An Empirical Investigation on Software Practices in Growth
Phase Startups

Orges Cico Anh Nguyen Duc Letizia Jaccheri
Norwegian University of Science and University of Southeast Norway Norwegian University of Science and
Technology Bo i Telemark, Norway Technology

Trondheim, Norway
orges.cico@ntnu.no

ABSTRACT

Context: Software startups are software-intensive early-stage com-
panies with high growth rates. We notice little evidence in the
literature concerning engineering practices when startups transi-
tion to the growth phase. Aim: Our goal is to evaluate how software
startups embrace software engineering practices. Methodology: We
conduct a survey guided by semi-structured interviews as an ini-
tial step, to be followed by field questionnaires as part of a future
exploratory study. We use open coding to identify patterns leading
to themes we use to state our hypotheses. To identify our samples,
we use purposive sampling. Results: Specifically, we analyze seven
startup cases during the first qualitative phase. We obtain five anti-
patterns (no-documentation, no-agile, no-code intellectual property
protection, cowboy programming, no-automated testing) and cor-
responding patterns (readable code, ad-hoc project management,
private code repositories, paired and individual programming, ad-
hoc testing) in adopting software engineering practices. We state 10
corresponding hypotheses we intend to corroborate by surveying
a more significant number of software startups. Contribution: This
study, throughout its recommendations, provides an initial road
map for software startups in the growth phase, allowing future
researchers and practitioners to make educated recommendations.

CCS CONCEPTS

« Software and its engineering — Agile software develop-
ment; Software verification and validation; Collaboration in
software development; Documentation.

KEYWORDS

Software Startups, Software Engineering Practices, Empirical In-
vestigation, Growth Phase

ACM Reference Format:

Orges Cico, Anh Nguyen Duc, and Letizia Jaccheri. 2020. An Empirical
Investigation on Software Practices in Growth Phase Startups. In Evalua-
tion and Assessment in Software Engineering (EASE 2020), April 15-17, 2020,
Trondheim, Norway. ACM, Trondheim, Norway, 6 pages. https://doi.org/10.
1145/3383219.3383249

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EASE 2020, April 15-17, 2020, Trondheim, Norway

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7731-7/20/04...$15.00
https://doi.org/10.1145/3383219.3383249

anh.nguyen.duc@usn.no

Trondheim, Norway
letizia.jaccheri@ntnu.no

1 INTRODUCTION

A startup is commonly defined as newly established companies
with small teams, limited resource and aim for rapid scaling busi-
ness models [3, 8]. At the early stage, the primary goal is to meet a
marketplace need by developing a viable business model for prod-
ucts, services, processes, or platforms. The failure rate of startups
is commonly high; however, successful startups have had a major
impact on the industry [18]. This is particularly true for startups
developing software-intensive products, which have shown higher
rates of scaling [6], making them stand out.

Adopting software engineering (SE) practices, is becoming even
more of an urgent need for many software startups [9, 10, 14]. Em-
pirical evidence on how SE is adopted by software startups is still
meager, and the need for empirical evidence is reported from [2, 15].
Compared to previous efforts studying SE practices at different
startup phases, the understanding of SE practices at growth phase
is very limited. We aim at understanding how software startups
already or transitioning in growth phase can adopt SE approaches.
As the first step, we formulated the following research question

(RQ):

ROQ: How do software startups embrace software engineering practices
when in growth phase?

To address the RQ, we designed an exploratory study during the
first phase of which we conducted semi-structured interviews, with
seven Chief Executive Officers (CEOs) and Chief Technical Officers
(CTOs) from seven software startups, selected using purposive
sampling. We focused on those startups that are almost or have
already made a successful transition towards growth phase !. The
interviews helped us state relevant hypotheses about startups in
growth phase to be corroborated by means of field questionnaires.

The rest of this paper is organized as follows: In Section 2, we
describe the background. Our research methodology is described
in Section 3. The results are presented in Section 4 and discussed in
Section 5. Finally, we present in Section 6 conclusions and future
work perspectives.

