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Quaternion-Valued Distributed Filtering and Control
Sayed Pouria Talebi, Stefan Werner, and Danilo P. Mandic

Abstract—This work presents a unified framework for filtering
and control of quaternion-valued state vector processes through
multi-agent networked systems. To achieve this goal, the filtering
problem in sensor networks is revisited, where a distributed
Kalman filtering algorithm for filtering/tracking quaternion-
valued state vector processes is developed. The distributed
quaternion Kalman filter is formulated to mirror the operations
of an optimal centralized approach in a fashion that will allow
each agent to retain a Kalman style filtering operation and an
intermediate estimate of the state vector. The work includes a
comprehensive performance analysis of the developed distributed
quaternion Kalman filtering algorithm, resulting in a closed-
form expression for the second-order error moment. More
importantly, due to the comprehensive framework for fusion of
the covariance information and drawing upon concepts from the
conducted performance analysis, a duality between the developed
distributed Kalman filter and decentralized control is established.
This essentially extends the duality between Kalman filtering
and linear quadrature regulators to the quaternion domain and
distributed setting. The theoretical concepts in this work are
verified via simulations.

Index Terms—Qauternion-valued filtering and control, sensor
networks, distributed Kalman filtering, decentralized control.

I. INTRODUCTION

In recent years, multi-agent networked systems have
emerged as a suitable solution in a variety of complex engi-
neering applications [1]–[10]. Owing to the versatility of the
state-space model for representing real-world dynamic systems
and optimality of the framework derived in [11], developing
Kalman filtering techniques that are scalable with the size
of the network has become the focal point of research into
distributed filtering and learning [12]–[16].

Distributed solutions for filtering and control applications
in networked multi-agent systems started to emerge in the
late 1970s with the decentralized linear quadratic regulator
proposed in [17]. In turn, the work in [17], inspired the initial
distributed Kalman filtering solutions put forth in [18,19].
However, the filtering and control techniques in [17]–[19] are
tantamount to replicating well-known centralized filtering and
control algorithms at each agent in the network. This replica-
tion procedure is not only computationally inefficient, as all
agents in the network are performing the same computations,
but also results in a large amount of communication traffic,
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as each agent must have access to a vast array of information
from all of its peers in the network.

In the Kalman filtering arena, in order to limit com-
munication traffic and eliminate overlapping computations,
two classes of distributed Kalman filtering frameworks have
emerged. Referred to as consensus Kalman filters, this class
of distributed Kalman filters use consensus information fusion
techniques to fuse state vector estimates and observation data
from agents across the network in order to improve the
performance of local Kalman filtering operations implemented
at each agent [1,2,12,20]–[23]. Following the introduction of
consensus Kalman filtering frameworks and capitalizing upon
the more flexible framework of diffusion techniques, so-called
diffusion Kalman filters were introduced in the literature [15,
24,25]. This class of distributed Kalman filters operate akin to
their consensus duals while replacing consensus information
fusion techniques with diffusion. The flexibility with which
diffusion weighting coefficients can be selected as compared to
consensus weighting coefficients provides for a more effective
approach for fusion of state vector estimates [14,15,24,26,27].
On the other hand, the consensus frameworks provide for a
more comprehensive fusion of covariance information [12,23].
In the control arena, decentralized control techniques are seen
as solutions that simultaneously accommodate for both scala-
bility with the size of the network, as the work-load is spread
among the agents, and improved performance in comparison to
their non-cooperative duals, as each agent remains reasonably
aware of the network status [1,2,17,28].

Traditionally, quaternions have been used for modeling
three-dimensional rotations and orientation in a compact and
computationally efficient manner [29]–[31]. The major advan-
tages of modeling rotations using quaternions as compared to
rotation matrices can be summarized as follows:

• The division algebra of quaternions provides for con-
cise and mathematically tractable solutions with fewer
restrictions than those obtainable in the real domain. This
division algebra also allows to avoid problems associated
with gimbal lock [29,30].

• Smooth interpolations of rotations can be produced when
using quaternions, allowing for higher quality computer
graphics and smooth trajectory control [32].

• Applying the roll, pitch, and yaw angles to express
rotations, a degree of freedom is lost when one of the
angles reaches π/2. This is not the case for quaternions.

In recent years, the introduction of the HR-calculus [33,34],
a framework for calculating derivatives of quaternion-valued
functions, and the augmented quaternion statistics [35]–[37],
a framework for exploiting the full second-order statistical
information of quaternion-valued random signals, have led to
the development of rigorous quaternion-valued signal process-
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ing algorithms that are shown to outperform their real and
complex-valued counterparts in various applications including
three-phase power system monitoring [6,38]–[40], bearings-
only tracking [6,41], color image processing [42], kernel
learning [43], and avionic system [29,30]. This is largely owed
to two main factors [29,30,32,38]–[41]:

• The more elegant way for expressing rotations compared
with those obtainable with matrix algebras in R3 and
R4; thus, resulting in mathematically tractable functional
expressions with fewer constraints and with closed-form
solutions.

• Allowing for estimation and control techniques to be
derived directly in the quaternion domain using their
division algebra; thus, resulting in information processing
techniques with rigorous physical interpretation and com-
pact representations leading to more accurate and efficient
learning and control techniques.

Although distributed filtering and control techniques form
the core of most modern networked multi-agent systems,
the literature in this area is largely concerned with real-
valued signals. However, many real-world applications deal
with signals that are inherently three-dimensional, a scenario
ideally suited for quaternions in terms of both convenience of
representation and mathematical tractability. This presents the
requirement for an all-inclusive quaternion-valued distributed
filtering and control framework. To this end, the problem
of filtering/tracking quaternion-valued state vector sequences
via sensor networks is considered and a versatile quaternion-
valued distributed Kalman filtering technique is derived. This
is achieved through the decomposition of the optimal cen-
tralized Kalman filtering operations. This is conducted in a
manner that allows each agent to retain a Kalman style filtering
operation and an estimate of the state vector. The performance
of the derived distributed quaternion-valued Kalman filter is
analyzed establishing that it provides unbiased estimates and
formulating a closed-form expression for the second-order
error moment, referred to as the mean square deviation (MSD).

