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Abstract—HTTP Adaptive Streaming (HAS) is the de-facto
standard for video delivery over the Internet. Splitting the video
clip into small segments and providing multiple quality levels
per segment allows the client to dynamically adapt the quality
to current network conditions. The performance of HAS, and
as a consequence the user Quality of Experience (QoE), is
influenced by a multitude of parameters. This includes adjustable
settings like quality switching thresholds, the initial buffer level,
or the maximum buffer, as well as video characteristics like
segment duration or the variation of segment sizes along the
video. Recently a couple of analytical models for video streaming
have been proposed allowing to compare these input parameters
and derive their impact on QoE-relevant input parameters
for HAS-based video delivery. The outcome of these models
are typically asymptotic probabilities, distribution functions or
centralized and standardized moments. This contradicts to QoE
prediction models like P.1203 which compute the QoE based on
the chronological sequence of a specific video playback. So far,
it is unclear how and to which extend the generalized results of
the analytical models can be utilized to derive sequence-based
QoE values or the QoE distribution for a set of sequences for
similar input parameters with stochastic variations. To address
this problem, we compare measurements with the output of a
GI/GI/1 model with pq-policy and buffer-based quality switching
capability and conclude to which extend the results still allow to
approximate the video QoE.

Index Terms—Adaptive video streaming, Modeling, QoE esti-
mation, DASH

I. INTRODUCTION

Online video streaming has become the prevalent way of

video consumption and a large fraction of the global Internet

traffic can be attributed to on-demand video content [1].

MPEG dynamic adaptive streaming over HTTP (DASH) [2]

is a widely adopted standard for Internet video delivery and

allows the adaptation of the video quality to the available

throughput and client capabilities. The content is split typically

into segments of 2 to 10 seconds length and encoded into

multiple quality levels [3]. The properties of the segments are

summarized in an XML-based media presentation description

(MPD) file. The DASH client requests the MPD file and

afterwards downloads the segments in a quality dictated by

the client’s internal quality adaptation strategy.

The adaptation strategy considers a combination of parame-

ters to decide about the next segment’s quality, so to maximize

the Quality of Experience (QoE) of the user. New strategies are

coming up regularly and are being discussed in the research

community [4]–[8]. They differ with regard to their quality

selection process, which allows them to improve the played

back video quality, while reducing video stallings. Alongside

the adaptation strategies, thresholds for the initial buffer time

or the segment duration have a high impact on the QoE [9].

So far, comparisons between quality adaptation strategies

or player- and coding-relevant parameters have mainly been

conducted using measurements in dedicated testbeds or by

service providers within their infrastructure. Due to the large

problem space, it is time consuming to do holistic comparisons

between different mechanisms and parameter settings. Instead,

such comparisons are done for specific use-cases which are

considered to be relevant, and the output is typically assessed

using QoE models for video streaming like P.1203 [10].

Recently a couple of queueing-based models [11]–[13] have

been developed. These models are based on certain assump-

tions regarding the adaptation strategy and other relevant

parameters, but allow to easily compute QoE-relevant metrics

like the stalling probability for a large set of different network

scenarios and parameter settings. The outcome of these models

are typically asymptotic probabilities, distribution functions or

centralized and standardized moments. This contradicts to the

aforementioned QoE prediction models which compute the

QoE based on the chronological sequence of a specific video

playback. So far, it is unclear how and to which extend the

generalized results of the analytical models can be utilized to

derive sequence-based QoE values or the QoE distribution for

a set of sequences for similar input parameters with stochastic

variations.

To address this problem, we implement the GI/GI/1 model

with pq-policy and buffer-based quality switching capability

presented in [13] and derive chronological video playback

sequences using a Monte Carlo approach for a specific video

clip and different networking scenarios. For these sequences

we compute the perceived QoE distributions using the open

source implementation of P.1203 [14]. Similarly, we conduct

measurements for the same network scenarios using the the

Bola ABR controller implemented in the dash.js framework

and further compute the corresponding QoE distribution. Our

evaluations show that the output of the performance model

allows a good QoE estimation.



