xi+3/2xi−1/2

∆xρ̃i+1/2

σi+1

σi

xi xi+1

∆xρ̃i+3/2

∆xρ̃i−1/2

(d) The reconstructed measure r of ρ∆x, where
r([xi, xi+1)) = ∆xρi+1/2.

FIGURE 1. The reconstruction of u∆x (top) translated into a reconstruc-
tion procedure for ρ∆x (bottom). The solid, vertical lines represent Dirac
measures centered at the midpoints xi+1/2.

Now, notice that when W (x) = ±|x| we have W ′(x) = ± sgn(x) for all x 6= 0, so that
± sgn can be replaced by W ′. Thus, the method (3.3) can be written as follows,

ρn+1
i+1/2 = ρni+1/2 +

β

2

[
an,+i+1ρ

n,+
i+1 + an,−i+1ρ

n,−
i+1 − a

n,+
i ρn,+i − an,−i ρn,−i

+ cn
(
ρn,+i+1 − ρ

n,−
i+1

)
− cn

(
ρn,+i − ρn,−i

)]
,

where

an,+i = ∆x
∑
j 6=i

W ′
(
xi − xj

)
ρn,+j , an,−i = ∆x

∑
j 6=i

W ′
(
xi − xj

)
ρn,−j .

3.2.2. General potentials. Let ρ0
i+1/2 be as in (3.5). We realize the numerical approxima-

tion ρni+1/2 as the measure

ρ∆x(x, tn) = ∆x
∑
i

ρni+1/2δxi+1/2
.

This function is reconstructed by defining a reconstructed measure rn as

(3.6) rn =
∑
i

[
∆xρ̃ni+1/2δxi+1/2

+ σni L
∣∣
Ci

]
, ρ̃ni+1/2 := ρni+1/2 −

1

2
(σni + σni+1)

where σni = min
(
ρni−1/2, ρ

n
i+1/2

)
and L

∣∣
A

denotes the Lebesgue measure restricted to the
set A (cf. Figure 1). It is easy to check that the reconstruction preserves mass, in the sense

rn
(
[xi, xi+1)

)
= ∆xρni+1/2,

and that rn is nonnegative. It follows that rn ∈ P1(R) whenever ρ∆x(tn) ∈ P1(R).
Moreover, as the reconstruction procedure redistributes mass over a distance no greater
than ∆x, we have

(3.7) d1

(
ρ∆x(tn), rn

)
6 ∆x.
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We can now define ρn,±i as taking information from rn in the downwind or upwind direc-
tion,

ρn,+i =
1

∆x
rn
(
(xi−1/2, xi+1/2]

)
= ρni+1/2 −

1

2
(σni+1 − σni ),

ρn,−i =
1

∆x
rn
(
[xi−1/2, xi+1/2)

)
= ρni−1/2 +

1

2
(σni − σni−1)

(3.8)

(compare with (3.4)). Furthermore, if we set

ρn,+∆x =
∑
i

∆xρn,+i δxi , ρn,−∆x =
∑
i

∆xρn,−i δxi

then we find that

∆x
∑
j 6=i

± sgn
(
xi − xj

)
ρn,±j = ∂0

xW ∗ ρ
n,±
∆x (xi)

when W (x) = ±|x|. We use the above expression to define the numerical velocities for
general potentials W as follows,

an,+i = ∂0
xW ∗ ρ

n,+
∆x (xi) = ∆x

∑
j 6=i

W ′
(
xi − xj

)
ρn,+j ,

an,−i = ∂0
xW ∗ ρ

n,−
∆x (xi) = ∆x

∑
j 6=i

W ′
(
xi − xj

)
ρn,−j .

(3.9)

Moreover, we can replace W ′ in (3.9) by a continuous and piecewise linear approximation
W ′∆x satisfying W ′∆x(k∆x) = W ′(k∆x) for all k 6= 0. This will be used in the upcoming
convergence proof.

Summing up, with the reconstruction (3.6) and the velocities (3.9) we define the (for-
mally) second-order accurate numerical scheme

(3.10a) ρn+1
i+1/2 = ρni+1/2 +

∆t

∆x

(
Jni+1 − Jni

)
,

where the fluxes are given by the Lax–Friedrichs-type flux formula

(3.10b) Jni =
an,+i ρn,+i + an,−i ρn,−i

2
+
cn

2

(
ρn,+i − ρn,−i

)
, cn = max

i
|an,±i |

and ρ0
i+1/2 is defined in (3.5). We emphasize that this numerical scheme is well-defined for

any potential W satisfying assumptions (A1), (A2).
Notice that if we replace Jni in (3.10b) with the upwind flux

(3.10c) Jni = max
(
an,+i , 0

)
ρn,+i + min

(
an,−i , 0

)
ρn,−i ,

then the scheme (3.10a), (3.10c) also defines a (formally) second-order accurate numerical
scheme, and the upwinding flux formula (3.10c) is a perfect valid alternative to the Lax–
Friedrichs-type flux (3.10b).

From now on, we will refer to the numerical scheme (3.10) meaning that we discuss
either the numerical scheme (3.10a), (3.10b) or (3.10a), (3.10c) indistinctively. We will
only provide the proofs in the case of the Lax–Friedrichs-type flux (3.10b), but we empha-
size that the upwind scheme shares the same stability and convergence properties as the
Lax–Friedrichs method.

Remark 3.1. The numerical scheme (3.10) is only (formally) first-order accurate in time.
A higher-order integration in time, such as Heun’s method or another Runge–Kutta method,
is needed to make the scheme second-order in both time and space. See e.g. [43, Section
19.4] for more details.
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3.3. Properties of the scheme. The properties of the scheme (3.10) are similar to those
of the first-order accurate schemes for (1.4) developed by James and Vauchelet [35, 37].
Define the linear time interpolation

(3.11) ρ∆x(t) :=
tn+1 − t

∆t
ρ∆x(tn) +

t− tn

∆t
ρ∆x(tn+1), t ∈ [tn, tn+1)

where ρ∆x(tn) = ∆x
∑
i ρ
n
i+1/2δxi+1/2

and ρni+1/2 is computed with the numerical scheme
(3.10).

Lemma 3.2. Assume that ρ0 ∈ P1(R) and that W satsfies (A1)–(A2). Assume moreover
that β := ∆t/∆x satisfies the CFL condition

(3.12) β 6
1

2‖W‖Lip
.

Then for all t > 0 and n ∈ N0:
(i) Positivity/mass preservation: ρ∆x(t) > 0 and

∫
R ρ∆x(dx, t) = 1,

(ii) Finite speed of propagation: cn := maxi
∣∣an,±i ∣∣ 6 ‖W‖Lip,

(iii) Bounded first order moment:

(3.13)
∫
R
|x| ρ∆x(dx, t) 6

∫
R
|x| ρ0(dx) + 2t‖W‖Lip,

(iv) Uniform tightness: Let r > 1 and ε > 0. Then∫
R\[−r,r]

|x|ρ0(dx) < ε =⇒
∫
R\[−R,R]

|x|ρ∆x(dx, t) < εC(t),

where R = r + t/β and C(t) = exp
(

3
2‖W‖Lipt

)
.

(v) Preservation of the center of mass:∫
R
x ρ∆x(dx, t) =

∫
R
x ρ∆x(dx, 0)

(vi) Time continuity: The map t 7→ ρ∆x(t) is uniformly Lipschitz, in the sense that

(3.14) d1

(
ρ∆x(t), ρ∆x(s)

)
6 2‖W‖Lip|t− s|

for all t, s > 0, where d1 denotes the Monge–Kantorovich–Rubinstein metric.
(vii) Bounded second order moment: If in addition ρ0 ∈ P2(R) then ρ∆x(t) has

bounded second order moment:∫
R
|x|2 ρ∆x(dx, t) 6

∫
R
|x|2 ρ0(dx) + 6t‖W‖Lip

∫
R
|x| ρ0(dx) + 12t2‖W‖2Lip,

Proof. From the definition (3.11) of ρ∆x(t) it is clear that we only need to check each
property at the discrete times t = tn.

(i) and (ii): The property (i) clearly holds for n = 0. Assume that (i) holds for some
n ∈ N0. By the definition (3.8) we have ρn,±j > 0 for all j. It then follows that the velocity
an,±i is bounded:∣∣an,±i ∣∣ =

∣∣∆x∑
j 6=i

W ′
(
xi − xj

)
ρn,±j

∣∣ 6 ‖W‖Lip∆x
∑
j

ρn,±j

= ‖W‖Lip∆x
∑
j

(
ρnj ±

1

2
(σnj+1 − σnj )

)
= ‖W‖Lip∆x

∑
j

ρnj = ‖W‖Lip.

