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Abstract. For a commutative ring S and self-orthogonal subcategory C of

Mod(S), we consider matrix factorizations whose modules belong to C. Let

f ∈ S be a regular element. If f is M -regular for every M ∈ C, we show there
is a natural embedding of the homotopy category of C-factorizations of f into

a corresponding homotopy category of totally acyclic complexes. Moreover, we

prove this is an equivalence if C is the category of projective or flat-cotorsion
S-modules. Dually, using divisibility in place of regularity, we observe there is

a parallel equivalence when C is the category of injective S-modules.

Introduction

Matrix factorizations of a nonzero element f in a regular local ring Q were in-
troduced by Eisenbud [12] and shown to correspond to maximal Cohen-Macaulay
Q/(f)-modules; in turn Buchweitz [5] gave a relation between these and totally
acyclic complexes of finitely generated projective Q/(f)-modules. Indeed, this cor-
respondence can be described as an equivalence of triangulated categories,

HMF(Q, f)
' // Ktac(prj(Q/(f))),

where HMF(Q, f) is the homotopy category of matrix factorizations of f , and
Ktac(prj(Q/(f))) is the homotopy category of totally acyclic complexes of finitely
generated projective Q/(f)-modules. In part, our goal is to develop the notion
of matrix factorizations more generally—relative to a self-orthogonal category of
modules—with an emphasis on extending this equivalence.

Let S be a commutative ring, let f ∈ S, and let C be an additive subcategory of
Mod(S), the category of S-modules. A linear factorization of f , defined by Dycker-
hoff and Murfet [11], is a pair of S-modules M0 and M1 along with homomorphisms
d1 : M1 → M0 and d0 : M0 → M1 satisfying d1d0 = f1M0 and d0d1 = f1M1 . We
define a C-factorization of f to be a linear factorization of f such that M0,M1 ∈ C.
The homotopy category of C-factorizations of f , denoted HF(C, f), is the category
whose objects are C-factorizations of f and whose morphisms are homotopy classes
of the natural maps between C-factorizations; see Section 2. Taking C to be the cat-
egory of finitely generated projective modules over a regular local ring, one obtains
the usual notion of matrix factorizations in [12].

SetR = S/(f). To relate a C-factorization of f to a suitable type of totally acyclic
complex of R-modules, a natural setting to consider is when C is self-orthogonal,
that is, ExtiS(M,M ′) = 0 for every M,M ′ ∈ C and i ≥ 1. If C is self-orthogonal
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and f ∈ S is S-regular and M -regular for every M ∈ C, then the category R ⊗S C
is self-orthogonal—see Proposition 1.8—in which case there is a natural notion of
total acyclicity. Proposition 2.5 thus relates C-factorizations of f to R⊗S C-totally
acyclic complexes. Here, for a self-orthogonal category W in Mod(R), a W-totally
acyclic complex is an acyclic complex of modules in W whose acyclicity is preserved
by HomR(−,W) and HomR(W,−); this includes the usual notions of total acyclicity
for complexes of projective or injective modules, and is a special case of that in [7].

In this setting, that is, if C is an additive self-orthogonal subcategory of Mod(S)
and f is S-regular and M -regular for every M ∈ C, then we prove in Theorem 3.5
that there is a full and faithful triangulated functor,

T : HF(C, f) // Ktac(R⊗S C),

where Ktac(R⊗S C) is the homotopy category of R⊗S C-totally acyclic complexes.
This embedding extends work of Bergh and Jorgensen; indeed, its proof is closely
modelled on that of [3, Theorem 3.5], which is recovered by setting C = prj(S).

The functor T sends a C-factorization of f to a 2-periodic complex, see Propo-
sition 2.5, and so we do not expect it to be an equivalence without additional
assumptions on S and C. If S is a regular local ring and C = Prj(S) is the category
of projective S-modules, then we show in Theorem 4.2 that there is a triangulated
equivalence:

HF(Prj(S), f)
' // Ktac(Prj(R)).

Indeed, restricting to the subcategory of finitely generated projective modules, this
is the equivalence due to Eisenbud [12] and Buchweitz [5] described above.

Parallel to this development, we consider a dual situation in terms of divisibility.
If f is S-regular and M -divisible for every M ∈ C, we observe in Theorem 3.6 that
there is an embedding HF(C, f)→ Ktac(HomS(R,C)). In particular, since injective
S-modules are divisible, we obtain an equivalence for C = Inj(S), the category of
injective S-modules, when S is a regular local ring; see Theorem 4.5.

Another natural (torsion-free) self-orthogonal category to consider is FlatCot(S),
the category of flat-cotorsion S-modules; see Section 5. We prove in Theorem 5.4
that if S is a regular local ring, then there is a triangulated equivalence:

HF(FlatCot(S), f)
' // Ktac(FlatCot(R)).

Here Ktac(FlatCot(R)) is the homotopy category of acyclic complexes of flat-cotorsion
R-modules such that for every flat-cotorsionR-module F , application of HomR(F,−)
and HomR(−, F ) preserves acyclicity.

In addition to the classic equivalence described above, Buchweitz gave in [5] an
equivalence, assuming S is a regular local ring, between the homotopy category
of matrix factorizations of f and the singularity category of R; this was proven
explicitly by Orlov [21]. Along these lines, and as a consequence of the previous
equivalence, we observe in Corollary 5.6 a triangulated equivalence,

HF(FlatCot(S), f)
' // DF-tac(Flat(R)),

where DF-tac(Flat(R)) is the subcategory of the pure derived category of flat R-
modules consisting of F-totally acyclic complexes. This category plays the role
of the singularity category in the context of the pure derived category, in that it
vanishes if and only if R is regular; see [18, Proposition 9.7] and [19].
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1. Self-orthogonal categories of modules

Throughout this paper, let S be a commutative ring. The category of all S-modules
is denoted Mod(S). Tacitly, we assume all subcategories of Mod(S) are full and
closed under isomorphisms. We use standard homological notation throughout,
and an S-complex means a chain complex of S-modules.

Let Prj(S), Inj(S), Flat(S) denote the categories of projective, injective, and flat
S-modules, respectively; prj(S) denotes the category of finitely generated projective
S-modules. Let Cot(S) denote the category of cotorsion S-modules, that is, those
S-modules C such that Ext1S(F,C) = 0 for every flat S-module F . For brevity,
write FlatCot(S) = Flat(S) ∩ Cot(S) for the category of flat-cotorsion S-modules.

Definition 1.1. Let C be a subcategory of Mod(S). The category C is called
self-orthogonal1 if ExtiS(C,C ′) = 0 for all C,C ′ ∈ C and all i ≥ 1.

