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Formation of stimulus equivalence classes has been recently modeled
through equivalence projective simulation (EPS), a modified version
of a projective simulation (PS) learning agent. PS is endowed with an
episodic memory that resembles the internal representation in the brain
and the concept of cognitive maps. PS flexibility and interpretability
enable the EPS model and, consequently the model we explore in this
letter, to simulate a broad range of behaviors in matching-to-sample ex-
periments. The episodic memory, the basis for agent decision making, is
formed during the training phase. Derived relations in the EPS model
that are not trained directly but can be established via the network’s con-
nections are computed on demand during the test phase trials by like-
lihood reasoning. In this letter, we investigate the formation of derived
relations in the EPS model using network enhancement (NE), an iterative
diffusion process, that yields an offline approach to the agent decision
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making at the testing phase. The NE process is applied after the train-
ing phase to denoise the memory network so that derived relations are
formed in the memory network and retrieved during the testing phase.
During the NE phase, indirect relations are enhanced, and the structure
of episodic memory changes. This approach can also be interpreted as the
agent’s replay after the training phase, which is in line with recent find-
ings in behavioral and neuroscience studies. In comparison with EPS, our
model is able to model the formation of derived relations and other fea-
tures such as the nodal effect in a more intrinsic manner. Decision mak-
ing in the test phase is not an ad hoc computational method, but rather
a retrieval and update process of the cached relations from the memory
network based on the test trial. In order to study the role of parameters
on agent performance, the proposed model is simulated and the results
discussed through various experimental settings.

1 Introduction

Stimulus equivalence (SE), a phenomenon that Sidman (1971) identified
and explored, refers to the condition that members of an equivalence class
evoke the same response in human and animal subjects. The SE methodol-
ogy uses a matching-to-sample (MTS) procedure to train arbitrary relations
between unfamiliar stimuli and test derived relations through mathemati-
cal relations in equivalence sets: reflexivity, symmetry, and transitivity. The
SE framework, as an efficient learning method, has been widely studied
by employing humans or animals as experimental participants (see Sid-
man, Cresson, & Willson-Morris, 1974; Sidman et al., 1982; Sidman & Tailby,
1982; Sidman, Willson-Morris, & Kirk, 1986; Devany, Hayes, & Nelson, 1986;
Hayes, 1989; Fields, Adams, Verhave, & Newman, 1990; Spencer & Chase,
1996; Groskreutz, Karsina, Miguel, & Groskreutz, 2010; Steingrimsdottir &
Arntzen, 2011; Arntzen & Mensah, 2020, to mention a few). Computational
models constitute another alternative for understanding SE and studying
variables that are challenging to examine on humans or animals due to
time constraints or ethical issues (see, e.g., Barnes & Hampson, 1993; Culli-
nan, Barnes, Hampson, & Lyddy, 1994; Lyddy, Barnes-Holmes, & Hampson,
2001; Lew & Zanutto, 2011; Tovar & Westermann, 2017; Ninness, Ninness,
Rumph, & Lawson, 2018, for some computational models of the learning of
equivalence relations).

In our previous model (Mofrad, Yazidi, Hammer, & Arntzen, 2020),
we proposed equivalence projective simulation (EPS) for computationally
modeling the SE phenomenon. In brief, EPS has modeled the formation of
SE classes through an MTS procedure. A projective simulation (PS) frame-
work (Briegel & De las Cuevas, 2012) was the basis of the model, and we
have proposed several methods to address the test phase and derived rela-
tions, including max-product, memory sharpness, and random walk on the
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memory network with absorbing action sets. The EPS model, similar to the
original PS model, has an internal episodic memory that is updated dur-
ing the training phase, which is used to cope with new, derived relations
in the testing phase. The PS model, and therefore the EPS model, is flexible
and easy to interpret, which allows modeling a broad range of behaviors in
MTS experiments, including typical participants or participants with some
disabilities. Many parameters of the model can be controlled, such as the
learning rate, forgetting rate, and nodal effect.

The EPS model relies on the assumption that the relations are derived on
request, that is, when they appear in an MTS trial during the testing phase
and updated during the training phase. We slightly change this assumption
and form those relations at the end of the training phase; thus, the output
network from the training phase of EPS is assumed to be a noisy version of
the agent’s memory network that is supposed to contain all trained and de-
rived relations. Using a denoising approach, we could produce a new, less
noisy clip network that contains information regarding equivalence class
formation. The trained relations in the training phase are mapped into a
transition matrix whose values describe the strength of the trained relations.
By resorting to network enhancement (Wang et al., 2018), we address the
formation of SE classes using an iterative update of the transition matrix. In-
terestingly, the updating process permits naturally denoising the transition
matrix and enhancing indirect relations1 while preserving the initial direct
relations learned during the training phase. The denoised network can be
assimilated to an updated clip network, used later in the testing phase. It
can also be used to assess overall agent performance on eventual equiva-
lence tests. In summary, the contribution of this letter is as follows:

1. Instead of using reasoning, that is, computing the likelihood of the
different alternatives during testing by following some indirect paths
over the clip network, we update memory and retrieve the updated
memory at the testing phase.

2. As in the EPS model, we still control symmetry relations with a
multiplicative parameter. We are able to control the ability to derive
transitivity relations using parameter α. This turns out to be of great
importance when modeling subjects with learning disabilities.

3. We further enhance the NE and propose DNE in which we can con-
trol the agent’s ability to derive symmetry and also control its ability
to derive transitivity.

4. A comparison of PS, EPS, and E-EPS, together with supporting stud-
ies from the neuroscience literature, is provided that justifies the pro-
posed model.

1
According to the theory of SE, indirect relations are derived through reflexivity, sym-

metry, transitivity, and equivalence.
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5. From a computational point of view, the new updating rule has fewer
parameters to fine-tune in comparison with the EPS. The approach
to deriving relations in EPS model can be seen as routing in the clip
network, with action sets as destination points. In the E-EPS model,
a diffusion model explores the clip network by simultaneous propa-
gation of flow without a specific target.

6. The updated clip network can be considered as a cognitive map
of stimuli that can be used in analyzing the results of different
settings.

7. The testing phase in the E-EPS model involves less computation on
the decision time in comparison with EPS. E-EPS uses the updated
network during the testing phase rather than processing the trained
relations to compute derived relation links at each test trial.

8. Using a simulation of several configurations, we study the parame-
ters in detail.

9. We compare three training procedures—linear series (LS), many-to-
one (MTO), and one-to-many (OTM)—in the final experiment. In line
with the mainstream literature in behavior analysis (see Arntzen,
Grondahl, & Eilifsen, 2010; Arntzen & Hansen, 2011; Arntzen, 2012),
the model yields better performance in OTM and MTO cases in com-
parison with LS, which is a qualitative property of our model con-
firming that it is a realistic model.

10. We provide theoretical analysis of the model and a convergence guar-
antee in appendix A.

We provide a brief overview of SE, EPS, and network enhancement in
section 2. We provide the architecture of the enhanced equivalence projec-
tive simulation (E-EPS) model in section 3, where we also compare the pro-
posed approach to the original PS model and recent EPS model. We consider
seven experimental scenarios to study the parameters of the model in sec-
tion 4. Section 5 offers a summary of the letter discussion, and concluding
remarks.

2 Background and Related Work

In section 2.1, we review the concept of SE from a behavior analysis
perspective. In section 2.2, we briefly explain the EPS model and pro-
vide a brief section about network enhancement (Wang et al., 2018) in
section 2.3.

2.1 Stimulus Equivalence (SE). SE is a research method on complex
human behavior, including memory and problem solving (Sidman, 1990).
In the MTS or conditional discrimination procedure, which is used in SE, a
given stimulus, say A1, must be paired with B1 among a given comparison
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stimuli set, say B1, B2, and B3. The discrimination happens through pro-
grammed consequences.

The MTS procedure has two phases: the training phase, when the partic-
ipant learns some relations, and the testing phase, when the participant is
tested with derived relations. Trial types in the testing phase include base-
line, symmetry, transitivity, and equivalence. It is noteworthy that equiv-
alence relations are sometimes referred to as combined transitivity and
symmetry.

The evaluation of participant learning is usually through a threshold
or mastery criterion ratio (e.g., 0.95 to 1). If the participant passes the cri-
terion, the derived relations are tested. In the testing phase, there are no
programmed consequences, and usually the criterion ratio in this phase is
lower than in training phase (e.g., 0.9 to 1). Whenever the evidence (passing
the criterion for testing) shows the emergence of all relations, the equiva-
lence class is considered to be formed (Sidman & Tailby, 1982).