Importantly, the dual quaternion-valued regulator to the
considered filtering problem is formulated. Then, drawing
upon ideas from the performance analysis of the derived
quaternion-valued distributed Kalman filter, it is demonstrated
that optimal solution to the formulated quaternion-valued reg-
ulator problem can be approximated with any desirable degree
of accuracy, using the decomposition approach conceived for
the distributed quaternion-valued Kalman filter. This presents
a quaternion-valued extension to the principle established by
R. E. Kalman in [11]. Thus, introducing a rigorous framework
for quaternion-valued distributed filtering and control.
Mathematical Notations: Scalars, column vectors, and matri-
ces are denoted by lowercase, bold lowercase, and bold upper-
case letters, respectively. The augmented state vector at time
instant n is denoted by xan, while I denotes an identity matrix
of appropriate size. The transpose and Hermitian transpose
operators are denoted as (·)T and (·)H. The trace operator
is represented by Tr {·}, while E {·} represents the statistical
expectation operator. The operator vec {·} transforms a matrix
into a column vector by stacking its columns. The real and

quaternion domains are denoted by R and H. Finally, the
Kronecker product is denoted by ⊗.

II. QUATERNION ALGEBRA AND STATISTICS

The skew-field of quaternions is a four-dimensional, non-
commutative, associative, division algebra. A quaternion vari-
able q ∈ H consists of a real part, <(q), and a three-
dimensional imaginary part or pure quaternion, =(q), which
comprises three components {=i(q),=j(q),=k(q)}. A variable
q ∈ H can be expressed as

q = <(q) + =(q) =<(q) + =i(q) + =j(q) + =k(g)

=qr + iqi + jqj + kqk

where {qr, qi, qj , qk} ∈ R, while the orthonormal vectors
{i, j, k} form the basis of the quaternion imaginary subspace.
The orthonormal vectors {i, j, k} obey the multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j, ijk = −1

resulting in the non-commutativity property. The quaternion
conjugate and norm are defined as

q∗ = <(q)−=(q) and |q| =
√
qq∗ =

√
q2r + q2i + q2j + q2k

respectively, whereas the multiplicative inverse of q ∈ H and
q 6= 0 can be found from q−1 = q∗/|q|2.

As an associative hypercomplex algebra, quaternions have
an isomorphic matrix algebra [44]. In this context, we have

∀q ∈ H↔ Q =


qr −qi −qj qk
qi qr −qk −qj
qj qk qr qi
−qk qj −qi qr

 ∈ R4 × R4 (1)

where Q is the representation of q in the isomorphic matrix
algebra [44,45]. The isomorphism in (1) is a useful analytical
tool, as it allows for the use of well-known concepts in matrix
algebra to be applied to quaternions with minor modifications.

The involution of q ∈ H around µ ∈ H is defined as qµ ,
µqµ−1 [46]. Involution is seen as the quaternion equivalent of
the conjugate operator in the complex domain and are used to
introduce a mapping between H4 and R4 as [33,35]

qa =


q
qi

qj

qk

 =


1 i j k
1 i −j −k
1 −i j −k
1 −i −j k



qr
qi
qj
qk

 (2)

where qa is referred to as the augmented quaternion vector.
The quaternion conjugate can also be defined through involu-
tion as [35,36,46]

q∗ = <(q)−=(q) =
1

2

(
qi + qj + qk − q

)
.

Augmenting a quaternion-valued variable with its involution
around the i, j, and k axes forms the basis of the HR-calculus
which is elaborated upon in the sequel.

The quaternion-valued function f(·) : HM → H with param-
eter vector q ∈ HM is differentiable if and only if it satisfies
the Cauchy-Riemann-Fueter condition [33,47]. This imposes
a severe restriction on admissible functions in filtering/control
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applications, as only linear functions can meet this condi-
tion [33,41]. The HR-calculus [33,34,48] presents a solution
to this problem using the mapping in (2). The HR-calculus,
considers the function f(q = qr+iqi+jqj+kqk) : HM → H
in terms of the orthogonal quaternion basis {q,qi,qj ,qk}, so
that f(qa = [qT,qiT,qjT,qkT]T) : H4M → H. Then, formu-
lating the quaternion-valued function in terms of its real-valued
components as f(qa) = fr(qa) + ifi(qa) + jfj(qa) + kfk(qa)
and using the mapping in (2), a relation is established between
the derivatives taken in R4 and those taken directly in H.
This, forms a unified framework for calculating the derivatives
and establishing the gradients of quaternion-valued functions
directly in the quaternion domain.

The relation between qa = [qT,qiT,qjT,qkT]T ∈ H4M

and [qT
r ,q

T
i ,q

T
j ,q

T
k ]T ∈ R4M also forms the basis of the

augmented quaternion statistics. In this framework, the full
second-order statistical description of quaternion random vari-
ables is given by the augmented covariance matrix [35,37]

Cqa = E
{
qaqaH

}
=


Cqq Cqqi Cqqj Cqqk

Cqiq Cqiqi Cqiqj Cqiqk

Cqjq Cqjqi Cqjqj Cqjqk

Cqkq Cqkqi Cqkqj Cqkqk


where ∀ζ, ζ ′ ∈ {1, i, j, k},Cqζqζ′ = E

{
qζqζ

′H
}

.
To further illustrate the need for a so-called augmented

approach, consider the minimum mean square error (MMSE)
estimator of a variable, y, conditioned on the observation,
z, that is ŷ = E {y|z}. Following the complex domain
analogy [49], when y and z are quaternion-valued zero-mean
and jointly Gaussian random variables, the MMSE estimator
has to be expressed according to the individual components
of the quaternion random variables; thus, we have

ŷ =E {yr|zr, zi, zj , zk}+ iE {yi|zr, zi, zj , zk}+

+ jE {yj |zr, zi, zj , zk}+ kE {yk|zr, zi, zj , zk} .

Now, the mapping in (2) is used to replace {zr,zi,zj ,zk} with
{z, zi, zj , zk} resulting in

ŷ =E
{
yr|z, zi, zj , zk

}
+ iE

{
yi|z, zi, zj , zk

}
+ jE

{
yj |z, zi, zj , zk

}
+ kE

{
yk|z, zi, zj , zk

}
.

Therefore, for quaternion-valued, zero-mean, and jointly Gaus-
sian z and y, the MMSE solution is in the form of a widely-
linear estimator given by [35,50]

ŷ = gTz + hTzi + uTzj + vTzk =
[
gT,hT,uT,vT

]
za (3)

where {g,h,u,v} are quaternion-valued coefficient vectors
and z is the regressor vector1. The estimator in (3) can also
be expressed as

ŷa = Waza (4)

where Wa is matrix constructed appropriately from
{g,h,u,v} and their involutions [41].

1For more detail regarding the MMSE solution in (3) the keen reader is
referred to [35,50], while an inclusive treatment of statistical estimation in
the quaternion domain can be found in [35]–[37,43,50].