Example 1.2. Evidently both Prj(S) and Inj(S) are self-orthogonal.
The category FlatCot(S) is also self-orthogonal: Let F and F ′ be flat-cotorsion

S-modules. If P → F is a projective resolution over S, then coker(dPi ) is a flat

S-module for i ≥ 1, hence ExtiS(F, F ′) ∼= Ext1S(coker(dPi ), F ′) = 0 for all i ≥ 1.

Definition 1.3. Let M be an S-module, f ∈ S, and C be a subcategory of Mod(S).
The element f is M -regular if fx = 0 implies x = 0 for each x ∈ M ; f is

C-regular if f is M -regular for every M ∈ C.
The element f is M -divisible if for every x ∈M , there exists y ∈M with fy = x;

f is C-divisible if f is M -divisible for every M ∈ C.

Example 1.4. Let f ∈ S be an S-regular element.
If C is a subcategory of Mod(S) contained in the category of torsion-free S-

modules, then f is C-regular. In particular, f is Flat(S)-regular, FlatCot(S)-regular,
and Prj(S)-regular.

If C is a subcategory of Mod(S) contained in the category of divisible S-modules,
then f is C-divisible. In particular, f is Inj(S)-divisible.

Let S → R be a ring homomorphism and let C be a subcategory of Mod(S). The
following subcategories of Mod(R) play a special role in this paper:

R⊗S C = {W ∈ Mod(R) |W ∼= R⊗S C, for some C ∈ C};
HomS(R,C) = {W ∈ Mod(R) |W ∼= HomS(R,C), for some C ∈ C}.

Remark 1.5. For any ring homomorphism S → R, we have R⊗S Prj(S) ⊆ Prj(R)
and HomS(R, Inj(S)) ⊆ Inj(R), see for example [9, Proposition 2.3]; the former is
an equality if the homomorphism is local, the second is an equality if the homo-
morphism is a surjection. The equality for projective modules uses that projective
modules over a local ring are free. We justify the equality for injective modules
here: Let I be an injective R-module and let I → ES(I) be its injective envelope
as an S-module. Since the natural map HomS(R, I) → I is an isomorphism, it
follows that the induced injection HomS(R, I)→ HomS(R,ES(I)) of R-modules is
essential and splits, thus is an isomorphism. It follows that I ∼= HomS(R,ES(I)).

For an S-module M , denote by pdSM , idSM , and fdSM the projective, injec-
tive, and flat dimensions of M over S.

1This differs from [7], where the term was used to refer to Ext1-orthogonality and is implied
by the definition given here; our usage here agrees with what would be written as C ⊥ C in [23].
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Remark 1.6. Let f ∈ S be an S-regular element, and set R = S/(f). If P is
a projective R-module, then pdS P = 1 (see [15, Part III, Theorem 3]); if I is an
injective R-module, then idS I = 1 (see [14, Theorem 202]). It thus follows that if
F is a flat R-module, then fdS F = 1; this uses the fact that an S-module M is flat
if and only if its character dual HomZ(M,Q/Z) is injective.

Part (i) of the next change of rings result is due to Rees [22]; part (iii) is dual.
If M is an S-module, f ∈ S, and R = S/(f), it is often convenient to identify
R⊗S M ∼= M/fM and HomS(R,M) ∼= (0 :M f) = {x ∈M | fx = 0} ⊆M .

Lemma 1.7. Let f ∈ S be an S-regular element and set R = S/(f).
If M is an S-module such that f is M -regular and N is an R-module, then

(i) Exti+1
S (N,M) ∼= ExtiR(N,R⊗S M) for all i ≥ 0;

(ii) ExtiS(M,N) ∼= ExtiR(R⊗S M,N) for all i ≥ 0.

If M is an S-module such that f is M -divisible and N is an R-module, then

(iii) Exti+1
S (M,N) ∼= ExtiR(HomS(R,M), N) for all i ≥ 0;

(iv) ExtiS(N,M) ∼= ExtiR(N,HomS(R,M)) for all i ≥ 0.

Proof. (i) & (ii): See Matsumura [17, Lemma 2, p. 140] for a proof of these; (i)
was originally shown by Rees [22, Theorem 2.1].

(iii): We give an argument dual to [22, Theorem 2.1], showing that the functor
Ei(−) = Exti+1

S (M,−) is the ith right derived functor of HomR(HomS(R,M),−).
Apply HomS(−, N) to the short exact sequence

0 // HomS(R,M) // M
f
// M // 0

to obtain the following exact sequence

HomS(M,N) // HomS(HomS(R,M), N) // Ext1S(M,N)
f
// Ext1S(M,N).

Since fN = 0, we obtain HomS(M,N) = 0. Additionally, multiplication by f on M
or N induce the same map on Ext1S(M,N): also multiplication by f . As fN = 0,
this map must be 0, thus yielding

Ext1S(M,N) ∼= HomS(HomS(R,M), N) ∼= HomR(HomS(R,M), N).

Hence E0(−) ∼= HomR(HomS(R,M),−). For any injective R-module I, we have
idS I = 1 by Remark 1.6, hence Ei(I) = 0 for i ≥ 1. Finally, for a short exact
sequence 0 → N ′ → N → N ′′ → 0 of R-modules, HomS(M,N ′′) = 0 and so there
is a long exact sequence

0→ E0(N ′)→ E0(N)→ E0(N ′′)→ E1(N ′)→ E1(N)→ E1(N ′′)→ · · · ,
and it follows that Ei(−) is the ith right derived functor of HomR(HomS(R,M),−)
and thus is isomorphic to ExtiR(HomS(R,M),−).

(iv): Let P be a projective resolution of N over R; standard tensor–Hom ad-
junction yields HomS(R ⊗R P,M) ∼= HomR(P,HomS(R,M)), and the desired iso-
morphism follows. �

Proposition 1.8. Let C be a self-orthogonal subcategory of Mod(S), let f ∈ S be
S-regular, and set R = S/(f). The following hold:

(i) If f is C-regular, then R⊗S C is self-orthogonal in Mod(R).
(ii) If f is C-divisible, then HomS(R,C) is self-orthogonal in Mod(R).
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Proof. (i): For S-modules C, C ′ ∈ C and i ≥ 0, Lemma 1.7(ii) yields that
ExtiR(R ⊗S C,R ⊗S C ′) ∼= ExtiS(C,R ⊗S C ′). It will therefore be enough to show
that ExtiS(C,R⊗S C ′) = 0 for i ≥ 1. As f is C-regular, there is an exact sequence

0 // C ′
f
// C ′ // R⊗S C ′ // 0.