2 BACKGROUND

The failure rate of startups is commonly high; however, successful
startups have had a major impact on the industry [18]. Typically,
startups operate and evolve in an ecosystem with connections to

!Growth phase Startups are well established companies with market revenue being
primary source of income

https://doi.org/10.1145/3383219.3383249
https://doi.org/10.1145/3383219.3383249
https://doi.org/10.1145/3383219.3383249

EASE 2020, April 15-17, 2020, Trondheim, Norway

F 3 Frrr______________}

Generation Startup ﬁ Maturity
timé
ScienceWorks | _ _ _ _ _ ..o =

Contributions

revenue

Figure 1: Startup lifecycle phases [12].

various stakeholders, from types of investors to incubators, acceler-
ators and third-party vendors. Startups typically undergo several
development phases: Ideation (product or service idea), Concepting
(mission and vision), Commitment (team with the initial product),
Validation (iteration and testing the initial idea), Scaling (focus on
key performance indicators), and Establishment (increasing growth
and market potential) [7].

Based on Muzellec et al. [12], the transitions of startups from one
stage to another can be characterized under different categories,
Figure 1. Finance is one of the most important factors for startup
survival. In the early stages, funding is commonly based on self-
contributions, in the form of self-investment (by bootstrapping
between jobs) or loans (from relatives or friends).

Other funding options in the early stage of startup formation
can come from pre-seed or crowdfunding. In later stages, when a
Minimum Viable Product (MVP) has been developed and iteration
with the market is a must (do-or-die approach), the need for larger
funding amounts from venture capitalists (VCs) and angel investors
(AIs) becomes obvious. Finally, if the startup has developed a fully
operational product or service, then the market, either local or
global, decides the startup’s growth potential.

The transition of startups is also marked by the methodologi-
cal evolution from ad-hoc or customized development practices
[13] to more principled approaches. A lean startup is a popular
methodology among startups at the early and validation stages [17].
It focuses on shortening the product development cycle through
iterative product releases, market experimentation, and validation.
Meeting the needs of early customers should reduce later risks
of large investments’ failures. Teams that adopt a lean startup
strategy develop a continuously changing MVP [16]. The MVP,
comprising the technological Proof of Concept (PoC), helps iden-
tify product/service potentials with the startup’s limited resources.
Nevertheless, if software startups desire to transition towards the
growth phase, they must establish themselves in the market by
creating valuable products. The growth phase inherits many tech-
nological features, benefits, and drawbacks from its successful MVP
predecessor, now becoming a professionalized product/service ful-
filling a specific market need.

3 RESEARCH METHOD

We aim to understand the perception of software engineering prac-
tices in growth-phase software startups. Hence, the research ques-
tion, which guided our investigation is: "How do software Startups
embrace software engineering practices when in growth phase?"

To gather and interpret evidence to answer our research ques-
tion, we devised a mixed-methods approach. First, we conducted

Orges Cico, Anh Nguyen Duc, and Letizia Jaccheri

semi-structured interviews with seven software startups’ CEOs
and CTOs. This allowed us to state hypotheses that can be cor-
roborated via surveying a larger number of startups, leading to an
exploratory study design. This work presents only the first part of
our investigation.

3.1 Case selection

We collected data first from a tech event in USA with the active
participation of more than 100 startups (about 75% of the samples).
The remaining 25% of the data were collected from Norway. We
selected the sample population using the purposive sampling tech-
nique. Purposive sampling, is a form of non-probability sampling
in which researchers rely on their own judgment when choosing
members of the population to participate in their study [20].

3.2 Case Demographics

We present in this section a brief context of the startup companies
that participated in our study. We first collected data from the
startups’ online resources after initial contact (email or face-to-face
acquaintance) and then later from CEOs and CTOs. From more than
100 startups during the tech event in USA we identified 12 software
startups as potential candidates. However, only five answered our
request positively for an interview. We then looked into startups
from Norway where the three startups we enquired for an interview
only two agreed to participate in our study interview. Demographics
of the seven software startups are reported in Table 1. Notably, all
the interviewees are co-founders of the startups.

Furthermore, we have summarized each startup context and their
present life-cycle phase in Table 2. We established their growth
phase based on their (1) customer base and (2) stability in the market
during the last year (cf. Section 2).

3.3 Interview design

We performed a pilot study in constructing our interview template,
which was used for later data collection in all cases. This allowed
us to focus our interview questions in connection to the research
question. The interview process took place in two parts. The first
part of the survey primarily addressed demographic information
about the startup. The second part focused more on a broad context
on the software and technological aspects of the startup. This way
we detailed the perception of software practices regarding each
sample. Dividing the interview into various parts helped us guide
the startups in expressing their standpoints, without being biased by
our expectations. The approach followed does not compromise the
data gathered since, from the start, we planned a semi-structured
interview, having little control over the chosen samples. Although
all authors collaboratively planned interviews, the execution was
performed by only one of them and was, afterward, peer-reviewed
again, as further discussed in Section 3.4.