In the equivalence literature, three training structures have been used in
establishing conditional discrimination with the MTS procedure: linear se-
ries (LS), many-to-one (MTO), and one-to-many (OTM) (see Arntzen, 2012,
for more details about MTS training and testing procedures and parameters
in SE formation). Generally, a class with n stimuli, requires training of only
(n − 1) stimulus-stimulus relations. The condition is that each component
of these relations needs to be present in at least one trained relation, and
none of the trained relations can have the same two stimuli as components.
Even with these constraints, many possible ways for structuring training
relations remain, some of them possibly more efficient than the others (see
Fields et al., 1990; O’Mara, 1991; Arntzen & Holth, 1997; Hove, 2003; Ly-
ddy & Barnes-Holmes, 2007; Arntzen et al., 2010; Arntzen & Hansen, 2011;
Fienup, Wright, & Fields, 2015, for instance). Appendix B formally analyzes
the size of the training design space, which is shown to be exhaustive even
for a small number of categories and number of classes. Therefore, it is com-
plex to design and run experiments involving human subjects that explore
different training and testing scenarios. Computational models, however,
could be used for exploring new ideas through simulation. For instance, one
could try several configurations and find the optimum scenario according
to some design criterion in the computational model before running a real
experiment. Moreover, components of the computational model can be eas-
ily manipulated, disrupted, impaired, and removed to see the effect of those
components on the results. Having more control over the experimental vari-
ables, including a controllable environment, is a considerable advantage of
these models over real experiments (Barnes & Hampson, 1993; McClelland,
2009; Ninness, Ninness, Rumph, & Lawson, 2018).

2.2 Equivalence Projective Simulation (EPS). EPS is based on PS,
which can be seen as an reinforcement learning (RL) model that can be
embodied in an environment, perceive stimuli, execute actions, and learn
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through trial and error (see, e.g., Briegel & De las Cuevas, 2012; Melnikov,
Makmal, Dunjko, & Briegel, 2017, for details of PS model).

The PS agent, and therefore the EPS agent, has an episodic memory that
is literally a directed, weighted network of clips, where each clip repre-
sents a remembered percept or action (stimulus in EPS). Memory can be
described as a probabilistic network of clips, the so-called clip network.2

The learning in PS is realized by updating weights and structure through
adding new clips and new transition links.

The simulation of the MTS procedure via EPS has two phases: the train-
ing phase, when the memory network will be formed through trials and
guided feedback, and the testing phase, when no new memory clips are
created. Although there is no guided feedback in the testing phase, con-
nection weights might be updated. The testing phase is the main part of
the model. In Mofrad et al. (2020) three different approaches dealing with
the derived relations are discussed: max-product, memory sharpness, and
absorbing action sets.

At the beginning of an MTS training phase, the agent memory space,
which is shown by C = {c1, . . . , cp}, is empty. Based on trial settings, a mem-
orized clip could play the role of either a percept clip or an action clip.
At each time step, the environment (the experimenter in the real experi-
ments) shows a sample stimulus and some comparison alternatives, which
are referred to as percept and actions. The percept and actions belong to the
percept set S and action set A, respectively. The sample stimulus (percept,
s ∈ S) and the comparison stimuli (actions a ∈ At) belong to different cat-
egories (e.g., category A or B), where At denotes the action space at time t
and consists of a set of comparisons at the given trial. The training phase
will be as follows:

1. The agent perceives stimulus s ∈ S from the environment. Clip cs ∈ C
is either created (the first time) or activated.

2. Perceiving action set At from the environment, the agent estab-
lishes and initializes connections between the sample and compar-
ison stimuli the first time with h-values equal to h0. If there exist
connections from previous trials, there is no need for initialization.

3. The agent computes p(t)(ca|cs), a ∈ At based on the h-values using the
softmax distribution function,

p(t)(c j|ci) = eβh(t) (ci,c j )∑
k eβh(t) (ci,ck )

, (2.1)

where at this stage, clip ci = cs and clip c j ∈ At . Alarger value of β ≥ 0
creates a probability distribution that is more biased to the choice of

2
The terms episode and clip are used interchangeably.
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the largest h-value, and therefore parameter β can be used for tuning
the learning rate as well.

4. The agent selects one of the actions based on the computed probabil-
ity distribution and receives a positive or negative reward from the
environment, say, λ(t) ∈ � = {−1, 1}.3

5. The connection weights, h-values, will be updated as a result of the
environment feedback as follows:

h(t+1)(cs, ca) = h(t)(cs, ca) − γ (h(t)(cs, ca) − 1) + λ(t). (2.2)

Moreover, the opposite link, (ca, cs), will be updated in a similar way,
but with the parameter 0 < K ≤ 1:

h(t+1)(ca, cs) = h(t)(ca, cs) − γ (h(t)(ca, cs) − 1) + Kλ(t). (2.3)

6. The environment provides new trials until all training relations meet
the mastery criterion.

It is noteworthy that parameter K was used in the learning rule of the orig-
inal PS model (Briegel & De las Cuevas, 2012) to determine the growth rate
of associative or compositional connections relative to the direct connec-
tions. This parameter, for instance, enables the PS agent to learn faster by
recognizing similarity among the existing clips in memory and new percep-
tual input (see Figures 11 and 12 in Briegel & De las Cuevas, 2012, for more
detail on associative learning in the PS agent). The parameter K in the EPS
model, however, quantifies the relative growth of symmetry relations com-
pared to the direct, or baseline, relations.4 This parameter is different from
the original PS in the sense that the stimuli in EPS (and E-EPS) are arbitrary,
that is, they have no physical similarity, and therefore the parameter K does
not capture similarity. The notion of associative memory, however, can be
added to the EPS model by introducing compound stimuli, which we do
not address in this letter.

After that agent passes the training phase, the testing phase, in which
the formation of derived relations is tested starts. At this stage, no feedback
is provided from the environment.

1. The agent perceives s ∈ S , activates the memory clip cs ∈ C, and tries
to choose the best action among the given action set At based on its
memory as follows.

3
It is noteworthy that � could have any positive or negative values, including

asymmetric rewards. For instance, negative feedback might have greater impact (see
Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001, as an example of a positive-negative
asymmetry effect).

4
In Mofrad et al. (2020), we use K1, K2, K3, and K4, which play the same role as K in

this letter but with a higher level of control.
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2. If connections between the sample and comparisons exist, the agent
computes the p(t)(ca|cs), a ∈ At based on the h-values using a prob-
abilistic distribution achieved by either softmax or a normalized
vector of h-values (called “standard” in PS and EPS). If such connec-
tions do not exist in the transitivity or equivalence relation cases, the
agent computes the transition probabilities using a max-product sce-
nario or an absorbing states scenario and selects one of the possible
actions:
• In the max-product case, the agent finds the most probable paths

between cs and each action ca, a ∈ At . There are many possible
paths that might link cs to a particular action ca, and thus the
procedure might be computationally exhaustive.

• The absorbing state scenario can be considered as a random clip
network, starting from cs and ending with a clip in At . So, unlike
the max-product method, the probability of reaching each action
from cs is important but not the path itself. These probabilities
can be computed when actions ca ∈ At are set to be absorbing
states of the underlying Markov chain at time t.

3. Memory sharpness, 0 ≤ θ ≤ 1, functions as a mechanism to con-
trol the formation of transitivity relations and consequently controls
equivalence relations and the effect of the nodal number (see, e.g.,
Sidman, 1994, for nodal number), in line with the baseline relations
training. Mofrad et al. (2020) discuss memory sharpness as a sep-
arate method. However, it can be used in combination with either
max-product or the concept of absorbing states.

For the sake of brevity, we review just the parts of the EPS model that
are necessary for understanding the new perspective on derived relations.
Moreover, an overview of some other behavior-analytic computational ap-
proaches to the formation of SE classes is provided in Mofrad et al. (2020),
which provides a detailed version of EPS model.

2.3 Network Enhancement (NE). Wang et al. (2018) proposed network
enhancement (NE), a computational approach for denoising biological net-
works. NE converts a noisy, undirected, weighted network into a new
network possessing the same nodes but with different connections and
weights. It assumes that nodes that are connected through paths with high
weight edges have a high chance of being directly connected with a high-
weight edge. The NE diffusion process uses random walks of length 3
or less and a regularized information flow in order to produce new edge
weights.

For a formal description of NE, let W be the matrix of edge weights and
Ni be the K-nearest neighbors of the ith node, including node i itself. The
localized network T is constructed from W as follows:
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Pi, j ← Wi, j∑
k∈Ni

Wi,k
I{ j∈Ni}, Ti, j ←

n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

, (2.4)

where I{.} is the indicator function. Then the diffusion process is defined as
an iterative relation,

Wt+1 = αT × Wt × T + (1 − α)T , (2.5)

where α is a regularization parameter, t shows the iteration step, and W0

can be initialized with the input matrix W . The update rule in equation 2.5
for each entry is

(Wt+1)i, j = α
∑
k∈Ni

∑
l∈N j

Ti,k(Wt )k,lTl, j + (1 − α)Ti, j. (2.6)

The many theoretical properties for this diffusion process are discussed in
Wang et al. (2018). It is shown that Wt remains a symmetric, doubly stochas-
tic matrix (DSM) for each iteration t, and Wt converges to a nontrivial equi-
librium network. Moreover, NE does not change eigenvectors of the initial
DSM T , but the spectrum of the eigenvalues is changed nonlinearly so that
the eigengap is increased. This effect of the NE process on the eigenspec-
trum improves the network to achieve a more accurate detection of clusters.
Although this method produces promising results in our model, as we will
explain in section 4, it is not the main approach for formation of equivalence
classes in the EPS model, but NE and discussions in Wang et al. (2018) are
the main motivation for the update rule. The method we use does not have
all the properties that NE has, and we refer to the theoretical aspect of the
diffusion process we used in appendix A. In the rest of this letter, we refer to
the NE method due to Wang et al. (2018) as symmetric network enhancement
(SNE).