III. PROBLEM STATEMENT

A. The Network
The network is modeled as a connected undirected graph
G = {N , E} so that node set N denotes the agents in the
network and edge set E denotes bidirectional communication
links between the agents. The cardinality of node set N is
expressed as |N | and denotes the number of nodes in N . The
neighborhood of node l is defined as the set of nodes that can
communicate with it, including self-communication, which is
represented by the set Nl whose cardinality is denoted as |Nl|.

B. Distributed Filtering Problem
Consider a dynamic physical system that is expressed in

terms of the quaternion-valued augmented discrete-time state-
space model

xan = Aa
nxan−1 + νan (5)

where Aa
n is the state transition matrix at time n, while νn is

a zero-mean white Gaussian random vector with augmented
covariance matrix E

{
νanν

aH
n

}
= Cνan . The goal is to enable

each agent of the network to track the state vector sequence
given available observations throughout the network, which
are modeled as

yal,n = Ha
l,nxan + ωal,n (6)

where yal,n and Ha
l,n are the augmented observation vector and

observation matrix at time instant n at node l, while ωl,n is
the observation noise at node l and time instant n, which is
independent from νn, and has augmented covariance matrix

E
{
ωal,nω

aH
m,ι

}
= Cωal,nδ(l −m)δ(n− ι) (7)

with δ(·) denoting the Kronecker delta function.

C. Distributed Control Problem
The dual regulator to the filtering problem in Section III-B

is now formulated. To this end, consider the noise-free multi-
agent controlled dynamic system modeled as

xan+1 = Aaxan +
∑
∀l∈N

Ba
l u

a
l,n (8)

where Ba
l represents the actuator dynamic of the agent imple-

menting control input ual,n. The goal is to find optimal control
inputs {ual,n : ∀l ∈ N , n = 1, 2, . . . , N} that minimize the
cost function

J = xaHN TaxaN +

N−1∑
n=1

xaHn Qaxan+

N−1∑
n=1

∑
∀l∈N

uaHl,nRa
l u

a
l,n (9)

subject to the widely-linear control law ∀l, n : ual,n = L
a

l,nxan,
where N is referred to as the control horizon, while Ta, Qa,
and {Ra

l : ∀l ∈ N} are positive definite Hermitian symmetric
weighting matrices.
Remark 1. In order to simplify the derivation, the models
in (5) and (6) are assumed widely-linear, that is, according
to the HR-calculus framework, they are linear in xin, xjn,
xkn, and xn. However, owing to the widely-linear setting,
nonlinear functions can be accommodated using their Taylor
expansions [41]. The same statement follows for the control
problem in Section III-C.
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IV. QUATERNION-VALUED DISTRIBUTED KALMAN FILTER

A. Filter Derivation

In this section, the optimal solution to the filtering prob-
lem in Section III-B is constructed; then, a framework for
approximating this optimal solution at each agent in a dis-
tributed fashion is derived. Initially, the filtering problem in
Section III-B is considered from a network-wide perspective,
where observation vectors are organized in a column vector
so that

ycol,n = [yaT1,n, . . . ,y
aT
|N |,n]T. (10)

From (6) and (10) it can be interpreted that

ycol,n = Hcol,nxan + ωcol,n (11)

where
Hcol,n =[HaT

1,n, . . . ,H
aT
|N |,n]T

ωcol,n =[ωaT1,n, . . . ,ω
aT
|N |,n]T.

Now, the filtering problem becomes that of tracking the
state vector modeled via the dynamic system in (5), given the
observation vector in (10) and observation function in (11).
The optimal solution to this problem comes in the form of
centralized quaternion Kalman filter (CQKF) the operation of
which are summarized in the following [6,41]:
Initialize with:

x̂a0|0 = E {xa0} (12a)

Ma
0|0 = E

{
(xa0 − E {xa0})(xa0 − E {xa0})H

}
(12b)

Model update:

x̂an|n−1 = Aa
nx̂an−1|n−1 (12c)

Ma
n|n−1 = Aa

nMa
n−1|n−1A

aH
n + Cνan (12d)

Measurement update:

Ma−1

n|n = Ma−1

n|n−1 + HH
col,nC

−1

ωcol,n
Hcol,n (12e)

Gn = Ma
n|nHH

col,nC
−1

ωcol,n
(12f)

x̂an|n = x̂an|n−1 + Gn

(
ycol,n −Hcol,nx̂an|n−1

)
(12g)

where x̂an|n−1 and x̂an|n denote respectively the a priori and a

posteriori estimates of xan, while E
{
ωcol,nω

H
col,n

}
= Cωcol,n .

Although the CQKF is optimal in the mean square error
sense, as it can incorporate all the available observation
information in the network, its operation requires the transfer
of all observation vectors to the central processing unit. This
burdens the network with complex communication protocols
and makes the algorithm vulnerable to the failure of the central
processing unit. Taking into account that in agent networks
communication is restricted to the neighborhood of each agent,
next we aim to mirror the operations of the CQKF within a
distributed setting.

Considering the expression in (7), the covariance matrix
Cωcol,n has a block diagonal structure given by

Cωcol,n =E
{
ωcol,nω

H
col,n

}
=block-diag{Cωal,n : ∀l ∈ N}

(13)

Therefore, from (12e), we have

Ma−1

n|n =Ma−1

n|n−1 +
∑
∀l∈N

HaH
l,nC

−1

ωal,n
Ha
l,n

=
1

|N |
∑
∀l∈N

Γal,n

(14)

where
Γal,n = Ma−1

n|n−1 + |N |HaH
l,nC

−1

ωal,n
Ha
l,n. (15)

Replacing (12f) into (12g) and after some mathematical
manipulation, it follows that

x̂an|n =x̂an|n−1 + Ma
n|nHH

col,nC
−1

ωcol,n
ycol,n

−Ma
n|nHH

col,nC
−1

ωcol,n
Hcol,nx̂an|n−1. (16)

Once more, taking into account the block-diagonal structure
of Cωcol,n given in (13) we have

HH
col,nC

−1

ωcol,n
ycol,n =

∑
∀l∈N

HaH
l,nC

−1

ωal,n
yal,n

HH
col,nC

−1

ωcol,n
Hcol,n =

∑
∀l∈N

HaH
l,nC

−1

ωal,n
Ha
l,n.

(17)

Now, substituting the expression in (17) into (16) allows the
a posteriori estimate of the state vector to be calculated by

x̂an|n =x̂an|n−1 + Ma
n|n

(∑
∀l∈N

HaH
l,nC

−1

ωal,n
yal,n

)

−Ma
n|n

(∑
∀l∈N

HaH
l,nC

−1

ωal,n
Ha
l,n

)
x̂an|n−1 (18)

=x̂an|n−1 +
∑
∀l∈N

Ma
n|nHaH

l,nC
−1

ωal,n

(
yal,n −Ha

l,nx̂an|n−1
)
.