3.4 Data Collection

To answer our research question, based on recommendations from
Runeson [19], we collected data from semi-structured, face-to-face
interviews. We interviewed eight CTOs/CEOs from seven startups
in two countries, all having a high-tech product focus. Each in-
terview lasted 45 to 60 minutes, with 75% of the time dedicated

An Empirical Investigation on Software Practices in Growth Phase Startups

Table 1: Software Startup sample demographics.

EASE 2020, April 15-17, 2020, Trondheim, Norway

Startup | Role | Country | Product/ Service Establishment | Product | Employee| Gender Bal- | Employee
Case Year Com- Number | ance Average
Number mercial- Age
ization Range

Startup1 | CTO/ | USA High tech software products | 2008 2017 8 50% F /50% M | 20-30and

CEO 40+
Startup2 | CEO | USA High tech software intensive | 2016 2017 4 100% M 30th

and hardware system product
Startup3 | CEO | USA Software Development 2001 2012 65 40% F / 60% M | 30th
Startup4 | CEO | USA High tech software intensive | 2015 2016 7 10% F/90% M | 30th
Startup5 | CTO | USA High tech software intensive | 2012 2017 34 20% F /80 %M | 30th
and hardware system product
Startup 6 | CTO | Norway | High tech software products | 2017 2018 15% F / 85% M | 30th
Startup 7 | CEO | Norway High tech software products | 2012 2012 5 25%F/75% M | 20th
Table 2: Startups’ contexts.

Startup | High Tech Solution Project Management | Phase Number of
Case Practices Customers
Startup 1 | Genomic search engine Semi-Agile practices Growth Phase 100+
Startup 2 | Solves mechanist skilled workers shortage by automat- | No particular practices. Transitioning to Growth | 5+

ing physical component design industry. Phase. MVP limitations.
Startup 3 | Software development consultancy for high tech prod- | In-house paired program- | Growth Phase 10+

ucts, throughout pair programming practices. ming practices.
Startup 4 | GPU-accelerated software for rapid secondary analysis | No particular practices. Transitioning to Growth | 5+

of next-generation sequencing data. Phase
Startup 5 | Wind turbine inspection through drone technology. | Semi-Agile practices. Growth Phase 5+
Startup 6 | Optimal wind farm layout services. Semi-Agile practices. Growth Phase 20+
Startup 7 | Real estate business intelligence. No particular practices. Growth Phase 50+

to questions related to startup software practices. All interviews
were recorded for later transcription. To facilitate the latter pro-
cess, we utilized online tools (sonix.ai), delivering an approximate
accuracy of around 95% in English transcriptions. We read the
transcription accuracy score from reports of the online tool, after
each transcription. After some manual update of the text was per-
formed, we shared the transcribed interview text with the startups
to acknowledge the obtained results.

The interviews aimed to understand the perception of software
engineering practices from startup founders, commonly represented
by both CEOs and CTOs, as reported in Table 1. Both these entities
represent primary stakeholders with a higher interest in a smooth
transition from MVPs to product/services while transitioning in
the growth phase.

As explained in Section 3.3, we divided our interview into 1)
demographic questions (lasting 10-15 min.) and 2) focused software
engineering practice questions (lasting 30-45 min.). Table 3 reports
the specific questions for each part.

3.5 Data Analysis

After carefully collecting data to obtain significant evidence that
would help us answer our research question, we then used the

thematic analysis approach [5], which consisted of identifying re-
curring patterns and themes within the interview data. The steps
to conduct the systematic analysis consisted of the following:

(1) Reading the transcripts. This step initially involved quick
browsing and correction of the automatically transcribed
data from the audio recordings. We made quick notes about
first impressions. Later on, we reviewed more carefully the
transcribed data by reading judiciously, line by line.
Coding. During this step, we focused on choosing and la-
beling relevant words, phrases or sentences, and even larger
text fragments or sections. The labels revealed more about
startup SE practices. We primarily looked for repetitive and
unexpected answers. We attempted to code as much as pos-
sible regarding the software practices. To mitigate bias, the
two authors worked separately during this coding process.
Creating themes. After gathering all the codes, we decided
on the most relevant ones and created different categories,
which are also defined as themes. Many initial codes from
the previous step were either dropped or merged to create
new ones.

Labeling and connecting themes. During this step, we
decided on which themes were more relevant and defined

—
S
~

—
[SY)
=

—~
N
=

EASE 2020, April 15-17, 2020, Trondheim, Norway

Table 3: Interview parts and questions.