3 Enhanced Equivalence Projective Simulation (E-EPS)

The training phase of the proposed E-EPS model is generally the same as
the original PS and the EPS in the sense that the clip network is formed
by adding new clips and updating the h-values based on the environment
feedback. However, since in this letter, the probability distribution over the
action set is modeled using the softmax function, we let the network have
negative h-values and simplify the training by removing some parameters
associated with positive h-values. However, the approach to the formation
of SE classes and the testing phase is quite different compared to the EPS
model (Mofrad et al., 2020). As we explained in section 2.2, after the training
phase, we have a network of h-values for baseline relations and the sym-
metry relations. To add reflexivity to the clip network, we can consider an
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updating method either during the training phase5 or after the training
phase. In order to keep the model simple, we add a self-loop to each clip
after the training phase and assign it an h-value equal to the maximum
h-value of input or output connections. The argument is that in the case
where the agent can identify the members of a class (say, A1, B1,C1), it must
be able to differentiate members of each category (say, A1 from A2 and A3).
We refer to the adjacency matrix of this network of h-values as Wh.

In this work, we are proposing a new NE model called directed network
enhancement (DNE) that can be used for the testing phase, including base-
line, reflexivity, symmetry, transitivity, and equivalence relations. Consider
the following rule as the update rule (or diffusion process),

Wt+1 = αP × Wt × P + (1 − α)P, (3.1)

where W0 is a right stochastic matrix achieved from Wh. (By a “right stochas-
tic matrix,” we mean a real square matrix in which each row sums to one.)
We put W0 = P where P is the transition probability matrix of Wh apply-
ing softmax function on nonzero values at each row using βh parameter.
P is not symmetric, and P1 = 1, where 1 represents the all-one eigenvector
of P associated with eigenvalue one. In other words, P is a right stochas-
tic matrix, so it can be used as the initial matrix in the DNE process. In the
theoretical analysis of the SNE process provided by Wang et al. (2018), and
supplementary note 3, the converged network is proved to be

Wt→∞ = (1 − α)T (I − αT 2)−1. (3.2)

As we discuss in appendix A, the convergence in the DNE process remains
valid for a network where we substitute T with P in equation 3.2:

Wt→∞ = (1 − α)P(I − αP2)−1. (3.3)

This post-processing phase transforms the h-value network obtained by
training into a new network that can represent the agent predictive repre-
sentations in a cognitive map (or successor representation similar to Mo-
mennejad, Russek et al., 2017).

The Wt→∞ matrix can be seen as the memory representation where we
ignore the effect of context (or actions) and assume all the transitions in
the network are based on the random walk on the graph (or diffusion). For
instance, we can interpret the (i, j) entry of theWt→∞ matrix as the transition
probability from clip i to clip j when there is no external control.

5
For instance, this can simply be achieved by adding a self-loop edge initialized with

h0 to each clip the first time it is perceived by the agent and update it whenever it gets
involved in a trial.
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When it comes to the testing phase, the softmax function with βt is ap-
plied to calculate the probability distribution for each test trial. In order
to accommodate the controlling effect of the test trials, the input values to
the softmax function are set to be conditional probabilities given the trial,
which can be calculated using Bayes’ rule. As an example, if the test trial
consists of A1 as the sample stimulus and F = {F1, F2, F3} as the comparison
stimuli, input values for the softmax function are P(A1F1|A1F), P(A1F2|A1F),
and P(A1F3|A1F) where event A1F is either A1F1, A1F2, or A1F3. These con-
ditional values can be calculated due to Bayes’ rule, for instance,

P(A1F1|A1F)

= P(A1F1)P(A1F|A1F1)
P(A1F1)P(A1F|A1F1) + P(A1F2)P(A1F|A1F2) + P(A1F3)P(A1F|A1F3)

= P(A1F1)
P(A1F1) + P(A1F2) + P(A1F3)

,

which can be seen as a normalization. Note that all the conditional proba-
bilities on the right-hand side are equal to one and therefore are removed.
Parameter βt in the softmax function can characterize the agent’s memory
and ability to link an internal representation to the real action. When a test
trial is given to the agent, the memory is conditioned based on the test tri-
als (sample and comparison stimuli), and Bayes’ rule is used to characterize
the environment effect.

Another way to formalize the behavior of the agent in the testing phase
is to use a trial-based βt for the softmax function, which is defined as βt di-
vided by the summation over weights for comparison stimuli. The above
example, with A1 as the sample stimulus and F = {F1, F2, F3} as the compari-
son stimuli, uses βt

P(A1F1 )+P(A1F2 )+P(A1F3 ) as the β in softmax function. As is clear
from the example, in this formalization, the results remain exactly the same
but they open up room to interpret the agent behavior differently. Using
Bayes’s rule and a fixed βt approach emphasizes the effect of environment
and the agent characteristics separately, but the variable βt approach avoids
the interpretation that the agent probabilities are calculated twice.

Before comparing the E-EPS to the original PS and the EPS model and re-
lating it to other studies, we summarize the parameters of the agent model:

1. Parameter 0 < K ≤ 1 controls the formation of symmetry relations.
K = 1 means that the relations are bidirectional and the h-value net-
work is symmetric (see experiment 2).

2. Parameter 0 ≤ γ < 1 represents the forgetting rate during the train-
ing phase. The training structure (order of relations to be trained) is
more important when the forgetting rate is high (see experiment 4).
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3. Parameter βh > 0 converts h-values to probabilities during the train-
ing trials and generates the input matrix W0 for the NE process (see
experiments 1 and 3).

4. Parameter 0 ≤ α < 1 controls to what extent the NE affects the ini-
tially trained network when there is no test trial in place. α could
characterize the amount of abstract mental process or replay that the
agent performs. Even a small value of α could form derived rela-
tions that are weak compared to direct relations, but the ratio or con-
ditional probabilities (used as an input to the softmax function) are
strong. A value close to one for α means too much diffusion, which
can erase the trained relations. One might find the appropriate diffu-
sion based on the expected agent abilities and the training criterion
(see experiment 5 and appendix A for more details)

5. Parameter βt > 0 controls the agent’s performance in a test trial (see
experiment 6).

3.1 PS, EPS, and E-EPS: Discussion and Comparison. As Briegel and
De las Cuevas (2012) mentioned, the idea of a clip network in PS is similar
to the idea of Tolman’s (1948) cognitive maps, which refers to a rich inter-
nal model of the world that represents relationships between events and
simulates the consequences of actions. Although cognitive maps are mostly
used for modeling spatial behavior (O’Keefe & Nadel, 1978), they are more
general and cover the organization of knowledge in other types of behav-
iors, including flexible behavior. Cognitive maps can be constructed from
abstract representations to describe relational knowledge, and new cogni-
tive problems can then be considered as inference in this relational basis
(Behrens et al., 2018).

Brain studies suggest multiple solutions to predicting long-term reward
in RL problems (Daw, Niv, & Dayan, 2005). Learning a model of the envi-
ronment, or a cognitive map of the environment, and using it to simulate fu-
ture states step-by-step to predict long-term reward are different solutions,
which we refer to as model-based RL (Daw et al., 2005; Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Sutton & Barto, 2018). Forming simple
world models in the human hippocampus for relational knowledge sorting
and value spreading across associated stimulus representations is shown
to directly influence behavior in a novel decision-making situations (Wim-
mer & Shohamy, 2012). Repeating patterns during both awake experiential
states and nonengaged states and reshaping neural circuits has been stud-
ied in both the hippocampus and the neocortex (see Liu & Watson, 2020, for
a review). Functional magnetic resonance imaging (fMRI) similarity mea-
sures in the hippocampus and entorhinal cortex (Stachenfeld, Botvinick, &
Gershman, 2017; Garvert, Dolan, & Behrens, 2017) suggest the existence of
statistical transitions of discrete state-spaces. The use of precompiled tran-
sition distances, rather than simulating all possible transitions online, is
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studied by Momennejad, Russek et al. (2017), where these precompiled dis-
tances depend on offline activity, or replay, in the hippocampus and ventral
frontal cortex (Momennejad, Otto, Daw, & Norman, 2017). Caching of mul-
tistep predictive representations is also referred to as a “predictive map”
(Stachenfeld et al., 2017). These predictive representations link model-based
RL to model-free mechanisms through offline replay mechanisms (Russek,
Momennejad, Botvinick, Gershman, & Daw, 2017) resembling Dyna-style
planning (Sutton, Szepesvári, Geramifard, & Bowling, 2008).

