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A B S T R A C T   

An articulated intervention autonomous underwater vehicle (AIAUV) is a slender, multi-articulated underwater 
robot. Accurate trajectory tracking is essential for AIAUV operations. Furthermore, due to hydrodynamic and 
hydrostatic parameter uncertainties, uncertain thruster characteristics, unknown disturbances, and unmodelled 
dynamic effects, robustness is crucial. In this paper, we present a super-twisting algorithm (STA) with adaptive 
gains and a generalized super-twisting algorithm (GSTA) for trajectory tracking of the position and orientation of 
AIAUVs. A higher-order sliding mode observer (HOSMO) for estimating the linear and angular velocities when 
velocity measurements are unavailable is also presented. The tracking errors for the resulting system are proven 
to converge asymptotically to zero. Finally, we demonstrate the applicability of the presented control laws with 
comprehensive simulation and experimental results and perform a comparison study, with two tests (C-shape and 
C-shape with a moving head), between the two algorithms and also a benchmark PID controller. The STA with 
adaptive gains exhibits the best overall tracking performance, with average position root mean square error 
(RMSE) 0.0121 m and average orientation RMSE 0.0335 rad. The GSTA also presented good results with average 
position RMSE 0.0267 m and average orientation RMSE 0.0292 rad. The PID controller gave average position 
RMSE 0.0371 m and average orientation RMSE 0.0491 rad.   

1. Introduction 

An articulated intervention autonomous underwater vehicle 
(AIAUV) is an underwater swimming manipulator. It has the slender, 
multi-articulated body of an underwater snake robot (USR), which im-
parts the AIAUV with accessibility and flexibility, but it also has multiple 
thrusters along its body. The thrusters enable the AIAUV to move for-
ward without using an undulating gait pattern and provides it with the 
ability to hover. This property is especially important for station- 
keeping and trajectory tracking in narrow and confined spaces. These 
capabilities enable the AIAUV to operate as a floating base manipulator. 
Moreover, the AIAUV has adopted the flexibility and high-kinematic 
redundancy of the USR and the energy-efficient shape and tether-less 
operation of autonomous underwater vehicles (AUVs). Compared to 
standard survey AUVs, the AIAUV has the advantage that it has full 
actuation, and it can perform intervention tasks. Since it can use its 
slender body to access narrow spaces, use its thrusters to keep itself 
stationary and then use its joints to perform intervention tasks, the 
AIAUV can exploit the full potential of the inherent kinematic 

redundancy, which has been addressed in detail in (Sverdrup-Thygeson 
et al., 2016), (Sverdrup-Thygeson et al., 2018). 

The controller design for underwater vehicles (UVs) such as AIAUVs, 
AUVs, USRs and remotely operated vehicles (ROVs) is a complex 
problem (Antonelli, 2014). Underwater vehicles are often subject to 
hydrodynamic and hydrostatic parameter uncertainties, uncertain 
thruster characteristics, unknown disturbances, and unmodelled dy-
namic effects. However, the control design for the AIAUV is more 
complex than for the other mentioned UVs, and control methods used 
for these type of vehicles can therefore not be directly applied. Specif-
ically, the AIAUV has the same mechanical structure as a USR while also 
possessing hovering and intervention capabilities because of the 
thrusters. Path following and manoeuvring control of USRs are discussed 
in (Kelasidi et al., 2014, 2017a; Kohl et al., 2016a, 2016b, 2017a, 
2017b); however, these method are not suitable for utilizing the 
AIAUV’s hovering and intervention capabilities. The AUV is a 
single-body UV, and some methods for control design have been pro-
posed in (Fossen, 2011), while the AIAUV is a floating-base manipulator 
arm. We therefore face the additional challenge of handling the 
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interaction forces, also referred to as coupling forces, between the arm 
and the vehicle. Several different control approaches that address these 
challenges are summarized and presented in (Antonelli, 2014). However 
(Antonelli, 2014), considers mostly ROVs. ROVs also face these chal-
lenges, but for the AIAUV, the motion of the joints has a more significant 
effect on the overall motion of the AIAUV than for ROVs. This is because 
the AIAUV has no separate vehicle base and a low mass compared to an 
ROV, while ROVs have a separate base with a larger inertia than that of 
the manipulator arm. Furthermore, inertia, drag forces, and restoring 
forces and moments caused by the joint motion have a significant effect 
on the overall motion of the whole mechanism, for which any joint 
motion leads to a corresponding change in the direction of the thrusters 
that are distributed along the robot. All this increases the complexity of 
the motion for the AIAUV, thereby rendering the control problem even 
more complex than for ROVs. For the AIAUV in particular, some 
methods for propulsion have been proposed in (Kelasidi et al., 2016, 
Kelasidi et al., 2017b), and energy-efficient methods for long-distance 
travel have been proposed in (Wrzos-Kaminska et al., 2019). In (Sver-
drup-Thygeson et al., 2016, 2018), a control framework for AIAUVs that 
uses inverse kinematic (IK) control together with a dynamic controller is 
proposed. However, in both papers, IK is the main focus. The dynamic 
controller proposed in (Sverdrup-Thygeson et al., 2016) is only a simple 
P-controller, and the controller proposed in (Sverdrup-Thygeson et al., 
2018) is a feedback-linearisation controller combined with a 
velocity-based proportional-integral-derivative (PID)-controller. More-
over, none of these methods focus on robust control, which is essential 
for the AIAUV due to large coupling forces, unknown disturbances and 
other unmodelled dynamic effects that affect the AIAUV. Sliding mode 
control (SMC) is a robust and versatile non-linear control approach that 
is particularly well suited for situations where unknown non-linearities 
affect the system, as in the case of AIAUVs. In this paper we therefore 
investigate using SMC to obtain a robust trajectory tracking controller. 

In recent years, several results have been reported regarding the use 
of SMC for many complex dynamic systems. For UVs, in general, some 
relevant contributions are the following: in (Antonelli and Chiaverini, 
1998), an SMC approach for the regulation problem of an underwater 
vehicle-manipulator system is developed. This control law is inspired by 
(Fjellstad and Fossen, 1994) and avoids the inversion of the system Ja-
cobian and is therefore singularity-free. In (Fossen, 1991) and (Fossen 
and Sagatun, 1991), an SMC is used to address input uncertainty due to 
partly known non-linear thruster characteristics. In (Soylu et al., 2008), 
a chattering-free SMC is proposed for trajectory control. The 
chattering-free approach is developed by combining the SMC with 
adaptive proportional-integral-derivative controller gains and having an 
adaptive update of the upper bound on the disturbance and parameter 
uncertainties. In (Dannigan and Russell, 1998), an SMC is used to 
address the coupling effects between a manipulator and an UV. By 
combining a virtual velocity control and SMC, a hybrid control strategy 
is developed in (Zhu and Sun, 2013) for the trajectory tracking of an 
unmanned UV. In (Xu et al., 2015), the trajectory tracking problem of an 
under-actuated unmanned UV is studied by combining backstepping and 
SMC. An attitude controller for an AUV is designed in (Cui et al., 2016) 
by using a sliding-mode-based adaptive controller. In (Liu et al., 2017), 
the trajectory tracking problem for an UV subject to unknown system 
uncertainties and time-varying external disturbances is considered and 
is solved by using a non-linear disturbance observer-based backstepping 
finite-time SMC scheme. In (von Ellenrieder and Henninger, 2019) a 
third-order sliding mode disturbance observer, coupled with a modified 
super twisting controller, is proposed for the trajectory tracking of 
fully-actuated marine vehicles in the presence of unknown, time-varying 
disturbances. However, as mentioned in the previous section the control 
design for the AIAUV is more complex than for the other mentioned UVs, 
and control methods used for these type of vehicles can therefore not be 
directly applied. 

In recent years, SMC has been further developed into higher-order 
SMC schemes, which removes the chattering problem. The super- 

twisting algorithm (STA) with adaptive gains, proposed by (Shtessel 
et al., 2010), is the most powerful second-order continuous SMC algo-
rithm as it attenuates chattering and does not require the consideration 
of any conservative upper bound on the disturbance to maintain sliding 
because of the adaptive gains. Motivated by this (Borlaug et al., 2019a), 
applied the STA together with a higher-order sliding mode observer 
(HOSMO) (Kumari et al., 2016) to an AIAUV. The tracking problem of 
the centre of mass of the AIAUV in 2DOF was considered. The tracking 
errors were proven to converge asymptomatically to zero, and the 
simulation results demonstrated that the proposed control method 
provided excellent tracking capabilities. However, the tracking control 
problem was restricted to considering the position of the AIAUV in 
2DOF, and the movements of the joints were considered to be a distur-
bance. We therefore extended these results in (Borlaug et al., 2018) by 
considering the AIAUV in 6DOF and examining the tracking problem for 
the position, orientation and joint angles. Equally good results were 
obtained in 6DOF as in 2DOF both in theory and in simulations. In 
(Borlaug et al., 2019a) and (Borlaug et al., 2018), an HOSMO had to be 
used because velocity measurements were unavailable. In (Borlaug 
et al., 2019b), we proposed using the generalized super-twisting algo-
rithm (GSTA) proposed in (Castillo et al., 2018) for trajectory tracking of 
an AIAUV in 6DOF. In (Borlaug et al., 2020), we extended the results 
obtained in (Borlaug et al., 2019b) to include results with and without 
an HOSMO for trajectory tracking of an AIAUV in 6DOF. The GSTA is an 
extension of the STA that provides finite-time convergence in the pres-
ence of time- and state-dependent perturbations, which is essential for 
robust control of the AIAUV. These properties provide the GSTA with 
additional theoretical advantages over the STA with adaptive gains. 
These theoretical advantages enable verification that the tracking errors 
converge asymptotically to zero when the GSTA is used without an 
HOSMO, which is not possible for the STA with adaptive gains. 