The expression in (18) can be formulated in a more elegant
fashion as

x̂an|n =
1

|N |
∑
∀l∈N

ψal,n (19)

where

ψal,n =x̂an|n−1

+ |N |Ma
n|nHaH

l,nC
−1

ωal,n

(
yal,n −Ha

l,nx̂an|n−1
)
.

(20)

Remark 2. In (20) and (15) the updating parameters are scaled
by a factor of |N | in order to preserve the equivalence between
expressions in (19) and (14) with those in (12e) and (12g).

In essence, the expressions in (14)-(20) show that the oper-
ations of the CQKF can be mirrored in a distributed fashion
through the averaging procedures in (14) and (19). Thus, in
order to present a distributed formulation of the CQKF and
based on the work in [51,52], a framework for approximating
the averages in (14) and (19) is established. To this end,
effects of consensus filters in [51,52] on quaternion-valued
matrices with an augmented composition is next investigated.
This also provides the format with which the consensus filters
will be implemented in this work and forms the basis of our
performance analysis.
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Given the set of augmented quaternion-valued matrices
{Fal0 : l = 1, 2, . . . , |N |} as inputs of the following iterative
consensus filter

Falι = Falι−1
+

∑
∀m∈Nl

wl,m
(
Famι−1

− Falι−1

)
(21)

where Falι is the output of the iterative consensus filter at node
l after ι iterations and wl,m is a positive real-valued weight.
The iterations of the consensus filter in (21) can alternatively
be expressed in a network-wide formulation as

Fι = (W ⊗ I)Fι−1 = (W ⊗ I)ιF0 = (M⊗ I)F0 (22)

where M = Wι, while Fι = [FaT1ι ,F
aT
2ι , . . . ,F

aT
|N |ι ]

T and
the element on the lth row and mth column of W is

W{l,m} =


1−

∑
∀κ∈Nl\l

wl,κ if m = l,

wl,m if m ∈ Nl\l,
0 otherwise.

In addition, if the weights are selected in a manner to also
make W doubly stochastic, from the work in [51], we have

∀l,m ∈ N : M{l,m} → 1/|N | as ι→∞. (23)

where M{l,m} is the element on the lth row and mth column
of M. Hence, the expressions in (21)-(23) indicate that

lim
ι→∞

Falι =
1

|N |
∑
∀m∈N

Fam0

resulting in the average consensus filter (ACF) required to
approximate the averages in (14) and (19). For brevity, the
network-wide operation of the ACF after ι iterations is demon-
strated through the schematic

Falι ← ACF ← {Fam0
: ∀m ∈ N}

where {Fam0
: ∀m ∈ N} are the network-wide inputs to the

ACF and Falι is the output at node l after ι iterations of the
expression in (21) and its required data exchanges.

Finally, the operations of the derived distributed Kalman
filter are summarized in Algorithm 1, where x̂al,n|n−1 and
x̂al,n|n denote the a priori and a posteriori estimates of xan
at node l, while the ACF is iterated a predefined number of
times in order to approximate the averages in (14) and (19)
with sufficient accuracy.

Algorithm 1. Distributed Quaternion Kalman Filter (DQKF)
For nodes l = {1, . . . , |N |}:
Initialize with:

x̂al,0|0 = E {xa0} (24a)

Ma
l,0|0 = E

{
(xa0 − E {xa0}) (xa0 − E {xa0})

H
}

(24b)

Model update:

x̂al,n|n−1 = Aa
nx̂al,n−1|n−1 (24c)

Ma
l,n|n−1 = Aa

nMa
l,n−1|n−1A

aH
n + Cνan (24d)

Measurement update:

Γal,n = Ma−1

l,n|n−1 + |N |HaH
l,nC

−1

ωal,n
Ha
l,n (24e)

Ma−1

l,n|n ← ACF ← {Γam,n : ∀m ∈ N} (24f)

Ga
l,n = |N |Ma

l,n|nHaH
l,nC

−1

ωal,n
(24g)

ψal,n = x̂al,n|n−1 + Ga
l,n

(
yal,n −Ha

l,nx̂al,n|n−1
)

(24h)

x̂al,n|n ← ACF ← {ψam,n : ∀m ∈ N} (24i)

Remark 3. As the iterations of the ACF increase resulting in
∀l,m ∈ N : M{l,m} → 1/|N |; then, (24f) and (24i) become
convergent to the summation in (14) and (19). Thus, it follows
that ∀l ∈ N : Ma

l,n|n →Ma
n|n and as a result x̂al,n|n → x̂an|n.

Indicating that performance levels comparable to that of the
CQKF are attainable. This is also demonstrated through sim-
ulations in Section VI-A.

B. Stability and Performance Analysis

The aim of this section is to provide a better insight
into derived DQKF operations and formulate a closed-form
expression for the second-order error moment, commonly
referred to in the literature as the MSD, which for node l
at time instant n is given by

MSDl,n = E
{(

xan − x̂al,n|n
)H(

xan − x̂al,n|n
)}
. (25)

In keeping with classical performance analysis and for sim-
plicity of derivation, we consider the time-invariant case. This
is the essence of Assumptions 1 and 2. To achieve this goal,
the following standard conditions in Kalman filtering analysis
are held to be true [6,15,53,54]:
Assumption 1: The state transition matrix becomes time

invariant and state evolution noise becomes stationary,

lim
n→∞

Aa
n = Aa and lim

n→∞
Cνan = Cνa .

Assumption 2: The observation function of all agents become
time invariant and the observation noise at all nodes in
the network become stationary,

∀l ∈ N : lim
n→∞

Ha
l,n = Ha

l and lim
n→∞

Cωal,n = Cωal

resulting in lim
n→∞

Cωcol,n = Cωcol .
Assumption 3: The matrix pairs ∀l ∈ N : {Aa

n,H
a
l,n} are

jointly observable over the communication matrix M and
the matrix pair {Aa

n,C
1
2
νan
} is controllable.
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Assumption 4: The matrices ∀l ∈ N : {Γal,n,Ma
l,n} remain

positive definite and retain their augmented composition
at all time instances.2

Consider the fusion of covariance information in (24f).
Substituting the ACF operation from (22) into (24f) yields

Ma−1

1,n|n
...

Ma−1

|N |,n|n

 = (M⊗ I)

 Γa1,n
...