II. RELATED WORK AND BACKGROUND

A. HTTP Adaptive Streaming

HTTP Adaptive Streaming (HAS) allows to adapt the play

back video quality to current network conditions. To do so,

the video is split into segments of equal duration, typically

within a range of 2 and 10 seconds. Each of these segments

is encoded several times using different bitrates or scaled to

different resolutions, so to obtain several quality representa-

tions for each segment. The Media Presentation Description

(MPD) is downloaded by the client and lists the required meta

data, such as available qualities, the segment duration, and

the URL to the specific video segments. A DASH heuristic

running at the client selects the quality representation to down-

load next. The decision is either based on the current video

buffer level, the estimated throughput, or both. Accordingly,

one distinguishes between buffer-based, throughput-based, and

hybrid HAS heuristics. The heuristics decide so to maximize

the playback quality, whilst simultaneously avoiding rebuffer

events, i.e. video stallings.

B. HAS Performance Models

HAS performance models allow to compute QoE influence

factors (QoE-IF) based on certain assumptions. M/M/1/∞
models, for example, work on a high level of abstraction on

the one hand, but allow to easily compute relevant metrics.

Such a model, applying a pq-policy, is presented in [12]. The

threshold q denotes the buffer value which triggers the client

enter idle state, i.e. to pause requesting segments. The idle state

is left as soon as the buffer level is below threshold p, i.e. the

client resumes requesting video portions. The proposed model

is applied to investigate the impact of user profiles on the QoE

of adaptive streaming. The authors use mean-value analysis to

appropriately dimension the video buffer so to meet the trade-

off between initial delay and buffered time for different user

characteristic, e.g. watching a video versus browsing videos.

As part of presenting a HAS adaptation heuristic, De

Cicco et al. [15] formalizes the behavior of an Akamai

video streaming session. The authors model the system as a

hybrid automaton. To do so, they use upon others the quality

level, the current throughput, and the playout buffer as state

variables. With their model, the authors show that rebuffer

events can be prevented when the quality switching thresholds

are properly tuned. Furthermore, they motivate to properly set

the ratio between idle state and segment downloading to avoid

large buffering, which would result in high network resource

wasting in case the user aborts the video.

Burger et al. [16] applies discrete time-analysis to model

the video buffer of an HAS client. From the computed video

buffer distribution, conclusions about the probability of stalling

events as well as their durations can be drawn. The video

buffer is modeled as a GI/GI/1 queue with pq-policy. The

buffered play time at the client is considered as the amount

of unfinished work in the system. Playing back the video

corresponds the service time, i.e. draining the buffer. The work

of [13] builds upon the work of Burger et al. [16] by extending

the model so to allow modeling the DASH quality switching

behavior.

As shown in the evaluations of [16], those models are

capable to compute QoE influence factors, such as stallings,

to a decent degree of accuracy. There is quite a number

of parameters influencing HAS performance, such as buffer

thresholds, bandwidth variability, or video characteristics. To

optimize all adjustable and non-adjustable parameters in this

large problem space by doing measurements or simulation will

quickly hit the wall. The advantage of those models, compared

to measurements or simulation, is the cost-efficient computa-

tion. On the other hand, however, those models work on a

certain level of abstraction and omit parts of real systems. For

example, when considering a bandwidth distribution as input,

temporal aspects and correlations are commonly neglected.

Furthermore, the results from those models are asymptotic

and thus involve a loss of information, e.g. how stalling

probabilities evolve over time. So far, it is not clear if the

output of HAS performance models can be used as an input

for existing QoE models.

C. Modeling QoE

Yin et al. [17] proposes to model video QoE as a weighted

sum of average video quality, average quality variation, the

total rebuffer time, and the start-up delay. The model omits

temporal dependencies, i.e. when do quality switches or re-

buffering events occur. However, it was shown that the timings

of those events affect the user’s perceived quality, this fact is

often referred to as recency effects [18].