PS is much more primitive than Dyna-style planning. It only changes the
weights of the clip transition and performs a random walk on the clip net-
work (for a detailed comparison, see Mautner, Makmal, Manzano, Tiersch,
& Briegel, 2015). The multiple reflection in the PS model is different from
“experiment replay” (Lin, 1992) in the sense that PS uses short-term mem-
ory, or emotional tags, to evaluate the result of a simulation and repeat the
random walk if the remembered reward for the chosen action in the pre-
vious round was negative. So repeatedly presenting its experiences to its
learning algorithm is not performed just for the sake of memory consolida-
tion. (See also Momennejad, 2020, for a review on the role of replay on how
the brain learns and generalizes relational structures with a focus on the RL
approach.)

In the EPS model (Mofrad et al., 2020), two scenarios, called “standard”
and “softmax,” were used for the training phase, and various ways for de-
riving relations in the test phase were studied and discussed due to the aim
to define EPS as a general and flexible model. The EPS (and E-EPS) training
phase is similar to the PS model with extra links and update rule for sym-
metry relations. In this letter, we survey just the training method that uses
the softmax function in order to calculate probability distributions over the
action sets. Although the training phase in this letter could be similar to
EPS, for simplicity, we just consider the softmax scenario where negative
h-values are allowed, so we can formalize the learning with just one pa-
rameter, K, to control the growth ratio of symmetry relations in comparison
with the direct relations.

The main difference with PS, the most important part of the EPS (E-
EPS) model, is the testing phase where there is no feedback. In the EPS
model, the derived relations were calculated on demand at the decision
time whenever they appear in a test trial. The probabilities are either calcu-
lated based on the probabilities of the paths with maximum values, using
a max-product algorithm, or the probability of reaching each of the action
points having a random walk on the episodic memory started at a sample
stimulus. The symmetry relations are controlled via a multiplicative param-
eter, and the transitivity can be controlled with a parameter called memory
sharpness.

In the EPS testing phase, the only change to the clip network h-values is
related to the parameter γ , the forgetting factor, and all the computations
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for the test trials are performed at the decision time, which can be seen as an
ad hoc computational tool rather than an intrinsic feature of the model. The
perspective to the derived relation in E-EPS, is quite different where NE, an
iterative diffusion process, is used after the training phase. This alternative
approach updates the structure of clip network by adding new connections
between the clips and updating connection weights. In other words, the
approach to derive relations in the EPS model can be seen as routing in the
clip network, where the action sets play the role of destination, while in
the E-EPS model, in the absence of test trials, the approach involves a diffu-
sion model to explore the clip network by simultaneous propagation of flow
without a specific target. The NE process is in line with the random walk-
based decision making in the PS approach. It is noteworthy that diffusion
models have been successfully used in various cognitive tasks involving de-
cision making (Shrager, Hogg, & Huberman, 1987; Ratcliff, Smith, Brown,
& McKoon, 2016). Stella et al. (2019) show that hippocampal circuits can re-
activate random trajectories of varying lengths and timescales that resem-
ble Brownian diffusion. The NE process can also be interpreted as a kind
of replay similar to the offline replay that contributes to generalization via
multistep predictive representations of upcoming clips (or the successor
representation; see Momennejad, Otto et al., 2017; Momennejad, Russek
et al., 2017; Russek et al., 2017. It is different from online replay or multi-
ple reflection in the PS model and closer to the offline replay that accom-
modates planning based on inferential piecing data together and multistep
dependencies. The REMERGE (recurrency and episodic memory results in
generalization) model of memory trace activation (Kumaran & McClelland,
2012) also uses replay and iterative updating of episodic memory for mod-
eling rapid generalization in, for example, transitive inference task.

The final abilities of the E-EPS agent to master derived relations strongly
depends on two parameters: α, which controls how much the NE affects the
initially trained network, and βt , which generates the probability distribu-
tion over the comparison stimuli. The post-processed network, Wt→∞, can
be seen as an unconditioned network that a test trial can bias it. To account
for the environment effect, we use a Bayesian approach and then apply the
softmax function (see McClelland, 2013, for different models of contextual
effects on perception). It is noteworthy that the PS model uses Bayesian
updating, and therefore this update is in harmony with the PS agent (see
Schwöbel, Kiebel, & Marković, 2018, and Parr, Markovic, Kiebel, & Friston,
2019, for modeling goal-directed behavior as an inference process).

The approach to the testing phase in the E-EPS model needs less compu-
tation at the decision time since it uses the cached updated network rather
than processing the trained relations to compute derived relation links at
each test trial.

In the rest of the letter, we discuss and conduct experiments on both mod-
els SNE and DNE, but the emphasis will be on the DNE, which we show is
more effective than the SNE for the E-EPS model.
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Table 1: Training Stages in Spencer and Chase (1996) Study: Number and Type
of Training Trials.

Number of Trials per Relation

Training AB BC CD DE EF FG

AB 48
BC 24 24
CD 12 12 24
DE 9 9 9 24
EF 6 6 6 6 24
FG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

4 Simulation Results

In this section, we study the model parameters in order to offer insights
into how parameters can be tuned to simulate various behaviors, including
typical human behavior or the behavior of people with some disabilities.
To study the model in more detail, we consider a similar training setting as
in the experiment by Spencer and Chase (1996), which Mofrad et al. (2020)
address as well.

Spencer and Chase (1996) address the relatedness or nodal number using
three seven-member stimulus classes. Stimuli are nonsense figures, and the
training order is A → B → C → D → E → F → G. The training consists of
seven stages as summarized in Table 1.6 The first training block contains
48 trials of AB relations. Since there are three classes, the block for training,
AB, contains 16 trials with the correct match A1B1, 16 trials with the correct
match A2B2, and 16 trials with the correct match A3B3. The order of pre-
sented trials is random in the block, and the order of comparison stimuli,
in this case B1, B2, B3, is also randomly changed. If we consider the training
of the EF relation, for instance, the training block contains six AB relations
(which means each trial with A1B1, A2B2, and A3B3 as the correct pair ap-
pears twice), 6 BC relations (each trial with B1C1, B2C2, and B3C3 as the cor-
rect pair appears twice), 6 CD relations and 6 DE relations, and finally the
new relation EF with 24 relations (i.e., each trial with E1F1, E2F2, and E3F3 as
the correct pair appears eight times). In the baseline maintenance stage, no
new relation is provided and each correct relation appears only once. The

6
It is noteworthy that in Spencer and Chase (1996), each stage of training has 48 tri-

als. To ease the simulation, the fourth stage for DE training is changed, so we consider 9
instead of 8 trials for AB, BC, and CD relations. Therefore, this stage has 51 trials in the
simulation instead of the original 48.
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mastery criterion is set to 0.9, and if the agent passes the mastery criterion
for all stages and the final baseline maintenance, then we can test the agent
for formation of derived relations.

The reported simulation results are the average over 1000 simulations.

4.1 Experiment 1: Step-by-Step Process. In this experiment, we illus-
trate the computation steps. In Figure 1a, the network h-values after the
training phase (based on Table 1) is depicted where the parameters are
set to γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.7. Note that the sym-
metry and reflexivity connections in addition to the baseline connections
appear in Figure 1a. The reflexivity h-values are the maximum h-value at
each row (input-output connections). Moreover, since K = 1, the Wh matrix
is symmetric—for instance, A1B1 = B1A1 = 51.82. To compute the transi-
tion probability matrix, a softmax function with parameter βh = 0.1 is used.
Note that the transition probability matrix is just row-normalized and not
symmetric. All the reported values are rounded by two or three decimal
places.

We set W0 = P as the input matrix to the NE. We might use P (Figure 1b)
for the iterative updates (DNE) or T matrix (SNE). In Figure 2, we address
DNE when α = 0.7. The convergence criterion is that

∑
i, j |Wt+1 − Wt |i, j <

0.0001. One can also compute the converged network Wt→∞ using the the-
oretical converged formula provided in equation 3.3.

Figure 2a shows the general internal map of the network clip before the
testing phase. One can interpret these values as how the stimuli are prior-
itized in the agent memory when there is no external trial that measures
the accuracy of answers in MTS trials. Figure 2b shows the performance
of the agent when it comes to the testing phase. For instance, if the sam-
ple stimulus is A3 and the comparison stimuli are F1, F2, and F3, then the
agent chooses F1 and F2 with probability 0.092 and selects F3 with probability
0.815.

To calculate these category-based probability distributions, first the con-
ditional probability for any specific category is calculated based on Bayes’
rule, and then the softmax function transfers these vectors to the desired
probabilities based on the chosen parameter βt . The conditional input can
show the context, or environment, effect, and therefore we can apply the
same βt as a characteristic of the agent for all the categories.

If we use SNE, first we have to compute T , which is reported in Fig-
ure 3a and then update the network using α = 0.7 parameter. The localized
network T adds weights to the one-node relations, and we have two more
diagonals in T in comparison with P.

The goal of this experiment is to illustrate how both DNE and SNE are
working. In experiment 2, we compare the two updating methods for sym-
metry and transitivity relations and discuss why DNE could be a more ap-
propriate option for enhancing the EPS model.
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Figure 1: A sample configuration of network h-values after training A → B →
C → D → E → F → G when γ = 0.001, K = 1, and βh = 0.1.
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Figure 2: The new network adjacency matrix when the regularization param-
eter is α = 0.7 with the input matrix W0 = P, which is given in Figure 1b. The
test phase probabilities in Figure 2b are calculated by normalizing the weights
for the specific category and then using the softmax function with parameter
βt = 4.
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Figure 3: The new network adjacency matrix using an SNE update when the
regularization parameter is α = 0.7 and the input matrix W0 = P, which is given
in Figure 1b. The test phase probabilities in Figure 3c are calculated by normal-
izing the weights for the specific category and then using the softmax function
with parameter βt = 4.