Using the fact that ρni+1/2 = 1
2 (ρn,+i + ρn,−i+1), the scheme (3.10a) can be rewritten as

ρn+1
i+1/2 =

1− β
(
cn − an,−i+1

)
2

ρn,−i+1 +
1− β

(
cn + an,+i

)
2

ρn,+i
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+
β

2

(
cn + an,+i+1

)
ρn,+i+1 +

β

2

(
cn − an,−i

)
ρn,−i .

By the induction hypothesis, the definition (3.10b) of cn and the CFL condition (3.12), we
infer that ρn+1

i+1/2 > 0. Summing the conservative numerical method (3.10a) over all i ∈ Z
and using the definition (3.5) of the initial data yields∑

i

∆xρn+1
i+1/2 =

∑
i

∆xρni+1/2 =
∑
i

∆xρ0
i+1/2 = 1.

(iii): Assume that ρ∆x(tn) satisfies (3.13). From (3.10a) and summation by parts, the
first order moment can be written as

∆x
∑
i

|xi+1/2|ρn+1
i+1/2 = ∆x

∑
i

|xi+1/2|ρni+1/2

−∆x
β

2

∑
i

(an,+i + cn)ρn,+i

(
|xi+1/2| − |xi−1/2|

)
(3.15)

−∆x
β

2

∑
i

(an,−i − cn)ρn,−i
(
|xi+1/2| − |xi−1/2|

)
+ lim
i→∞

∆x
β

2
|xi+1/2|

(
an,+i ρn,+i + an,−i ρn,−i + cn

(
ρn,+i + ρn,−i

))
− lim
i→−∞

∆x
β

2
|xi+1/2|

(
an,+i ρn,+i + an,−i ρn,−i + cn

(
ρn,+i + ρn,−i

))
.(3.16)

The last two terms vanish because an,±i satisfies (ii) and ρ±∆x(tn) 6 3
2ρ∆x(tn), where

ρ∆x(tn) ∈ P1(R) by the induction hypothesis. From the bound
∣∣|xi+1/2|−|xi−1/2|

∣∣ 6 ∆x,
(3.12), (ii) and the induction hypothesis, we get

∆x
∑
i

|xi+1/2|ρn+1
i+1/2 6 ∆x

∑
i

|xi+1/2|ρni+1/2

+ ∆x
β∆x

2

∑
i

(∣∣cn + an,+i

∣∣ρn,+i +
∣∣cn − an,−i ∣∣ρn,−i )

6 ∆x
∑
i

|xi+1/2|ρni+1/2 + ‖W‖Lip∆t∆x
∑
i

(
ρn,+i + ρn,−i

)
= ∆x

∑
i

|xi+1/2|ρni+1/2 + 2∆t‖W‖Lip

6 ∆x
∑
i

|xi+1/2|ρ0
i+1/2 + 2tn+1‖W‖Lip.

(iv): We consider x > R. The case x < −R is similar. Let k ∈ Z be such that R ∈ Ck.
Then, from a summation by parts,∫

x>R

|x|ρ∆x(dx, tn+1)

= ∆x
∑
i>k

xi+1/2ρ
n+1
i+1/2

= ∆x
∑
i>k

xi+1/2ρ
n
i+1/2 −∆t

∑
i>k

(
xi+1/2 − xi−1/2

)
Jni −∆txk−1/2J

n
k

= ∆x
∑
i>k

xi+1/2ρ
n
i+1/2 −∆t∆x

∑
i>k

Jni −∆txk−1/2J
n
k

6 ∆x
∑
i>k

xi+1/2ρ
n
i+1/2 −∆t∆x

∑
i>k

1

2

(
an,−i − cn

)
ρn,−i −∆txk−1/2

1

2

(
an,−k − cn

)
ρn,−k
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6 ∆x
∑
i>k

xi+1/2ρ
n
i+1/2 + ∆t∆x

3

2
‖W‖Lip

∑
i>k

ρni+1/2 + ∆xxk−1/2
3

4
ρnk−1/2

6

(
1 +

3

2
‖W‖Lip∆t

)
∆x

∑
i>k−1

xi+1/2ρ
n
i+1/2

6 . . . 6

(
1 +

3

2
‖W‖Lip∆t

)n
∆x

∑
i>k−n−1

xi+1/2ρ
0
i+1/2

where we have used Jni >
1
2 (an,−i − cn)ρn,−i in the first inequality, and ρn,−i 6 3/2ρni−1/2,

(3.12) and (ii) in the second. As long as r > 1, the third inequality follows.
(v): The proof is based on the antisymmetry of W ′(x). Similar to (3.16), it is easy to

check that (v) is equivalent to showing that∑
i

(
an,+i ρn,+i + an,−i ρn,−i + cn

(
ρn,+i − ρn,−i

)) (
xi+1/2 − xi−1/2

)
= 0 for all n ∈ N.

Since cn does not depend on i, xi+1/2−xi−1/2 = ∆x, and taking into account the formulas
for ρn,±i in (3.8), we deduce that the last statement is equivalent to∑

i

(
an,+i ρn,+i + an,−i ρn,−i

)
= 0 for all n ∈ N.

Finally, we have due to the antisymmetry of W ′(x) that∑
i

an,±i ρn,±i =
∑
i 6=j

W ′(xi − xj)ρn,±i ρn,±j

=
∑
i 6=j

W ′(xj − xi)ρn,±i ρn,±j = −
∑
i 6=j

W ′(xi − xj)ρn,±i ρn,±j ,

leading to ∑
i

an,±i ρn,±i = 0 for all n ∈ N.

(vi): The proof is similar to (iii): Multiplying (3.10a) by ϕi+1/2 = ϕ(xi+1/2) for a
Lipschitz continuous function ϕ satisfying ‖ϕ‖Lip 6 1 gives

∆x
∑
i

(
ρn+1
i+1/2 − ρ

n
i+1/2

)
ϕi+1/2

= ∆x
β

2

∑
i

(∣∣c+ an,+i

∣∣ρn,+i +
∣∣c− an,−i ∣∣ρn,−i ) (

ϕi+1/2 − ϕi−1/2

)
6
β

2
2cn∆x2‖ϕ‖Lip

∑
i

(
ρn,+i + ρn,−i

)
6 2‖ϕ‖Lip‖W‖Lip∆t,

and taking the supremum over all ϕ with ‖ϕ‖Lip 6 1 yields (3.14) with t = tn+1 and
s = tn. Iterating over timesteps yields (3.14) for any discrete times tn, tm, m,n ∈ N. The
inequality (3.14) for any t, s ∈ R+ follows from (3.11).

(vii): The proof follows similarly to (iii). �

Remark 3.3. Replacing Jni = 1
2

(
an,+i ρn,+i + an,−i ρn,−i + cn(ρn,+i − ρn,−i )

)
in (3.10b)

with the upwind flux (3.10c) in the above proof, we can easily deduce the same properties
under the same CFL condition.
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3.4. Convergence of the method. Using the properties derived in the previous section we
can now prove convergence of the method using a standard compactness technique.

Theorem 3.4. Let ρ0 ∈ P1(R), assume thatW satisfies properties (A1) and (A2), and that
the CFL condition (3.12) is satisfied. Then for any T > 0, the numerical approximation
(3.11) has a uniformly convergent subsequence,

(3.17) sup
t∈[0,T ]

d1

(
ρ∆x′(t), ρ(t)

)
→ 0 as ∆x′ → 0,

and the limit ρ is a d1-weak measure solution of (1.4), (2.3) which satisfies

(3.18) d1

(
ρ(t), ρ(s)

)
6 2‖W‖Lip(R)|t− s| ∀ t, s ∈ R+.

If W also fulfills (A3) and ρ0 ∈ P2(R) then the whole sequence ρ∆x converges, and the
limit ρ is the unique gradient flow solution of (1.4).

Proof. Define the set

K :=
{
ρ∆x(t) : ∆x > 0, t ∈ [0, T ]

}
,

which by Lemma 3.2 (i) and (iii) is a subset of P1(R) with uniformly bounded first mo-
ment. Hence, K is tight, so by Prohorov’s theorem K is sequentially precompact in P(R)
with respect to the weak (or “narrow”) topology (cf. e.g. [1, Theorem 5.1.3]). We claim
that K is also sequentially precompact with respect to d1. By [54, Theorem 7.12], all we
need to check is that the first moments are uniformly integrable with respect to K. Fix
ε > 0 and let r > 0 be such that

∫
R\[−r,r] |x|ρ

0(dx) < ε. By Lemma 3.2 (iv), we then
have

sup
ρ∈K

∫
R\[−R,R]

|x| ρ(dx) < εC(T )

for some R > 0, which proves our claim. Using the 2‖W‖Lip-Lipschitz continuity of
ρ∆x (Lemma 3.2 (vi)), Ascoli’s theorem now implies the existence of a subsequence of
ρ∆x (which we still denote as ρ∆x) and some 2‖W‖Lip-Lipschitz continuous ρ : [0, T ]→
P1(R) such that d1

(
ρ∆x(t), ρ(t)

)
→ 0 uniformly for t ∈ [0, T ].