Γa|N |,n

 . (26)

Formulating (26) from the perspective of agent l ∈ N gives

Ma−1

l,n|n =
∑
∀m∈N

M{l,m}Γam,n. (27)

The expression in (27) can be rearranged as

Ma−1

l,n|n =M{l,l}Ma−1

l,n|n−1 + M{l,l}|N |HaH
l,nC

−1

ωal,n
Ha
l,n

+
∑
∀m∈N
m6=l

M{l,m}Γam,n. (28)

Alternatively, from replacing {Γam,n : ∀m ∈ N}, as given in
(24e), into (28), we have

Ma−1

l,n|n =Ma−1

l,n|n−1 +
∑
∀m∈N

M{l,m}|N |HaH
m,nC

−1

ωam,n
Ha
m,n

+
∑
∀m∈N

M{l,m}
(
Ma−1

m,n|n−1 −Ma−1

l,n|n−1

)
. (29)

Substituting (24d) into (29) allows evolution of the matrix set
{Ma

l,n|n,M
a
l,n|n−1 : ∀l ∈ N} to be expressed as

Ma
l,n|n−1 = fl,n

(
Φa
l,n−1

)
Φa
l,n ← ACF ←

{
Ma−1

m,n|n−1 : ∀m ∈ N
} (30)

where

fl,n(Θa) = Aa
n

(
Θa−1

l,n + HH
l,nC

−1

ωcol,n
Hl,n

)−1

AaH
n + Cνan

Hl,n =
√
|N |

[√
M{l,1}HaT

1,n, . . . ,
√

M{l,|N |}HaT
|N |,n

]T
.

Now, consider the class of recursive functions

∀l ∈ N : Υa
l,n = fl,n

(
Υa
l,n−1

)
. (31)

From the made assumptions, it follows that matrices
{Hl,n,C

−1

ωcol,n
,Cνan}, and by extension the function fl,n(·),

become time invariant. Thus, (31) constitutes an algebraic
Riccati equation that converge to a unique stabilizing solu-
tion given that {Aa

n,Hl,n} are detectable and the matrices
{An,C

1
2
νa} are stabilizable, assured under Assumption 3.

Proposition 1. If the Reccati recursions in (31) converge to
unique stabilizing solutions; then, the recursion in (30) is also
convergent to a set of stabilizing matrices.

2This holds true as the matrices in question are calculated from the
summation of other positive definite and positive semi-definite matrices with
augmented compositions. In practice, if need be, at each time instance
these matrices can be replaced with their nearest augmented positive definite
approximations.

Proof of Proposition 1: If Assumption 3 holds; then, from
previous results [6], (31) converges to a unique stabilizing
solution, i.e., as n→∞, ∀l ∈ N : Υa

l,n −Υa
l,n−1 → 0.

Given that the recursive equations in (31) are convergent
to unique stabling solutions; then, from (30), it follows that
the spectral radius of Φa

l,n − Φa
l,n−1 must be less than that

of Ma
l,n+1|n −Ma

l,n|n−1. Furthermore, in the context of the
ACF, we have

Φa
l,n −Φa

l,n−1 ← ACF ← {∆m,n : ∀m ∈ N} (32)

where ∆m,n = Ma−1

m,n|n−1 −Ma−1

m,n−1|n−2. Since the ACF
weights were selected to make W doubly stochastic; then,
from (22) it follows that the ACF is a non-expanding operator
with regards to input set {∆m,m : ∀m ∈ N}. Therefore

∀l ∈ N : Ma
l,n+1|n →Ma

l,n|n−1 as n→∞ (33)

indicating convergence to a stabilizing solution.

Proposition 2. The stabilizing solutions in Proposition 1 are
unique.

Proof of Proposition 2: Assume that both matrix sequences
{Ma

l,n|n−1,Φ
a
l,n : ∀l ∈ N} and {Ma′

l,n|n−1,Φ
a′

l,n : ∀l ∈ N}
stabilize (30). Then, replacing matrices {Ma

l,n+1|n,Φ
a
l,n} in

(32)-(33) with {Ma′

l,n|n−1,Φ
a′

l,n−1} and following the same
line of reasoning used in the proof of Proposition 1, it can be
concluded that

∀l ∈ N : Ma′

l,n|n−1 →Ma
l,n|n−1 as n→∞

indicating uniqueness of the stabilizing solutions.

Remark 4. In the steady-state case, where the matrix set
{Ma

l,n|n−1 : ∀l ∈ N} have converged to their stabilizing val-
ues, the need for implementing ACF operations with regards
to {Γal,n : ∀l ∈ N} is negated. This reduces communication
traffic over the network, as the local state vector estimates,
ψl,n, are the only variables that are shared. Note that the
complexity analysis and implementation lemmas introduced
in [41] for single agent Kalman filtering is applicable in the
setting of Algorithm 1. The extension from the single agent
case to the distributed case is straightforward, and hence, has
been omitted.

In order to formulate the MSD of state vector estimates at
each node, we consider the intermediate state vector estimation
error at node l at time instant n given by

εal,n = xan −ψ
a
l,n. (34)

Substituting (24h) into the expression in (34) yields

εal,n = xan − x̂al,n|n−1 −Ga
l,n

(
yal,n −Ha

l,nx̂al,n|n−1

)
(35)

which given the observation model in (6) is rearranged to give

εal,n =
(
I−Ga

l,nHa
l,n

)
εal,n|n−1 −Ga

l,nω
a
l,n (36)

where εal,n|n−1 = xan− x̂al,n|n−1. Furthermore, considering the
state evolution model in (5) it becomes apparent that

εal,n|n−1 = Aa
nε
a
l,n−1|n−1 + νan. (37)
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Now, replacing (37) into (36) yields

εal,n =
(
I−Ga

l,nHa
l,n

)
Aa
nε
a
l,n−1|n−1

+
(
I−Ga

l,nHa
l,n

)
νan −Ga

l,nω
a
l,n.

(38)

Fully capturing the evolution of state vector estimation error
terms requires close scrutiny of the ACF impact on state vector
estimation errors. This is achieved through formulating (38) in
a network-wide format as

En = PnEn−1|n−1 +Q nνcol,n −Gnωcol,n (39)

where {Pn,Q n,Gn} are the block-diagonal matrices

Pn =block-diag{
(
I−Ga

l,nHa
l,n

)
Aa
n : ∀l ∈ N}

Q n =block-diag{
(
I−Ga

l,nHa
l,n

)
: ∀l ∈ N}

Gn =block-diag{Ga
l,n : ∀l ∈ N}

while νcol,n = [νaTn , . . . ,νaTn ]T, whereas

En =

 ε
a
1,n
...