The standardized model ITU-T P.1203 [14], which has

specifically been designed for HAS, takes the temporal char-

acteristics of quality switches and rebuffer events into account.

For its development and validation, 30 subjective test databases

and over 1000 audiovisual sequences have been used. The

ITU-T standard gains attention in the research community.

Robitza et al. [19] applied the model to measure YouTube QoE

under constrained bandwidth conditions. Seufert et al. [20]

studied the impact of various application-level performance

indicators on the QoE computed by the model.

III. METHODOLOGY

A comprehensive overview on the applied methodology is

illustrated in Figure 1. It illustrates the whole process with

respect to the measurement runs and model-based evaluations,

the time series depicting the video playback behavior, and the

QoE assessment using ITU-T P.1203.

The investigation of a specific video clip for different net-

work traces using testbed measurements and the mathematical

model are shown on the top left. As network configurations

we consider a fixed bandwidth scenario and three scenarios

based on a real bandwidth trace [21]. We pick the trace

Car, depicting a bandwidth time series during a car ride

on a time scale of one second. For the latter, we further

distinguish between fixed order of the trace, random starting

point with turnaround and shuffle. Segment sizes and the
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Fig. 1. Methodology overview

different bandwidth configurations are used as input param-

eters for the analytical HAS performance model (III-B)and

for the measurements (III-A) to generate time series of HAS

parameters, such as quality or buffered play time.

On the right side distributions for segment sizes and the

available bandwidth are considered. The distributions are

computed with respect to the utilized video clip and network

traces and thus are an abstraction of the previously men-

tioned time series.These distributions are taken as input for

the performance model, which return steady state results of

relevant adaptive streaming metrics like stalling probability or

video buffer distribution. In order to generate video play back

sequences from these distributions, we perform Monte Carlo

[?] simulations (III-C).

Hence, we constantly increase the level of randomness of

the input data starting with fixed traces and time series to

probability distributions. To study the impact of disorder and

abstraction on the reliability of estimating QoE, we use the

time series obtained by the different methods as input for

the ITU-T P.1203 QoE model (III-D). The used scripts and

configuration files will be published on GitHub1.

A. Testbed Measurements

Our measurement setup consists of three virtual machines.

The first VM acts as a network emulator (netem) and connects

the server VM with the client VM. By throttling the outgoing

traffic on the netem interface towards the client, we can

emulate different bandwidth characteristics. We consider on

the one hand a bandwidth which does not change throughout

1repository not included due to double-blind review process

the experiments, which we refer to as static. On the other

hand, we use a bandwidth trace [21], which we scale so to

achieve similar average values as for the static case. The

bandwidth characteristics are summarized in Table I, with

cvar. Table I summarizes the bandwidth characteristics, i.e.,

average bandwidth, standard deviation and the corresponding

coefficient of variation cvar.

TABLE I
CHARACTERISTICS OF APPLIED BANDWIDTH CONFIGURATIONS

Static
Trace

Name Average Standard deviation cvar
500 trace0 496 260 0.52

1000 trace1 992 520 0.52
2000 trace2 1984 1040 0.52

The trace is scaled for different average bandwidth values

and used in the measurements in three different ways. Firstly,

we update the available bandwidth according to the order in the

trace, which we refer to as trace. Secondly, we start the trace

on a random point and preserve the timely order. In case the

end of the trace is reached, we loop the trace and proceed with

the first value in the trace. We refer to this mode as random
start. Lastly, we shuffle the trace, i.e. we do not preserve any

timely order. This mode is called shuffled. The server VM runs

a customized version of the dash.js 2 player using the Bola [8]

adaptation heuristic. As a test video, the server provides a

snippet of 240 seconds of the Big Buck Bunny clip 3. We

use segments of 4 seconds duration and provide each segment

in 4 quality layers with the bitrate characteristics as shown in

2https://github.com/Dash-Industry-Forum/dash.js
3https://peach.blender.org/



Table II. Measurements are repeated 20 times to take statistical

variations into consideration.