4.2 Experiment 2: Isolating Symmetry and Transitivity. Two main dif-
ferences between DNE and SNE are shown in this experiment. In this
regard, we consider two extreme cases to isolate the symmetry and tran-
sitivity effects.

First, we isolate the effect of symmetry relations; in other words, we sup-
pose that the agent is able to answer the transitive relations but unable to
derive symmetry relations. For this, we set the parameters to γ = 0.001,
K = 0.01, βh = 0.1, βt = 4, and α = 0.05.

As illustrated in Figure 4a, the symmetry relations, and therefore the
equivalence relations, can be altered by parameter K. However, in Figure 4b,
due to the symmetric behavior of updates, the symmetry relations are ex-
actly the same as the baseline relations, and the transitive and equivalence
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Figure 4: The probability of choosing correct pairs between categories when
γ = 0.001, K = 0.01, βh = 0.1, βt = 4, and α = 0.05. The reported values are cal-
culated by taking the average over all relations in each category.

Figure 5: The probability of choosing correct pairs between categories when
γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.

relations are altered by setting K = 0.01. We can conclude that a DNE-type
agent can handle nonsymmetric relations, but the SNE agent is unable to
control symmetry relations independently.

Next, we simulate a scenario in which the agent learns the baseline rela-
tions, but no transitive relation is derived. Suppose the symmetry relations
are derived perfectly, so that we only isolate the transitive relations. Let the
parameters of such an agent be γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.

In Figure 5a, which uses the DNE method, the transitive and therefore
equivalence relations are not formed, while the symmetry relations are
strong. In Figure 5b, we see that the one-node relations such as AC and BD
are derived in SNE. This is expected due to the definition of T . In the EPS
model, though, we are seeking to control all the transitive and equivalence
relations.
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Table 2: The Average of Required Repetition of Training Blocks until Reach-
ing Mastery Criterion Ratio 0.9 When γ = 0.001, K = 1, βt = 4, and α = 0.05 for
Three Values of βh = 0.2, 0.1, and 0.05.

Number of Trials per Relation Time

Training AB BC CD DE EF FG βh = 0.2 βh = 0.1 βh = 0.05

AB 48 2.133 3.423 5.907
BC 24 24 2.885 4.757 8.751
CD 12 12 24 2.959 4.977 9.641
DE 9 9 9 24 2.791 4.661 9.469
EF 6 6 6 6 24 2.992 5.208 11.736
FG 3 3 3 6 9 24 3.008 5.339 12.978
Baseline maintenance 3 3 3 3 3 3 1.038 1.407 7.561

Therefore, since SNE is not an appropriate method for controlling sym-
metry and transitivity completely, we consider DNE as the main approach
in this letter to cover more general cases, such as those with weak symme-
try relations or weak transitivity relations. In the rest of the simulations, we
report just the results for the DNE method.

4.3 Experiment 3: Effect of the βh Parameter. The softmax function pa-
rameter βh is used in the training phase for checking the mastery criterion
as well as computing the transition matrix from Wh. As reported in Table 2,
a higher value of βh causes the agent to be able to pass the training phase
faster, while for smaller values of βh, it takes many more iterations to pass
the training phase and learn baseline relations. Table 2 presents the learn-
ing speed for three values of βh = 0.2, 0.1, and 0.05 when γ = 0.001, K = 1,
βt = 4, and α = 0.05.

Table 2 shows that parameter βh can be used to control the learning
speed. For instance, an agent with βh = 0.2 learns AB relations by repeating
the training blocks 2.1 times on average. This value will be 3.4 for βh = 0.1
and 5.9 for βh = 0.05.

Another effect of βh appears in computing the probability matrix and,
consequently, the final network shape. In Figure 6, we report the P matrix
and the computed nodal effect in the test phase for two choices of βh = 0.2
and βh = 0.05 when we keep all parameters similar: γ = 0.001, K = 1, βt =
4, and α = 0.05.

By comparing Figures 6a and 6b, we notice that the probability of direct
relations are weaker when βh = 0.05. Since this matrix is considered as W0,
the input matrix to the NE iterative method, the final results will be altered.
In Figure 6c, the nodal effect is negligible, and all the transitive and equiv-
alence relations are formed equally well as baseline relations. Figure 6d,
however, shows the nodal effect and the agent’s weak performance in
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Figure 6: Comparison of probability matrix out of training and final category-
based probability of correct choice in the test phase for two choices of βh = 0.2
and βh = 0.05, when γ = 0.001, K = 1, βt = 4, and α = 0.05.
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Table 3: The Average of Required Repetition of Training Blocks until Reaching
Mastery Criterion Ratio 0.9 When K = 1, βh = 0.1, βt = 4, and α = 0.05 for Three
Values of γ = 0, 0.001, and 0.005.

Number of Trials per Relation Time

Training AB BC CD DE EF FG γ = 0.0 γ = 0.001 γ = 0.002

AB 48 3.318 3.452 3.580
BC 24 24 4.391 4.703 5.088
CD 12 12 24 4.570 4.951 5.584
DE 9 9 9 24 4.200 4.654 5.514
EF 6 6 6 6 24 4.649 5.190 6.951
FG 3 3 3 6 9 24 4.637 5.324 7.884
Baseline maintenance 3 3 3 3 3 3 1.089 1.414 7.281

relations with a higher nodal number. We conclude that βh can be used for
controlling both the speed of learning and the nodal effect. In other words, if
we fix all other parameters than βh, the smaller value of βh results in slower
learning and a lower chance of forming transitive and equivalence relations
with a higher nodal number. It is noteworthy that the effects of βh and γ are
somehow intertwined. As we see in experiment 4, γ also controls the learn-
ing speed and nodal effect. Indeed, if the agent does not forget at all, that
is, γ = 0, then βh controls just the speed of learning. However, γ = 0 is not
a plausible choice for replication of human behavior.

4.4 Experiment 4: Effect of the γ Parameter. Mofrad et al. (2020) stud-
ied, the effect of γ in the training phase of EPS agents, where learning speed
can be adjusted via γ . In Table 3, the average number of repetitions at each
stage is provided for three choices: γ = 0, 0.001, and 0.005. There is a gen-
eral trend that increasing the forgetting factor will increase the repetition
times in all stages. But the rates of increase for later stages and the base-
line maintenance are different. The explanation is that the forgetting factor
affects the initial learned relations more since at the final blocks, we have
fewer of them. In other words, in the final blocks, we have fewer trials of
them, and thus the forgetting factor will cause a stronger adverse impact.
This is why we need around seven iterations of the maintenance phase
when γ = 0.002, while we need just one iteration by removing the forget-
ting factor, γ = 0.

The forgetting factor will affect the final shape of h-values network Wh,
and therefore for similar parameters, we have different probability matri-
ces and final outcomes in the test phase. Figure 7 provides the final re-
sults of the testing phase for three different values of the forgetting factor:
γ = 0, 0.001, 0.002.

When γ = 0 (see Figure 7a), there is no forgetting, and therefore the train-
ing order does not matter and all the relations are considered equally the
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Figure 7: Probability of choosing correct pairs between categories when K = 1,
βh = 0.1, βt = 4, and α = 0.05 for three forgetting factor values: γ = 0, 0.001, and
0.002.

same. In Figure 7b, all the relations are formed but we can easily notice the
nodal effect. For instance, if we test the AB relation, the probability of a cor-
rect choice by the agent is 0.96, while it is about 0.85 for AG with five nodes
in between. Figure 7c shows that a higher forgetting factor can be used to
model impaired equivalence class formation. If we test the agent with the
AB relation, the probability of a correct choice would be 0.89, while it is
about 0.48 for AG. Comparing the correct choice probabilities for AB and
FG (0.89 for AB versus 0.95 for FG) shows the importance of training order
in this setting. The agent forgets the initial stage relations, and these rela-
tions need to be repeated. If the training trial blocks are totally separate,
as in experiment 1 in Mofrad et al. (2020), the initial trained relations drop
dramatically with a high forgetting factor.

To show the importance of testing order in the model, similar to the SE
literature, we simulate the testing phase with different test orders so the
trials that appear late in the testing phase have weaker results when the
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forgetting factor is high. Here, for simplicity, we calculate the probability
distribution for different test trials and evaluate the agent behavior based
on them. This means the forgetting factor is not effective on the test results
in the current simulations. However, the forgetting factor can be used by
defining βt as a function of time and γ to model the forgetting in the testing
phase of E-EPS. Another argument is that the forgetting might affect the
network; in this case, the network weights must be updated in a way to
keep each row summing to one. Therefore, it is not as straightforward as
the EPS where the matrix with h-values is the basis for the testing phase.