Application of the functor HomS(C,−) yields a long exact sequence:

· · · // ExtiS(C,C ′) // ExtiS(C,R⊗S C ′) // Exti+1
S (C,C ′) // · · ·

By assumption, ExtiS(C,C ′) = 0 = Exti+1
S (C,C ′) for i ≥ 1, and it follows that

ExtiS(C,R⊗S C ′) = 0 for i ≥ 1.
(ii): This is proved dually to part (i), using instead Lemma 1.7(iv) and the

existence of an exact sequence

0 // HomS(R,C) // C
f
// C // 0

for each C ∈ C. �

2. C-factorizations and total acyclicity

Let f ∈ S. Extending the classic notion of matrix factorizations [12], Dyckerhoff and
Murfet define [11] a linear factorization of f to be a Z/2Z-graded S-module M =
M0⊕M1 together with an S-linear differential d : M →M that is homogeneous of
degree 1 and satisfies d2 = f1M . We often write such a linear factorization as

(M,d) = ( M1

d1 //
M0

d0

oo ),

where d1d0 = f1M0 and d0d1 = f1M1 .
A morphism α : (M,d) → (M ′, d′) of linear factorizations of f is a degree 0

map which commutes with the differentials on M and M ′; it consists of maps
αi : Mi →M ′i , for i = 0, 1, making the following diagram commute:

M1
d1 //

α1

��

M0
d0 //

α0

��

M1

α1

��

M ′1
d′1 // M ′0

d′0 // M ′1

Definition 2.1. Let C be a subcategory of Mod(S). A C-factorization of f is a
linear factorization (M,d) of f such that M0,M1 ∈ C.

Denote by F(C, f) the category whose objects are C-factorizations of f and whose
morphisms are those described above.

In particular, if prj(S) is the category of finitely generated projective S-modules,
then a prj(S)-factorization of f is the same as the usual notion of a matrix factor-
ization of f , that is, F(prj(S), f) = MF(S, f).

We say two morphisms α, β : (M,d) → (M ′, d′) of linear factorizations are
homotopic, and write α ∼ β, if there exists homomorphisms h0 : M0 → M ′1 and
h1 : M1 →M ′0 satisfying the usual homotopy conditions:

α0 − β0 = h1d0 + d′1h0 and α1 − β1 = h0d1 + d′0h1.



6 PETTER ANDREAS BERGH AND PEDER THOMPSON

From this, we define the associated homotopy category of C-factorizations of f , de-
noted HF(C, f), to be the homotopy category whose objects are the same as F(C, f)
and whose morphisms are homotopy classes of morphisms of C-factorizations.

Lemma 2.2. Let (M,d) ∈ F(C, f). If f is M -regular, then d1 and d0 are injective.
If f is M -divisible, then d1 and d0 are surjective.

Proof. First assume f is M -regular. The equality d0d1 = f1M1 implies that for
x ∈M1 with d1(x) = 0, we have 0 = d0d1(x) = fx. Since f is M -regular, it follows
that x = 0, hence d1 is injective. Injectivity of d0 is proved similarly.

Next assume f is M -divisible. Let x ∈ M0 be any element. Divisibility implies
there exists y ∈ M0 with fy = x. Since d1d0 = f1M0 , we have d1d0(y) = fy = x,
hence d1 is surjective. Surjectivity of d0 is proved similarly. �

Given a category C of S-modules, the notions of (left and right) C-totally acyclic
complexes and (left and right) C-Gorenstein modules were defined in [7, Definition
1.1]; in the case where C is self-orthogonal, these notions simplify to the following
equivalent characterizations by [7, Propositions 1.3 and 1.5]. For an S-complex T ,
we set Zi(T ) = ker(dTi ) for each i ∈ Z.

Definition 2.3. Let C be a self-orthogonal category of S-modules.

(1) An S-complex T is C-totally acyclic if T is acyclic, Ti ∈ C for i ∈ Z, and for
every C ∈ C, the complexes HomS(T,C) and HomS(C, T ) are also acyclic.

(2) An S-module M is C-Gorenstein if M = Z0(T ) for some C-totally acyclic
complex T .

The homotopy category of C-totally acyclic complexes is denoted Ktac(C). If C is
additive, then Ktac(C) is triangulated.

A Prj(S)-Gorenstein module is called a Gorenstein projective module and an
Inj(S)-Gorenstein module is called a Gorenstein injective module; these are the
standard notions appearing in the literature.

The next lemma is used below to relate cokernel modules of C-factorizations to
totally acyclic complexes.

Lemma 2.4. Let C be a self-orthogonal subcategory of Mod(S), let f ∈ S be S-
regular and C-regular, and set R = S/(f). If (M,d) ∈ F(C, f), then coker(d1) and
coker(d0) are R-modules, and for any C ∈ C and i ≥ 1 the following hold:

(i) ExtiR(R⊗S C, coker(d1)) = 0 = ExtiR(R⊗S C, coker(d0)),
(ii) ExtiR(coker(d1), R⊗S C) = 0 = ExtiR(coker(d0), R⊗S C).

Proof. We prove the statements for coker(d1); proofs for coker(d0) are similar.
Note first that coker(d1) is an R-module, since f coker(d1) = 0; indeed, we have

fM0 ⊆ im(d1) as f1M0 = d1d0, and so f1M0 induces the zero map on coker(d1).
As f is C-regular, Lemma 2.2 yields an exact sequence

0 // M1
d1 // M0

// coker(d1) // 0.(1)

Let C ∈ C. Application of HomS(C,−) to the exact sequence (1) yields a long
exact sequence:

· · · // ExtiS(C,M0) // ExtiS(C, coker(d1)) // Exti+1
S (C,M1) // · · ·
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As M0 and M1 are in C, we obtain that ExtiS(C,M0) = 0 = Exti+1
S (C,M1) for

i ≥ 1, and hence ExtiS(C, coker(d1)) = 0 for i ≥ 1. Since coker(d1) is an R-module,
Lemma 1.7(ii) now yields ExtiR(R ⊗S C, coker(d1)) ∼= ExtiS(C, coker(d1)) = 0 for
i ≥ 1. This gives (i).