Interview| Questions

Part
Part 1 | What is the startup core product/service?
Startup When was your startup established?
Demo- Where is your startup located?
graphics | What is your role?
What type of ecosystem are you presently working in?
How many employees do you have at the moment?
What is the gender balance in your startup?
What is the average employee age?
What is your team composition?
Part 2 | What software development practices, tools are you
Software | using? Briefly describe how?
Engi- What are the most important quality attributes (UX,
neering performance, security, reusability) for your current
Practices | products?

What testing practices do you adopt in validating and
verifying the quality of your product/service?

How much have you invested on testing activities?
How do you document your product at different phases
of development and testing?

How are your documents updated? How do you keep
track of changes?

How do you protect your technology?

How do you assess the artifacts worth protecting?

appropriate names for each of them. Furthermore, we also
tried to identify relationships among the themes.

(5) Drawing/writing the results summary. After deciding
on the theme’s importance and hierarchy, we generate a
summary of the results. by aggregating the thematic analysis
of semi-structured interviews with all the Startups.

To fulfill the five steps, we used the thematic coding tool NVivo
12 [1].

4 RESULTS

During our analysis, we identified five anti-patterns and, corre-
spondingly, five patterns that reflected startups’ software practices.
Thus, we created 10 major categories/themes and put them in a
one-to-one comparison. Last, we stated 10 hypotheses (cf. Section
5.2), useful for further investigation.

4.1 No-Documentation versus Readable Code

In many cases, documentation is deemed cumbersome and useless
to the software development process. Developers are reluctant to
extensively document their code unless strictly necessary.

One of the interview reports reads:

"...Things are changing so rapidly. Documentation becomes obsolete
quickly..." [Startup 1]

Yet another interview states the following about the extensive
documentation’s useless effort:

"I think that a lot of times teams spend a tremendous amount of
energy. creating very explicit artifacts with often long documents.

Orges Cico, Anh Nguyen Duc, and Letizia Jaccheri

And our belief is that the challenge of many documents that exist
in software engineering realms is that no one reads them, right? Not
even the people who wrote them..." [Startup 1]

In software engineering, documentation is regarded as a crucial
aspect of the development process, making this attitude an anti-
pattern.

Readable code is deemed a more relevant approach, less time
consuming and a common practice. Interviews report the following:

"...We expect the code to be highly readable and peer reviewed ...
Only critical or complex code is thoroughly documented..." [Startup
3]

4.2 No-agile versus Ad-hoc software
development paradigms

We found that strictly following agile software development prac-
tices is not perceived as being critical or even not the most viable
option.

In some cases, the adoption of agile practices is considered hard
to implement if software must be integrated with hardware systems.
The adoption of agile practices is considered possible only to some
extent:

"...So when we are talking about software-hardware projects that
can sometimes span six months and agile is a little hard to do in that
regard because you need to be thinking six months ahead ... So we
stick to like almost a semi Agile... " [Startup 5]

Yet another startup makes similar observations:

"..Iwouldn’t say we are 100 percent you know agile process oriented
or I would also say anyone who is 100 percent agile probably missed
the point of agile..." [Startup 1]

Hence, ad-hoc approaches to project management are preferable
to pure agile, eventually demystifying the literature stating that
agile is part of the most common practices in software startups.
One case reports:

"... Yeah I think the Agile community is very familiar with us and
I think we have a lot of respect in general from people in both the
lean community and the Agile community. We use very strong visual
management system. We do paper based planning and paper based
work authorization ..." [Startup 3]

Notably, however, the lack of good software practices may lead
to risks of project failures in a short time. Very pure ad-hoc practices
are noted from cases regarding startups 2, 4, 6, and 7.

4.3 No-code intellectual property protection
versus Private code

Many startups agree the intellectual property (IP) protection of code
is not deemed possible or even worth pursuing. The main reasons
are high legal costs that cannot be covered even from startups at a
higher growth rate. Although not strictly an anti-pattern, the lack
of code legal protection might be a bad decision from a long-term
perspective. We read from some of the interviews’ reports:

"...IPs would have meaning if big companies want to invest and pro-
tect the software, but we don’t have the capacity to do so..." [Startup
5]

An Empirical Investigation on Software Practices in Growth Phase Startups

"...But if you have a very interesting solution or algorithm or some-
thing, you have to. I think it is a good idea to protect also from the prop-
erty rights level ... but I don’t think it applies to our case..." [Startup
6]