4.5 Experiment 5: Effect of the α Parameter. This parameter shapes
the final representation of the clip network (see appendix A for a theoreti-
cal discussion). A smaller value of α biases the converged matrix Wt→∞ to
keep the connections from W0 stronger, while a larger value of α enhances
transitive relations. In the case of α = 0, as represented in Figure 5a, there
is no enhancement in the network using DNE. Figures 8a and 8b, respec-
tively, represent the connection values from A1 and G1 to other stimuli in
the converged network for α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, and 0.99, when
γ = 0.001, K = 1, and βh = 0.1.

As depicted in Figure 8, smaller values of α keep the relations in the in-
put network (i.e., trained relations together with symmetry and reflexivity)
stronger. On the other hand, a higher α value reinforces the transitive and
equivalence relations. For each α value, the connection weights for all re-
lations must sum to one; for instance, the values for α = 0.9 in all subplots
of Figure 8a sum to one as they show the transition probability from A1 to
all other points when using α = 0.9. As a result, increasing the values for
transitive relations means a decrease in initial relations (see the decrease
in A1A1, A1B1 relation weights and the increase in other values, say, A1C1

and A1G1). Along with construction and enhancing the desired relations
(see the first columns in Figures 8a and 8b), the undesired relations are also
constructed and enhanced to some extent. This can be explained by the fact
that the values for undesired relations such as A1B2, A1B3, G1F2, and G1F3 are
not zero in the initial matrix since the training criterion was set to 0.9. These
values could enhance undesired relations, especially when α is higher. For
instance, as depicted in Figure 8c, the connection weight for the A1C1 rela-
tion, which is a desired relation, decreases for α values higher than 0.9. Sim-
ilarly, the connection weight for the A1D1 relation decreases at α = 0.99 in
comparison with α = 0.9, 0.95. The connection weight for the A1B3 relation,
which has a very small weight in the beginning (i.e., when α = 0), increases
with α with acceleration in the rate of change for α values greater than 0.7.
A1C3 and A1E2 are two sample relations that are undesirable and get en-
hanced during the diffusion process as a function of α value. The same kind
of behavior can be observed for relations from G1. In Figure 8d, the relation
G1D1 increases as desired, but when α is too high (α = 0.95, 0.99), it starts
to decrease. Undesired relations such as G1F3 and G1D2 are enhanced with
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Figure 8: The connection weights in the converged matrix Wt→∞ for A1 and G1

for α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, 0.99, when γ = 0.001, K = 1, and βh = 0.1.

a higher rate when α approaches one. Therefore, an inappropriate choice of
α could be destructive; in this example, a higher value of α than 0.9 sounds
inappropriate.
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Figure 9: Probability of choosing correct pairs between categories when γ =
0.001, K = 1, βh = 0.1, and βt = 4 for α = 0.05, 0.35, 0.7, and 0.95.

Different α values and therefore different configurations of theWt→∞ ma-
trix result in different testing performance. In Figure 9, we report the test-
ing results for α = 0.05, 0.35, 0.7, 0.95 when γ = 0.001, K = 1, βh = 0.1, and
βt = 4.

We observe that the probabilities of choosing correct relations in Fig-
ures 9c and 9d, respectively, for α = 0.05 and α = 0.35 are almost the same.
In Figure 9a, when α = 0.7, the transitive and equivalence relations are af-
fected negatively. In Figure 9d, we see from the converged transition matrix
that values for all the relations have decreased. Moreover, for smaller val-
ues of α, the convergence of the network needs fewer iterations; compare 4,
9, 23, and 102 for, respectively, α = 0.05, 0.35, 0.7, and 0.95. For more details
in α parameter effect, see Table 4, where the connection weights of AB and
AG in Wt→∞ for different α choices, along with the calculated probabilities
based on three choices of βt = 1, 4, 8, are reported.
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Table 4: The Simultaneous Effect of α and βt Values on the Test Results for AB
and AG Relations.

Baseline Relation AB Derived Relation AG

(α, βt ) A1B1 A1B2 A1B3 A1G1 A1G2 A1G3

α = 0 Wt→∞ 0.49837 0.00163 0.00163 0 0 0
Wt→∞C 0.99350 0.00325 0.00325 0 0 0
βt = 1 0.57134 0.21419 0.21447 0.33333 0.33333 0.33333
βt = 4 0.9619 0.01904 0.01906 0.33333 0.33333 0.33333
βt = 8 0.99925 0.00037 0.00037 0.33333 0.33333 0.33333

α = 0.05 Wt→∞ 0.49686 0.0017 0.0017 4.1276e−08 5.6875e−09 8.6627e−09

Wt→∞C 0.9932 0.0034 0.0034 0.74202 0.10225 0.15573
βt = 1 0.57115 0.21429 0.21456 0.48349 0.25909 0.25743
βt = 4 0.96178 0.01909 0.01912 0.83865 0.08146 0.07989
βt = 8 0.99925 0.00037 0.00037 0.99049 0.00509 0.00442

α = 0.9 Wt→∞ 0.39782 0.02119 0.0223 0.003 0.00092 0.00112
Wt→∞C 0.90145 0.04802 0.05053 0.59524 0.18254 0.22222
βt = 1 0.51983 0.24069 0.23948 0.4146 0.29794 0.28746
βt = 4 0.91757 0.04108 0.04135 0.69558 0.17058 0.13384
βt = 8 0.99726 0.00137 0.00136 0.96297 0.02154 0.01549

α = 0.95 Wt→∞ 0.34433 0.03844 0.04031 0.00464 0.00185 0.00212
Wt→∞C 0.81387 0.090858 0.095278 0.53891 0.21487 0.24623
βh = 1 0.47784 0.2627 0.25945 0.39334 0.31058 0.29608
βh = 4 0.85289 0.0733 0.0738 0.61673 0.22268 0.16059
βh = 8 0.99183 0.0041 0.00407 0.92776 0.04397 0.02827

Notes: The Wt→∞ row reports the weights in the converged network. Wt→∞C refers to the
input weights conditioned based on the category that softmax function uses to generate
the probability distribution. The C in the index of Wt→∞C refers to the conditional weights
for the category calculated with Bayes’ rule.

4.6 Experiment 6: Effect of the βt Parameter. To study the effect of βt ,
first we keep other parameters fixed (γ = 0.001, K = 1, βh = 0.1, α = 0.05)
and simulate the agent behavior for βt = 1, 4, 8 (see Figure 10).

We see a decrease in all types of relations by decreasing the value of βt . In
Figure 10a, when βt = 1, all relations, including baseline relations, become
weaker. When βt = 4 in Figure 10b, we see that the relations are well formed
across all nodal numbers. Figure 10c shows that with a higher value of βt =
8, all the relations are almost completely formed. This experiment illustrates
that by changing βt , one can control the agent performance in the testing
phase and even impair the baseline relations. In Table 4, we take a closer
look at the simultaneous effect of α and βt when γ = 0.001, K = 1, βh = 0.1.

In Table 4, baseline relation AB and transitive relation AG with nodal
number five are addressed. We use the conditioned weights (row Wt→∞C )
as the input vector to the softmax function to generate the probability dis-
tribution for the test phase. When α = 0, there is no NE, and any choice
of βt results in an equal probability of all relations in AG. However, βt
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Figure 10: Probability of choosing correct relations between categories when
γ = 0.001, K = 1, βh = 0.1, and α = 0.05 for βt = 1, 4, 8.

could affect the AB relation so that the performance of the agent is very
poor (it chooses A1B1 with probability 0.57134 for βt = 1) or very strong (it
chooses A1B1 with probability 0.99925 for βt = 8). When α = 0.05, Wt→∞
is achieved after about just four iterations. We observe an insignificant
reduction in the A1B1 weight in Wt→∞ (from 0.49837 to 0.49686) and an
insignificant increase in A1B2, A1B3, A1G1, A1G2, and A1G3. Interestingly,
since we use conditioned weights and apply a softmax function, very
tiny values for AG in Wt→∞ transfer into noticeable values when condi-
tioned, which could show the formation of derived relations. For instance,
with βt = 4, (A1G1, A1G2, A1G3)Wt→∞ = (4.1276e−08, 5.6875e−09, 8.6627e−09)
is transformed to (0.74202, 0.10225, 0.15573) and when softmax is used, it is
converted into (0.83865, 0.08146, 0.07989), that is, an A1G1 relation is formed
for the agent. This means a small value of α and, consequently, a few steps
of NE could produce the desired network with an appropriate choice of βt .
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Table 5: The Training Order for OTM.

Number of Trials per Relation

Training AB AC AD AE AF AG

AB 48
AC 24 24
AD 12 12 24
AE 9 9 9 24
AF 6 6 6 6 24
AG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

If we consider higher values of α, we see that the weight of baseline relation
A1B1 in Wt→∞ is reduced, but all other relations are enhanced.

It is also noteworthy that increasing the value of A1G1, which happens
with a higher choice of α, is not equivalent to better performance in the
testing phase as reported in Table 4.