For (ii), instead apply HomS(−, C) to the exact sequence (1) to obtain a long
exact sequence for i ≥ 1:

· · · // ExtiS(M1, C) // Exti+1
S (coker(d1), C) // Exti+1

S (M0, C) // · · ·

As M0 and M1 are in C, we obtain that ExtiS(M1, C) = 0 = Exti+1
S (M0, C) for

i ≥ 1. It follows that Exti+1
S (coker(d1), C) = 0 for i ≥ 1. Employing Lemma 1.7(i),

we obtain ExtiR(coker(d1), R⊗S C) ∼= Exti+1
S (coker(d1), C) = 0 for all i ≥ 1. �

If M is an S-module, α is an S-homomorphism, and R = S/(f), then we set
M = R⊗S M and α = R⊗S α; context should make this clear.

Proposition 2.5. Let C be a subcategory of Mod(S), let f ∈ S be S-regular and
C-regular, and set R = S/(f). Let (M,d) ∈ F(C, f). The R-sequence

TM := · · · d0 // M1
d1 // M0

d0 // M1
d1 // · · ·

is acyclic. If C is self-orthogonal, then TM is R⊗S C-totally acyclic.

Proof. First, as d1d0 = f1M0 and d0d1 = f1M1 , we have d1 d0 = 0 = d0 d1 and so
the sequence TM is a complex of R-modules.

We now show TM is acyclic. Let x ∈ M1 such that x ∈ ker(d1). It follows that
d1(x) ∈ fM0, whence there exists y ∈M0 such that d1(x) = fy. As fy = d1d0(y),
it follows that d1(x) = d1d0(y), hence d1(x − d0(y)) = 0. Injectivity of d1, see
Lemma 2.2, implies that x = d0(y). Hence d0(y) = x, and so H2i+1(TM ) = 0 for
every i ∈ Z. A similar argument (using injectivity of d0) yields H2i(T

M ) = 0 for
every i ∈ Z, thus proving the complex TM is acyclic.

Multiplication by f on the exact sequence 0 → M1
d1−→ M0 → coker(d1) → 0,

along with the snake lemma, yields an exact sequence

coker(d1)
f
// coker(d1) // coker(d1) // 0.

Since coker(d1) is an R-module (see Lemma 2.4), this implies coker(d1) ∼= coker(d1);
similarly, coker(d0) ∼= coker(d0). Acyclicity of TM gives Z2i(T

M ) ∼= coker(d0) and
Z2i+1(TM ) ∼= coker(d1) for every i ∈ Z.

Fix C ∈ C. To verify the complexes HomR(TM , R⊗SC) and HomR(R⊗SC, TM )
are acyclic, it suffices to show that the exact sequences

0 // coker(d0) // M0
// coker(d1) // 0

and

0 // coker(d1) // M1
// coker(d0) // 0

remain exact upon application of HomR(R ⊗S C,−) and HomR(−, R ⊗S C). This
follows from Lemma 2.4. Therefore, as R ⊗S C is self-orthogonal by Proposition
1.8, we obtain that TM is R⊗S C-totally acyclic. �

We have the next dual results involving divisibility:
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Lemma 2.6. Let C be a self-orthogonal subcategory of Mod(S), let f ∈ S be S-
regular and C-divisible, and set R = S/(f). If (M,d) ∈ F(C, f), then ker(d1) and
ker(d0) are R-modules, and for any C ∈ C and i ≥ 1 the following hold:

(i) ExtiR(HomS(R,C), ker(d1)) = 0 = ExtiR(HomS(R,C), ker(d0)),
(ii) ExtiR(ker(d1),HomS(R,C)) = 0 = ExtiR(ker(d0),HomS(R,C)).

Proof. Dual to the proof of Lemma 2.4; use instead Lemma 1.7(iii,iv). �

Proposition 2.7. Let C be a subcategory of Mod(S), let f ∈ S be S-regular and
C-divisible, and set R = S/(f). Let (M,d) ∈ F(C, f). The R-sequence

T̃M := · · ·
(d0)∗

// HomS(R,M1)
(d1)∗

// HomS(R,M0)
(d0)∗

// · · ·

is acyclic. If C is self-orthogonal, then T̃M is HomS(R,C)-totally acyclic.

Proof. Dual to the proof of Proposition 2.5; use instead Lemma 2.6. �

3. A full and faithful functor

Let C be a self-orthogonal subcategory of Mod(S). We denote by K(C) the homo-
topy category of C, whose objects are complexes of modules in C and morphisms
are homotopy classes of degree zero chain maps. Further, we consider the full
subcategory Ktac(C) whose objects are the C-totally acyclic complexes in K(C).

Proposition 3.1. Let C be an additive self-orthogonal subcategory of Mod(S), let
f ∈ S be S-regular and C-regular, and set R = S/(f). There is a triangulated
functor

T : HF(C, f) // Ktac(R⊗S C)

defined, in notation from Proposition 2.5, as T(M,d) = TM and T([α]) = [α].

Proof. Let [α], [β] : (M,d) → (M ′, d′) be morphisms in HF(C, f). Set TM and

TM
′

as the complexes constructed in Proposition 2.5 and associated to M and M ′,
respectively. Define α, β : TM → TM

′
as the evident 2-periodic chain maps induced

by α and β. If [α] = [β], then there is a homotopy h from α to β; this induces a
2-periodic homotopy h from α to β, implying that [α] = [β] in Ktac(R⊗S C). Notice

that as 1M = 1T
M

, if [α] = [1M ], then [α] = [1T
M

].
Define a functor T : HF(C, f) → Ktac(R ⊗S C) as follows: For an object (M,d),

set T(M,d) = TM , and for a morphism [α] : (M,d) → (M ′, d′), set T([α]) = [α].
The above remarks justify that T is well-defined on both objects and morphisms,
that T preserves identities, and that T preserves compositions by the following
equalities:

T([α])T([β]) = [α][β] = [(α)(β)] = [αβ] = T([αβ]).

Moreover, the functor T respects the triangulated structures, that is, T is additive,
T((M,d)[1]) = TM [1] = TM [1] = T((M,d))[1], and T preserves exact triangles. �

Lemma 3.2. Let C be a self-orthogonal subcategory of Mod(S), let f ∈ S be C-
regular, and set R = S/(f). If M,M ′ ∈ C and ϕ ∈ HomR(M,M ′), then there exists
ψ ∈ HomS(M,M ′) such that ψ = ϕ.
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Proof. Let ϕ : M →M ′ be an R-homomorphism. There is an exact sequence

0 // M ′
f
// M ′

π′ // M ′ // 0.

As Ext1S(M,M ′) = 0, we obtain an exact sequence

0 // HomS(M,M ′) // HomS(M,M ′) // HomS(M,M ′) // 0.