εa|N |,n

 and En−1|n−1 =

 ε
a
1,n−1|n−1

...
εa|N |,n−1|n−1

 .
Impact of the ACF on state vector estimation error terms can

now be rigorously formulated using the expressions in (22) and
(39) culminating in the network-wide regressive expression for
state vector estimation error given by

En|n =(M⊗ I)En
=PnEn−1|n−1 + Qnνcol,n − Gnωcol,n

(40)

where

Pn = (M⊗I)Pn, Qn = (M⊗I)Q n, and Gn = (M⊗I)Gn.

Remark 5. Taking the statistical expectation of (40) and
accounting for the fact that

E {νn} = 0 and ∀l ∈ N : E {ωl,n} = 0

we have

E
{
En|n

}
= PnE

{
En−1|n−1

}
=

(
n∏
i=1

Pi

)
E
{
E0|0

}
. (41)

Thus, given the initialization condition in Algorithm 1, that is
∀l ∈ N : x̂al,0|0 = E {xa0}, the expression in (41) proves that
the developed DQKF operates in an unbiased fashion.

The expression in (40) is now used to formulate the
network-wide square deviation term as

En|nEH
n|n =PnEn−1|n−1EH

n−1|n−1PH
n (42)

+ Qnνcol,nν
H
col,nQT

n + Gnωcol,nωH
col,nGH

n

−Qnνcol,nω
H
col,nGH

n − Gnωcol,nνH
col,nQH

n

− Gnωcol,nEH
n−1|n−1PH

n −PnEn−1|n−1ωH
col,nGH

n

+ Qnνcol,nEH
n−1|n−1PH

n + PnEn−1|n−1νH
col,nQH

n.

Given that νan and {ωal,n : ∀l ∈ N} are zero-mean white
Gaussian random variables that are also independent from
{εal,n−1|n−1 : ∀l ∈ N}; then, taking the statistical expectation
of the expression in (42) yields

Σn = PnΣn−1PH
n + QnCνcol,nQH

n + GnCωcol,nGH
n (43)

where Σn = E
{
En|nEH

n|n

}
. Furthermore, from Proposition 1

and Proposition 2, at steady-state the matrices {Ma
l,n|n : ∀l ∈

N} converge to the stabilizing solution of (30) and become
time invariant. From (24g) it follows that if {Ma

l,n|n : ∀l ∈ N}
converge and the assumptions made in this section hold
true; then, the matrices {Ga

l,n : ∀l ∈ N} become time
invariant. Furthermore, the expressions in (38)-(40) and (42)-
(43) indicate that if the matrices {Ga

l,n, l ∈ N} are time
invariant; then, the matrices {Pn,Gn,Qn} also become time
invariant, that is

lim
n→∞

Pn = P , lim
n→∞

Qn = Q, and lim
n→∞

Gn = G.

Thus, if the made assumption hold true, as n → ∞, the
expression in (43) turns into the quaternion-valued discrete-
time Lyapunov equation

Σ = PΣPH + QCνcolQH + GCωcolGH. (44)

Now, invoking the framework put forth in [6], the expression
in (44) converges to the unique stabling solution

vec
{

ΣHR
}

=
(
I−PHR ⊗PHR)−1 vec{ΥHR

}
(45)

where Υ = QCνcolQH+GCωcolGH and {ΣHR,PHR,ΥHR}
are duals of {Σ,P ,Υ} in the quaternion isomorphic matrix
algebra as defined in (1).

From the expression in (25) the MSD at each node can be
formulated as

MSDl,n = Tr
{
E
{
εal,n|nε

aH
l,n|n

}}
where E

{
εal,n|nε

aH
l,n|n

}
is the lth block-diagonal element of Σn

as given in (43). In addition, from (40)-(45), in a steady-state
mode, the MSD of each node converges to the block-diagonal
elements of Σ as given in (45).

V. QUATERNION-VALUED DISTRIBUTED CONTROL

In this section, a distributed solution to the control problem
formulated in Section III-C is derived. This is enabled via the
comprehensive fusion of covariance information envisioned in
the derived DQKF and essentially extends the duality between
filtering and control (introduced in [11]) to quaternion-valued
processes.

Given equations (8) and (9), the control problem in Sec-
tion III-C is rearranged into the following network-wide con-
strained optimization problem:
Minimize:

J = xaHN TaxaN +

N−1∑
n=1

(
xaHn Qaxan + uH

col,nRucol,n
)

(46a)

Through the widely-linear control law:

ucol,n = [L
aT

1,n, . . . ,L
aT

|N |,n]T︸ ︷︷ ︸
Ln

xan (46b)

Subject to dynamic constraint:

xan+1 = Aaxan + Bucol,n (46c)
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where

ucol,n = [uaT1,n, . . . ,u
aT
|N |,n]T and B = [Ba

1 , . . . ,B
a
|N |]

while R = block-diag{Ra
l : ∀l ∈ N}.

The defined optimization problem is tackled by dividing the
cost function in (46a) into time-local cost functions given by

Jn =

{
xaHN TaxaN if n = N,
xaHn Qaxan + uH

col,nRucol,n otherwise. (47)

where for n 6= N replacing (46b) into (47) gives

Jn = xaHn Qaxan + uH
col,nRucol,n = xaHn Ψa

nxan

with

Ψa
n = Qa + LH

nRLn = Qa +
∑
∀l∈N

L
aH

l,nRa
l L

a

l,n.

In turn, this allows a time-accumulative cost function to be
defined as

Jι =

N∑
m=ι

Jm (48)

where for ι = N , we have JN = xaHN TaxaN .

Proposition 3. There exists an augmented positive definite
Hermitian symmetric matrix such that Jι = xaHι Va

ι xaι .

Proof of Proposition 3: For the case of ι = N , from (48) it
follows that Va

N = Ta. It is now assumed that the augmented
positive definite Hermitian symmetric matrix Va

ι exist so that
Jι = xaHι Va

ι xaι . Then, for the case of Jι−1, we have

Jι−1 =

N∑
m=ι−1

Jm = Jι−1 +

N∑
m=ι

Jm

=xaHι−1Ψ
a
ι−1x

a
ι−1 + xaHι Va

ι xaι

(49)

where substituting (46b) and (46c) into (49) yields

Jι−1 = xaHι−1Va
ι−1x

a
ι−1 (50)

with

Va
ι−1 = Ψa

ι−1 +
(
AaH + LH

ι−1BH
)
Va
ι (Aa + BLι−1) .

Thus, through induction in reverse time, the expressions (49)
and (50) show that there exists a positive definite matrix Va

ι−1
so that Jι−1 = xaHι−1Va

ι−1x
a
ι−1, proving Proposition 3.