In this paper, we investigate the use of the STA with adaptive gains 
compared to the use of the GSTA. Specifically, we use both the STA with 
adaptive gains and the GSTA for the trajectory tracking of the position 
and orientation of the base of an AIAUV in 6DOF. We also solve the 
tracking problem using a PID controller to evaluate how the SMC al-
gorithms perform compared to a linear controller. An HOSMO for esti-
mating the linear and angular velocities when velocity measurements 
are unavailable is also presented. Furthermore, the tracking errors for 
the control law using the STA with adaptive gains in combination with 
the HOSMO are proven to converge asymptotically to zero. Finally, we 
demonstrate the applicability of the proposed control laws with 
comprehensive simulation and experimental results, and we compare 
the results. The main objective of this paper is a comparison between the 
STA with adaptive gains, the GSTA and a PID controller. In addition, the 
paper extends the results obtained in (Borlaug et al., 2019a) from 2DOF 
to 6DOF. In (Borlaug et al., 2019a), the tracking problem of the centre of 
mass of the AIAUV in 2DOF was considered and solved using the STA 
with adaptive gains in combination with an HOSMO, and the tracking 
errors were proven to converge asymptotically to zero. Preliminary re-
sults were presented in (Borlaug et al., 2018). In this paper, these results 
are extended by also solving the tracking control problem using the STA 
with adaptive gains without an HOSMO. We also include extensive 
simulation and experimental results not presented in (Borlaug et al., 
2018) using the STA with adaptive gains. In (Borlaug et al., 2019b), the 
tracking control problem is considered and solved using the GSTA 
without an HOSMO. In (Borlaug et al., 2020), the tracking control 
problem is considered and solved using the GSTA with and without an 
HOSMO, and simulation and experimental results are given. The simu-
lation and experimental results given in (Borlaug et al., 2020) are 
included in this paper to perform a comparison study between the STA 
with adaptive gains proposed here with the GSTA proposed in (Borlaug 
et al., 2020). The two algorithms are further compared with a bench-
mark PID controller. 

The contributions of this paper can be summarized as follows. The 
trajectory tracking control problem of an AIAUV in 6DOF is solved using 
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the STA with adaptive gains. The trajectory tracking control problem is 
also solved by using the algorithm in combination with an HOSMO. 
Additionally, the tracking errors for the control law using the STA with 
adaptive gains in combination with the HOSMO are proven to converge 
asymptotically to zero. We demonstrate the applicability of the pre-
sented control laws with comprehensive simulation and experimental 
results, and we compare these results with the GSTA proposed in (Bor-
laug et al., 2020) as well as with a PID controller. 

The remainder of this paper is organized as follows. In Sec. 2, the 
model and the tracking control problem for the AIAUV are defined 
mathematically. The control law and observer design for tracking the 
desired trajectory are presented and analysed in Sec. 3 for all three al-
gorithms. A description of the implemented simulation model and the 
simulation results are provided in Sec. 4. In Sec. 5, the experimental set- 
up and the experimental results are given. The conclusions and sug-
gestions for future work are presented in Sec. 6. 

2. AIAUV model and problem statement 

In this section, we provide the model and the mathematical defini-
tion of the tracking control problem for the AIAUV, Fig. 1. The AIAUV 
consists of n links connected by n − 1 motorized joints. Each joint is 
treated as a one-dimensional Euclidean joint. To follow the convention 
used in the robotics community, the first link is referred to as the base of 
the manipulator. The base link is link 1, and the front link, where the 
end-effector is positioned, is link n. A visual representation of the rele-
vant frames is given in Fig. 2. In the right corner of Fig. 2 the link frames 
(blue coordinate-systems) have been visualized for a completely out-
stretched robot. Note that link frame 1 corresponds to the base frame. 
The joints are numbered from i = 1 to n − 1 such that link i and link i+ 1 
are connected by joint i. 

Furthermore, the AIAUV is equipped with m thrusters, including one 
or more thrusters acting along the body of the AIAUV to provide forward 
thrust and tunnel thrusters acting through the links to provide station- 
keeping capability. The AIAUV is considered to be a floating base 
manipulator operating in an underwater environment subject to added 
mass forces, dissipative drag forces, and gravity and buoyancy forces, 
which allows us to model the AIAUV as an underwater vehicle- 
manipulator system (UVMS), with dynamic equations given in matrix 
form by (Antonelli, 2014), (From et al., 2014) 

M(q)ζ̇+C(q, ζ)ζ+D(q, ζ)ζ+ g
(
q,RI

B

)
= τ(q) (1)  

where q ∈ R(n− 1) is the vector representing the joint angles, ζ ∈ R6+(n− 1)

is the vector of body-fixed velocities, M(q) is the inertia matrix including 
added mass terms, C(q, ζ) is the Coriolis-centripetal matrix, D(q, ζ) is the 
damping matrix, and g(q,RI

B) is the matrix of gravitational and buoyancy 
forces. The control input is given by the generalized forces τ(q): 

τ(q)=
[

T(q) 06×(n− 1)
0(n− 1)×m I(n− 1)×(n− 1)

][
τthr
τq

]

(2)  

where T(q) ∈ R6×m is the thruster configuration matrix, τthr ∈ Rm is the 
vector of thruster forces, and τq ∈ R(n− 1) represents the joint torques. To 
implement the control input τ(q), a thruster allocation scheme as pro-
posed in (Sverdrup-Thygeson et al., 2018) needs to be implemented to 
distribute the desired control inputs onto the m thrusters. The vector of 
body-fixed velocities, ζ, is defined as 

ζ= [ vT ωT q̇T ]
T (3)  

where v and ω are the body-fixed linear and angular velocities of the 
base of the AIAUV, respectively, and q̇ is the vector of joint angle ve-
locities. The desired velocities are denoted as 

ζd =
[

vT
d ωT

d q̇T
d

]T
(4)  

in the body-fixed frame. The velocity errors can then be defined as 

ζ̃= ζ − ζd (5)  

where ζ and ζd are defined as in (3) and (4), respectively. To represent 
the orientation of the AIAUV, both Euler angles and quaternions can be 
used. In this paper, we will describe both methods, as we use quater-
nions to describe the dynamics when we create the control laws without 
the HOSMO and Euler angles when we create the control laws that use 
the estimated velocities from the HOSMO. The reason is that the HOSMO 
does not work with quaternions as a different number of states in po-
sition versus velocity then occurs. 

2.1. Model representation using euler angles 

In this section, we will describe the model using Euler angles. A well- 
known problem when we use Euler angles is that the Jacobian can 
become singular at θ = ±π/2 (xyz-convention); however, if we stay 
away from that angle, the Jacobian is well defined and the inverse of the 
Jacobian matrix can still be used. When we use Euler angles to describe 
the AIAUV, we can use the HOSMO from (Kumari et al., 2016) to esti-
mate the velocity such that we do not require velocity measurements. 
The complete state vector specifying the position, orientation, and shape 
of the AIAUV when Euler angles are used is defined as 

ξe =
[

ηT
1 ηT

2 qT
]T

∈ R6+(n− 1) (6)  

where η1 = [ x y z ]T ∈ R3 is the position of the base, and η2 =

[φ θ ψ ]
T
∈ R3 are the Euler angles describing the orientation of the 

base in the inertial frame. The relationship between the body-fixed ve-
locities and the complete state vector is given by the differential equa-
tion 

ξ̇e = Je(η2)ζ=

⎡

⎢
⎢
⎣

RI
B 03×3 03×(n− 1)

03×3 J− 1
k,o 03×(n− 1)

0(n− 1)×3 0(n− 1)×3 I(n− 1)×(n− 1)

⎤

⎥
⎥
⎦ζ (7)  

where 

RB
I (η2) =

⎡

⎣
cψ cθ sψ cθ − sθ
− sψ cφ + cψ sθsφ cψ cφ + sψ sθsφ sφcθ
sψ sφ + cψ sθcφ − cψ sφ + sψ sθcφ cφcθ

⎤

⎦ (8) Fig. 1. The Eelume AIAUV (courtesy of Eelume).  
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with cx = cos(x) and sx = sin(x), is the rotation matrix expressing the 
transformation from the inertial frame to the body-fixed frame and 

Jk,o(η2)=

⎡

⎣
1 0 − sθ
0 cφ cθsφ
0 − sφ cθcφ

⎤

⎦ (9)  

is the Jacobian matrix. By defining the desired trajectory as ξe,d =
[

ηT
1,d ηT

2,d qT
d

]T
, the tracking error vector can be defined as 

ξ̃e =

⎡

⎣
η̃1
η̃2
q̃

⎤

⎦ =

⎡

⎣
η1 − η1,d
η2 − η2,d
q − qd

⎤

⎦ (10) 

The goal of the tracking problem is to make the error vector, ξ̃e, 
converge to zero. Therefore, the tracking control objective is to make 
(ξ̃e, ζ̃) = (0, 0) an asymptotically stable equilibrium point of (1) and (7), 
which will ensure that the tracking errors will converge to zero. 

2.2. Model representation using quaternions 

In this section, we will describe the model using quaternions. When 
we use quaternions to represent the model, we avoid the singularities in 
the Jacobian matrix that arise from the Euler angles. We therefore obtain 
the advantage of a well-defined Jacobian, which means that we can use 
the inverse of the Jacobian matrix. The complete state vector specifying 
the position, orientation, and shape of the AIAUV when quaternions are 
used is defined as 

ξq =
[

ηT
1 pT qT

]T
∈ R7+(n− 1) (11)  

where η1 = [ x y z ]T ∈ R3 is the position of the base, and p =
[

εT η
]T

= [ ε1 ε2 ε3 η ]T ∈ R4 is the unit quaternion describing the 
orientation of the base in the inertial frame. The relationship between 
the body-fixed velocities and the complete state vector specifying the 
position, orientation, and shape of the AIAUV is given by the differential 
equation 

ξ̇q = Jq(p)ζ=

⎡

⎢
⎢
⎣

RI
B(p) 03×3 03×(n− 1)

04×3 Jk,oq(p) 04×(n− 1)

0(n− 1)×3 0(n− 1)×3 I(n− 1)×(n− 1)

⎤

⎥
⎥
⎦ζ (12)  

where RB
I is the rotation matrix expressing the transformation from the 

inertial frame to the body-fixed frame, and Jk,oq(p) = 1
2

[
ηI3 + S(ε)
− εT

]

, 

where I3 is the (3×3) identity matrix, and S( ⋅) is the cross-product 
operator defined as in [10, Definition2.2]. By defining the desired tra-
jectories as 

ξq,d =
[

ηT
1,d pT

d qT
d
]T (13)  

where pd =
[

εT
d ηd

]T, the orientation error, which is computed via the 
composition (quaternion product) (Antonelli, 2014), is then given by 

p̃=
[

ε̃
η̃

]

=

[
ηεd − ηdε + S(εd)ε
ηηd + εT εd

]

(14) 

The complete tracking error can then be defined as 

ξ̃q =

⎡

⎣
η̃1
ε̃
q̃

⎤

⎦ =

⎡

⎣
η1 − η1,d
ηεd − ηdε + S(εd)ε
q − qd

⎤

⎦ (15)  

Remark 1. Note that for the orientation, the goal is to ensure that p =

±pd, which corresponds to p̃ = [ 01×3 ±1 ]
T. Now, since the Euler pa-

rameters satisfy η2 + εTε = 1, it is sufficient to make ̃ε→0 because then 
p̃ = [01×3 ±1 ]

T. Therefore, ̃η is not included as an independent state in 
(15). 

The goal of the tracking problem is to make the error vector (15) 
converge to zero. Therefore, the tracking control objective is to make 
(ξ̃q, ζ̃) = (0, 0) an asymptotically stable equilibrium point of (1) and 
(12), which will ensure that the tracking error will converge to zero. 