The code is commonly protected via private repositories. In many
cases, the secrecy option takes over. We read from the interviews:

"...Our main protection is to keep the source code in private reposi-
tories. This has originally been done since the beginning..." [Startup
5]

"...So anyone has access to their own product repository. So that’s
how the basically manage who has access to watch the repository.
But in terms of delivery to the customer, everything is executable and
encrypted and inside the docket. So everything is containerized. So
you don’t easily have access to the binary and even the binary is
encrypted..." [Startup 4]

4.4 Cowboy Programming versus Pair
Programming

Cowboy programming is the most-encountered approach. We no-
tice that programming decisions are left to developers, in many
cases, the CTO/CEO or additional developer on the team. We read
from the interview as follows:

"...Programming was mainly done by myself and our CEO. You
don’t know that much about the software, so when you looked back
at how the tools looked for a year and a half ago, looks terrible. Yeah.
But you have learned to become better ourselves..." [Startup 6]

Yet another interview observation is:

"...We use more a cowboy approach of just building it [The code]
and getting it out there..." [Startup 1]

In many cases, pair-programming is common and helps with
software development decision making. The approach helps with
better programming practices and the avoidance of coding in the
wild. One interview reports the following coding:

"...I think that pairing really helps get to the discipline because
there might be a day you come and say oh let’s cut a corner let’s just
move ahead let’s not write that test might be too hard but might your
poor partner might say you know let’s make sure we do it the right
way..." [Startup 3]

4.5 No-automated Testing versus Ad-hoc
Testing

Testing is one of the most challenging software engineering activi-
ties that startups face in the growth phase. Automated testing was
considered difficult in most cases we investigated; many reports
indicate ad-hoc testing from the developers or simply acceptance
testing from end users, as follows:

"...Ireally, really want to do the testing and integration, testing and
functional testing, all that stuff. But it takes time...So, okay, going
for a quickly clicking through that and making sure that everything
works..." [Startup 6]

Only two cases have a more structured approach in testing their
software systems. Nonetheless, automated unit testing is limited,
with at most 60% in one of the cases. The CTO observes as follows:

"... So we do unit testing, integrated testing and kind of sandbox
testing. Yeah. Massive entire system testing. Stress testing all that kind

EASE 2020, April 15-17, 2020, Trondheim, Norway

of stuff ... we don’t do actually a heavy amount of unit testing ... I say
we probably have 60/70% coverage ..." [Startup 5]

Another case, with a more focused testing approach in develop-
ment, reports the following:

"...We are doing test driven development so when we are adding
new features to the software we are working on writing automated
unit tests before they write the code then we fit the code in..." [Startup
3]

5 DISCUSSIONS

Findings indicate that many startups in transitioning or already in
their growth phase have reached some level of maturity, but they
do not fully adopt software engineering practices as recommended
by the SWEBOK [4]. During the interviews we noticed that most of
the startup co-founders had engineering background and were able
to answer our specific questions (cf. Table 3 - Interview part 2).

The expertise of startup founders also determines their adher-
ence to SE practices. Many of the previous efforts [2, 9, 10, 14, 15]
have focused on early phase startups, providing little to no evidence
related to growth phase software practices. The reasons argued by
previous authors were based on the need to help early phase star-
tups avoid failure from bad software engineering practices. How-
ever, for a long time this has drawn the attention from gathering
empirical evidence about practices adopted at later phases. Growth
phase startups and especially software startups, which have been
highly lucrative in the past decade, have had major impact on the
economy. Thus, supporting startup growth with tailored versions
of software engineering best practices is becoming an emergent
need. Unfortunately, research and empirical evidence is still at its
infant stage.

5.1 Threats to Validity

Based on recommendations from Maxwell [11], we report the fol-
lowing validity threats for our study:

(1) Descriptive validity: Although we have tried to gather as
much information as possible, we admit that some aspects
might not have been able to be recorded. To mitigate this
threat to validity, we have used audio to verify the descriptive
data back in time and stored the rest of the data electronically.
We also confirmed our transcription results with the inter-
viewed samples, to make sure we had correctly interpreted
their statements.

Interpretation validity: We have carefully kept track of
the written perspective of the individuals being researched.
This way, we are sure their unique perspective is taken into
account, instead of imposing meaning from our point of
view. Open-ended questions have been used to allow the
participant to elaborate on answers.