TABLE II
QUALITY LEVELS AND BITRATES OF THE PROVIDED VIDEO

Level Average bitrate [kbps] Standard deviation [kbps]
1 510 154
2 1016 313
3 1524 474
4 2034 634

The client initiates the video stream using google-chrome

browser with disabled cache.

B. HAS Performance Model

The discrete-time GI/GI/1 queue [22] has recently been

applied to performance analysis of adaptive video streaming

systems given certain degrees of freedom with respect to the

utilized inter-arrival time and the service time distributions,

as well as the flexibility with respect to the composition of

the outlined distributions. It is possible to model the random

variables following an independent and identical distributions

(iid), but also following correlated or time-dependent distribu-

tions. To better understand this feature let’s consider a simple

video streaming example with a video clip transmitted via a

network with a fixed throughput. The video clips is segmented

within i segments of fixed segment length, e.g., 4 seconds.

The content and playback order of a video clip are fixed

resulting in the same segment order and size C1, C2, C3, ...Ci

to be transmitted, independent of the current time and possible

repetitions. Since we also assume a fixed throughput, a fixed

number D of data can be transmitted per second via the

network. The corresponding transmission durations for the

segments can easily be computed as A1 = C1

D , ..., Ai =
Ci

D .

Hence, this process is not random at all, but nevertheless the

arrival process can be modeled using a sequence of i deter-

ministic distributions with dirac delta at A1, A2, ...Ai. After

each arrival the video buffer at the client is then increased

by the segment length, and the next segment is downloaded,

and asymptotic or steady-state performance metrics can be

computed using the discrete-time model presented in [11].

A more complex example would be that only random

distributions for segment size and the available throughput are

known. In this case the corresponding random processes C

and D would be modeled iid. Hence, all possible combina-

tions of segment sizes and network throughput can happen,

with some being more likely than others depending on the

specific distributions. Hence, the transmission durations can

be computed as ratio distribution, as outlined in [11]. After

each arrival, the video buffer at the client is then increased by

the segment length, and the next segment is downloaded, i.e.,

these transmission times are a reasonable approximation of the

segment inter-arrival time at the client. Using segment length

and inter-arrival distributions, it possible to compute steady-

state performance metrics using the discrete-time model.

In both cases, the model will compute the video buffer client

distribution at the points in time when a segment download

has ended and a new video segment is downloaded. This

method can be utilized for buffer-based ABR mechanisms, as

shown in [13], where the decision which quality to download

next is taken after a segment is downloaded and the playtime

of the segment is added to the video buffer. In this case,

the segment size distributions for different qualities and the

throughput distribution are used to compute the inter-arrival

time distribution for each quality. In case of iid inter-arrival

and service time distributions the outlined download and

playback process continuous independent from past system

states, only depending from the current system states. The

corresponding quality to download, and therewith the segment

size depends on the current video buffer level and predefined

switching thresholds. Hence, it is possible to embed a markov

chain at this “renewal” points and to describe the process using

a transition matrix P, i.e., a matrix summarizing the transition

probabilities between all possible video buffer levels at the

embedding points. The steady state probabilities of the video

buffer can then be computed by finding the eigenvectors of

P for the eigenvector 1. If the transition matrix cannot be

computed due to its size it is possible to compute the video

buffer distribution using an iterative approach as outlined in

[22]. Further metrics like the stalling probability, switching

probabilities or probabilities for switching amplitudes can be

derived using the video buffer distribution, as outlined in [13].

When applying the model, we consider the same video qual-

ity levels and characteristics as in the testbed measurements.

The buffer threshold to switch from level 1 to level 2 is set to

10 seconds. 15 seconds of buffered ply time are required to

download level 3, and 20 seconds for requesting the highest

quality.