3. Tracking control laws 

In this section, we will present the tracking control laws for the 
AIAUV using three different algorithms: the STA with adaptive gains, the 
GSTA and a PID controller. The control laws based on the GSTA obtained 
in (Borlaug et al., 2020) are briefly presented here for completeness. The 
control structure used when velocity measurements are available is 
presented in Fig. 3, and the control structure used when a HOSMO is 
used for state estimation is presented in Fig. 4. 

Fig. 2. Coordinate frames for the AIAUV (Credit: Arnt Erik Stene and Marianna Wrzos-Kaminska).  
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3.1. Super-twisting algorithm with adaptive gains 

In this section, we will present two tracking control laws for the 
AIAUV based on the STA with adaptive gains: one where only the STA 
with adaptive gains is used, and one where the STA with adaptive gains 
is combined with an HOSMO. 

3.1.1. Control law based on the STA with adaptive gains 
In this section, a control law based on the STA with adaptive gains is 

presented. 
Sliding surface: For SMC to be used, a sliding surface needs to be 

designed. The surface should be designed such that when the sliding 
variable σ goes to zero, the state variables asymptotically converge to 
zero, and such that the control input τ(q) appears in the first derivative 
of σ. Define x̃1,q = ξ̃q, where ξ̃q is given by (15) and 

x̃2,q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

RI
B(p̃) 03×3 03×(n− 1)

03×3
1
2
(η̃I3 + S(ε̃)) 03×(n− 1)

0(n− 1)×3 0(n− 1)×3 I(n− 1)×(n− 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(ζ − ζd)

= Tq(p̃)ζ̃

(16)  

where ζ and ζd are defined in (3) and (4), respectively. The sliding 
surface can then be chosen as 

σq = x̃1,q + x̃2,q ∈ R6+(n− 1) (17) 

If σq = 0, we will now have ̃x1,q + x̃2,q = 0. Since x̃2,q = ˙̃x1,q, we can 
write this as 

˙̃x1,q = − x̃1,q (18)  

which will ensure that x̃1,q globally exponentially converges to zero. 
Now, since x̃1,q = ξ̃q, the state variables ξ̃q will also globally exponen-
tially converge to zero if σq = 0. To drive the sliding surface to zero, we 
will use the STA with adaptive gains. 

Super-twisting algorithm with adaptive gains: Here, we present 
the equations describing the STA with adaptive gains in detail. The STA 
with adaptive gains proposed in (Shtessel et al., 2010) can be written by 

uSTA(σ) = − α|σ|
1
2sgn  (σ)  +  v ∈ ℝ6+(n− 1)

v̇ = − βsgn(σ) (19)  

where the adaptive gains are defined as 

α̇=

⎧
⎨

⎩

ω1

̅̅̅̅
γ1

2

√

if  σ ∕= 0

0, if  σ = 0
(20)  

and 

β= 2εα + λ + 4ε2 (21)  

where ε ∈ R6+(n− 1), λ ∈ R6+(n− 1), γ1 ∈ R6+(n− 1) and ω1 ∈ R6+(n− 1) are 
positive constants, and σ is the sliding surface. Note that the mathe-
matical operations in (19), (20) and (21) are performed in an element- 
wise manner. For implementation purposes, a small boundary is 
placed on the sliding surface such that the adaptive gains can be 
expressed as 

α̇ =

⎧
⎪⎨

⎪⎩

ω1

̅̅̅̅
γ1

2

√

if  |σ| > αm

0, if  |σ| ≤ αm

β = 2εα + λ + 4ε2

(22)  

where the design parameter αm is a small positive constant selected 
empirically. This boundary is introduced because numerically σ will 
never be exactly zero meaning that in practical implementations the 
second condition of (20) will never be met, which would make the 
adaptive gains increase to infinity. The STA with adaptive gains makes σ 
and σ̇ go to zero in finite time (Shtessel et al., 2010). 

Control input: Now, we want the control input τ(q) to be selected 
such that σ̇q = uSTA, so that σq and σ̇q will reach zero in finite time. 
However, since we do not know anything about the model, we choose 
our control input to be 

τ(q)= uSTA
(
σq
)

(23)  

with σq defined as in (17). With this choice, uSTA appears in σ̇q, as 
desired. 

3.1.2. Control law based on the STA with adaptive gains combined with a 
higher-order sliding mode observer 

In this section, a control law based on the STA with adaptive gains 
combined with an HOSMO will be derived. Using Lyapunov theory, we 
will show that (ξ̃e, ζ̃) = (0, 0) is an asymptotically stable equilibrium 
point of (1) and (7) with the proposed control law. 

State observer: Because velocity measurements are not available, a 
state observer has to be designed. We want to use the third-order sliding 
mode observer (SMO) presented in (Kumari et al., 2016) as it has been 
proven to be finite-time stable in (Moreno, 2012). To use this third-order 
SMO, we introduce a change of variables. Define x1,e = ξe, where ξe is 

Fig. 3. Illustration of the control structure when velocity measurements are available.  

Fig. 4. Illustration of the control structure when a HOSMO is used for state estimation.  
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given by (6), and x2,e = Je(η2)ζ, where Je(η2)ζ is given by (7). The dy-
namics can then be written as   

Assumption 1. We assume that d
dt (Je(η2))J− 1

e (η2)x2,e is a small boun-
ded disturbance, which we will call d(t). 

We also define f( ⋅)= − C(q,J− 1
e (η2)x2,e)J− 1

e (η2)x2,e − D(q,J− 1
e (η2)x2,e)

J− 1
e (η2)x2,e − g

(
q,RI

B
)

to reduce the space used to write the model. The model can then be 
written as 

ẋ1,e = x2,e
ẋ2,e = d(t) + M− 1(q)Je(η2)(f (⋅) + τ(q)) (25) 

By designing the third-order SMO structure as in (Kumari et al., 
2016), the third-order SMO can be written as 

˙̂x1 = x̂2 + z1
˙̂x2 = x̂3 + z2 + M− 1(q)Je(η2)τ(q)
˙̂x3 = z3

(26)  

where 

z1 = k1

⃒
⃒
⃒e1|

2/3sgn(e1)

z2 = k2

⃒
⃒
⃒e1|

1/3sgn(e1)

z3 = k3 sgn(e1)

(27)  

and k1 ∈ R6+(n− 1), k2 ∈ R6+(n− 1) and k3 ∈ R6+(n− 1) are gains to be chosen 
according to (Levant, 1998) and (Levant, 2003), where e1 = x1,e − x̂1 ∈

R6+(n− 1). One choice of parameters that satisfies the requirements in 
(Levant, 1998) and (Levant, 2003) is, according to (Chalanga et al., 

2016), k1 = 6L1/3, k2 = 11L1/2 and k3 = 6L, where L ∈ R6+(n− 1) is a 
sufficiently large constant. Note that the mathematical operations in 
(26) and (27) are performed in an element-wise manner. By defining 
e2 = x2,e − x̂2 and e3 = − x̂3 + F( ⋅), where F( ⋅) = d(t)+
M− 1(q)Je(η2)f( ⋅), the error dynamics of the HOSMO can be written as 

ė1 = − k1

⃒
⃒
⃒
⃒e1|

2/3sgn(e1) + e2

ė2 = − k2

⃒
⃒
⃒
⃒e1|

1/3sgn(e1) + e3.

ė3 = − k3 sgn(e1) + Ḟ(⋅)

(28) 

If 
⃒
⃒
⃒Ḟ( ⋅)

⃒
⃒
⃒ < Δ, then the third-order SMO errors go to zero in finite time 

(Moreno, 2012). Since F( ⋅) is a combination of d(t), C(q,
J− 1

e (η2)x2,e)J− 1
e (η2)x2,e, D(q, J− 1

e (η2)x2,e)J− 1
e (η2)x2,e and g(q,RI

B), and since 

the AIAUV is a mechanical system, these matrices will not change infi-
nitely fast. Therefore, assuming that Ḟ(p, ζ, η2) is bounded is a valid 

assumption. 
Sliding surface: As mentioned previously, we have to design a 

sliding surface to use SMC. The sliding surface is designed in the same 
manner as in Sec. 3.1.1. When the velocity measurement is available, we 
choose the sliding surface to be 

σe = x̃1,e + x̃2,e ∈ R6+(n− 1) (29)  

where x̃1,e = ξ̃e, with ξ̃e defined as in (10), and x̃2,e = Je(η2)ζ −
Je(η2,d)ζd, where Je(η2)ζ is defined in (7). If σe = 0, we will now have 

x̃1,e + x̃2,e = 0. Since x̃2,e = ˙̃x1,e, we can write this as 

˙̃x1,e = − x̃1,e (30)  

which will ensure that x̃1,e globally exponentially converges to zero. 
Now, since x̃1,e = ξ̃e, the state variables ξ̃e will also globally exponen-
tially converge to zero if σe = 0. When the velocity measurement is not 
available, the observed state values are used, and we can therefore write 
the sliding surface with the observed values as 

σ̂ e = ̂̃x1 + ̂̃x2 ∈ R6+(n− 1) (31)  

where ̂̃x1 = x̂1 − ξe,d and ̂̃x2 = x̂2 − Je(η2,d)ζd. Since the third-order 
SMO errors in (28) go to zero in finite time, σ̂e = σe after some finite 
time. Thus, if σ̂e goes to zero, the tracking objective will be satisfied. To 
drive the sliding surface to zero, we will use the STA with adaptive gains. 