Let π : M →M be the canonical quotient map. The map ϕπ ∈ HomS(M,M ′) lifts
to a map ψ ∈ HomS(M,M ′) such that π′ψ = ϕπ, that is, ψ = ϕ. �

The following arguments to show that T is full and faithful closely follow those
given in [3], put into the more general setting of totally acyclic complexes from [7].

Proposition 3.3. The functor T in Proposition 3.1 is faithful.

Proof. Set W = R ⊗S C. Let [α] : M → M ′ be a morphism in HF(C, f) such that
T([α]) is the zero morphism in Ktac(W). Our goal is to show [α] = [0], that is, α is
null homotopic in F(C, f). Write α : M →M ′ as:

M1
d1 //

α1

��

M0
d0 //

α0

��

M1

α1

��

M ′1
d′1 // M ′0

d′0 // M ′1

Let α : T(M,d)→ T(M ′, d′) denote the 2-periodic chain map induced by α. The
assumption T([α]) = [0] in Ktac(W) implies that α is null homotopic (i.e., α ∼ 0).
Let σ be a null homotopy for α; notice, however, that σ need not be 2-periodic.
We have the following diagram:

· · · // M1
d1 //

α1

��

M0
d0 //

α0

��
σ2

~~

M1
d1 //

α1

��
σ1

~~

M0
d0 //

α0

��
σ0

~~

M1

α1

��
σ−1

~~

// · · ·

· · · // M ′1
d′1

// M ′0
d′0

// M ′1
d′1

// M ′0
d′0

// M ′1
// · · ·

In particular, we have the following relations (coming from degrees 1 and 2):

α1 = d′0σ1 + σ0d1,(2)

α0 = d′1σ2 + σ1d0.(3)

Lemma 3.2 yields S-module homomorphism liftings h2i : M0 → M ′1 of σ2i and

h2i+1 : M1 →M ′0 of σ2i+1 for i ∈ Z. The exact sequence 0→M ′1
f−→M ′1

π−→M ′1 → 0
induces an exact sequence:

0 // HomS(M1,M
′
1)

f
// HomS(M1,M

′
1)

π∗ // HomS(M1,M ′1) // 0,

where π∗ = HomS(M1, π). Since α1 − d′0h1 − h0d1 ∈ ker(π∗) by (2), one obtains
a map β1 ∈ HomS(M1,M

′
1) such that fβ1 = α1 − d′0h1 − h0d1. Similarly, using

instead (3), one obtains β2 ∈ HomS(M0,M
′
0) such that fβ2 = α0 − d′1h2 − h1d0.
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Define s1 = h1+d′1β1. We claim that (h0, s1) is a null homotopy of α : M →M ′.
First, we have:

d′0s1 + h0d1 = d′0(h1 + d′1β1) + h0d1

= d′0h1 + d′0d
′
1β1 + h0d1

= d′0h1 + fβ1 + h0d1

= d′0h1 + α1 − d′0h1 − h0d1 + h0d1

= α1.

Next, precomposing the equality fβ1 = α1 − d′0h1 − h0d1 with d0 gives:

fβ1d0 = (α1 − d′0h1 − h0d1)d0

= α1d0 − d′0h1d0 − h0f
= d′0α0 − d′0h1d0 − h0f
= d′0(α0 − h1d0)− h0f
= d′0(fβ2 + d′1h2)− h0f
= fd′0β2 + d′0d

′
1h2 − fh0

= f(d′0β2 + h2 − h0).

As f is M ′1-regular, this yields

β1d0 = d′0β2 + h2 − h0.(4)

We therefore obtain:

d′1h0 + s1d0 = d′1h0 + (h1 + d′1β1)d0

= d′1h0 + h1d0 + d′1β1d0

= d′1h0 + h1d0 + d′1(d′0β2 + h2 − h0), by (4),

= d′1h0 + h1d0 + fβ2 + d′1h2 − d′1h0
= h1d0 + α0 − d′1h2 − h1d0 + d′1h2

= α0.

Hence α : M →M ′ is homotopic to 0, that is, [α] = [0] in HF(C, f). �

Proposition 3.4. The functor T in Proposition 3.1 is full.

Proof. Set W = R ⊗S C. Let (M,d) and (M ′, d′) be objects in HF(C, f) and
suppose α : T(M,d)→ T(M ′, d′) is a degree 0 chain map, not necessarily 2-periodic,
that represents a morphism [α] in Ktac(W); in particular, we have a commutative
diagram:

· · · // M1
d1 //

α3

��

M0
d0 //

α2

��

M1
d1 //

α1

��

M0
//

α0

��

· · ·

· · · // M ′1
d′1 // M ′0

d′0 // M ′1
d′1 // M ′0

// · · ·

By Lemma 3.2, for i ∈ Z we can lift α2i to α2i : M0 → M ′0 and α2i+1 to
α2i+1 : M1 → M ′1. In particular, we obtain the following diagram that commutes
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modulo f :

M0
d0 //

α2

��

M1
d1 //

α1

��

M0

α0

��

M ′0
d′0 // M ′1

d′1 // M ′0

The exact sequence 0→M ′1
f−→M ′1

π−→M ′1 → 0 induces an exact sequence

0 // HomS(M0,M
′
1)

f
// HomS(M0,M

′
1)

π∗ // HomS(M0,M ′1) // 0.

Since α1d0 − d′0α2 ∈ ker(π∗), there exists a map σ0 ∈ HomS(M0,M
′
1) such that

α1d0 − d′0α2 = fσ0.(5)

Similarly, there exists σ1 ∈ HomS(M1,M
′
0) such that

α0d1 − d′1α1 = fσ1.(6)

We now define new maps in order to construct a morphism in F(C, f); define

γ0 = α0 + d′1σ0, and

γ1 = α1 + d′0σ1 + σ0d1.

We aim to verify that the following diagram is commutative:

M0
d0 //

γ0

��

M1
d1 //

γ1

��

M0

γ0

��

M ′0
d′0 // M ′1

d′1 // M ′0

(7)

The equality (6), along with d1d0 = f1M0 and d′0d
′
1 = f1M

′
1 , imply

fd′0σ1d0 = d′0(α0d1 − d′1α1)d0 = fd′0α0 − fα1d0,

and so as f is M ′1-regular, we have

d′0σ1d0 = d′0α0 − α1d0.(8)

First we verify the left square of (7) commutes:

γ1d0 = (α1 + d′0σ1 + σ0d1)d0

= α1d0 + d′0σ1d0 + fσ0

= α1d0 + (d′0α0 − α1d0) + fσ0, by (8),

= d′0α0 + fσ0

= d′0α0 + d′0d
′
1σ0

= d′0(α0 + d′1σ0)

= d′0γ0.
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Next we verify the right square of (7) commutes:

d′1γ1 = d′1(α1 + d′0σ1 + σ0d1)

= d′1α1 + fσ1 + d′1σ0d1

= d′1α1 + α0d1 − d′1α1 + d′1σ0d1, by (6),

= α0d1 + d′1σ0d1

= (α0 + d′1σ0)d1

= γ0d1.