We check that the limit ρ satisfies (1.4) in the distributional sense. We multiply ρn+1
∆x

with a test function ϕ ∈ C2
c (R), use (3.10a) and perform a summation by parts,

(3.19)∫
R
ϕ(x)ρn+1

∆x (dx) = ∆x
∑
i

ϕ(xi+1/2)ρ
n
i+1/2

− β∆x

2

∑
i

(
an,+i ρn,+i + an,−i ρn,−i

) (
ϕ(xi+1/2)− ϕ(xi−1/2)

)
− β∆x

2

∑
i

cn(ρn,+i − ρn,−i )
(
ϕ(xi+1/2)− ϕ(xi−1/2)

)
.

By Taylor expanding the last term in (3.19) around xi+1/2, summing by parts, and taking
into account (3.8), Lemma 3.2 (ii), and that the mass is conserved, we find that

cn
β∆x

2

∑
i

(
ρn,+i − ρn,−i

) (
ϕ(xi+1/2)− ϕ(xi−1/2)

)
= cn

β∆x

2

∑
i

(
ρni+1/2 − ρ

n
i−1/2 −

1

2
[σi + σi+1 − σi−1 − σi]

)(
ϕ(xi+1/2)− ϕ(xi−1/2)

)
= − cn β∆x

2

∑
i

(
ρni+1/2 −

σi + σi+1

2

)
︸ ︷︷ ︸

∈[0,ρn
i+1/2

]

(
ϕ(xi+3/2)− 2ϕ(xi+1/2) + ϕ(xi−1/2)

)︸ ︷︷ ︸
6‖ϕ′′‖L∞∆x2

= O(∆x2).



12 JOSÉ A. CARRILLO, ULRIK S. FJORDHOLM, AND SUSANNE SOLEM

We insert this into the expression (3.19), and by a new Taylor expansion around xi+1/2, we
know that there exists yi ∈ [xi−1/2, xi+1/2] such that∫

R
ϕ(x)ρn+1

∆x (dx)

= ∆x
∑
i

ϕ(xi+1/2)ρ
n
i+1/2 −

β∆x

2

∑
i

(
an,+i ρn,+i + an,−i ρn,−i

)
ϕ′(xi)∆x

− β∆x

2

∑
i

(
an,+i ρn,+i + an,−i ρn,−i

)
ϕ′′(yi)

∆x2

2
+O(∆x2)

=

∫
R
ϕ(x) ρ∆x(dx, tn)− ∆t

2

∫
R
ϕ′(x)a+

∆x(x, tn) ρ+
∆x(dx, tn)

− ∆t

2

∫
R
ϕ′(x)a−∆x(x, tn) ρ−∆x(dx, tn) +O(∆x2) ,

where a±∆x(x, t) = ∂0
xW∆x ∗ ρ±∆x(x, t) and ρ±∆x is defined similar to ρ∆x, cf. (3.11). Then

for any test function ϕ ∈ C2
c (R× R+) we have∫

R
ϕ(x, tn)

ρ∆x(dx, tn + ∆t)− ρ∆x(dx, tn)

∆t

= −1

2

∫
R
∂xϕ(x, tn)a+

∆x(x, tn)ρ+
∆x(dx, tn)

− 1

2

∫
R
∂xϕ(x, tn)a−∆x(x, tn)ρ−∆x(dx, tn) +O(∆x).

The fact that ρ∆x → ρ, together with the stability property (3.7) of the reconstruction
procedure, implies that also ρ±∆x → ρ. Recall that W ′∆x is everywhere continuous. Then
the stability result [17, Lemma 3.1] implies that a±∆xρ

±
∆x ⇀

(
∂0W ∗ ρ

)
ρ, where ∂0W ∗ ρ

is defined in (2.3). A standard argument of summation by parts in time implies that ρ is a
distributional solution of (1.4) in the sense of (2.4).

We have shown that ρ is a distributional solution of a continuity equation of the form
(2.2) where the velocity field is given by v(t) = −∂0W ∗ ρ(t) for a.e. t > 0. Furthermore,
‖v(t)‖L2(ρ) ∈ L2

loc(0,+∞) since |v(t, x)| 6 ‖W‖Lip for a.e. t > 0 and x ∈ R. Finally,
from (3.18) it follows that the continuous curve of probability measures ρ(t) is absolutely
continuous in time with respect to d1, and we can thus conclude that ρ is a d1-weak measure
solution according to Definition 2.3.

If ρ0 ∈ P2(R) then ρ ∈ P2(R) follows from Lemma 3.2 (vii). Under the additional as-
sumption (A3), d2-weak measure solutions as defined in (2.3) are unique, see [15, Section
2.3], and they coincide with the unique gradient flow solutions of (1.4) given by Theorem
2.2. Thus, what remains to show to conclude that ρ is the unique gradient flow solution, is
that the d1-weak measure solution ρ(t) is locally in time absolutely continuous in d2. As
pointed out in Section 2, since ‖v(t)‖L2(ρ) ∈ L2

loc(0,+∞), we can apply the properties
of continuity equations in [1, Theorem 8.3.1] which imply the absolute continuity with
respect to d2 of ρ(t). �

Remark 3.5. The repulsive potential W (x) = −|x| does not satisfy (A3). However, due
to the equivalence in [10] we can apply the proof of Theorem 3.4 to obtain the convergence
of the numerical scheme also for this potential.

Remark 3.6. Also from the equivalence in [10], we can deduce from Theorem 3.4 the
convergence of the minmod scheme (3.2) for Burgers’ equation (1.3) to the unique entropy
solution whenever the initial data for Burgers’ equation is nondecreasing. See [41] for
further results in this direction.
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Remark 3.7. The scheme (3.10) can be extended to the one-dimensional aggregation equa-
tion

(3.20) ∂tρ = ∂x
(
a(W ′ ∗ ρ)ρ

)
,

where a is a nonlinear function. This can be done by carefully defining the velocities an,±i
in (3.10) using the reconstructed values ρ−i , ρ

+
i as it is done for the first-order schemes

in [35, 37] using ρi, ρi+1. The resulting scheme will satisfy the properties in Lemma 3.2
for suitable choices of initial data, function a and CFL condition. Following the proof
of Theorem 3.4, it will then be straightforward to prove that the resulting second-order
numerical approximation converges to the unique duality solution of (3.20) as introduced
in [36].

3.5. Truncation error. Although a proof that our scheme converges at rate O(∆x2) is
currently out of reach, we can prove an O(∆x2) truncation error estimate under the as-
sumption that there exists a smooth solution. For the sake of simplicity we show this result
only for the semi-discrete version of (3.10a),

(3.21)
d

dt
ρi+1/2(t) =

Ji+1(ρ∆x(t))− Ji(ρ∆x(t))

∆x

where Ji(ρ∆x(t)) is given by (3.10b), with ρn replaced by ρ(t). In practice, the semi-
discrete scheme (3.21) must be integrated in time using a second-order time integration
method in order to preserve an overall second-order convergence rate. If strong stability
preserving Runge–Kutta methods are employed then all of the stability and convergence
properties proved above are maintained by the fully discrete scheme (see e.g. [31]).

Lemma 3.8. Assume that the solution of (1.4) lies in C2
c (R× [0, T ]) for some T > 0 and

let W ∈ C3(R \ {0}) satisfy (A1). Then the semi-discrete scheme (3.21) converges at a
rate of O(∆x2) when measured in d1.

Proof. As is standard in the error analysis of numerical methods for evolution equations,
it is enough to show that the local truncation error is O(∆t∆x2) in order to show that the
global error is O(∆x2).