Control input: By designing the control input τ(q) such that ˙̂σe =

uSTA, we achieve that σ̂e and ˙̂σe reach zero in finite time since the STA is 
finite-time stable. Taking the time derivative of (31) and substituting ˙̂x1 

and ˙̂x2, defined in (26), we find that   

By choosing τ(q) to be 

τ(q)= Je(η2)
− 1M(q)

(

− x̂2 − z1 + ẋ1,d − x̂3 − z2 + ẋ2,d + uSTA

)

(33)  

we obtain 

˙̂σe = uSTA

(
σ̂e

)
. (34) 

Stability: In this section, we perform a stability analysis of the 
closed-loop system and show that the tracking error converges asymp-
totically to zero. We consider the closed-loop system defined by (1), (7) 
and (33). By using the fact that x̂1 = x1,e − e1 and that x̂2 = x2,e − e2, 
from Sec. 3.1.2, (31) can be written as 

˙̂σe =
˙̂x̃1 +

˙̂x̃2 = ˙̂x1 − ẋ1,d +
˙̂x2 − ẋ2,d = x̂2 + z1 − ẋ1,d + x̂3 + z2 + M(q)− 1Je(η2)τ(q) − ẋ2,d (32)   

ẋ1,e = x2,e

ẋ2,e =
d
dt

(

Je

(

η2

))

J− 1
e

(

η2

)

x2,e + M− 1
(

q
)

Je

(

η2

)(

− C
(

q, J− 1
e

(

η2

)

x2,e

)

J− 1
e

(

η2

)

x2,e − D
(
q, J− 1

e

(
η2
)
x2,e

)
J− 1

e

(
η2
)
x2,e − g

(
q,RI

B

)
+ τ

(
q
)) (24)   

I.-L.G. Borlaug et al.                                                                                                                                                                                                                           



Ocean Engineering 222 (2021) 108480

7

σ̂ e = x1,e − e1 − x1,d + x2,e − e2 − x2,d = ξ̃e − e1 +
˙̃ξe − e2 (35) 

Through rearranging, we obtain that the tracking error dynamics are 
expressed as 

˙̃ξe = − ξ̃e + σ̂e + e1 + e2 (36) 

Furthermore, the velocity tracking error ζ̃ is represented by the 
sliding variable σ̂ e, cf., (24) and (31). The overall closed-loop dynamics 

with τ(q) given by (23) is thus given by ˙̂σ e given in (34), ˙̃ξe given in (36) 
and the state observer error given in (28). The closed-loop dynamics are 
thus expressed as 

∑

1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃ξe = − ξ̃e + σ̂e + e1 + e2

˙̂σe = − α
⃒
⃒
⃒σ̂e|

1/2sgn
(

σ̂e

)
+ v

v̇ = − β sgn
(

σ̂ e

)

∑

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė1 = − k1

⃒
⃒
⃒
⃒e1|

2/3 sgn(e1) + e2

ė2 = − k2

⃒
⃒
⃒
⃒e1|

1/3sgn(e1) + e3

ė3 = − k3 sgn(e1) + Ḟ(⋅)

(37)  

Theorem 1. Consider the closed-loop system (1), (7), and (33). Assume 
that the HOSMO in (26) and (27) is used to estimate x1,e and x2,e, where 
⃒
⃒
⃒Ḟ( ⋅)

⃒
⃒
⃒ < Δ is assumed, and the sliding surface is selected as in (31). Then, 

the complete system is represented by the cascaded system in (37), and the 
origin of the cascaded system is uniformly globally asymptotically stable 
(UGAS), which ensures the asymptotic convergence of the tracking error. 

Proof. The proof follows along the lines of the proof of [Borlaug et al., 
2019a, Theorem 1], but for 6DOF instead of for 2DOF. Analysis of sub-
system 1, with e1 = 0 and e2 = 0: With e1 = 0 and e2 = 0, subsystem 1 can 
be written as  

∑

1

⎧
⎪⎪⎨

⎪⎪⎩

˙̃ξe = − ξ̃e + σ̂ e
˙̂σe = − α

⃒
⃒
⃒σ̂ e|

1/2sgn
(

σ̂ e

)
+ v

v̇ = − βSTA sgn
(

σ̂e

)
(38)  

This can then be divided into two subsystems: 

∑

11

{
˙̃ξe = − ξ̃e + σ̂ e

∑

12

⎧
⎨

⎩

˙̂σe = − α
⃒
⃒
⃒σ̂e|

1/2sgn
(

σ̂e

)
+ v

v̇ = − βSTA sgn
(

σ̂ e

)

(39)  

where [Loría and Panteley, 2005, Lemma 2.1] can be used. Subsystem 
Σ11 with σ̂e = 0 is analysed first, which is clearly a globally exponen-
tially stable linear system, but since we will need a Lyapunov function to 
analyse this system when σ̂e ∕= 0, we use the Lyapunov function candi-

date V11(ξ̃e) =
1
2ξ̃

2
e for the analysis. The derivative of V11 yields 

V̇11

(
ξ̃e

)
= ξ̃e

˙̃ξe = ξ̃e

(
− ξ̃e

)
= − ξ̃

2
e ≤ −

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ξ̃e

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

(40) 

This indicates that the Lyapunov function satisfies: 

k1||x||a ≤ V11(x) ≤ k2||x||a

∂V11

∂x
f11(t, x) ≤ − k3

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒x
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

a (41)  

with k1 = k2 = 1
2, k3 = 1 and a = 2. Hence, by virtue of [Khalil, 2002, 

Theorem 4.10], the origin for subsystem Σ11 with σ̂e = 0 is globally 
exponentially stable. 

Subsystem Σ12 has the structure of the STA with adaptive gains. In 
(Shtessel et al., 2010), a Lyapunov function is proposed for systems with 
this structure. Here, it is proven that the Lyapunov function proposed is 
indeed a Lyapunov function for subsystem Σ12 and that for any initial 
conditions, σ̂e,

˙̂σe→0 in finite time by using the STA with adaptive gains 
given by Eq. (20) and Eq. (21), where ε, λ, γ1 and ω1 are arbitrary pos-
itive constants. The sliding surface σ̂e = 0 is also proven to be reached in 
finite time. Now, since the subsystem is GFTS and autonomous, it is also 
UGAS by [Polyakov and Fridman, 2014, Proposition 2 and Proposition 
3], which also implies that ||σ̂e(t)|| < β1∀t ≥ 0. 

To verify that the solutions of Σ1 are uniformly globally bounded 
(UGB), subsystem Σ11 must be analysed with σ̂e ∕= 0. The derivative of 
the Lyapunov function V11 is then as follows: 

V̇11

(
ξ̃e

)
= −

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ξ̃e

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

+ σ̂ eξ̃e

≤ −

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
+ θ

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
− θ

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
+ β1

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

≤ −
(

1 − θ
)⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
∀

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒ ≥

β1

θ

(42)  

where 0 < θ < 1. The solutions are then UGB because the conditions of 
[Khalil, 2002, Theorem 4.18] are satisfied. Consequently, the conditions 
of [Loría and Panteley, 2005, Lemma 2.1] are satisfied, which implies 
that the origin of subsystem Σ1 is UGAS. 

Analysis of subsystem 2: In (Moreno, 2012) a Lyapunov function is 
proposed for a third-order observer. The Lyapunov function is proven to 
be radially unbounded and positive definite and that it is a Lyapunov 
function for subsystem Σ2, whose trajectories converge in finite time to 

the origin e = 0 for every value of 
⃒
⃒
⃒Ḟ(t)

⃒
⃒
⃒ as long as Ḟ(t) is bounded. Since 

Ḟ(t) is bounded by assumptions, the origin is GFTS for every value of 
Ḟ(t), which means that the origin is also UGAS by [Polyakov and Frid-
man, 2014, Proposition 2 and Proposition 3], which in turn implies 
||e(t)|| ≤ β2∀t ≥ 0. 

Analysis of the complete system: To analyse the complete system [Loría 
and Panteley, 2005, Lemma 2.1] is used. To check if the solutions of the 
complete system are UGB, the boundedness of ξ̃e must be evaluated 
when e1 ∕= 0 and e2 ∕= 0, and for this, the Lyapunov function V11 is used. 
Note that the boundedness of σ̂e follows from Σ12 being UGAS because 
Σ12 is not perturbed by Σ2. 

V̇11

(
ξ̃e

)
= −

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ξ̃e

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

+
(

σ̂ e + e1 + e2

)
ξ̃e

≤ −

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
+ θ

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

2
− θ

⃒
⃒
⃒

⃒
⃒
⃒̃ξe

⃒
⃒
⃒

⃒
⃒
⃒

2
+ (β1 + 2β2)

⃒
⃒
⃒

⃒
⃒
⃒ξ̃e

⃒
⃒
⃒

⃒
⃒
⃒

≤ −

(

1 − θ
)⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ξ̃e

⃒
⃒
⃒
⃒

⃒
⃒
⃒

2
∀

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ξ̃e

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ ≥

β1 + 2β2

θ

(43)  

where 0 < θ < 1. The solutions are then UGB because the conditions of 
[Khalil, 2002, Theorem 4.18] are satisfied. Consequently, the conditions 
of [Loría and Panteley, 2005, Lemma 2.1] are satisfied, which implies 
that the complete system is UGAS. 
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3.2. Generalized super-twisting algorithm 

In this section, two tracking control laws for the AIAUV based on the 
GSTA will be presented: one where only the GSTA is used, and one 
where the GSTA is combined with an HOSMO. These control laws were 
derived and proven to achieve the tracking control objective in (Borlaug 
et al., 2020), but we briefly present them here for completeness. 

3.2.1. Control law based on the GSTA 
In this subsection, the tracking control law for the AIAUV using the 

GSTA will be presented. In (Borlaug et al., 2020), the control input that 
achieves the tracking control objective was found to be 

τ(q)= T − 1
q (p̃)uGSTA(σ) (44)  

where ̃p is defined as in (14), Tq(p̃) is defined as in (16), σ is defined as in 
(17) and uGSTA(σ) is defined as in (Castillo et al., 2018): 

uGSTA(σ) = − k1φ1(σ) + z ∈ R6+(n− 1)

ż = − k2φ2(σ)
(45)  

where 

φ1(σ) = ⌠ σ ⌡
1
2 + βGSTA σ

φ2(σ) =
1
2
⌠ σ⌡0

+
3
2
βGSTA⌠ σ ⌡

1
2 + β2

GSTAσ (46)  

where ⌠a⌡b
= |a|bsgn(a), where b is a constant, and k1 ∈ R6+(n− 1), k2 ∈

R6+(n− 1) and βGSTA ∈ R6+(n− 1) are controller gains. Note that the math-
ematical operations in (45) and (46) are performed in an element-wise 
manner. The two extra terms in φ2(σ) compared to the STA with adap-
tive gains in (19) provide one more parameter to adjust when designing 
the GSTA gains: k1, k2 and βGSTA. The linear growth term βGSTAσ in φ1 
helps to counteract the effects of state-dependent perturbations, which 
can exponentially increase in time. In (Borlaug et al., 2020), it was 
proven that the control input (44) makes the closed-loop system UGAS 
and that the tracking errors for the complete system converge asymp-
totically to zero. 