Thus γ = (γ0, γ1) is a morphism (M,d)→ (M ′, d′) in F(C, f).
We next claim α ∼ γ, i.e., that T([γ]) = [α]. We start with the following diagram

(displaying homological degrees 3 to −1):

· · · // M1
d1 //

γ1−α3

��

M0
d0 //

γ0−α2

��

M1
d1 //

γ1−α1

��
σ1

~~

M0
d0 //

γ0−α0

��
σ0

~~

M1
//

γ1−α−1

��

· · ·

· · · // M ′1
d′1

// M ′0
d′0

// M ′1
d′1

// M ′0
d′0

// M ′1
// · · ·

Evidently, σ1 and σ0 give the start of a homotopy in degree 1:

γ1 − α1 = α1 + d′0σ1 + σ0d1 − α1 = d′0σ1 + σ0d1.

Note that the subcategory W is self-orthogonal by Proposition 1.8. As T(M,d)
and T(M ′, d′) are W-totally acyclic complexes, the arguments in [10, Appendix]
show that we may extend σ1 and σ0 to a null homotopy of the displayed morphism,
giving γ ∼ α. Indeed, extending the homotopy to the left is done by the proof
of [10, Proposition A.3], with W-total acyclicity of T(M ′, d′) standing in for the
assumptions in loc. cit. (and [8, Lemma 2.4] in place of [8, Lemma 2.5]); extending
the homotopy to the right uses the dual proof for [10, Proposition A.1]. It follows
that T([γ]) = [α] hence T is full. �

The following recovers [3, Theorem 3.5] when one takes C = prj(S).

Theorem 3.5. Let C be an additive self-orthogonal subcategory of Mod(S), let
f ∈ S be S-regular and C-regular, and set R = S/(f). The triangulated functor
T : HF(C, f)→ Ktac(R⊗S C) is full and faithful.

Proof. Combine Propositions 3.1, 3.3, and 3.4. �

In fact, the results of this section have dual statements involving divisibility. In
summary, one can show the following:

Theorem 3.6. Let C be an additive self-orthogonal subcategory of Mod(S), let
f ∈ S be S-regular and C-divisible, and set R = S/(f). There is a triangulated

functor T̃ : HF(C, f)→ Ktac(HomS(R,C)) that is full and faithful.

Proof. One first notices that a version of Proposition 3.1 holds, by defining a functor

T̃ using Proposition 2.7. Then using a dual version of Lemma 3.2, one can establish
analogues of Propositions 3.3 and 3.4. �
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4. Equivalences for projective and injective factorizations

In this section, we consider Prj(S)- and Inj(S)-factorizations, referred to as projec-
tive and injective factorizations, respectively. Our goal here is to show that if S is a
regular local ring, f ∈ S is nonzero, and R = S/(f), then projective factorizations
of f correspond to Gorenstein projective R-modules; this can be considered as an
extension of the classic bijection [12, Corollary 6.3] between matrix factorizations
(having no trivial direct summand) and maximal Cohen-Macaulay R-modules (hav-
ing no free direct summand). Dually, we observe a correspondence between injective
factorizations of f and Gorenstein injective R-modules.

If one considers prj(S) in place of Prj(S) in the next result, then the classic proof,
as in [12], uses the Auslander–Buchsbaum formula. However, we use an approach
here that does not require the modules to be finitely generated.

Proposition 4.1. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). If M is a Gorenstein projective R-module, then there exists a projective
factorization (P, d) ∈ F(Prj(S), f) with coker(d1) = M .

Proof. Let M be a Gorenstein projective R-module. As fM = 0, a result of Bennis
and Mahdou [2, Theorem 4.1] yields GpdSM = GpdRM + 1 = 1, where Gpd
denotes Gorenstein projective dimension. As S is regular, M has finite projective
dimension over S, thus by [6, 4.4.7] we have pdSM = GpdSM = 1.

Now a standard construction yields a projective factorization of f which corre-
sponds to M : First choose a projective resolution P of M over S having the form

0 → P1
d1−→ P0 → M → 0. Application of HomS(P0,−) to this sequence gives an

exact sequence:

0 // HomS(P0, P1) // HomS(P0, P0) // HomS(P0,M) // 0.

As fM = 0, the map f1P0 is sent to 0, hence this sequence shows there exists a
map d0 : P0 → P1 such that d1d0 = f1P0 . Further, d1(d0d1) = f1P0d1 = d1(f1P1),
and since d1 is injective this implies that d0d1 = f1P1 . It follows that (P, d) is a
projective factorization of f such that coker(d1) = M . �

Theorem 4.2. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence

T : HF(Prj(S), f)
' // Ktac(Prj(R))

given by the functor from Proposition 3.1.

Proof. The triangulated functor T given in Proposition 3.1, applied to C = Prj(S),
is full and faithful by Theorem 3.5. Also note that R ⊗S Prj(S) = Prj(R) (see
Remark 1.5) and so the functor T has the claimed codomain. It remains to show
that T is essentially surjective. Let T ∈ Ktac(Prj(R)). Then Z0(T ) is a Gorenstein
projective R-module. By Proposition 4.1 there is a Prj(S)-factorization (P, d) such
that coker(d1) = Z0(T ).

We argue that T(P, d) is homotopic to T . Notice that Z0(T(P, d)) = Z0(T ) by
construction. There exists a degree 0 chain map φ : T(P, d) → T that lifts the

identity map Z0(T(P, d))
=−→ Z0(T ) by [7, Lemma 3.1]; the lifting φ is a homotopy

equivalence by [7, Proposition 3.3(b)]. �



14 PETTER ANDREAS BERGH AND PEDER THOMPSON

Corollary 4.3. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence between HF(Prj(S), f) and the stable
category of Gorenstein projective R-modules.

Proof. Combine Theorem 4.2 with the equivalence between Ktac(Prj(R)) and the
stable category of Gorenstein projective R-modules; see e.g., [7, Example 3.10]. �

There are dual results for injective factorizations:

Proposition 4.4. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). If M is a Gorenstein injective R-module, then there exists an injective
factorization (I, d) ∈ F(Inj(S), f) with ker(d1) = M .