Let µ(x, t) be the gradient flow solution of (1.4), and assume that µ is sufficiently
smooth for t ∈ [tn, tn+1]. Define the projection Aµ(t) = ∆x

∑
i µi+1/2(t)δxi+1/2

where
µi+1/2(t) = µ(t, (xi, xi+1])/∆x. Let ∆t > 0 be sufficiently small that the system of
ODEs (3.21) with Aµ(tn) as initial data has a unique, bounded solution ρi+1/2(t) for
t ∈ [tn, tn+1]. As before, denote ρ∆x(t) =

∑
i ρi+1/2(t)δxi+1/2

. We will show that

(3.22) d1

(
ρ∆x(tn+1),Aµ(tn+1)

)
6 C∆t∆x2

for some C > 0 independent of ∆x,∆t. Let ϕ : R → R be a Lipschitz continuous
function and denote ϕi+1/2 = ϕ(xi+1/2). Integrating ϕ with respect to the error En+1 :=

Aµ(tn+1)− ρ∆x(tn+1) yields

〈En+1, ϕ〉 =

∫
R
ϕ(x)

(
Aµ(tn+1)− ρ∆x(tn+1)

)
(dx)

= ∆x
∑
i

ϕi+1/2

[
1

∆x

∫ xi+1

xi

µ(x, tn+1)dx− ρi+1/2(t
n+1)

]

= ∆x
∑
i

ϕi+1/2

[
1

∆x

∫ xi+1

xi

(
µ(x, tn) +

∫ tn+1

tn
∂tµ(x, t) dt

)
dx

−

(
ρi+1/2(t

n) +

∫ tn+1

tn

d

dt
ρi+1/2(t) dt

)]
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= ∆x
∑
i

ϕi+1/2

∫ tn+1

tn

[
1

∆x

∫ xi+1

xi

∂tµ(x, t) dx− d

dt
ρi+1/2(t)

]
dt

=
∑
i

ϕi+1/2

∫ tn+1

tn

[(
Mi+1(t)−Mi(t)

)
−
(
Ji+1(t)− Ji(t)

)]
dt

where M(x, t) := µ(W ′ ∗ µ)(x, t) and Mi(t) := M(xi, t). From a summation by parts,
and suppressing the dependence on t for the sake of notational simplicity, we find that

〈En+1, ϕ〉 =
∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn

(
Ji(ρ∆x)−Mi

)
dt

=
∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn

[
Ji(ρ∆x)− Ji(Aµ)

]
dt(3.23)

+
∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn

[
a+
i µ

+
i + a−i µ

−
i

2
−Mi +

c

2

(
µ+
i − µ

−
i

)]
dt,

after adding and subtracting Ji(Aµ). First, consider the last sum in (3.23). Observe that
σi = min

(
µi−1/2, µi+1/2

)
= 1

2

(
µi−1/2 + µi+1/2 − |µi+1/2 − µi−1/2|

)
. After some tedious

but easy computations, one can check that µ+
i − µ

−
i = O(∆x2). Furthermore,

Mi − a+
i µ

+
i = µ(xi)

(
(W ′ ∗ µ)(xi)− a+

i

)
+ a+

i

(
µ(xi)− µ+

i

)
= µ(xi)

(
(W ′ ∗ µ)(xi)− a+

i

)
+O(∆x2),

as a+
i is bounded and µ+

i − µ(xi) = O(∆x2). We split the first term,(
W ′ ∗ µ

)
(xi)− a+

i =
∑
i 6=j

[ ∫
Cj
W ′(xi − x)µ(x) dx−∆xW ′(xi − xj)µ+

j

]
+

∫
Ci
W ′(xi − x)µ(x) dx

=
∑
i 6=j

[ ∫
Cj
W ′(xi − x)µ(x) dx−∆xW ′(xi − xj)µ(xj)

]
+O(∆x2) +

∫
Ci
W ′(xi − x)µ(x) dx

= O(∆x2) +

∫
Ci
W ′(xi − x)µ(x) dx.

In the above we could apply the midpoint rule sinceW ∈ C3(R\{0}). Furthermore, using
the antisymmetry of W ′,∫

Ci
W ′(xi − x)µ(x)dx = −

∫ ∆x
2

0

W ′(z)
(
µ(xi + z)− µ(xi − z)

)
dz = O(∆x2).

Finally, using the assumption that µ has compact support, we get∑
i

(
ϕi+1/2 − ϕi−1/2

)[(
µ(W ′ ∗ µ)

)
(xi)− a+

i µ
+
i

]
6 ∆x‖ϕ‖Lip

∑
i

∣∣∣(µ(W ′ ∗ µ)
)
(xi)− a+

i µ
+
i

∣∣∣ = O(∆x2)‖ϕ‖Lip.

Applying the same analysis to the term
(
µ(W ′ ∗µ)

)
(xi)−a−i µ

−
i , we find that the last sum

in (3.23) is bounded by O(∆t∆x2)‖ϕ‖Lip. Now, consider the first sum,∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn

[
Ji(ρ∆x)− Ji(Aµ)

]
dt
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=
1

2

∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn

[
(b+i − a

+
i )ρ+

i + (b−i − a
−
i )ρ−i

+ (a+
i + c)(ρ+

i − µ
+
i ) + (a−i − c)(ρ

−
i − µ

−
i )
]
dt

(3.24)

where, b±i is the numerical velocity (3.9) depending on ρ∆x, and a±i (3.9) depending on
Aµ. Estimating (W ′ ∗ µ)(xi)− a+

i as above and assuming ‖ϕ‖Lip 6 1, we get∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn
(a+
i + c)(ρ+

i − µ
+
i ) dt

6
∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn
((W ′ ∗ µ)(xi) + c)(ρ+

i − µ
+
i ) dt+O(∆t∆x2)

6
∫ tn+1

tn
‖W ′ ∗ µ‖Lip∆x

∑
i

((W ′ ∗ µ)(xi) + c)

‖W ′ ∗ µ‖Lip
(ρ+
i − µ

+
i ) dt+O(∆t∆x2)

6 sup
t∈[0,T ]

‖W ′ ∗ µ(t)‖Lip

∫ tn+1

tn
d1

(
ρ+

∆x(t),Aµ+(t)
)
dt+O(∆t∆x2),

where ρ+
∆x(t) = ∆x

∑
i ρ

+
i and Aµ+(t) = ∆x

∑
i µ

+
i . The first term in (3.24) satisfies∑

i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn
(b+i − a

+
i )ρ+

i dt

6
3

2
∆x‖ϕ‖Lip‖ρ‖∞

∑
i

∫ tn+1

tn
|b+i − a

+
i |dt

as ρ∆x is bounded. After splitting the sum into i < j and j < i, performing a summation
by parts, and remembering that W is in C3(R \ {0}), we have that

b+i − a
+
i = ∆x

∑
i 6=j

W ′(xi − xj)(ρ+
j − µ

+
j )

6 C‖W ′′‖L∞(R\{0})
∑
j

∆x2
∣∣∣∑
k6j

ρ+
k − µ

+
k

∣∣∣+ 2∆x‖W‖Lip

∣∣∣∑
j6i

µ+
j − ρ

+
j

∣∣∣,
where C (here and in the following) is a constant which might depend on µ∆x, ρ∆x and
W , but not on ∆t or ∆x. Plugging this into the above, one finds that∑
i

(
ϕi+1/2 − ϕi−1/2

) ∫ tn+1

tn
(b+i − a

+
i )ρ+

i dt

6 C∆x‖ϕ‖Lip

∑
i

∫ tn+1

tn

(
∆x2

∑
j

∣∣∣∑
k6j

ρ+
k − µ

+
k

∣∣∣+ ∆x
∣∣∣∑
j6i

µ+
j − ρ

+
j

∣∣∣) dt
6 C‖ϕ‖Lip

∫ tn+1

tn
d1

(
ρ+

∆x(t),Aµ+(t)
)
dt.

The same analysis can be performed on ρ− − µ− and b− − a−. Finally, combining all the
estimates above, and taking the supremum over all ϕ with ‖ϕ‖Lip 6 1 yields

d1

(
ρ∆x(tn+1),Aµ(tn+1)

)
6 O(∆t∆x2) + C

∫ tn+1

tn
d1

(
ρ+

∆x(t),Aµ+(t)
)

+ d1

(
ρ−∆x(t),Aµ−(t)

)
dt

6 O(∆t∆x2) + C

∫ tn+1

tn
d1

(
ρ∆x(t),Aµ(t)

)
dt,
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after carefully checking that the second inequality in the above holds. Now, applying
Grönwall’s inequality, we can conclude that

d1

(
ρ∆x(tn+1),Aµ(tn+1)

)
= O(∆t∆x2).

�

3.6. Energy decay. As long as the numerical approximation computed with (3.10) stays
bounded, the corresponding interaction energy (2.1) decays over time modulo a term of
order ∆x. For the sake of simplicity we show this result only for the semi-discrete version
(3.21) of (3.10a), (3.10b).

Proposition 3.9. Assume that W ∈ C2(R \ {0}) satisfies (A1). Let

ρ∆x(t) = ∆x
∑
i

ρi+1/2(t)δxi+1/2
,

where ρi+1/2(t) is a solution to the semi-discrete scheme (3.21), and letW(ρ∆x(t)) be the
corresponding interaction energy (2.1). If either ρ∆x(t) is bounded or |W (∆x)| 6 C∆x2,
then

d

dt
W(ρ∆x(t)) 6 −∆x

4

∑
i

(
a+
i (t) + a−i+1(t)

)2
ρ+
i +K∆x.(3.25)

The constant K depends on ‖W‖Lip, ‖W ′′‖L∞(R\{0}), and either C or maxi∈Z{ρi(t)}.

Proof. Denote W (xi − xj) as Wi−j and W ′(xi − xj) as W ′i−j . The time derivative of
W(ρ∆x(t)) is

d

dt
W(ρ∆x) =

1

2

d

dt

∫
R2

W (x− y)ρ∆x(dx)ρ∆x(dy)

= ∆x2
∑
i

∑
j

Wi−jρj+1/2∂tρi+1/2.