3.2.2. Control law based on the GSTA with a higher-order sliding mode 
observer 

In this subsection, the tracking control law for the AIAUV using the 
GSTA combined with an HOSMO is presented. The HOSMO that is used 
is the third-order SMO presented in Sec. 3.1.2. In (Borlaug et al., 2020), 
the control input that achieves the tracking control objective was found 
to be 

τ(q)= J− 1
e ( ⋅ )M( ⋅ )

(

− x̂2 − z1 + ẋ1,d − x̂3 − z2 + ẋ2,d + uGSTA(σ)
)

(47)  

where σ is as in (31) and where uGSTA(σ) is defined as in (Castillo et al., 
2018), i.e., (45). In (Borlaug et al., 2020), it was proven that the control 
input (44) makes the closed-loop system UGAS and that the tracking 
errors for the complete system converge asymptotically to zero. 

3.3. PID controller 

To benchmark the two SMC algorithms, we also include a PID 
controller in the comparison. Therefore, in this section, we propose two 
tracking control laws for the AIAUV based on the PID controller: one 
where we assume that the velocity is known, and one where we use the 
estimated velocity from the HOSMO. 

3.3.1. Control law based on the PID controller 
In this subsection, the tracking control law for the AIAUV using the 

PID controller is presented. The control input when the PID controller is 
used is defined as 

τ(q)= − kpξ̃e − kdζ̃ − ki

∫

ξ̃edt (48)  

where ̃ξe is defined as in (10) and ̃ζ = ζ − ζd, where ζ and ζd are defined 
as in (3) and (4), respectively. The constants kp, kd and ki are controller 
gains. 

3.3.2. Control law based on the PID controller combined with a higher- 
order sliding mode observer 

In this subsection, the tracking control law for the AIAUV using the 
PID controller with the estimated velocity from the HOSMO is pre-
sented. The control input when the PID controller with the velocity from 
the third-order SMO from Sec. 3.1.2 is used can be found as 

τ(q)= − kpξ̃e − kd
̂̃ζ − ki

∫

ξ̃edt (49)  

where ̃ξe is defined as in (10) and ̂̃ζ = Je(η2)
− 1 x̂2 − ζd, where x̂2 and ζd 

are defined as in (26) and (4), respectively. The constants kp, kd and ki 

are controller gains. 

4. Simulation results 

In this section, we present the implemented simulation model, the 
test cases and the simulation results for trajectory tracking using the 
control laws presented in Sec. 3. 

4.1. Implementation 

The AIAUV model is implemented using the method described in 
(Schmidt-Didlaukies et al., 2018) in MATLAB Simulink together with the 
controllers. The implemented AIAUV is based on the Eelume robot, 
Fig. 1, which is the robot used in the experiments presented in Sec. 5. 
The AIAUV has n + 1 = 9 cylindrical links with a radius of 0.09 m, n = 8 
revolute joints and m = 7 thrusters. The link frames are right-hand co-
ordinate systems, in which the completely outstretched robot is placed 
such that the x-axes point forward and the z-axes point upwards. In 
Table 1, the properties of each link are presented. In the thrusters col-
umn, “2: Z, Y” means that the link has 2 thrusters, one imposing a force 
in the z-direction and one imposing a force in the y-direction. The 
maximum thrust of each thruster is approximately 50 N. Joints 1, 3, 5 
and 7 rotate around the z-axis, and joints 2, 4, 6 and 8 rotate around the 
y-axis. The joint rotation occurs in the link frame of the corresponding 
link, i.e., joint 1 rotates around the z-axis of link 1. 

To ensure a valid comparison between the simulations and the ex-
periments, we use a P-controller for the joints. The reason for this choice 
is that the Eelume robot has an internal joint controller, which is a P- 
controller. To create a continuous trajectory, we do not use inverse ki-
nematic control, as in (Borlaug et al., 2018) and (Borlaug et al., 2019b); 
rather, we use a filter to generate a continuous trajectory between set-
points. The reason is that the joint controller on the Eelume robot we 
used is not sufficiently precise to satisfy the assumption that q = qd, 
which is a prerequisite for the inverse kinematic control to perform 

Table 1 
Eelume link properties.  

Link nr. Length [m] Volume [m3] Thrusters 

1 0.62 0.0158 0 
2, 4, 6, 8 0.10 0.0025 0 
3 0.59 0.0150 2: Z, Y 
5 0.80 0.0204 3: X, X, Z 
7 0.59 0.0150 2: Y, Z 
9 0.37 0.0094 0  
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properly. The thruster allocation matrix is implemented as proposed in 
(Sverdrup-Thygeson et al., 2018). For the simulations, the ode3 
fixed-step solver with a step size of 0.002 was used. 

4.2. Simulation cases 

In this section, we describe the different test cases considered in the 
simulations. To validate and compare the control laws presented in Sec. 
3, we created two different test cases to represent the operation mode, a 
mode that is thoroughly explained in (Sverdrup-Thygeson et al., 2018). 
In operation mode, we perform inspection and intervention tasks; 
therefore, accuracy is extremely important. The robot that we used 
during the experiments is unactuated in roll when the AIAUV is straight 
(all joint angels are equal to zero), and accurate control of rolling when 
the robot is straight is therefore not possible. We therefore found a 
shape, which we call C-shape, where the robot is actuated in every DOF 
such that we can perform accurate control in every DOF. We therefore 
have one test case called C-shape, which is explained in detail in Sec. 
4.2.1. We also wanted to include a test case where the robustness of the 
algorithms would be evaluated. We therefore wanted to introduce some 
disturbance in our second test. However, we do not have access to a tank 
where we can introduce current. We therefore introduce disturbance by 
using the joints. Thus, the second test case is the C-shape with a moving 
head, which is explained in detail in Sec. 4.2.2. This test captures 

operation mode where the robot performs an inspection by looking 
around in a circular motion with its head, and the motion also introduces 
a disturbance. 

The reference trajectories for the position and orientation used for 
the two test cases are shown in Fig. 5. The references for x, y and ψ are 
changed at 100 s, and at 300 s, the references for z and θ are changed. 
The references for x, ψ and θ are also changed at 450 s and for x, y and z 
at 600 s. The reference value for z is, however, slightly different from 
case to case because during the experiments, we observed that some of 
the joints were emerging from the water and creating problems for the 
measurement system when we started the trajectory at − 1 for the C- 
shape with a moving head. The reference value for z is therefore as in 
Fig. 5 for the C-shape, i.e., the reference value starts at − 1 and changes 
to − 0.7, whereas for the C-shape with a moving head, the reference 
value starts at − 0.7 and changes to − 0.5. The z reference for the C- 
shape with a moving head when the control law with the HOSMO is used 
is also changed at 100 s, i.e., the reference value starts at − 1, changes to 
− 0.7 at 100 s, and then changes to − 0.5 at 300 s. 

4.2.1. C-shape 
In the C-shape configuration, the AIAUV is shaped like a C. In 

this shape, the AIAUV is actuated in every DOF since the thrusters 
are oriented such that the robot can provide thrust in all 6DOFs, and the 
C-shape is therefore ideal for the operation mode. In the C-shape, 
the joint angles references are set to qd = [45deg 0deg 
45deg 0deg 45deg 0deg 45deg 0deg]T, and in Fig. 6, the configuration of 
the robot is shown. 

4.2.2. C-shape with a moving head 
The case of the C-shape with a moving head is almost identical to the 

C-shape case, but in this case, we move the head of the AIAUV around. 
Specifically, joint nr. 7 and joint nr. 8 are moved such that the camera 
positioned at joint nr. 8 (the head), is looking around. The joint angles 
together with their reference trajectories for the C-shape with a moving 
head are presented in Fig. 7. 

4.3. Simulation results 

In this section, the results from the performed simulation test cases 
are presented. To ensure that the comparison between the simulations 
and experiments is as fair as possible, the gains used during the simu-
lations are the gains found during the experiments. The gains for the STA 
with adaptive gains and the HOSMO are presented in Table 2; for the 
GSTA and the HOSMO, the gains are presented in Table 3; and for the 

Fig. 5. Reference trajectories for position and orientation.  

Fig. 6. Configuration in the C-shape.  
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PID controller, the gains are presented in Table 4. For the SMC algo-
rithms, the gains for the HOSMO, L, are different from those used during 
the experiments for the C-shape and the C-shape with a moving head 
because we observed chattering in the simulations when we used L =

0.01, which was not experienced in the experiments. 
The trajectory tracking results using the control laws from Sec. 3.1.1, 

Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, are presented in 
Fig. 8. The trajectory tracking results include both the position errors 
and the orientation errors for both test cases. The corresponding thruster 
forces are shown for the C-shape in Fig. 9 and for the C-shape with a 

moving head in Fig. 10. In Table 5, the root mean square error (RMSE) 
and maximum error for the position and orientation are given for each 
control law without the HOSMO and for both simulation test cases, i.e., 
the C-shape and the C-shape with a moving head. In Table 6, the root 
mean square (RMS) for the thruster forces and the derivative of the 
thruster forces are given for each control law without the HOSMO and 
for both simulation test cases. The RMS of the thruster forces provides an 
idea of how much force is used, and the RMS of the derivative of the 
thruster forces provides a measure of how much chattering is present in 
the thruster forces. The trajectory tracking results using the control laws 
from Sec. 3.1.2, Sec. 3.2.2 and Sec. 3.3.2, i.e., with the HOSMO, are 
presented in Fig. 11. The corresponding thruster forces are shown for the 
C-shape in Fig. 12 and for the C-shape with a moving head in Fig. 13. In 
Table 7, the RMSE and maximum error for the position and orientation 
are given for each control law with the HOSMO and for both simulation 
test cases. In Table 8, the RMS for the thruster forces and the derivative 
of the thruster forces are given for each control law with the HOSMO and 
for both simulation test cases. In Fig. 14 and Fig. 15 the estimation errors 
for the HOSMO are shown for the C-shape and the C-shape with a 
moving head, respectively. The first sub-plot shows e1 = x1,e − x̂1, and 
the second sub-plot shows e2 = x2,e − x̂2. Note that if higher gains had 
been used in the simulations, the results would have improved, at least 
for the GSTA. 

4.4. Discussion 

As shown in Fig. 8, the AIAUV follows the given position and 
orientation very well for both test cases as all errors are usually below 
0.5 − 2 cm in position and 1 − 3deg in orientation, when the control 
laws from Sec. 3.1.1, Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, 
are used. This result indicates that all the control laws are applicable. As 
shown in Figs. 8a and 8b, in the C-shape case, the STA with adaptive 
gains provides the lowest error and therefore the best result overall, and 
the GSTA provides the second best results. The reason why the STA with 
adaptive gains provides better results than the GSTA is likely because it 
adaptively finds the best gains, whereas the GSTA must be tuned 
manually. However, if we more closely examine some of the results for φ 
and θ, we do find that for φ, the GSTA provides the lowest error, and for 
θ, GSTA and PID provide a slightly lower error than the STA with 
adaptive gains. From Figs. 8c and 8d, we observe the same tendencies for 
the C-shape with a moving head as for the C-shape case, i.e., in x, y, z and 
ψ , the STA with adaptive gains provides the smallest error, and the GSTA 
is the second best. However, for φ and θ, the errors are much more 
similar. Examining Table 5 confirms what we can observe from Fig. 8, i. 