The reason is that NE changes the proportion of weights in Wt→∞, which
affects the conditioned vector in favor of undesired options (see the Wt→∞C

values), and, finally, the probability of a correct choice computed through
the softmax function is reduced. For instance, when α = 0.05, the A1G1

weight is 4.1276e−08, but its proportion in the conditioned vector is 0.74202.
For α = 0.95, the A1G1 weight is 0.00464, which is much higher than α =
0.05, but its proportion in the conditioned vector is 0.53891, which is less
than the case with α = 0.05. So different configurations of α and βt could
produce different behaviors on request.

4.7 Experiment 7: Studying the Training Order: Comparing LS, MTO,
and OTM. There are many studies on the differences between LS, OTM,
and MTO training structures (see, e.g., Arntzen et al., 2010; Arntzen &
Hansen, 2011; Arntzen, 2012). In this experiment, we rearrange the train-
ing blocks from LS in Table 1 to similar training stages for OTM and MTO
training structures, represented in Tables 5 and 6, respectively. For the OTM
training structure, the training relations in order are AB, AC, AD, AE, AF,

and AG. For the MTO training structure, the training relations in order are
AG, BG,CG, DG, EG, and FG.

The LS, OTM, and MTO training structures can be studied in various lev-
els and with several parameter assemblies. But the aim of this experiment is
to show the potential of the proposed E-EPS model in reflecting the differ-
ences between the LS, OTM, and MTO training structures reported in the
literature. Figure 11 reports the results of the final testing phase of the three
cases for an agent with parameters γ = 0.001, K = 1, βh = 0.05, α = 0.05,
and βt = 4.
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Table 6: The Training Order for MTO.

Number of Trials per Relation

Training AG BG CG DG EG FG

AG 48
BG 24 24
CG 12 12 24
DG 9 9 9 24
EG 6 6 6 6 24
FG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

Figure 11: Probability of choosing the correct relations between categories
when γ = 0.001, K = 1, βh = 0.05, α = 0.05, and βt = 4 for LS, MTO, and OTM.

According to Figure 11a, the agent performance when the LS is used is
not satisfactory for higher nodal numbers. The weakest value, 0.47, belongs
to AG. The equivalence classes are not formed in this case. Figure 11b shows
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better performance where the weakest connections are for CD and DC and
equal 0.71. This minimum value is also found in Figure 11c but for relations
BC and CB. So in this experiment, the overall results in terms of formation
of equivalence classes are the same for MTO and OTM, but due to the or-
der of training, the agent might exhibit different performance for specific
relations in MTO and OTM training structures. For instance, the calculated
probability for an FA relation in OTM is 0.94, and in MTO it is 0.86. Cal-
culated probability for the DE relation in OTM is 0.75, while in MTO it is
0.85.

It is noteworthy that the training times—that is, the numbers of rep-
etitions of each block before mastery in all three cases for all training
procedures—are similar. This can be explained by the independence of de-
signing baseline relations. The reported results in Figure 11 confirm that our
model shows better performance in the OTM and MTO cases in comparison
with LS (Arntzen et al., 2010; Arntzen & Hansen, 2011; Arntzen, 2012).

5 Conclusion

The main contribution of this letter is to offer a new perspective in the for-
mation of SE classes in a recently introduced model, EPS. EPS is a modified
version of the PS model (Briegel & De las Cuevas, 2012) and can be seen as
an RL agent that has a directed, weighted network of clips. Each clip repre-
sents a remembered stimulus that is added to the clip network during the
training phase.

To replicate the test phase of SE by examining the agent’s ability to en-
counter new relations that can be derived from baseline relations, the EPS
model relies on some type of likelihood reasoning whenever tested via an
MTS trial. In other words, in the EPS model, derived relations were calcu-
lated on demand in the testing phase trials, but the new approach to the
testing phase is offline and relies on memory retrieval during the testing
phase rather than on complex logical processing. Derived relations in the
new model, E-EPS, are achieved by applying an iterative diffusion process,
network enhancement (NE; Wang et al., 2018). During the NE phase, the
structure of the clip network changes where indirect relations get enhanced.
The NE is a denoising method, and one way to interpret the model is to
consider a typical memory as a less noisy memory, while a disabled mem-
ory is a noisy memory that cannot form equivalence relations. Since in the
NE, connections are bidirectional, we refer to it is as symmetric network en-
hancement (SNE) in this letter. We further modify the SNE and propose di-
rected network enhancement (DNE) in which the connections are directed
and where we can control the agent’s ability to derive transitivity and sym-
metry. One might use SNE in studying SE formation with the assumption
that all the relations are bidirectional and transitive and equivalence rela-
tions are formed. DNE is a better option to replicate real experiments with
the possibility of nonformation of classes and nonsymmetric relations.
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In the simulation part, we study the role of parameters on agent perfor-
mance and show that the model is able to replicate either a typical mem-
ory or a disabled memory with different learning and forgetting rates and
accomplish the trial tasks in the testing phase. We also compare the main
training structures, LS, MTO, and OTM, and notice the better outcome of
MTO and OTM training structures than that of LS, which is consistent with
evidence from the behavioral analysis literature. Many other configurations
can be considered in simulations. For instance, we consider K = 1 to reduce
the variety of results, and to study each parameter, we fixed all the other
parameters.

Another alternative is to execute the NE phase during training rather
than merely at the end of the training. The argument would be that brain
does not wait until the end of training to start the process of formation of
these relations. Although this might sound a like plausible argument and
can be easily added to the model, we avoid NE during training. The most
obvious reason is to keep the model simple, with fewer computations. Be-
cause we are studying agent behavior, the timing of events inside the brain
is not our priority. Moreover, baseline relations are independent and not de-
rived from each other, so there is no need to update them earlier when the
formation of relations is tested in the testing phase. However, as discussed
in section 3.1, these updates could be analogous to the replay in the brain
that generates a predictive map in an offline process.

The probability distribution over comparison stimuli in the test trial is
calculated based on the direct links in the updated clip network. It is simi-
lar to the EPS in the sense that whenever there are links between the sam-
ple stimulus and comparison stimuli, the probabilities are calculated based
on the h-values by averaging or using a softmax function. In E-EPS, how-
ever, there are links through the entire network updated by the NE process,
and therefore no extra calculation is made. Although one might still con-
sider the random walk on the network similar to the PS model, the cyclic
nature of the network in E-EPS might generate problems, and extra condi-
tions (such as gating) might be necessary. We avoid this scenario, since the
calculated weights are based on the random walk and diffusion, and we
consider these cached links at the decision time. The EPS and E-EPS could
be developed further to model more complex tasks with more sophisticated
structures as the PS model offers. For instance, we might use compound
stimuli and benefit from a PS model with associative learning (Briegel &
De las Cuevas, 2012), or a multilayer memory clip where the agent is able
to generate and add wildcard to the memory (Melnikov et al., 2017). Such
multi-layer PS agent has been further developed to address abstract com-
positional concepts which is closer to the concept of SE (Ried, Eva, Müller,
& Briegel, 2019). The mathematical understanding of the properties of the
converged network that guarantees the converged solution is an advantage
of NE over other network denoising methods. DNE maintains many prop-
erties of SNE with the advantage of controlling the formation of symmetry
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and transitivity in the E-EPS model. Finally, it is worth mentioning that we
choose NE as the source of inspiration for updating the network clip, since
in the updates, there is no requirement for supervision or prior knowledge.
After the training phase, we have a clip network without further feedback
or supervision. Hence, NE provides a proper solution with an emphasis on
the indirect paths, which is what we have in derived relations.

Appendix A: Theoretical Analysis of Directed Network Enhancement

In this appendix, we explain why the proposed diffusion process in equa-
tion 3.1 improves the results and can be used to form equivalence classes.
Our theoretical analysis is mostly based on supplementary note 3 of Wang
et al. (2018). However, since Wt in the DNE is not a symmetric doubly
stochastic matrix, the proofs and discussions need to be revised for DNE.
It is noteworthy that the largest eigenvalue of each right stochastic matrix,
such as P, is 1, associated with eigenvector 1. We first prove that Wt remains
right stochastic in each iteration of DNE and converges to a nontrivial equi-
librium matrix. Then we show that DNE preserves the eigenvectors of the
stochastic matrix W0, but increases the gap between large eigenvalues and
reduces the gap between small eigenvalues (see Figure 13). The larger eigen-
gap in the final converged matrix Wt→∞, is associated with better equiva-
lence class formation.

A.1 The Convergence of the DNE Process. We show that Wt remains
stochastic during the updates. By definitionW01 = 1, for all-one eigenvector
1 associated with eigenvalue 1. We assume that Wt−11 = 1 and show that the
rows of Wt remain normalized:

Wt1 = αPWt−1P1 + (1 − α)P1

= αPWt−11 + (1 − α)P1

= αP1 + (1 − α)P1

= P1

= 1. (A.1)

Now we show that Wt converges to a nontrivial equilibrium graph.
A closed-form solution for the final, converged network can be achieved
through induction. Consider the following expression for the network at
iteration t:

Wt = αtPtW0Pt + (1 − α)P
t−1∑
k=0

(αP2)k. (A.2)
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This formula is similar to equation 6 of supplementary note 3 by Wang et al.
(2018) where T is replaced by P and can be guessed by iterating the process
for the first few steps:

1. Define W0 = Wt=0. For t = 1, equation A.2 holds true:

Wt=1 = αPW0P + (1 − α)P

2. We assume equation A.2 holds true for iteration t. Then:

Wt+1 = αPWtP + (1 − α)P

= αP

(
αtPtW0Pt + (1 − α)P

t−1∑
k=0

(αP2)k

)
P + (1 − α)P

= αt+1Pt+1W0Pt+1 + (1 − α)P
t−1∑
k=0

(αP2)k+1 + (1 − α)P

= αt+1Pt+1W0Pt+1 + (1 − α)P
t∑

k=0

(αP2)k,

which satisfies equation A.2. Using geometric series when t → ∞,
we have this nontrivial equilibrium matrix:

Wt→∞ = (1 − α)P(I − αP2)−1. (A.3)

A.2 Spectral Analysis of DNE. We show that the DNE process does
not change eigenvectors of the input matrix W0 = P but maps eigenvalues
through a nonlinear function.