From the semi-discrete version of (3.10a), (3.10b), a summation by parts and Lemma 3.2
(i)–(ii), we get

∆x2
∑
i

∑
j

Wi−jρj+1/2∂tρi+1/2

=− 1

2
∆x
∑
i

∑
j

ρj+1/2 (Wi−j −Wi−1−j)
[
a+
i ρ

+
i + a−i ρ

−
i + c(ρ+

i − ρ
−
i )
]

6− 1

2
∆x2

∑
i

∑
j 6=i

ρj+1/2W
′
i−j
[
a+
i ρ

+
i + a−i ρ

−
i + c(ρ+

i − ρ
−
i )
]

+ 2‖W‖Lip

[
‖W ′′‖L∞(R\{0})∆x+ |W (∆x)|∆x

∑
i

ρi+1/2

(
ρ+
i + ρ−i

)]
=:I + II .

If either ρ is bounded, maxi∈Z{ρi} 6 C, or |W (x)| 6 C∆x2, then

II 6 2‖W‖Lip

[
‖W ′′‖L∞(R\{0}) + C

]
∆x.

To estimate I we use the relation 2ρi+1/2 = ρ+
i + ρ−i+1,

I =− ∆x2

4

∑
i

∑
j 6=i

(
ρ+
i + ρ−i+1

)
W ′i−j

[
a+
i ρ

+
i + a−i ρ

−
i + c(ρ+

i − ρ
−
i )
]

=− ∆x

4

∑
i

(
a+
i + a−i+1

) [
a+
i ρ

+
i + a−i ρ

−
i + c(ρ+

i − ρ
−
i )
]
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xi−1/2 xi+1/2 xi+3/2

yj+3/2

yj+1/2

yj−1/2

xi xi+1

yj+1

yj

(a) The mass in the striped domain is
∆x∆yρi+1/2,j+1/2 for both the numerical
approximation and the reconstruction.

xi−1/2 xi+1/2 xi+3/2

yj+3/2

yj+1/2

yj−1/2

xi xi+1

yj+1

yj

(b) The subdomains measured by r to obtain the
reconstructed values. Red: ρE

i,j+1/2
, magenta:

ρS
i+1/2,j+1

, blue: ρW
i+1,j+1/2

, green: ρN
i+1/2,j

.

FIGURE 2. Reconstruction in two dimensions.

=− ∆x

4

∑
i

(
a+
i + a−i+1

)2
ρ+
i −

∆x

4

∑
i

(
a+
i + a−i+1

) (
a−i − a

−
i+1

)
ρ−i

− ∆x

4

∑
i

(
a+
i + a−i+1

) (
c− a−i+1

)(
ρ+
i − ρ

−
i

)
.(3.26)

By a summation by parts and the antisymmetry of W ,

a−i − a
−
i+1 = ∆x

∑
j 6=i

W ′(xi − xj)
(
ρ−j − ρ

−
j+1

)
= ∆x

∑
j 6=i,i+1

(
W ′i−j −W ′i+1−j

)
ρ−j −∆xW ′(∆x)

(
ρ−i + ρ−i+1

)
,

which is bounded by
[
‖W ′′‖L∞(R\{0}) + 2C

]
∆x under the given assumptions on W and

ρ∆x. It follows that the second term in (3.26) is bounded by the same expression as II .
From (3.8), ρ+

i − ρ−i = ρi+1/2 − ρi−1/2 − 1/2(σi+1 − σi−1). Then, after yet another
summation by parts, the last term in (3.26) can be bounded similarly to the second term,

∆x

4

∑
i

(
a+
i + a−i+1

) (
c− a−i+1

)(
ρ+
i − ρ

−
i

)
6 3‖W‖Lip

[
‖W ′′‖L∞(R\{0}) + C

]
∆x.

This concludes the proof. �

A similar expression to (3.25) can also be found for the semi-discrete version of the
upwind scheme (3.10a), (3.10c).

4. EXTENSION TO SEVERAL DIMENSIONS

We proceed by extending the scheme derived in the previous section to multiple spatial
dimensions. For the sake of notational simplicity we consider only the two-dimensional
version of the aggregation equation (1.1),

∂tρ = ∂x
((
∂xW ∗ ρ

)
ρ
)

+ ∂y
((
∂yW ∗ ρ

)
ρ
)
,

although the scheme derived here is applicable for any number of space dimensions. More-
over, we will restrict ourselves to Cartesian (rectangular) meshes, and we postpone the de-
sign of numerical schemes for more general (triangular or quadrilateral) meshes to a future
paper. Thus, we consider a mesh of equispaced gridpoints xi+1/2,j+1/2 := (xi+1/2, yj+1/2),
where xi+1/2 − xi−1/2 = ∆x and yj+1/2 − yj−1/2 = ∆y. The spatial domain is partitioned
into cells Ci,j = [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2).
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A finite volume method for a two-dimensional conservation law would approximate the
average over each cell Ci,j . By duality, we let the numerical approximation ρi+1/2,j+1/2 be
centered at the vertices xi+1/2,j+1/2. Given a numerical approximation ρ∆ ∈ P1(R2) of
the form

ρ∆ = ∆x∆y
∑
i,j

ρi+1/2,j+1/2δxi+1/2,j+1/2

(here and below we suppress the dependence on n for the sake of notational convenience),
we perform a reconstruction by defining

r = ∆x∆y
∑
i,j

ρ̃i+1/2,j+1/2δxi+1/2,j+1/2
+
∑
i,j

σi,jL
∣∣
Cij
,

ρ̃i+1/2,j+1/2 = ρi+1/2,j+1/2 −
1

4

(
σij + σi+1,j+1 + σi,j+1 + σi+1,j

)
,

σi,j = min
{
ρk+1/2,l+1/2 : k and l are such that (xk+1/2, yl+1/2) ∈ Ci,j

}
.

Next, define the four reconstructed values

ρWi,j+1/2 = r
(
[xi−1/2, xi+1/2)× (yj , yj+1)

)
, ρEi,j+1/2 = r

(
(xi−1/2, xi+1/2]× (yj , yj+1)

)
,

ρNi+1/2,j = r
(
(xi, xi+1)× (yj−1/2, yj+1/2]

)
, ρSi+1/2,j = r

(
(xi, xi+1)× [yj−1/2, yj+1/2)

)
(cf. Figure 2). Using the definition of r it is easy to show that

(4.1)
1

4

(
ρEi,j+1/2 + ρWi+1,j+1/2 + ρNi+1/2,j + ρSi+1/2,j+1

)
= ρi+1/2,j+1/2.

Moreover, r is a nonnegative measure in P1(R2) and

d1(r, ρ∆) 6 ∆x+ ∆y.

Let

ρ0
i+1/2,j+1/2 =

1

∆x∆y
ρ0((xi, xi+1]× (yi, yi+1]).

Dropping the superindex n for notational convenience, we propose the following Lax–
Friedrichs type scheme:

(4.2) ρn+1
i+1/2,j+1/2 = ρi+1/2,j+1/2+

∆t

∆x

(
Ji+1,j+1/2−Ji,j+1/2

)
+

∆t

∆y

(
Ji+1/2,j+1−Ji+1/2,j

)
where the numerical flux function at time tn is defined as

Ji,j+1/2 =
(aW ρW )i,j+1/2 + (aEρE)i,j+1/2

2
+
c

2

(
ρEi,j+1/2 − ρ

W
i,j+1/2

)
,

Ji+1/2,j =
(aNρN )i+1/2,j + (aSρS)i+1/2,j

2
+
c

2

(
ρNi+1/2,j − ρ

S
i+1/2,j

)
,

and

aWi,j+1/2 =
(
∂0
xW ∗ ρW

)
i,j+1/2

= ∆x∆y
∑

(k,l)6=(i,j)

∂xW
(
xi − xk, yj+1/2 − yl+1/2

)
ρWk,l+1/2,

aNi+1/2,j =
(
∂0
yW ∗ ρN

)
i+1/2,j

= ∆x∆y
∑

(k,l)6=(i,j)

∂yW
(
xi+1/2 − xk+1/2, yj − yl

)
ρNk+1/2,l,

aEi,j+1/2 =
(
∂0
xW ∗ ρE

)
i,j+1/2

= ∆x∆y
∑

(k,l)6=(i,j)

∂xW
(
xi − xk, yj+1/2 − yl+1/2

)
ρEk,l+1/2,

aSi+1/2,j =
(
∂0
yW ∗ ρS

)
i+1/2,j

= ∆x∆y
∑

(k,l)6=(i,j)

∂yW
(
xi+1/2 − xk+1/2, yj − yl

)
ρSk+1/2,l .
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Analogously, one can define an upwind-type scheme by mimicking the definition (3.10c)
by

Ji,j+1/2 = max
(
aWi,j+1/2, 0

)
ρWi,j+1/2 + min

(
aEi,j+1/2, 0

)
ρEi,j+1/2 ,

Ji+1/2,j = max
(
aNi+1/2,j , 0

)
ρNi+1/2,j + min

(
aSi+1/2,j , 0

)
ρSi+1/2,j .