Fig. 7. Simulation: The joint angles and their reference trajectories for the C-shape with a moving head.  

Table 2 
Simulation: Control gains for the STA with adaptive gains.  

Gains Tests 

C- 
shape 

C-shape w/moving head 
without HOSMO 

C-shape w/moving head 
with HOSMO 

ε 1⋅ 10− 6  1⋅10− 6  1⋅10− 6  

λ 0.05 0.05 0.05 
γ1  0.5 0.5 0.5 
ω1  0.4 0.4 0.2 
L 0.1 HOSMO not used 0.1  

Table 3 
Simulation: Control gains used for the GSTA.  

Gains Tests 

C-shape C-shape w/moving head 

k1  1 1 
k2  0.0006 0.0006 
β 24 24 
L 0.1 0.1  

Table 4 
Simulation: Control gains used for the PID controller.  

Gains Tests 

C-shape C-shape w/moving head 

kp  20 20 
kd  0.4 0.4 
ki  0.1 0.1 
L 0.01 0.01  
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e., that the STA with adaptive gains provides the smallest position er-
rors, with an RMSE value of 0.0008 m for the C-shape and 0.0019 m for 
the C-shape with a moving head, and that the GSTA is the second best, 
with an RMSE value of 0.0054 m for the C-shape and 0.0068 m for the C- 
shape with a moving head, while the PID controller gives the largest 
position errors, with an RMSE value of 0.0087 m for the C-shape and 
0.0115 m for the C-shape with a moving head. For the orientation errors 
however, the GSTA gives an RMSE value of 0.0114 rad for the C-shape 
and 0.0193 rad for the C-shape with a moving head, while the STA with 
adaptive gains gives an RMSE value of 0.0116 rad for the C-shape and 
0.0228 rad for the C-shape with moving head, so the results are much 
more similar, and the GSTA actually provides slightly better results. The 
PID controller clearly offers the worst tracking performance for orien-
tation, with an RMSE value of 0.0154 rad for the C-shape and 0.0249 rad 
for the C-shape with a moving head. We see the same results for the 
maximum error value. If we take the thruster use of the different algo-
rithms into consideration, presented in Figs. 9 and 10, we find that for 
both test cases, the STA with adaptive gains uses more force than the 
GSTA and the PID controller, while the GSTA and the PID use very 
similar amounts of force. However, the RMS of τthr in Table 6 shows that 
over time, the amount of force used is not actually very different. The 
STA with adaptive gains uses slightly more force in the C-shape case, 
with an RMS value of 2.16, while the GSTA and the PID controller uses a 
very similar amount of force with RMS values of 1.84 and 1.80, 
respectively. For the case of the C-shape with a moving head, however, 
all the algorithms use a very similar amount of force with RMS values 
between 1.87 − 1.91. From the RMS values of τ̇thr, we find that the most 
chattering occurs in the control input from the STA with adaptive gains, 
with RMS value of 5.32 for the C-shape and 2.19 for the C-shape with a 
moving head, and that less chattering occurs in that from the GSTA, with 
RMS value of 5.05 for the C-shape and 0.31 for the C-shape with a 
moving head, while the control input from the PID controller shows the 
least rapid changes in the thrust forces, with RMS value of 0.74 for the C- 
shape and 0.67 for the C-shape with a moving head. However, the value 
of the RMS of τ̇thr is so small that the chattering that is introduced by the 
STA with adaptive gains is negligible. 

From Figs. 14 and 15 we can see that the estimation errors for the 

HOSMO are quite small, the HOSMO is therefore applicable for state 
estimation. When the control laws with the HOSMO are used, i.e., the 
control laws from Sec. 3.1.2, Sec. 3.2.2 and Sec. 3.3.2, we observe the 
same tendencies in Fig. 11 as when the control laws without the HOSMO 
are used. As shown in Figs. 11a and 11b, the STA with adaptive gains 
provides the smallest errors for x, y, z and ψ , and the GSTA yields the 
second smallest errors. For φ, however, the GSTA provides the smallest 
error, while the STA with adaptive gains results in oscillations. For θ, the 
results are more similar between the STA with adaptive gains and the 
GSTA, while the PID controller gives rise to a larger error. As shown in 
Figs. 11c and 11d, the results for the C-shape with a moving head are the 
same as those for the C-shape case, except that the results for φ and θ are 
now more similar. Examining Table 7 confirms what we can observe 
from Fig. 11, i.e., that the STA with adaptive gains provides the best 
results for position, with an RMSE value of 0.0009 m for the C-shape and 
0.0032 m for the C-shape with a moving head, and that the GSTA is the 
second best, with an RMSE value of 0.0059 m for the C-shape and 
0.0075 m for the C-shape with a moving head, while the PID controller 
gives the largest position errors, with an RMSE value of 0.0083 m for the 
C-shape and 0.0112 m for the C-shape with a moving head. For the 
orientation errors however, the GSTA gives an RMSE value of 0.0072 rad 
for the C-shape and 0.0125 rad for the C-shape with a moving head, 
while the STA with adaptive gains gives an RMSE value of 0.0078 rad for 
the C-shape and 0.0198 rad for the C-shape with moving head, so the 
results are much more similar, and the GSTA actually provides slightly 
better results. The PID controller clearly offers the worst tracking per-
formance for orientation, with an RMSE value of 0.0147 rad for the C- 
shape and 0.0245 rad for the C-shape with a moving head. We see the 
same results for the maximum error value. If we take the thruster use of 
the different algorithms into consideration, presented in Figs. 12 and 13, 
we find that the STA with adaptive gains also uses more force for both 
test cases, whereas the GSTA and the PID controller use quite similar 
amounts of force. Over time, however, as seen in Table 8 from the RMS 
value of τthr, the amount of force used is not actually very different. The 
STA with adaptive gains uses slightly more force in the C-shape case, 
with an RMS value of 2.25, while the GSTA uses the second most amount 
of force with an RMS value of 2.11, while the PID controller uses the 

Fig. 8. Simulation: Trajectory tracking results using the control laws without the HOSMO.  
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least amount of force with an RMS value of 1.82. For the C-shape with a 
moving head however, the GSTA actually uses the most amount of force 
with an RMS value of 2.22, and the STA with adaptive gains uses the 
second most amount of force with an RMS value of 2.05. The PID 
controller does however, also for the C-shape with a moving head case 
use the least amount of force with an RMS value of 1.89. From the RMS 
values of τ̇thr, we find that the most chattering occurs in the control input 
from the STA with adaptive gains, with RMS value of 15.78 for the C- 
shape and 9.48 for the C-shape with a moving head, and that less 
chattering occurs in that from the GSTA, with RMS value of 10.99 for the 
C-shape and 7.90 for the C-shape with a moving head, while the control 
input from the PID controller shows the least rapid changes in the thrust 
forces, with RMS value of 1.43 for the C-shape and 1.37 for the C-shape 
with a moving head. However, the value of the RMS of τ̇thr is so small 
that the chattering that is introduced by the STA with adaptive gains is 
negligible. 

Fig. 9. Simulation: Thruster forces used in the C-shape when the control laws 
without the HOSMO are used. 

Fig. 10. Simulation: Thruster forces used in the C-shape with a moving head 
when the control laws without the HOSMO are used. 

Table 5 
Simulation: Comparison of the results when the control laws without the 
HOSMO are used.  

Algorithm  Root Mean Square Error 
(RMSE) 

Maximum error 

C- 
shape 

C-shape w/ 
moving head 

C- 
shape 

C-shape w/ 
moving head 

STA Position [m] 0.0008 0.0019 0.0090 0.0167 
STA Orientation 

[rad] 
0.0116 0.0228 0.0301 0.0720 

GSTA Position [m] 0.0054 0.0068 0.0303 0.0327 
GSTA Orientation 

[rad] 
0.0114 0.0193 0.0330 0.0535 

PID Position [m] 0.0087 0.0115 0.0509 0.0521 
PID Orientation 

[rad] 
0.0154 0.0249 0.0455 0.0699  
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If we compare the results obtained with the control laws from Sec. 
3.1.1, Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, and the results 
obtained with the control laws from Sec. 3.1.2, Sec. 3.2.2 and Sec. 3.3.2, 
i.e., when the HOSMO is used, by comparing Table 5 with Table 7, 
Table 6 and Table 8, we find that when the HOSMO is used, we obtain 
better tracking results for the orientation for all the algorithms, as well 
as better tracking for position when the PID controller is used. Addi-
tionally, note that the difference between the position errors, i.e., with 
and without the HOSMO, is smaller than the difference between the 
orientation errors, i.e., the control laws with the HOSMO provide the 
best performance overall. The reason for the better tracking perfor-
mance is likely due to the increase in thruster use. The thruster use is, 
however, well within the boundaries of what the Eelume AIAUV can 
provide, which is 50 N. 

To conclude, we find that we obtain the best tracking performance in 
position by using the STA with adaptive gains, and the GSTA provides 
the best tracking performance in orientation. If we simultaneously 
consider the errors for position and orientation, we find that the STA 
with adaptive gains provides the best tracking performance, but a large 
difference does not occur between the STA with adaptive gains and the 
GSTA. The reason for this difference is likely that we have to tune the 
GSTA manually, whereas the method with adaptive gains adaptively 
finds the best gains and thus has an advantage. If we use the HOSMO to 
estimate the linear and angular velocities in the control laws, we 
improve our results. 

5. Experimental investigation 

This section describes the Eelume robot used during the experiments, 
the experimental set-up and the obtained results. 

5.1. The Eelume robot 

The AIAUV robot “Eely”, which was used during the experiments, 
was the first AIAUV created by the Eelume company, and the AIAUV is 
described in detail in (Liljebäck and Mills, 2017), which is the AIAUV on 
which the implemented simulation model is based. The Eelume AIAUV 
has internal joint controllers, which are P-controllers. Therefore, during 
the experiments, we could only provide a desired joint reference qd to 
the AIAUV. We thus also used a P-controller in the simulations, as 
explained in Sec. 4.1, for the fairest possible comparison between the 
simulations and experiments. 