Suppose (λ, v ) is the eigenpair of P. We know that the absolute value
of eigenvalues of any stochastic matrix satisies the |λ| ≤ 1 relation. Let the
eigendecomposition of P be VDV−1, where D is a diagonal matrix formed
from eigenvalues of P and the columns of V are the corresponding eigen-
vectors of P. We have

Wt→∞ = (1 − α)P(I − αP2)−1

= (1 − α)VDV−1(I − αVDV−1VDV−1)−1

= (1 − α)VDV−1(VV−1 − αVDV−1VDV−1)−1

= (1 − α)VDV−1 (
V (I − αD2)V−1)−1

= (1 − α)VDV−1 (
V (I − αD2)−1V−1)

= (1 − α)V
(
D(I − αD2)−1)V−1

= V
(
(1 − α)(D(I − αD2)−1)V−1

= VD′V−1.
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Figure 12: Role of α on the nonlinear transformation of eigenvalues using fα (λ)
in the DNE process.

This testifies that the DNE process keeps the eigenvectors unchanged, but
the eigenvalues become D′

ii = (1−α)λi

1−αλ2
i

. Therefore, the DNE process functions
nonlinearly on the eigenvalues of the input matrix, that is, the final con-
verged matrix, Wt→∞, transforms (λ, v ) to ( fα (λ), v ), where fα (λ) = (1−α)λ

1−αλ2 .
It is trivial that fα (λ)(0) = 0, fα (λ)(1) = 1. The following relations show that
the DNE always decreases the absolute value of eigenvalues,

1 ≥ |λ|,
1 ≥ λ2,

α ≥ αλ2,

1 − α ≤ 1 − αλ2,

|λ|(1 − α) ≤ |λ|(1 − αλ2),

|λ|(1 − α)
1 − αλ2 ≤ |λ|,

where the rate of this decrease is higher for eigenvalues with greater ab-
solute values. Figure 12 depicts the behavior of fα and how this nonlinear
function can be regularized with an α parameter. Increasing the eigengaps
between large eigenvalues enhances the robustness of the converged net-
work, which in our case means a better formation of classes (for details on
the spectral eigengap, see Joseph & Yu, 2016; Wang et al., 2018; Mavroeidis
& Bingham, 2010).
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Figure 13: The effect of α on the eigenvalues of the transition matrix of a clip
network obtained from experiment 1 in section 4 (see Table 1 for the training
structure).

Figure 12 shows that by increasing the regularization parameter, higher
eigengaps are achieved. In Figure 13, the associated eigenvalues of a sam-
ple network clip7 and the new eigenvalues of the converged network with
different α values are represented.

Appendix B: Training Structure Design Complexity

Here we provide some mathematical calculations to show how complex
the design of different training structures could be in real experiments and
artificial EPS or E-EPS agents.

Let the set of all classes be C, where each class has m members. Each
member of the classes belongs to a separate category, usually labeled by let-
ters A, B, C, and so on. As a result, there are m categories, each with n = |C|
members, so the total number of stimuli equals m|C| = mn. In an arbitrary
MTS procedure, the experimenter usually decides how to label categories
(among m! possibilities) and which stimuli sets form classes (among mn!
possibilities). In real-life experiments, changing the order of two categories
(or labels) or how the members of the same class are assembled across dif-
ferent categories might have an impact on the learning and testing outcome.

However, in the computational model, all the categories and stimuli are
abstract symbols and are literally the same. We just use the category labels
and class indices to differentiate the stimuli. When there is differentiation

7
The training order is represented in Table 1, and the experiment is clarified in

section 4.
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Figure 14: C1 to C7 refers to the seven categories and the number of possible
maps from categories to Cis, i = 1, · · · 7 is 7!. At each time step, shown by green
dashed lines, a category is added to the previously trained relations. At time
t = 1, theC1 toC2 relation, which is shown via a directed connection, is trained as
the first relation. This can be any relation. Then at each time step, a new category
is connected to the previously trained relations.

between categories in a real-life experiment, the total number of baseline
relation configurations, defined as T, would be

T =
(

m
1

)(
m − 1

1

) (
2
(

2
1

)(
m − 2

1

)) (
2
(

3
1

)(
m − 3

1

))
· · ·

(
2
(

m − 1
1

)(
1
1

))

= 2m−2m!(m − 1)! (B.1)

In the EPS model, we can remove the repetitions by assuming the cate-
gory label describes the order of adding a category. For instance, the first re-
lation for training would be AB, the next training could be one of AC, BC,CA
or CB, and so on. The number of different training configurations for the
agent in this case is

T = 1 ×
(

2
(

2
1

))
×

(
2
(

3
1

))
· · ·

(
2
(

m − 1
1

))
= 2m−2(m − 1)! (B.2)

To make these calculations more intuitive, consider the case with seven cat-
egories, that is, m = 7, with labels A, B,C, D, E, F, and, G, each with three
members n = 3. In Figure 14, C1 to C7 refers to the seven categories where
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Figure 15: A possible training structure is shown in red—AB,CB, AD, EA, DF,

GE—when the order of categories in the training structure is not important.

at each time step, one relation to a new category will be added. The first
training stage contains the C1 to C2 relation, which is shown via a directed
connection. C1 could be any of seven categories, and C2 could be one of the
remaining six categories. The next stage, represented with t = 2 is to add
C3, which is one of the remaining five categories. There are four options to
train: C1C3, C3C1, C2C3, and C3C2, shown with undirected connections. Sim-
ilarly, we see that for t = 3, there are four choices for categories and 2 × 3
ways to choose the relation that connects C4 to previous categories. There-
fore, we can easily see that the number of possible maps of categories to
C1 to C7 is 7! and the possibility them with six relations is 25(6!). In total,
if we distinguish between categories and therefore their order, the number
of possible training procedures based on equation B.1 and our explanation
equals 25(7!)(6!) = 32 × 5040 × 720 = 116, 121, 600.

If we consider the order of categories to be the same and map C1 → A,
C2 → B, C3 → C, C4 → D, C5 → E, C6 → F, and C7 → G, different configu-
rations will be reduced to 25(6!) = 32 × 720 = 23,040, according to equa-
tion B.2. This one-to-one mapping is shown in Figure 15, along with a
sample training order in directed red connections that is not LS, OTM, or
MTO (see Table 7 for a summary of the training).
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Figure 16: Graphical representation of training order for OTM and MTO,
shown in red.

In Figures 16a and 16b, respectively, the order of adding new relations to
the training blocks for OTM and MTO is depicted. Both training structures
are addressed in experiment 1 and reported in Tables 5 and 6.

Although our argument and equations B.1 and B.2 show the complexity
of studying the effect of a training structure in an MTS procedure on the
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Table 7: Training Order for the Training Structure Depicted in Figure 15.

Time Step New Relation Possible Previous Relations

t = 1 AB
t = 2 CB AB
t = 3 AD CB AB
t = 4 EA AD CB AB
t = 5 DF EA AD CB AB
t = 6 GE DF EA AD CB AB

Note: A training block can be formed by only new relation at
each stage or a combination of new and previously trained
relations.

participant/agent performance, the training structure and training block
design are much more complex. We have addressed the order of adding
new training relation to the previously trained relations. Many other pa-
rameters can be included in the analysis, such as the number of trials in
each block, the combination of previously trained relations together with
the new relation, testing derived relations during training or not, testing
order, and number of classes (members of each category). Moreover, the
possibility of training a mixture of relations between two categories, say,
A1B1, B2A1, A3B3, will increase this number. An example of such training
is simulated in our previous work (Mofrad et al., 2020). Therefore, finding
some optimal training structure either theoretically or via simulation with
EPS or E-EPS is an interesting problem in its own right, but it is out of the
scope of this letter.

Abbreviations

DNE Directed Network Enhancement.
DSM doubly stochastic matrix.

E-EPS Enhanced Equivalence Projective Simulation.
EPS Equivalence Projective Simulation.

fMRI Functional Magnetic Resonance Imaging.
LS linear series.

MTO many-to-one.
MTS matching-to-sample.

NE Network Enhancement.
OTM one-to-many.

PS Projective Simulation.
RL reinforcement learning.
SE Stimulus Equivalence.

SNE Symmetric Network Enhancement.
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