Using (4.1) it is straightforward to rewrite (4.2) as

ρn+1
i+1/2,j+1/2

= ρEi,j+1/2

(
1

4
− ∆t

2∆x

(
c+ aEi,j+1/2

))
+ ρWi+1,j+1/2

(
1

4
− ∆t

2∆x

(
c− aWi+1,j+1/2

))
+ ρNi+1/2,j

(
1

4
− ∆t

2∆y

(
c+ aNi+1/2,j

))
+ ρSi+1/2,j+1

(
1

4
− ∆t

2∆y

(
c− aSi+1/2,j+1

))
+ ρEi+1,j+1/2

∆t

2∆x

(
c+ aEi+1,j+1/2

)
+ ρWi,j+1/2

∆t

2∆x

(
c− aWi,j+1/2

)
+ ρNi+1/2,j+1

∆t

2∆y

(
c+ aNi+1/2,j+1

)
+ ρSi+1/2,j

∆t

2∆y

(
c− aSi+1/2,j

)
.

The coefficients of the reconstructed values of ρ are nonnegative if we choose e.g.

c > |aE |, |aW |, |aN |, |aS |, c∆t 6
min(∆x,∆y)

4
.

Since |aE |, |aW |, |aN |, |aS | 6 ‖W‖Lip, a sufficient condition for nonnegativity of ρn+1 is

(4.3) ∆t 6
min(∆x,∆y)

4‖W‖Lip
.

We state this and the remaining stability properties in the following lemma. As in Section
3.3, we define the linear interpolation

(4.4) ρ∆(t) :=
tn+1 − t

∆t
ρ∆(tn) +

t− tn

∆t
ρ∆(tn+1), t ∈ [tn, tn+1)

where ρ∆(tn) = ∆x∆y
∑
i,j ρ

n
i+1/2,j+1/2δxi+1/2,yj+1/2

and ρni+1/2,j+1/2 is computed with
the numerical scheme (4.2).

Lemma 4.1. Assume that ρ0 ∈ P1(R2) and that W satisfies (A1)–(A2). Consider the
scheme (4.2) with

cn = max
i,j

{
|aEi,j+1/2|, |a

W
i,j+1/2|, |a

N
i+1/2,j |, |a

S
i+1/2,j |

}
and assume that ∆t satisfies the CFL condition (4.3). Then for all t > 0 and n ∈ N0:

(i) ρ∆(t) > 0 and
∫
R2 ρ∆(dx, t) = 1,

(ii) cn 6 ‖W‖Lip,
(iii) ρ∆(t) has bounded first order moment:∫

R2

|x| ρ∆(dx, t) 6
∫
R2

|x| ρ0(dx) + 4t‖W‖Lip,

(iv) Let r > 1 and ε > 0. Then∫
R2\[−r,r]2

|x| ρ0(dx) < ε =⇒
∫
R2\[−R,R]2

|x| ρ∆(dx, t) < εC(t),

where R = r + t(max{∆x,∆y}/∆t) and C(t) = exp
(

7
2‖W‖Lipt

)
.

(v) The center of mass is preserved in time, i.e.,∫
R2

x ρ∆(dx, t) =

∫
R2

x ρ0(dx) for all n ∈ N .
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(vi) The map t 7→ ρ∆(t) is uniformly Lipschitz, in the sense that

d1

(
ρ∆(t), ρ∆(s)

)
6 4‖W‖Lip|t− s|

for all t, s > 0, where d1 denotes the Monge–Kantorovich–Rubinstein metric.
(vii) If in addition ρ0 ∈ P2(R) then ρ∆(t) has bounded second order moment:∫
R2

|x|2 ρ∆(dx, t) 6
∫
R2

|x|2 ρ0(dx) + 48t2‖W‖2Lip + 12t‖W‖Lip

∫
R2

|x| ρ0(dx),

Proof. The proof is a simple extension of the proof of Lemma 3.2 to two dimensions and
is therefore omitted. �

By exactly the same approach as in Section 3.4, we can prove convergence of the two-
dimensional scheme.

Theorem 4.2. Let ρ0 ∈ P1(R2), assume that W satisfies properties (A1) and (A2), and
that the CFL condition (4.3) is satisfied. Then for any T > 0, the numerical approximation
ρ∆ generated by the scheme (4.2) has a uniformly convergent subsequence,

sup
t∈[0,T ]

d1

(
ρ∆′(t), ρ(t)

)
→ 0 as ∆′ = (∆x′,∆y′)→ 0,

and the limit ρ is a d1-weak measure solution of (1.1) satisfying

d1(ρ(t), ρ(s)) 6 2‖W‖Lip(R)|t− s| ∀ t, s ∈ R+.

If W also satisfies (A3) and ρ0 ∈ P2(R2) then the whole sequence ρ∆ converges, and the
limit ρ is the unique gradient flow solution of (1.1).

Lemma 4.3. Assume that ρ(t) ∈ C2
c (R2) is sufficiently smooth in time and let W ∈

C3(R2 \ {0}) satisfy (A1). Then the numerical scheme (3.10) converges at a rate of
O(∆x2 + ∆y2) when measured in d1.

Proof. The proof is a straightforward, but tedious, adaptation of Lemma 3.8. The step
in that proof that uses the antisymmetry of W ′ carries over to this case by splitting the
rectangle Ci into four parts, diagonally opposing pairs of which cancel (up to O(∆x2 +
∆y2)) due to the antisymmetry of W . �

Let us finally remark that the generalization to an arbitrary number of dimensions of the
previous scheme is a straightforward extension of the scheme presented here.

(a) Initial data. (b) t = 0.075

FIGURE 3. Initial data (5.1) and corresponding solution of (1.4) with
W (x) = |x| at t = 0.075.
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5. NUMERICAL SIMULATIONS

We provide several numerical examples to examine the performance of the numerical
scheme developed in this paper. We compare it to two numerical schemes: the first-order
Lax–Friedrichs type scheme in [17] and the first-order upwind type scheme in [23], which
will be denoted as 1st LxF and 1st upw respectively. Section 5.1 is devoted to numerical
simulations of the one-dimensional scheme (3.10) with a main focus on the convergence
rates. In Section 5.2 we study the two-dimensional scheme (4.2) and qualitatively compare
it to the first-order schemes.

5.1. Experiments in 1D. In this section the convergence rate of (3.10) is addressed through
different examples. We also provide a few examples to study the qualitative behavior. In
all the numerical experiments the CFL number is set to 0.4 and cn = ‖W‖Lip for all n. A
third-order SSP Runge–Kutta method is used to integrate in time, see [31].

5.1.1. Smooth initial data. We give an example to numerically verify the second-order
convergence rate of (3.10) for smooth enough data by considering approximations of (1.4)
using (3.10) with initial data

(5.1) ρ0 =
1√
π

exp(−36x2),

see Figure 3(a).
The convergence rates can be found in Tables 1 and 2. In Table 1 we consider the

numerical approximation with the attractive potentialW (x) = |x| at a time before blow-up
of the solution, see Figure 3(b). The numerical approximation is compared to a reference
solution found by approximating the solution of Burgers’ equation (1.3) using a second-
order method on a very fine grid and then differentiating the solution at the level of (1.3).
We can see that the second-order method (3.10) converges at rate close to 2 using either of
the fluxes (3.10b) (2nd LxF) and (3.10c) (2nd upw). This is clearly an improvement over
the rates of the first-order methods.

1st LxF 1st upw 2nd LxF 2nd upw
n d1 OOC d1 OOC d1 OOC d1 OOC
32 1.66e− 02 7.44e− 03 5.38e− 03 3.08e− 03
64 9.77e− 03 0.77 4.63e− 03 0.68 1.49e− 03 1.85 1.22e− 03 1.34
128 5.23e− 03 0.90 2.95e− 03 0.65 4.94e− 04 1.60 4.07e− 04 1.58
256 2.70e− 03 0.96 1.75e− 03 0.75 1.50e− 04 1.72 1.13e− 04 1.85
512 1.37e− 03 0.98 9.54e− 04 0.88 4.15e− 05 1.85 2.92e− 05 1.95
1024 6.88e− 04 0.99 4.97e− 04 0.94 1.08e− 05 1.94 7.32e− 06 2.00

TABLE 1. Convergence rates for W (x) = |x| with the smooth initial
data (5.1) at t = 0.075.