Proposition 3 allows the introduction of a discrete-time
quaternion-valued Hamilton-Jacobi-Bellman3 type framework
for solving the formulated optimization problem. In this set-
ting, moving backwards in time and assuming that control
inputs for future time instances have been obtained, the task
becomes that of calculating the control input at the previous
time instant resulting in the following minimization task

2Jι = min
ucol,ι

{
2xaHι Qaxaι + 2uH

col,ιRucol,ι + 2Jι+1

}
(51)

where all elements have been scaled by 2 to compensate for
the scales generated after differentiation. The minimum of (51)
is achievable at

ucol,ι = −
(
R + BHVa

ι+1B
)−1 BHVa

ι+1A
axaι (52)

3More information regarding the Hamilton-Jacobi-Bellman equation used
in optimization and dynamic programming applications is available in [54].

where comparing (52) to (46b) makes it apparent that

Lι = −
(
R + BHVa

ι+1B
)−1 BHVa

ι+1A
a.

In addition, substituting (52) into (51) gives

Va
ι =Qa + AaHVa

ι+1A
a

−AaHVa
ι+1B

(
R + BHVa

ι+1B
)−1

BHVa
ι+1A

a.
(53)

The expression in (53) can be rearranged using the matrix
inversion lemma to yield

Λa
ι =

((
AaHΛa

ι+1A
a + Qa

)−1

+ BR
−1

BH

)−1

(54)

where Λa
ι is introduced as an intermediate variable so that

Va
ι = AaHΛa

ι+1A
a+Qa. Given that R is block diagonal the

expression in (54) is simplified into

Λa−1

ι =
(
AaHΛa

ι+1A
a + Qa

)−1

+
∑
∀l∈N

Ba
l R

a−1

l BaH
l . (55)

Note the similarity between (55) and the Riccati equation
governing the behaviour of the CQKF

Ma−1

n|n =
(
Aa
nMa−1

n−1|n−1A
a
n

)−1

+HH
col,nC

−1

ωcol,n
Hcol,n (56)

obtainable via substituting (12d) into (12e). Building upon the
duality between (56) and (55), it follows that the values of
{Λa

ι ,Va
ι } can be approximated through the framework derived

for fusion of covariance information in the DQKF.
The control input vectors in (52) can alternatively be cal-

culated as

ucol,ι =−
(
R + BHVa

ι+1B
)−1

BHVa
ι+1A

axaι

=
(
R
−1

BHVa
ι+1BR

−1

−R
−1
)
BHVa

ι+1A
axaι

=−R
−1

BH
(
Va−1

ι+1 + BR
−1

BH
)−1

Aaxaι

(57)

where replacing (54) and (55) into (57) yields

ucol,ι = −R
−1

BHΛa
ι+1A

axaι . (58)

The block-diagonal structure of R allows the control input of
each agent to be expressed through rearranging (58) as

ul,ι = −Ra−1

l BaH
l Λa

ι+1A
axaι . (59)

Applying the same approach used for filtering, the expres-
sion in (55) can be formulated in a distributed fashion as

Λa−1

ι =
1

|N |
∑
∀l∈N

Θa
l,ι (60)

with
Θa
l,ι = Va−1

ι + |N |Ba
l R

a−1

l BaH
l . (61)

Now, the operations of the quaternion-valued widely-linear
quadrature regulator can be approximated in a decentral-
ized manner through the distributed implementation of the
summation in (60). The operations of such a decentralized
quaternion-valued regulator are summarized in Algorithm 2,
where {V̂a

l,n, Λ̂
a

l,n, Θ̂
a

l,n} are local estimates of {Va
n,Λ

a
n,Θ

a
n}

at node l.
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Algorithm 2. Decentralized Quaternion-Valued Widely-Linear
Quadrature Regulator
For nodes l = {1, . . . , |N |}:
Initialize with:

∀l ∈ N : V̂a
l,N = Ta (62a)

Estimate output of the Riccati equation:

Θ̂
a

l,n = V̂a−1

l,n + |N |Ba
l R

a−1

l BaH
l (62b)

Λ̂
a−1

l,n ← ACF ← {Θ̂
a

m,n : ∀m ∈ N} (62c)

V̂a
l,n−1 = AaHΛ̂

a

l,nAa + Qa (62d)

Calculate control vector sequences:

ul,n = −Ra−1

l BaH
l Λ̂

a

n+1A
axan (62e)

Remark 6. As the iterations of the ACF increase resulting in
∀l,m ∈ N : M{l,m} → 1/|N |; then,

∀l ∈ N : {V̂a
l,n, Λ̂

a

l,n, Θ̂
a

l,n} → {Va
n,Λ

a
n,Θ

a
n}.

Indicating that the optimal solution in (52) can be approx-
imated with any desirable degree of accuracy. This is also
demonstrated through simulations in Section VI-B.

VI. SIMULATIONS AND DISCUSSIONS

In this section, performance of the derived framework is
illustrated using a general setting that is intended to be adopt-
able for use in a variety of applications. Furthermore, filtering
performance of the derived framework is also demonstrated
for tacking three-dimensional rotations induced via a chaotic
system. In all simulations, the network of 28 nodes with the
topology shown in Figure 1 was used.

Fig. 1. The network of 28 nodes and 64 edges used for simulations.

A. Quaternion-Valued Filtering

The general equation of motion, applicable in a large num-
ber of scenarios, such as bearings-only and rotation tracking
were considered. In this case, we have

∂ϕ

∂t
= φ and

∂φ

∂t
= ν (63)

where ν represents the input to the system4, ϕ represents
the variable of interest (target location or orientation) with

4In the case of bearing-only (cf. rotation) tracking applications, the input
typically represents force (cf. torque) or acceleration (cf. angular acceleration).

φ indicating its rate of change. Transforming the equations in
(63) into its discrete-time mode yields the state-space model[

ϕn+1

φn+1

]
=

[
1 ∆T
0 1

]
︸ ︷︷ ︸

A

[
ϕn
φn

]
+

[
∆T 2/2

∆T

]
︸ ︷︷ ︸

B

νn (64)

where ∆T = 0.04 s denotes the sampling interval.
The input, νn, was considered to be a zero-mean white

Gaussian random sequence with covariance E
{
νnν

H
n

}
=

0.8125 and pseudo-covariances

∀ζ ∈ {i, j, k},E
{
νnν

ζH
n

}
= −0.1875

while the observation at each node was modeled as

∀l ∈ N : yl,n =
[
1 0

] [ϕn+1

φn+1

]
+ ωl,n

where the ωl,n was considered to be a zero-mean white
Gaussian random sequence with covariance E

{
ωnω

H
n

}
= 0.5

and vanishing pseudo-covariances.
The MSD achieved by each agent in the network for

different number of iterations of the ACF is shown in Figure 2.
Furthermore, as benchmarks, Figure 2 also includes MSD
values predicted via the theoretical analysis in Section IV-B,
the MSD achieved by the optimal CQKF, and the MSD
achieved by each agent using the legacy filtering technique
introduced in [6]. Note that the derived DQKF performed as
predicted through the theoretical analysis in Section IV-B and
was able to achieve smaller MSD levels than its predecessor.
More importantly, as the number of ACF iterations grow,
the MSD achieved by each agent becomes closer to that
of the optimal CQKF. This provides a trade-off between
performance (smaller MSD) and implementation complexity
(ACF iterations), which is not available with the diffusion-
based framework in [6].