Proof. Dual to the proof of Proposition 4.1, where one instead uses [2, Theorem
4.2] in place of [2, Theorem 4.1] and [6, 6.2.6] in place of [6, 4.4.7]. �

Theorem 4.5. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence

T̃ : HF(Inj(S), f)
' // Ktac(Inj(R))

given by the functor from Theorem 3.6.

Proof. Similar to the proof of Theorem 4.2; appeal instead to Theorem 3.6 and
Proposition 4.4. �

Corollary 4.6. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence between HF(Inj(S), f) and the stable
category of Gorenstein injective R-modules.

Proof. Combine Theorem 4.5 and the equivalence between Ktac(Inj(R)) and the
stable category of Gorenstein injective R-modules; see [16, Proposition 7.2]. �

5. An equivalence for flat-cotorsion factorizations

In this section, assume S is a commutative noetherian ring. We give an equivalence
in the case of the self-orthogonal category FlatCot(S) of flat-cotorsion S-modules
(that is, the category of S-modules that are both flat and cotorsion). The approach
is similar to the previous section, but requires some extra care; in particular, we
must establish a fact corresponding to the one from [2] used above.

Denote by M∧p = lim←−(S/pn⊗SM) the p-adic completion of an S-module M . By

[13], an S-module M is flat-cotorsion if and only if it is isomorphic to a product over
p ∈ SpecS of completions of free Sp-modules, that is, M ∼=

∏
p∈SpecS(

⊕
B(p) Sp)∧p

for some sets B(p).

Lemma 5.1. Let π : S → R be a surjective ring homomorphism. Then we have
an equality R⊗S FlatCot(S) = FlatCot(R).

Proof. First notice that for a flat-cotorsion S-module
∏

p∈SpecS(
⊕

B(p) Sp)∧p , there

is an isomorphism

R⊗S
(∏

p∈SpecS(
⊕

B(p) Sp)∧p

)
∼=
∏

p∈SpecS(
⊕

B(p)Rπ(p))
∧
π(p),

since R is finitely presented as an S-module. It is now immediate that there is an
inclusion R ⊗S FlatCot(S) ⊆ FlatCot(R). The other inclusion follows by observing
that every flat-cotorsion R-module can be expressed in a form given by the right
side of this isomorphism, since SpecR = π(SpecS). �
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The next lemma is needed in place of the change of rings facts for Gorenstein pro-
jective and Gorenstein injective dimensions from [2]. As in [7, Definition 4.3], refer
to a FlatCot(S)-totally acyclic complex as a totally acyclic complex of flat-cotorsion
S-modules and a FlatCot(S)-Gorenstein module as a Gorenstein flat-cotorsion S-
module; see Definition 2.3. Gorenstein flat-cotorsion S-modules are by [7, Theorem
5.2] precisely the modules that are both Gorenstein flat—that is, isomorphic to
Z0(F ) for some F-totally acyclic complex F of flat S-modules—and cotorsion.

Lemma 5.2. Let f ∈ S be a regular element and set R = S/(f). Let M be a
Gorenstein flat-cotorsion R-module. There is an exact sequence of S-modules

0 // M ′ // F // M // 0,

with M ′ a Gorenstein flat-cotorsion S-module and F a flat-cotorsion S-module.

Proof. As M is a Gorenstein flat-cotorsion R-module, there is a totally acyclic
complex T of flat-cotorsion R-modules such that Z0(T ) = M . For each i ∈ Z,
we may find—because flat covers exist for all modules [4]—a surjective flat cover
Fi → Zi(T ) over S; the kernel Ki = ker(Fi → Zi(T )) is cotorsion by Wakamatsu’s
Lemma [24, Lemma 2.1.1]. In fact, since Zi(T ) is a cotorsion R-module, it is also
a cotorsion S-module for each i ∈ Z by [24, Proposition 3.3.3], hence Fi is flat-
cotorsion for each i ∈ Z. Indeed, Zi(T ) being a cotorsion S-module also yields
Ext1S(Fi−1,Zi(T )) = 0; from this and the snake lemma we obtain, for each i ∈ Z,
the following commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // Ki
//

��

T ′i
//

��

Ki−1 //

��

0

0 // Fi //

��

Fi ⊕ Fi−1 //

��

Fi−1 //

��

0

0 // Zi(T ) //

��

Ti //

��

Zi−1(T ) //

��

0

0 0 0

As Ki and Ki−1 are cotorsion S-modules, so is T ′i . Additionally, as Ti is a flat
R-module, fdS Ti = 1; see Remark 1.6. From [1, 2.4.F], we obtain that T ′i is a flat
S-module.

Now glue together the short exact sequences from the top rows of these diagrams
to obtain an acyclic complex T ′ of flat-cotorsion S-modules with Zi(T

′) = Ki for
each i ∈ Z. Fix a flat-cotorsion S-module N . Evidently, as each Ki is cotorsion,
we obtain HomS(N,T ′) is acyclic. Moreover, for each i ∈ Z,

Ext1S(Ki, N) ∼= Ext2S(Zi(T ), N) ∼= Ext1R(Zi(T ), R⊗S N) = 0,

where the first isomorphism follows from the left vertical exact sequence in the
diagram and the second follows from Lemma 1.7(i). For the last equality, note that
as N is a flat-cotorsion S-module, we have R ⊗S N is a flat-cotorsion R-module
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by Lemma 5.1. It now follows that HomS(T ′, N) is also acyclic. Thus T ′ is a
totally acyclic complex of flat-cotorsion S-modules. In particular, Z0(T ′) = K0 is
a Gorenstein flat-cotorsion S-module, and the claim follows. �

Proposition 5.3. Assume S is a regular local ring, let f ∈ S be nonzero, and
set R = S/(f). If M is a Gorenstein flat-cotorsion R-module, then there exists a
flat-cotorsion factorization (F, d) ∈ F(FlatCot(S), f) with coker(d1) = M .

Proof. Let M be a Gorenstein flat-cotorsion R-module. Lemma 5.2 yields an exact
sequence

0 // F1
d1 // F0

// M // 0,

with F0 a flat-cotorsion S-module and F1 a Gorenstein flat-cotorsion S-module.
By [7, Theorem 5.2], F1 is cotorsion and Gorenstein flat. As S is regular, we have
fdSM < ∞, hence fdSM = GfdSM ≤ 1 by [6, 5.2.8]. Thus F1 is also flat [1,
2.4.F], hence flat-cotorsion.

As in Proposition 4.1, a standard construction applied to the sequence above
provides a flat-cotorsion factorization (F, d) of f with coker(d1) = M . �

Theorem 5.4. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence

T : HF(FlatCot(S), f)
' // Ktac(FlatCot(R))

given by the functor in Proposition 3.1.