1st LxF 1st upw 2nd LxF 2nd upw
n d1 OOC d1 OOC d1 OOC d1 OOC
32 1.71e− 02 6.59e− 03 4.93e− 03 2.54e− 03
64 9.72e− 03 0.82 4.19e− 03 0.65 1.34e− 03 1.88 1.01e− 03 1.32
128 5.01e− 03 0.93 2.64e− 03 0.67 4.59e− 04 1.54 3.27e− 04 1.63
256 2.57e− 03 0.99 1.50e− 03 0.81 1.37e− 04 1.74 8.98e− 05 1.86
512 1.26e− 03 1.03 7.84e− 04 0.94 3.75e− 05 1.87 2.30e− 05 1.97
1024 5.90e− 04 1.09 3.80e− 04 1.05 9.69e− 06 1.95 5.73e− 06 2.00

TABLE 2. Convergence rates for W (x) = 1 − exp(−|x|) with the
smooth initial data (5.1) at t = 0.075.
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n d1 OOC d1 OOC
32 2.17e− 02 2.29e− 02
64 1.23e− 02 0.83 1.17e− 02 0.97
128 5.96e− 03 1.04 5.11e− 03 1.20
256 3.10e− 03 0.95 3.01e− 03 0.76
512 1.49e− 03 1.06 1.53e− 03 0.98
1024 7.88e− 04 0.92 7.39e− 04 1.05

TABLE 3. Convergence rates of (3.10a), (3.10b) with the Dirac initial
data (5.2) at t = 0.1. Left: W (x) = |x|; right: W (x) = 1− exp(−|x|).

We observe similar convergence rates for interaction potentials where we do not have
the equivalence between solutions of (1.4) with W (x) = ±|x| and (1.3), see Table 2.
Here the reference solutions are computed with the respective numerical schemes on a grid
consisting of 213 cells.

5.1.2. Measure valued initial data. We check the convergence rate of the scheme (3.10a),
(3.10b) with potentials W (x) = |x| and W (x) = 1 − exp(−|x|) in the case of measure
valued initial data represented by the sum of two Dirac measures,

(5.2) ρ0 =
1

2

(
δ−0.5 + δ0.5

)
.

The numerical approximation is compared to the exact solution of (1.4) for W (x) = |x|
(which can be found by solving the corresponding particle system (1.2)). In the case
W (x) = 1 − exp(−|x|) the reference solution is found by approximating the position
of the Diracs using a very small timestep. Both reference solutions are projected onto the
same grid as the numerical approximation. The numerical approximations converge at a
rate of ∆x in d1, see Table 3. This is exactly what we expect in the case W (x) = |x| as it
corresponds to a rate of ∆x in L1 for two initial shocks at the level of Burgers’ equation
(1.3). See [51] and [28] for further results on convergence rates for conservation laws.

5.1.3. A possible optimal convergence rate. As observed in the previous section, a second-
order convergence rate (in d1) is not always achievable. Indeed, even in the case of (for-
mally) first-order schemes, one does not always obtain a convergence rate of 1. Delarue,
Lagoutière and Vauchelet prove that their first-order upwind type scheme converges at
a rate of 1/2 in the 2-Wasserstein distance d2 in [23]. Furthermore, an example show-
ing that this rate is optimal (in both d1 and d2) is provided: W (x) = 2x2 for |x| 6 1,
W (x) = 4|x| − 2 for |x| > 1 and ρ0 = 0.5δ−0.25 + 0.5δ0.25. The exact solution of (1.4),
found by solving the corresponding particle system (1.2), is

ρ(t) =
1

2

(
δ−x(t) + δx(t)

)
, x(t) = 0.25e−4t,

in this case. Applying the second-order scheme (3.10) to this example, the convergence rate
improves to 2/3 and 3/4, see Figure 4. Even though the rate is far from 2, this suggests that
the optimal rate of (3.10) is somewhat higher than the one for similar first-order schemes.

5.1.4. Attractive-repulsive potentials. In the case of the attractive-repulsive potential

W (x) = 1/2|x|2 − |x|,

it is known that the (unique) steady state solution of (1.1) is 1/2χ[−1,1], where χ[−1,1] is the
characteristic of the interval [−1, 1], see for instance [24, 25, 26]. Note that this potential
satisfies conditions (A1) and (A2), but not (A3). Hence, from Theorem 3.4 we only know
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FIGURE 4. Possible optimal d1 convergence rates. Black: 1st upw from
[23]. Red: (3.10a), (3.10b). Blue: (3.10a), (3.10c). Time t = 0.5.

that there is a subsequence of (3.11) converging to a d1-weak measure solution ρ. We apply
the schemes (3.10) to W (x) = 1/2|x|2 − |x| and initial data

(5.3) ρ0 =

{
π

1.2 cos
(
π

0.6x
)

if − 0.3 6 x 6 0.3,

0 otherwise,

to see if they converge (in d1) to the right steady state solution. We also apply the schemes
1st LxF and 1st upw to the same test case for comparison.

1st LxF 1st upw 2nd LxF 2nd upw
n d1 OOC d1 OOC d1 OOC d1 OOC
32 5.71e− 02 1.77e− 03 1.69e− 02 1.66e− 03
64 3.01e− 02 0.92 4.70e− 04 1.92 7.12e− 03 1.25 1.66e− 04 3.32
128 1.54e− 02 0.97 1.19e− 04 1.98 2.89e− 03 1.30 1.84e− 05 3.18
256 7.75e− 03 0.99 3.00e− 05 1.99 1.14e− 03 1.34 3.15e− 06 2.54
512 3.89e− 03 0.99 7.51e− 06 2.00 4.56e− 04 1.32 7.21e− 07 2.13
1024 1.95e− 03 1.00 1.88e− 06 2.00 1.81e− 04 1.34 1.44e− 07 2.32

TABLE 4. Convergence rates for W (x) = 1/2|x|2 − |x| with initial data
(5.1) at t = 20.

The two Lax–Friedrichs type schemes exhibit different convergence rates and steady
states than the two upwind type schemes, see Table 4 and Figure 5. Considering the con-
vergence rates in Table 4, the upwind schemes are superior to the LxF schemes. The 1st
upw scheme converges towards the steady state at a rate close to 2 and the 2nd upw scheme
at a rate between 2 and 3, whereas 1st LxF converges at a rate of 1 and 2nd LxF at a rate of
1.33. But, oscillations can be observed in both upwind schemes (see Figure 5(b)), more so
in the first-order scheme than in the second-order one. Oscillations are not observed for the
LxF schemes, see Figure 5(a) (although the 2nd LxF solution contains overshoots). The
oscillations in the upwind schemes perturb very little mass compared to the LxF schemes,
which explains why the upwind approximations are better approximations to 0.5χ[−1,−1]

in the d1 sense.
Next, we consider a potential that is fully covered by Theorem 3.4, W (x) = 1/3|x|3 −

1/2|x|2. This potential is related to the scaled granular media equation studied in [4, 12,
18, 19] for which the convergence as time goes to ∞ towards the homogeneous cooling
state, whose profile is given by two Diracs located symmetrically about the center of mass
separated by length 1, is known. We divide the interval [−1, 1] into 256 cells and consider
the initial data (5.3), see Figure 3(a). As Figure 6 depicts, both the 2nd LxF and the 2nd
upw scheme converge to the expected stationary solution.
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(a) Lax–Friedrichs type schemes (b) Upwind type schemes

FIGURE 5. The four numerical schemes approximating 0.5χ[−1,−1]

with 128 cells for W (x) = 1/2|x|2 − |x| at t = 20.

(a) 2nd LxF (b) 2nd upw

FIGURE 6. Numerical simulations of (3.10) with W (x) = 1/3|x|3 −
1/2|x|2 at t = 50.

Lastly, we study the 1D numerical method (3.10) with a potential that is more singular
than the ones satisfying (A1), (A2), and is therefore not covered by the theory in this paper,
W (x) = 1/2|x|2 − log |x|. Even though W is more singular in this example than in the
previous one, the solution is expected to converge to a steady state that is more regular,
the half-ellipse

√
2− x2/π, as can be seen from the results in [16]. The initial data and

the numerical solution using the 2nd LxF scheme (3.10a), (3.10b) at t = 20 are depicted
in Figure 7, where the numerical solution clearly resembles the halfcircle. The 2nd upw
scheme (3.10a), (3.10c) does not perform well in this case, with severe oscillations. This
and the results above suggest that to get a qualitatively good numerical approximation, one
has to choose a flux depending on the type of solution that one expects.

It can be observed in the last three figures that the numerical method preserves the center
of mass, as expected due to Lemma 3.2 (v).