C. Video Playback Sequence Generation

. In this subsection we describe how to generate video time

sequences based on the output of the HAS performance model.

To generate a couple of different video playback sequences

we use a Monte Carlo simulation approach, namely a random

walk. We start with the empty system and compute the trans-

mission time for the first segment. This is done by drawing

a random inter-arrival time from the corresponding segment

inter-arrival time distribution for the selected quality defined

by the current buffer level and the switching thresholds. The

video playback buffer depletes until the next segment arrives

at the client resulting in an increase of the video playback

buffer by a random variable following the segment length

distribution. Relevant QoE metrics like the downloaded video

quality and stalling time and duration are logged. Then, the

random walk is continued by drawing further random variables

for inter-arrival times depending on the developing video

buffer state, as well as random variables for the segment length

distributions. This is continued until the desired number of

segments are downloaded. In total, we randomly generate 50
video playback sequences using the outlined method.



D. QoE Estimation using P.1203

The P.1203 model can be applied in various modes, which

differ in terms of the required input data granularity and the

goodness of the QoE prediction. We apply mode 0, which

firstly considers the audio visual quality as an input parameter.

As our test video does not contain an audio track, the model

assumes a high constant audio quality throughout the video.

Concerning stallings, the model considers their temporal place-

ment as well as the respective durations. Finally, the visual

quality is passed as the video bitrate on a per-segment scale.

Hence, the actual bitrate of each video segment has to be

included. This can be done in the case of measurements and

in the case of applying the HAS performance model with

the actual segment sizes and bandwidth values, i.e. fixed

bandwidth or traces. However, if the playback sequence is

generated based on distributions for bandwidth and segment

sizes, the bitrate per video segment is not available. In this

case, we use the average bitrate of the respective quality

level for all segments. The resulting output of P.1203 is the

mean opinion score (MOS) for the specified video playback

sequence.

IV. EVALUATION

We first evaluate the obtained QoE values for different

bandwidth modes with an average available bandwidth of

500 kbps. The results are depicted in Figure 2. The plot

on the left side shows the results for the two bandwidth

modes without randomness, i.e. the static bandwidth and the

bandwidth trace. In case of static, the HAS performance model

(pm) returns a MOS value of 1.94 and a MOS value of 1.98

when the bandwidth trace is applied. As the model computes

stallings and the next segment’s quality based fixed inputs,

we obtain only one MOS value for trace and one MOS

valuestatic. The testbed measurements (tb), however, return

slightly varying QoE values. In the case of static, the values

are in a range between 1.95 and 2.04. If testbed measurements

are performed using trace, the variability increases slightly,

returning MOS values between 1.85 and 2.0. These variations

in the measurements are due to several aspects, including

the behavior of TCP and software. When applying the HAS

performance model with distributions for available bandwidth

and segment sizes, the returned MOS is between 1.8 and 2.4.

The results when using random start points in the bandwidth

trace or shuffling the bandwidth trace are shown on the right

side of Figure 2. While the computation using the performance

model resulted in a single MOS value for static and trace, we

can now see different QoE values for different computation

runs, due to the induced randomness. The retrieved MOS lies

between 1.84 and 2.3 for random start and between 1.85 and

2.0 for shuffled. The QoE as measured in the testbed ranges

from 1.84 to 2.0 for random start and 1.84 and 2.1 for shuffled.