0 5 10 15 20 25
Agent Number

-11

-10.5

-10

-9.5

-9

-8.5

M
S

D
 (

dB
)

DQKF-4 ACF iterations (simulation)
DQKF-4 ACF iterations (theory)
DQKF-8 ACF iterations (simulation)
DQKF-8 ACF iterations (theory)
DQKF-12 ACF iterations (simulation)
DQKF-12 ACF iterations (theory)

CQKF
Legacy Algoritm in [6]

Fig. 2. The MSD performance of the derived DQKF across all 28 nodes of
the network, obtained with different number of ACF iterations. Performance
of the CQKF and the legacy algorithm in [6] are provided as benchmarks.

B. Quaternion-Valued Control

The control dual of the filtering problem in Section VI-A
is now considered. The state vector and state transition matrix
remain the same as in (64), whereas for odd numbered agents

Ba
l =

(
I⊗

[
∆T 2/2

∆T

])
0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0.5 0

0.5 0 0 0.5
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and for even numbered agents

Ba
l =

(
I⊗

[
∆T 2/2

∆T

])
0.5 0 0 −0.5
0 0.5 −0.5 0
0 −0.5 0.5 0
−0.5 0 0 0.5

 .
In essence, this allows odd (cf. even) numbered agents to
implement control inputs in the Real-k (cf. i-j) plane only.
Other weighting matrices of the cost function in (9) were
considered to be Qa = I, Ta = 102 × I, and

Ra
l = l2

(
10I− 1.875(11T)

)
where 1 = [1, 1, 1, 1]T.

The goal was to bring the object to a stand-still at the
center of the coordinate system from an initial position and
speed using a model predictive control framework. To this, end
the proposed decentralized quaternion-valued widely-linear
quadrature regulator control procedure in Algorithm 2 and its
centralized counterpart were implemented over the network
in Figure 1. Control vector sequences were estimated for
1.6 s long segments. The first 0.8 s portion of the estimated
control vector sequences were implemented; then, control
vector sequences were re-estimated using the new state-vector
information. This procedure was repeated to achieve the de-
sired goal. The trajectory of ϕn is shown in Figure 3. Note
that the developed decentralized control framework operated
correctly. Furthermore, the object followed similar trajectories
when using the centralized and developed decentralized con-
trol frameworks.
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Fig. 3. Performance of the developed decentralized quaternion-valued widely-
linear quadrature regulator with different ACF iterations. Performance of the
centralized approach is provided as a benchmark.

C. Tracking Chaotic Rotations

In the final set of simulations, the signal generated by the
Lorenz attractor

χn+1 =χn + 10−2 (ξn − χn)

ξn+1 =ξn + 10−3 (−χnζn + 28χn − ξn)

ζn+1 =ζn + 10−3
(
χnξn −

8

3
ζn

)
was used to generate roll, αn, pitch, βn, and yaw ,γn,
rotation signals so that cos(χn)+ isin(χn)→ eiαn , cos(ξn)+
jsin(ξn)→ ejβn , and cos(ζn) + ksin(ζn)→ ekγn .

Each agent could observe these rotations as a change in
its orientation. In this setting, if the orientation of agent l at
time instant n is modeled as ql,n, where ∀l, n : <{ql,n} = 0
while =i{ql,n}, =j{ql,n}, and =k{ql,n} are elements of the
unit vector describing the orientation of agent l in a three-
dimensional space. Thus, we have

ql,n+1 = µnql,nµ
−1
n with µn = eiαnejβnekγn . (65)

The model in (65) can be reformulated in an augmented
fashion as

qaTl,n+1 = qaTl,n


µ∗n<{µn}
µ∗in =i{µn}
µ∗jn =j{µn}
µ∗kn =k{µn}

 .
The aim is for the agents to cooperatively track the induced
rotations. To this end, the derived DQKF was employed. The
parameters in the state-space and observation model in (5)-(6)
were selected as follows:

xn =[µ∗n<{µn}, µ∗in =i{µn}, µ∗jn =j{µn}, µ∗kn =k{µn}]T

An =I, Hl,n = qaTl,n

while the observation of each node was its post rotation
orientation, i.e., yl,n = qaTl,n+1. The state noise covariance
was assumed to be diagonal with unit power. Although noise
was not added to the observations, the observation covariance
values were considered to be diagonal with 102 power. It is
worthy to note that the ACF was iterated only once at each
time instant.

Figure 4, shows the error between the predicted post rotation
orientation and its actual value for each agent in the network.
In addition, the performance of a conventional real-valued
approach using rotation matrices and implementing the real-
valued dual to the derived DQKF is provided as a benchmark,
where in order to provide a balanced performance comparison,
filtering parameters were set so that both techniques achieve
a similar upper bound on their steady-state prediction errors.
Note that the quaternion-valued approach achieved a lower
median error, while converging faster than its real-valued dual.
This simulation mainly demonstrates the generality of derived
framework for use in a wide range of applications and the
vantage point of quaternions when it comes to modeling three-
dimensional signals.

VII. CONCLUSION

A unified framework for distributed filtering and control of
quaternion-valued state-space processes has been developed.
This framework has been realized through derivation of a
distributed Kalman filtering technique for sequential track-
ing of quaternion-valued signals via networked multi-agent
systems. The derived Kalman filtering algorithm mirrors the
operations of an optimal centralized approach using embedded
average consensus filters while allowing each agent to retain a
Kalman style filtering operation and an intermediate estimate
of the state vector. The distributed filtering framework has
been expanded to solve the quaternion-valued widely-linear
regulator problem, extending the duality between filtering and
control to the quaternion domain and distributed setting. The
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Fig. 4. Prediction error for tracking rotations generated by a Lorenz attractor.
For the quaternion-valued (cf. real-valued) approach, prediction error of all
agents lie within the region in red (cf. blue). The red (cf. blue) line indicate
the median point between highest and lowest achieved error in dB scale.

concepts have been verified in a number simulations indicating
that the developed framework can reach performance levels
comparable to that of its centralized counterpart.
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