5.2. Experimental set-up 

We performed the experiments at the MC-lab at NTNU, Trondheim, 
Norway (Marine cybernetics labora, 2018). The tank located in the 
MC-lab has the following dimensions: length of 40m, height of 1.5m and 
width of 6.45m. The underwater motion capture system from Qualisys 
(Qualisys-motion capture s, 2018) is installed in the basin to provide us 
with real-time measurements of the position and orientation of the base 
of the AIAUV. The Qualisys system has six identical cameras, allowing us 
to track reflective markers attached to the base of the AIAUV under-
water, as shown in Fig. 16. The cameras allow us to track the reflective 
markers inside a working area with dimensions of 10m× 1.35m×

5.45m. 
The system structure used during the experiments is illustrated in 

Fig. 17. The six cameras (indicated by blue boxes in Fig. 17), tracked 
reflective markers in the working area (indicated by the red box in 
Fig. 17). The Qualisys system or camera positioning system sent the 
measured position and orientation from an external computer, to which 
the Qualisys system was connected, through the User Datagram Protocol 
(UDP) to LabView 2016. LabView was then connected to the AIAUV 

Table 6 
Simulation: Comparison of the thruster forces used when the control laws 
without the HOSMO are used.  

Algorithm Root Mean Square (RMS) 

τthr  τ̇thr  

C- 
shape 

C-shape w/moving 
head 

C- 
shape 

C-shape w/moving 
head 

STA 2.16 1.89 5.32 2.19 
GSTA 1.84 1.91 5.05 0.31 
PID 1.80 1.87 0.74 0.67  

Fig. 11. Simulation: Trajectory tracking results using the control laws with the HOSMO.  
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through an optical fibre cable and through UDP to another computer 
running MATLAB Simulink with the dynamic controller; thruster allo-
cation, which was implemented as in (Sverdrup-Thygeson et al., 2018); 
and the reference generator. The computer running MATLAB Simulink 
received the measured position and orientation, and if the control laws 
without the HOSMO were used, also an estimate of the linear and 
angular velocities, which were estimated by using a simple Kalman fil-
ter. When the control laws with the HOSMO were used, the linear and 
angular velocities were estimated by the HOSMO in the dynamic 
controller. The computer running MATLAB Simulink then sent the thrust 
commands and the desired joint angles back to LabView through UDP. 
These were then passed through to the AIAUV through the optical fibre 
cable. The trajectories for the position and orientation of the base of the 
AIAUV and the joints were generated by setting setpoints and then using 
a filter to create a continuous trajectory between them. 

Fig. 12. Simulation: Thruster forces used in the C-shape when the control laws 
with the HOSMO are used. 

Fig. 13. Simulation: Thruster forces used in the C-shape with a moving head 
when the control laws with the HOSMO are used. 

Table 7 
Simulation: Comparison of the results when the control laws with the HOSMO 
are used.  

Algorithm  Root Mean Square Error 
(RMSE) 

Maximum error 

C- 
shape 

C-shape w/ 
moving head 

C- 
shape 

C-shape w/ 
moving head 

STA Position [m] 0.0009 0.0032 0.0091 0.0271 
STA Orientation 

[rad] 
0.0078 0.0198 0.0206 0.0676 

GSTA Position [m] 0.0059 0.0075 0.0304 0.0341 
GSTA Orientation 

[rad] 
0.0072 0.0125 0.0205 0.0348 

PID Position [m] 0.0083 0.0112 0.0497 0.0524 
PID Orientation 

[rad] 
0.0147 0.0245 0.0434 0.0692  
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5.3. Test cases 

The test cases considered during the experiments are the test cases 
that were explained in Sec. 4.2 and reproduced in the simulations, i.e., 
the C-shape and the C-shape with a moving head. 

5.4. Experimental results 

In this section, the results from the experiments are presented. All 
three algorithms, i.e., the STA with adaptive gains, the GSTA and the PID 
controller, were easy to apply successfully in the experiments, and none 
of them required much effort in tuning. In the experiments, we increased 

Table 8 
Simulation: Comparison of the thruster forces used when the control laws with 
the HOSMO are used.  

Algorithm Root Mean Square (RMS) 

τthr  τ̇thr  

C- 
shape 

C-shape w/moving 
head 

C- 
shape 

C-shape w/moving 
head 

STA 2.25 2.05 15.78 9.48 
GSTA 2.11 2.22 10.99 7.90 
PID 1.82 1.89 1.43 1.37  

Fig. 14. Simulation: Estimation errors for the HOSMO during C-shape (the first 
sub-plot shows e1 = x1,e − x̂1, and the second sub-plot shows e2 = x2,e − x̂2). 

Fig. 15. Simulation: Estimation errors for the HOSMO during C-shape with a 
moving head (the first sub-plot shows e1 = x1,e − x̂1, and the second sub-plot 
shows e2 = x2,e − x̂2). 
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the gains until we observed that the AIAUV started to oscillate around 
the reference instead of following it. The gains that we chose therefore 
create a small deviation from the reference rather than oscillations 
around the reference. If we would have chosen more aggressive (higher) 
gains, the AIAUV would have oscillated. These oscillations might be 
caused by delays in the thrusters. For all the algorithms, we attempted to 
use the same gains for both test cases, i.e., we attempted to find the best 
possible gains for the C-shape, and then we used the same for the C- 
shape with a moving head for a fair comparison. For the STA with 
adaptive gains, the choice of gains is not very important because the 
gains will adapt to their best possible values by themselves. We did, 
however, observe that if we chose the initial adaptive gains to be too 
high, the Eelume AIAUV started to oscillate. We therefore had to use 
lower gains when the HOSMO was used in the case of the C-shape with a 
moving head likely because when the HOSMO was used, the thruster 
forces increased. The gains for the STA with adaptive gains and the 
HOSMO are presented in Table 2; for the GSTA and the HOSMO, the 
gains are presented in Table 3; and for the PID controller, the gains are 
listed in Table 4. Note that for the SMC algorithms, the HOSMO gain L 
was chosen as L = 0.01 in the experiments. 

Fig. 16. The Eelume vehicle with reflective markers attached at the base.  

Fig. 17. Illustration of the system structure (the blue boxes represent cameras, and the red box represents the working area). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 18. Experiments: Trajectory tracking results using the control laws without the HOSMO.  
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The trajectory tracking results using the control laws from Sec. 3.1.1, 
Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, are presented in 
Fig. 18. The trajectory tracking results include both the position errors 
and the orientation errors for both test cases. The corresponding thruster 
forces are shown for the C-shape in Fig. 19 and for the C-shape with a 
moving head in Fig. 20. Note that the thruster forces shown are the 
output from the control scheme, i.e. the desired thruster forces, since we 
are not able to measure the actual force of the thrusters or the thruster 
speed. In Table 9, the RMSE and maximum error for the position and 
orientation are given for each control law without the HOSMO and for 
both test cases. In Table 10, the RMS for the thruster forces and the 
derivative of the thruster forces are given for each control law without 
the HOSMO and for both test cases. The trajectory tracking results using 
the control laws from Sec. 3.1.2, Sec. 3.2.2 and Sec. 3.3.2, i.e., with the 
HOSMO, are presented in Fig. 21. The corresponding thruster forces are 
shown for the C-shape in Fig. 22 and for the C-shape with a moving head 

Fig. 19. Experiments: Thruster forces used in the C-shape when the control 
laws without the HOSMO are used. 

Fig. 20. Experiments: Thruster forces used in the C-shape with a moving head 
when the control laws without the HOSMO are used. 

Table 9 
Experiments: Comparison of results when the control laws without the HOSMO 
are used.  

Algorithm  Root Mean Square Error 
(RMSE) 

Maximum error 

C- 
shape 

C-shape w/ 
moving head 

C- 
shape 

C-shape w/ 
moving head 

STA Position [m] 0.0054 0.0121 0.0345 0.0579 
STA Orientation 

[rad] 
0.0163 0.0255 0.0707 0.1074 

GSTA Position [m] 0.0133 0.0327 0.0446 0.1039 
GSTA Orientation 

[rad] 
0.0210 0.0216 0.0740 0.0674 

PID Position [m] 0.0158 0.0392 0.0663 0.1382 
PID Orientation 

[rad] 
0.0194 0.0362 0.0669 0.1167  
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in Fig. 23. In Table 11, the RMSE and maximum error for the position 
and orientation are given for each control law with the HOSMO and for 
both test cases. In Table 12, the RMS for the thruster forces and the 
derivative of the thruster forces are given for each control law with the 
HOSMO and for both test cases. Note that the simulation study indicates 
that if higher gains could have been used without causing oscillations, 
then the tracking accuracy would have been improved. 

5.5. Discussion 

As shown in Fig. 18, the AIAUV follows the given position and 
orientation very well for both test cases, as all errors are usually below 
1 − 4 cm in position and 2 − 5deg in orientation, when the control laws 
from Sec. 3.1.1, Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, are 
used. As shown in Fig. 18a, in the C-shape case, the STA with adaptive 
gains provides the best results for the position. The GSTA and PID 
controller have much more similar results for the position as the GSTA 
has almost as large position errors as the PID controller; however, we do 
observe that the position errors for the PID controller oscillate more than 
the position errors for the GSTA. As shown in Fig. 18b, for the orienta-
tion, the results are more similar for all algorithms. From Figs. 18c and 
18d, the same tendencies are observed for the C-shape with a moving 
head as for the C-shape case, i.e., for the position, the STA with adaptive 
gains achieves the smallest error, whereas for the orientation, the 
tracking performance is more similar. Examining Table 9 confirms what 

we find from Fig. 18, i.e., that the STA with adaptive gains achieves the 
smallest position errors, with an RMSE value of 0.0054 m for the C-shape 
and 0.0121 m for the C-shape with a moving head, and that the GSTA is 
the second best, with an RMSE value of 0.0133 m for the C-shape and 
0.0327 m for the C-shape with a moving head, while the PID controller 
gives the largest position errors, with an RMSE value of 0.0158 m for the 
C-shape and 0.0392 m for the C-shape with a moving head. For the 
orientation errors however, the GSTA gives an RMSE value of 0.0210 rad 
for the C-shape and 0.0216 rad for the C-shape with a moving head, 
while the STA with adaptive gains gives an RMSE value of 0.0163 rad for 
the C-shape and 0.0255 rad for the C-shape with moving head, so the 
STA with adaptive gains gives the best results for the C-shape, and the 
GSTA gives the best results for the C-shape with a moving head. The PID 
controller actually also gives better results than the GSTA for the C- 
shape case, with an RMSE value of 0.0194 rad, while for the C-shape 
with a moving head the PID controller gives the worst tracking perfor-
mance in orientation with an RMSE value of 0.0362 rad. We see the 
same results for the maximum error value. The reason why the STA with 
adaptive gains outperforms the two other algorithms is likely because it 
has adaptive gains and is therefore robust against tuning. If we take the 
thruster use of the different algorithms into consideration, by looking at 
Figs. 19 and 20, we find that for both test cases, the STA with adaptive 
gains uses more force than the GSTA and the PID controller and that the 
GSTA uses more force than the PID controller. However, based on the 
RMS value of τthr, Table 10 shows that over time, the amount of force 
used is not actually very different. In the C-shape case, the STA with 
adaptive gains uses slightly more force, with an RMS value of 1.94, than 
the GSTA, that has an RMS value 1.82, and the GSTA uses more force 
than the PID controller. that has an RMS value of 1.44. In the case of the 
C-shape with a moving head, however, the GSTA and the PID controller 
uses very similar amounts of force, with RMS values of 2.18 and 2.14, 
respectively, while the STA with adaptive gains uses more, with an RMS 
value of 2.76. From the RMS values of τ̇thr, we find that the most chat-
tering occurs in the control input from the STA with adaptive gains, with 
RMS value of 2.95 for the C-shape and 7.24 for the C-shape with a 
moving head, and that less chattering occurs in that from the GSTA, with 
RMS value of 1.46 for the C-shape and 1.95 for the C-shape with a 

Table 10 
Experiments: Comparison of the thruster forces used when the control laws 
without the HOSMO are used.  