The cumulative distribution functions for the modes with

an average available bandwidth of 1000 kbps are shown in

Figure 3. Once again, we obtain one QoE value when applying

the HAS performance model with the modes static and trace,
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Fig. 2. CDF of the QoE values resulting from the different bandwidth modes
with an average bandwidth of 500 kbps. Black solid lines indicate the HAS
performance model’s outcome on distributions. The remaining solid lines
indicate QoE values computed by the HAS performance model (pm) relying
on time series as input. Dashed lines represent the results from measurements
in the testbed (tb).
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Fig. 3. CDF of the QoE values resulting from the different bandwidth modes
with an average bandwidth of 1000 kbps. Black solid lines indicate the HAS
performance model’s outcome on distributions. The remaining solid lines
indicate QoE values computed by the HAS performance model relying on
time series as input. Dashed lines represent the results from measurements in
the testbed.

giving a QoE of 4.58 and 4.28, respectively. The variation

of the QoE values obtained from testbed measurements in

static mode is negligible. This is due to the fact the provided

bandwidth allows the client to smoothly stream on the lowest

quality. It rarely selects segments on the second quality level

or suffers stalling. On average, a MOS of 4.58 is achieved.

If the bandwidth mode trace is applied, there occur periods

where the available bandwidth is not sufficient to download

the segment in time, but also periods where the available

bandwidth is sufficient to build up a buffer that allows a higher

quality. Hence, the MOS shows a slight variability between 4.2

and 4.6.

The variability of the MOS values further increases if we

increase the randomness of available bandwidth by apply-

ing the modes random start and shuffled. In these cases,

the values obtained from the testbed measurements and the

performance model do better reflect the results from applying

the performance model with distributions and generating video

sequences from the resulting buffer distribution.

Finally, we show the evaluation results when considering

an available bandwidth of 2000 kbps on average in Figure 4.

Once again, the HAS performance model returns a single

MOS value, which is 4.585 in case of static bandwidth and

4.584 when we use the bandwidth trace. Similar as with a

static bandwidth of 1000 kbps, the testbed measurement yields
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Fig. 4. CDF of the QoE values resulting from the different bandwidth modes
with an average bandwidth of 2000 kbps. Black solid lines indicate the HAS
performance model’s outcome on distributions. The remaining solid lines
indicate QoE values computed by the HAS performance model relying on
time series as input. Dashed lines represent the results from measurements in
the testbed.

QoE values with negligible variation. On average, a MOS

of 4.58 is achieved. The testbed measurement using mode

trace yields values that range from 4.04 to 4.58. Again, it

holds that the variability of the obtained MOS is the highest

for the HAS performance model with distributions as input

parameters. When increasing the randomness in the 2000 kbps

scenario, as shown on the right side of Figure 4, the MOS

retrieved from the HAS performance model deviates from the

prior static value of 4.58 in a few cases. Furthermore, the

testbed measurements approximate to the results obtained from

applying the HAS performance model with input distributions.

To summarize, the estimated QoE for the model-based

results is slightly smaller than the results obtained by the

measurements. This stems from factors like protocol header

overhead or TCP behavior, which influences the measurements

but is not included in the model computation. Besides, the

variations tends to be higher when utilizing the model, which

comes from the higher abstraction level of the model input

parameters. Last, we note that the results of measurements

and model remain consistent between the different investigated

scenarios.

V. CONCLUSION

Recently, a couple of analytical models for video streaming

have been proposed. They allow to understand the impact

of parameters like switching thresholds or network variations

on the streaming behavior and relevant application metrics

like steady-state stalling or switching probabilities. Due to

the abstract nature of these metrics, the computation of the

video QoE using time-dependent models like P.1203 cannot be

achieved in a straight forward manner. This paper investigates

if and to which extent it is possible to compute the QoE based

on such analytical models. To achieve this goal, we generate

synthetic video playback sequences from the output of one

of these models using monte carlo simulation techniques and

compute the QoE using P.1203. We further conduct measure-

ments in a local testbed using the same configurations and

compute the video QoE accordingly.

For our study we considered a different network scenarios

with respect to average bandwidth, its standard deviation, and

its temporal correlation. The results show that the output of

abstract analytical models still allows a good estimation of the

QoE.
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bitstream-based, scalable video-quality model for http adaptive stream-
ing: Itu-t p. 1203.1,” in Quality of Multimedia Experience (QoMEX),
2017 Ninth International Conference on. IEEE, 2017, pp. 1–6.
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