Proof. Similar to the proof of Theorem 4.2, using Proposition 5.3 in place of Propo-
sition 4.1, and Lemma 5.1 in place of Remark 1.5. �

Corollary 5.5. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence between HF(FlatCot(S), f) and the
stable category of Gorenstein flat-cotorsion R-modules.

Proof. This equivalence follows from Theorem 5.4 and the triangulated equivalence
between Ktac(FlatCot(R)) and the stable category of Gorenstein flat-cotorsion R-
modules given in [7, Summary 5.7]. �

One motivation for considering totally acyclic complexes of flat-cotorsion R-
modules is their relation to the next analogue of the singularity category as de-
scribed by Murfet and Salarian [19].

The pure derived category of flat S-modules is defined as the Verdier quotient
D(Flat(S)) = K(Flat(S))/Kpac(Flat(S)) of the homotopy category of flat S-modules
by its subcategory of pure acyclic complexes of flat S-modules. Neeman proves
in [20, Theorem 1.2] that D(Flat(S)) is equivalent to K(Prj(S)), and moreover,
Murfet and Salarian show [19, Lemma 4.22] that DF-tac(Flat(S)), the subcategory
of D(Flat(S)) of F-totally acyclic complexes, is equivalent to Ktac(Prj(S)), assuming
that S is a commutative noetherian ring having finite Krull dimension.

Corollary 5.6. Assume S is a regular local ring, let f ∈ S be nonzero, and set
R = S/(f). There is a triangulated equivalence

HF(FlatCot(S), f)
' // DF-tac(Flat(R)).

Proof. Combine Theorem 5.4 and [7, Summary 5.7]. �



MATRIX FACTORIZATIONS FOR SELF-ORTHOGONAL CATEGORIES OF MODULES 17

Acknowledgments

We are grateful to Lars Winther Christensen and Mark Walker for many discussions
related to the topics of this paper, and also to the anonymous referee for many
helpful suggestions.

References

[1] Luchezar L. Avramov and Hans-Bjørn Foxby. Homological dimensions of unbounded com-

plexes. J. Pure Appl. Algebra, 71(2-3):129–155, 1991.
[2] Driss Bennis and Najib Mahdou. First, second, and third change of rings theorems for Goren-

stein homological dimensions. Comm. Algebra, 38(10):3837–3850, 2010.

[3] Petter Andreas Bergh and David A. Jorgensen. Complete intersections and equivalences with
categories of matrix factorizations. Homology Homotopy Appl., 18(2):377–390, 2016.

[4] L. Bican, R. El Bashir, and E. Enochs. All modules have flat covers. Bull. London Math.

Soc., 33(4):385–390, 2001.
[5] Ragnar-Olaf Buchweitz. Maximal Cohen-Macaulay Modules and Tate-Cohomology over

Gorenstein Rings. unpublished manuscript, 1986.
[6] Lars Winther Christensen. Gorenstein Dimensions. Number 1747 in Lecture Notes in Math-

ematics. Springer-Verlag, 2000.

[7] Lars Winther Christensen, Sergio Estrada, and Peder Thompson. Homotopy categories of
totally acyclic complexes with applications to the flat–cotorsion theory. To appear in Con-

temporary Mathematics. Preprint available: arXiv:1812.04402v2.

[8] Lars Winther Christensen, Anders Frankild, and Henrik Holm. On Gorenstein projec-
tive, injective and flat dimensions—a functorial description with applications. J. Algebra,

302(1):231–279, 2006.

[9] Lars Winther Christensen and Henrik Holm. Ascent properties of Auslander categories.
Canad. J. Math., 61(1):76–108, 2009.

[10] Lars Winther Christensen and Peder Thompson. Pure-minimal chain complexes. Rend.

Semin. Mat. Univ. Padova, 142:41–67, 2019.
[11] Tobias Dyckerhoff and Daniel Murfet. Pushing forward matrix factorizations. Duke Mathe-

matical Journal, 162(7):1249–1311, 2013.
[12] David Eisenbud. Homological algebra on a complete intersection, with an application to

group representations. Transactions of the American Mathematical Society, 260(1):35–64,

July 1980.
[13] Edgar Enochs. Flat covers and flat cotorsion modules. Proc. Amer. Math. Soc., 92(2):179–

184, 1984.

[14] Irving Kaplansky. Commutative rings. Allyn and Bacon, Inc., Boston, Mass., 1970.
[15] Irving Kaplansky. Fields and rings. The University of Chicago Press, Chicago, Ill.-London,

second edition, 1972. Chicago Lectures in Mathematics.

[16] Henning Krause. The stable derived category of a Noetherian scheme. Compos. Math.,
141(5):1128–1162, 2005.

[17] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from
the Japanese by M. Reid.

[18] Daniel Murfet. The mock homotopy category of projectives and Grothendieck duality. PhD
thesis, Australian National University, available from http://www.therisingsea.org/thesis.pdf,
2007.

[19] Daniel Murfet and Shokrollah Salarian. Totally acyclic complexes over Noetherian schemes.
Adv. Math., 226(2):1096–1133, 2011.

[20] Amnon Neeman. The homotopy category of flat modules, and Grothendieck duality. Invent.
Math., 174(2):255–308, 2008.

[21] Dmitri Orlov. Triangulated categories of singularities and d-branes in landau-ginzburg mod-
els. Proceedings of the Steklov Institute of Mathematics, 246(3):227–248, 2004.

[22] D. Rees. A theorem of homological algebra. Proc. Cambridge Philos. Soc., 52:605–610, 1956.
[23] Sean Sather-Wagstaff, Tirdad Sharif, and Diana White. Stability of Gorenstein categories. J.

Lond. Math. Soc. (2), 77(2):481–502, 2008.

[24] Jinzhong Xu. Flat covers of modules, volume 1634 of Lecture Notes in Mathematics. Springer,
1996.



18 PETTER ANDREAS BERGH AND PEDER THOMPSON

Petter Andreas Bergh, Institutt for matematiske fag, NTNU, N-7491 Trondheim,

Norway

Email address: petter.bergh@ntnu.no

Peder Thompson, Institutt for matematiske fag, NTNU, N-7491 Trondheim, Norway

Email address: peder.thompson@ntnu.no


	Introduction
	1. Self-orthogonal categories of modules
	2. C-factorizations and total acyclicity
	3. A full and faithful functor
	4. Equivalences for projective and injective factorizations
	5. An equivalence for flat-cotorsion factorizations
	Acknowledgments
	References