Algorithm Root Mean Square (RMS) 

τthr  τ̇thr  

C- 
shape 

C-shape w/moving 
head 

C- 
shape 

C-shape w/moving 
head 

STA 1.94 2.76 2.95 7.24 
GSTA 1.82 2.18 1.46 1.95 
PID 1.44 2.14 0.75 0.93  

Fig. 21. Experiments: Trajectory tracking results using the control laws with the HOSMO.  
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moving head, while the control input from the PID controller shows the 
least rapid changes in the thrust forces, with RMS value of 0.75 for the C- 
shape and 0.93 for the C-shape with a moving head. However, the value 
of the RMS of τ̇thr is so small that the chattering that is introduced by the 
STA with adaptive gains is almost negligible. The reason why the 
chattering may appear to be considerable in the plots is because of the 
time scale used. 

When the control laws with the HOSMO are used, i.e., from Sec. 
3.1.2, Sec. 3.2.2 and Sec. 3.3.2, we observe the same tendencies in 
Fig. 21 as when the control laws without the HOSMO are used, but we 
find from Figs. 21a and 21b and from Figs. 21c and 21d that the STA 
with adaptive gains is no longer clearly better. We also observe that we 
have some more measurement noise and outliers in the measurements 
from the measurement system, see for instance the jumps in Figs. 21a 
and Fig. 21b between 200 s and 300 s. The performance of the algorithm 
indicates that the algorithms are robust against this noise and the out-
liers. As shown in Table 11, we have the same results as those when the 

Fig. 22. Experiments: Thruster forces used in the C-shape when the control 
laws with the HOSMO are used. 

Fig. 23. Experiments: Thruster forces used in the C-shape with a moving head 
when the control laws with the HOSMO are used. 

Table 11 
Experiments: Comparison of the results when the control laws with the HOSMO 
are used.  

Algorithm  Root Mean Square Error 
(RMSE) 

Maximum error 

C- 
shape 

C-shape w/ 
moving head 

C- 
shape 

C-shape w/ 
moving head 

STA Position [m] 0.0064 0.0177 0.0640 0.1007 
STA Orientation 

[rad] 
0.0087 0.0215 0.1035 0.1321 

GSTA Position [m] 0.0100 0.0252 0.0661 0.0871 
GSTA Orientation 

[rad] 
0.0062 0.0147 0.0914 0.0618 

PID Position [m] 0.0143 0.0394 0.0549 0.1428 
PID Orientation 

[rad] 
0.0181 0.0431 0.0779 0.1327  
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HOSMO is not used, i.e., the STA with adaptive gains provides the 
smallest position errors, with an RMSE value of 0.0064 m for the C-shape 
and 0.0177 m for the C-shape with a moving head, and that the GSTA is 
the second best, with an RMSE value of 0.0100 m for the C-shape and 
0.0252 m for the C-shape with a moving head, while the PID controller 
gives the largest position errors, with an RMSE value of 0.0143 m for the 
C-shape and 0.0394 m for the C-shape with a moving head. For the 
orientation errors however, the GSTA gives an RMSE value of 0.0062 rad 
for the C-shape and 0.0147 rad for the C-shape with a moving head, 
while the STA with adaptive gains gives an RMSE value of 0.0087 rad for 
the C-shape and 0.0215 rad for the C-shape with moving head, so the 
results are much more similar, and the GSTA provides slightly better 
results. The PID controller clearly offers the worst tracking performance 
for orientation, with an RMSE value of 0.0181 rad for the C-shape and 
0.0431 rad for the C-shape with a moving head. From the maximum 
errors in Table 11, we can see that the measurement noise impacts the 
maximum error results since if we would have filtered the position 
measurements such that the peaks/outliers in the measurements were 
removed, we would have obtained a lower maximum error for all al-
gorithms, particularly the STA with adaptive gains and the GSTA, as 
some large peak/outliers exist in those measurements. If we take the 
thruster use of the different algorithms into consideration, presented in 
Figs. 22 and 23, we find that the STA with adaptive gains uses more force 
for both test cases and that the GSTA uses more force than the PID 
controller in the C-shape case, whereas in the case of the C-shape with a 
moving head, the PID controller and the GSTA use almost the same 
amount of force. However, as shown in Table 12, the RMS of τthr in-
dicates that the STA does use more force, with an RMS value of 3.02 for 
the C-shape and 3.34 for the C-shape with a moving head, than the 
GSTA, with an RMS value of 1.85 for the C-shape and 2.23 for the C- 
shape with a moving head, and the PID controller, with an RMS value of 
1.71 for the C-shape and 2.09 for the C-shape with a moving head. The 
GSTA and the PID controller does, however, use a very similar amount of 
force. From the RMS values of τ̇thr, we find that the most chattering 
occurs in the control input from the STA with adaptive gains, with RMS 
value of 17.49 for the C-shape and 13.51 for the C-shape with a moving 
head, and that less chattering occurs in that from the GSTA, with RMS 
value of 4.77 for the C-shape and 5.05 for the C-shape with a moving 
head, while the control input from the PID controller shows the least 
rapid changes in the thrust forces, with RMS value of 4.27 for the C- 
shape and 4.64 for the C-shape with a moving head. However, the value 
of the RMS of τ̇thr is so small that the chattering that is introduced by the 
STA with adaptive gains is negligible. The reason why considerable 
chattering may be evident in the plots is again because of the time scale 
used. 

If we compare the results obtained with the control laws from Sec. 
3.1.1, Sec. 3.2.1 and Sec. 3.3.1, i.e., without the HOSMO, and the results 
obtained with the control laws from Sec. 3.1.2, Sec. 3.2.2 and Sec. 3.3.2, 
i.e., when the HOSMO is used, by comparing Table 9 with Table 11, 
Table 10 and Table 12, we find that when the HOSMO is used, we obtain 
better tracking results for the orientation for all the algorithms, as well 
as better tracking for position when the GSTA is used. Additionally, note 
that the difference between the position errors, i.e., with and without the 

HOSMO, is smaller than the difference between the orientation errors, i. 
e., the control laws with the HOSMO provide the overall best perfor-
mance. The reason for the better tracking performance is likely due to 
the increase in thruster use. The thruster use is, however, well within the 
boundaries of what the Eelume AIAUV can provide, which is 50 N. 

If we compare the simulation results (Figs. 8 and 11) and the 
experimental results (Figs. 18 and 21) for both test cases, we find that 
the results are quite similar and that all algorithms are applicable with 
and without the HOSMO to control the AIAUV. We also find that the 
same algorithms provide the best tracking results in the simulations and 
the experiments, i.e., the STA with adaptive gains and the GSTA in a 
good second place. We also observed an improvement in the tracking 
performance for all algorithms when the HOSMO was used in both 
simulations and experiments. Of course, the tracking errors, i.e., the 
position and orientation errors, are larger in the experiments than in the 
simulations, but that is to be expected because of measurement noise 
and outliers from the measurements system, thruster dynamics and 
other unmodelled dynamics. The fact that we did not have feedback 
from the thrusters likely also affected the errors because we did not 
necessarily obtain the desired forces from the thrusters. 

6. Conclusions and future research 

In this paper, we have presented and compared three different al-
gorithms for solving the trajectory tracking problem for AIAUVs in 
6DOF: the STA with adaptive gains, the GSTA and a PID controller. 
Comprehensive simulation and experimental results for two different 
test cases, have been presented and used to compare the performance of 
the three mentioned algorithms. In both the simulations and in the ex-
periments, the STA with adaptive gains provided the best overall 
tracking performance, but the GSTA was not far from achieving the same 
tracking results. Thus, the fact that we had to tune the GSTA manually is 
likely the reason that we achieved lower tracking performance with this 
algorithm. The STA with adaptive gains is therefore better in practice 
than the GSTA, but the GSTA is proved to provide global finite-time 
stability for a larger class of systems. 

Furthermore, we have also solved the 6DOF trajectory tracking 
problem using the three mentioned algorithms in combination with an 
HOSMO. Additionally, we have proven that the closed-loop system 
when the STA with adaptive gains is used in combination with a HOSMO 
is UGAS. The same two test cases were used to obtain comprehensive 
simulation and experimental results for the three algorithms in combi-
nation with the HOSMO. The results have been used to compare the 
control laws and to study the performance of the HOSMO. When the 
HOSMO was used to estimate the linear and angular velocities in the 
control laws, we improved our results, indicating that the HOSMO is 
indeed applicable for state estimation. 

Future work includes proving when Assumption 24 holds. Moreover, 
identifying and including an HOSMO that works with quaternions is 
future work, as well as to determine whether adaptive gains can be used 
with the GSTA. We could then realize both the theoretical advantages 
afforded by the GSTA and the practical advantages afforded by having 
adaptive gains. 
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Experiments: Comparison of the thruster forces used when the control laws with 
the HOSMO are used.  

Algorithm Root Mean Square (RMS) 

τthr  τ̇thr  

C- 
shape 

C-shape w/moving 
head 

C- 
shape 

C-shape w/moving 
head 

STA 3.02 3.34 17.49 13.51 
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PID 1.71 2.09 4.27 4.64  
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