5.2. Experiments in 2D. We test and compare (4.2) to 1st LxF and 1st upw. In all numer-
ical experiments in this section the CFL number is set to 0.2, cn = ‖W‖Lip and ∆x = ∆y,
and the grid is split into 256× 256 cells unless otherwise stated. Heun’s method is used to
integrate in time. Let

b(x, y, x0, y0, C) := exp
(
−C(x− x0)2 − C(y − y0)2

)
.(5.4)

We will consider two initial data: one “blob” ρ0(x, y) = 1
M b(x, y, x0, y0, 10) centered at

(x0, y0), where b is defined in (5.4) (see Figure 8(a)), and three “blobs”

ρ0 =
1

M

(
b
(
x, y, 1/4, 1/3, 100

)
+ b
(
x, y, 0.8, 0.7, 100

)
+ 0.9b

(
x, y, 0.4, 0.6, 100

))
,

(5.5)
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(a) Initial data (b) Solution at t = 20

FIGURE 7. Convergence to a half-ellipse for 2nd LxF with W (x) =
1/2|x|2 − log(|x|).

see Figure 8(b). The constant M normalizes the mass of ρ0 to 1 in each case.

(a) One blob centered at (1, 1). (b) Three blobs.

FIGURE 8. Initial data.

5.2.1. Attractive potential. We start with the simple case of one blob as initial data,

ρ0(x, y) =
1

M
b(x, y, 0.75, 0.75, 10),

and study the dynamics for the potentialW (x) = |x|, see Figure 9. As expected, in all four
cases the mass of the blob has aggregated into a (very) small area in Figure 9(b), and the
LxF schemes are more diffusive than the upwind schemes. Also, the second order schemes
and the 1st LxF scheme exhibit radially symmetric solutions, see Figure 9(a), but the 1st
upw scheme is only axially symmetric.

To numerically verify that the 2D scheme indeed satisfies Lemma 4.3, we calculate the
convergence rates of the four schemes in the case of the interaction potential W (x, y) =√
x2 + xy + y2. This particular potential is chosen in order to highlight the fact that

∇W (−x) = −∇W (x) is sufficient for Lemma 4.3 to hold. The 2D Monge–Kantorovich
distance is calculated by using the optimal transport algorithm in [46, 45]. As initial data
we choose (5.4) with C = 36 on [0, 2]2. The reference solutions are computed with the re-
spective numerical schemes on a 211×211 grid. As can be seen in Table 5, the convergence
rates are close to two for both 2nd LxF and 2nd upw.

We follow up with the aggregation dynamics in the case of initial data (5.5) and the
potential W (x) = |x|. This test case was considered in both [17] and [23]. The simula-
tions are presented in Figure 10. The second-order schemes clearly resolve the solution
more sharply than the first-order schemes. But, as the second-order methods require the
calculation of twice as many convolutions as the first-order methods in each timestep, the
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(a) t = 1M

(b) t = 2.5M

FIGURE 9. Comparison of all four schemes with W (x) = |x| and one
blob centered at x0 =

(
3/4, 3/4

)
as initial data. From left to right: 1st

order LxF, 1st order upwind, 2nd order LxF, 2nd order upwind. The
normalization factor is M = 0.3137.

1st LxF 1st upw 2nd LxF 2nd upw
n d1 OOC d1 OOC d1 OOC d1 OOC
16 7.84e− 03 4.03e− 03 3.90e− 03 5.57e− 03
32 2.62e− 03 1.58 1.17e− 03 1.78 8.39e− 04 2.21 1.23e− 03 2.18
64 8.10e− 04 1.69 1.12e− 03 0.07 1.02e− 03 −0.27 1.28e− 03 −0.06
128 7.31e− 04 0.15 2.85e− 04 1.97 8.14e− 05 3.64 4.58e− 05 4.80
256 3.43e− 04 1.09 1.37e− 04 1.06 2.01e− 05 2.02 1.10e− 05 2.06
512 1.46e− 04 1.23 0.58e− 04 1.23 0.36e− 05 2.47 0.17e− 05 2.66

TABLE 5. Convergence rates for W (x, y) =
√
x2 + xy + y2 with blob

initial data (C = 36) centered at (1, 1) on [0, 2]2 at time t = 0.075M .

runtimes of the second-order methods are (more than) twice as high as those for the first-
order methods. Reducing the resolution of the grid to 202 × 202, the runtimes of the
second-order methods are lower than those of the first-order methods on a 256× 256 grid.
Still the second-order methods are sharper than the first-order methods, see Figure 11. We
conclude that the computational efficiency of the second-order schemes is higher than that
of the first-order schemes.

5.2.2. Dissipation of the interaction energy. After several numerical experiments we ob-
serve that the energy (2.1) of the second-order numerical scheme developed in this paper
seems to be monotonically decreasing over time when W satisfies (A1)–(A3), both in
1D and 2D. Figure 12 depicts the decreasing energy for the potentials W (x) = |x| and
W (x) = 1 − exp(−5|x|) with initial data (5.5). As proven in Section 3.6, we know that
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(a) 1st LxF

(b) 1st upw

(c) 2nd LxF

(d) 2nd upw

FIGURE 10. Comparison of all four schemes with W (x) = |x| and
initial data (5.5). From left to right: t = 2.5M, 5M, 5.5M, 6M . The
normalization factor is M = 0.0910.
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(a) 1st order LxF 256× 256 (b) 2nd order LxF 202× 202

(c) 1st order upwind 256× 256 (d) 2nd order upwind 202× 202

FIGURE 11. Numerical experiment withW (x) = |x| at t = 2.5M . The
normalization factor is M = 0.0910.

FIGURE 12. Decay of the energy (2.1). Computed with 2nd LxF on a
256× 256 grid. Left: W (x) = |x|. Right: W (x) = 1− exp(−5|x|).

this is almost true for our scheme in the sense that any energy production can be made ar-
bitrarily small. The decay in energy is in accordance with the existing theory for gradient
flow solutions of (1.1).

5.2.3. Attractive-repulsive potentials. In this section we only consider initial data consist-
ing of one blob, ρ0(x, y) = 1

M b(x, y, 1, 1, 10). First we study the numerical schemes with
the potential W (x) = 1/4|x|4 − 1/2|x|2, which is fully covered by Theorem 4.2. With
this potential, the solution of (1.1) should converge to the uniform distribution on a circle,
which we call a δ–ring, of radius

√
3/3 as t → ∞, see [3, 2]. All the numerical schemes

form an approximation to a δ–ring, see Figure 13(b), but the 1st upw scheme looks quite
different from the others before that point, see Figure 13(a). The schemes form spikes
along the circles in Figure 13(b) (with the exception of the 1st LxF scheme), which are
plausibly caused by the attempt to approximate a circle on a rectangular grid.

We now turn to a more singular potential, the 2D version of the first potential in Section
5.1.4, W (x) = 1/2|x|2 − log |x|/

√
2π. In this case we do not have any proof of the

convergence properties of the scheme (4.2), but we know from [26, 7, 14] that the steady
state exact solution of (1.1) is the characteristic of the unit disk with height

√
2/π. The
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(a) t = 5M

(b) t = 20M

FIGURE 13. Comparison of all four schemes with W (x) = 0.25|x|4 −
0.5|x|2 at two different times. One blob centered at (1, 1) as initial data.
From left to right: 1st LxF, 1st upw, 2nd LxF, 2nd upw. The normaliza-
tion factor is M = 0.3137.

simulations can be found in Figures 14(a)–(b). All four schemes act similarly to their 1D
counterpart, see Figure 5.

6. CONCLUSIONS AND OPEN QUESTIONS

We have developed a (formally) second-order accurate scheme for the aggregation
equation (1.1) that is shown to have a uniformly convergent subsequence in the Monge–
Kantorovich distance d1 to a distributional solution of (1.1) under the assumptions (A1)–
(A2). Under the additional assumption (A3) the limit is shown to be the unique gradient
flow solution of (1.1). (See Theorems 3.4 and 4.2 for the exact statements.)

Numerical examples have been provided to demonstrate that the scheme can indeed ob-
tain a second-order convergence rate when the solution is smooth enough and to show that
it resolves the solution more sharply than the corresponding first-order schemes. Examples
showing that the scheme also handles attractive-repulsive potentials, for which the conver-
gence of the scheme is unknown and not covered by the theory, are provided. An overall
good qualitative behavior is observed albeit with minor overshoots and oscillations which
are typically present in other finite volume schemes [13] or variational schemes [21] due
to the singularity of the asymptotic behavior of the solutions for these specific cases.

Finding a rate of convergence for our scheme is currently out of reach. Due to the recon-
struction procedure utilized in the scheme presented here, it is not covered by the conver-
gence rate results in [22, 23]. A proof of a rate of convergence would be highly desirable,
but given the immense difficulty in proving high-order (higher than ∆x

1/2) convergence
rates for numerical methods for hyperbolic conservation laws (1.3), this is expected to be
very challenging.
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(a) t = 4M

(b) t = 10M

FIGURE 14. Comparison of all four schemes with W (x) = 1/2|x|2 −
log(|x|)/

√
2π at two different times. One blob centered at (1, 1) as ini-

tial data. From left to right: 1st LxF, 1st upw, 2nd LxF, 2nd upw. The
normalization factor is M = 0.3137
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