Researcher bias: We were careful not to put any bias on
gender, culture, or professional background. We select cases
regardless of their software engineering practices and the
main reason for some startups not participating in this study
is that they did not have enough time for us. However, we
also acknowledge the bias in case selection, as it would be
in any multiple case study. Specifically in our case related to
interviewing startups in presumably growth phase

—~
S
~

—
[SY)
=

EASE 2020, April 15-17, 2020, Trondheim, Norway

(4) External validity: Due to the small sample the possibility
of generalizing results still remains a threat. However, we
have limited the study to hypotheses statement which can
be validated by gathering larger data in the future.

5.2 Hypotheses

Conducting first interviews on a small sample in two distinct coun-
tries helped us reduce the bias of the obtained results, although fully
eliminating it is not possible. Based on these results, we can draw
10 hypotheses, thus completing the first half of our investigation.
We intend to corroborate our hypotheses by (1) conducting ques-
tionnaires with a larger sample of growth-phase software startups,
including the ones that participated in the interview process, and
(2) performing triangulation with artifacts analysis of our present
findings.

Hypotheses:

H1: Software startups in the growth phase tend to not docu-
ment their code, unless strictly necessary.

H2: : Software startups tend to write clean, readable code that
can be easily interpreted.

(cf. Section 4.1)

H3: The use of agile practices tend to improve software star-
tups’ productivity in the growth phase.

H4: The use of ad-hoc project management practices is com-
mon in growth-phase software startups.

(cf. Section 4.2)

HS5: Software startups in the growth phase tend to protect their
code by storing it in secure private repositories.

H6: Software startups do not protect their code through patents,
licenses and any other legal means related to IP.

(cf. Section 4.3)

H7: Software startups in the growth phase adopt programming
approaches in the wild contributing to code smells.

H8: Pair programming mitigates programming decisions made
in the wild and contributes to more readable code development.
(cf. Section 4.4)

H9: Software startup rely more on automated unit and inte-
grated testing before releasing their product in growth phases
than in early phases.

H10: Software startups in the growth phase rely only on cus-
tomer validation and acceptance testing for their product re-
leases.

(cf. Section 4.5)

6 CONCLUSIONS AND FUTURE WORK

We initiated an exploratory study in evaluating software startups
in growth-phase software engineering practices. The interviews
served in collecting qualitative data that we used in stating our hy-
potheses. The sample size from the interviews is relatively small, so
alarger sample size is required to corroborate our hypotheses. From
interview reports, we find that agile practices are seldom adopted.
Readable code is regarded as far more important than extensive
code documentation. IP protection is deemed impossible, and the
best option is keeping the code secret. Programming best practices
and testing are the least-explored software engineering approaches.
Based on these early findings, we conclude that software startups

Orges Cico, Anh Nguyen Duc, and Letizia Jaccheri

during the growth phase might still struggle to reach maturity in
adopting software engineering best practices. There seems to be a
common agreement that software secrecy should be adopted with
great care. Indeed, the need for agile and software documentation
is not fully appreciated.

However, to fully corroborate our findings, based on the ex-
ploratory study approach, we need to complete as part of future
work the second phase of our investigation by collecting a larger
sample of both qualitative and quantitative data. We also encourage
researchers to corroborate the stated hypotheses by performing
triangulation with artifacts analysis of our present findings.

7 ACKNOWLEDGEMENT

This work was funded by the Norwegian Research Council under
the project IPIT Project Number: 274816.

REFERENCES

[1] Lastaccessed 16 Aug 2019. Nvivo Homepage. https://www.qsrinternational.com/
nvivo/home.

[2] P Abrahamsson, A Nguyen-duc, GH Baltes, K Conboy, D Dennehy, R Sweetman,
H Edison, S Shahid, X Wang,] Garbajosa, et al. 2016. Software Startups - A
Research Agenda. e-Informatica Softw. Eng. J 10, 1 (2016), 1-28.

[3] Vebjern Berg, Jorgen Birkeland, Anh Nguyen-Duc, Ilias Pappas, and Letizia
Jaccheri. 2018. Software Startup Engineering: A Systematic Mapping Study.
Journal of Systems and Software (2018).

[4] Pierre Bourque, Richard E Fairley, et al. 2014. Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77-101.

[6] Mark V Cannice. 2019. Confidence among Silicon Valley Venture Capitalists Q3
2017-Q4 2018: Trends, Insights, and Tells. The Journal of Private Equity 22, 3
(2019), 18-24.

[7] Mark Crowne. 2002. Why software product startups fail and what to do about
it. Evolution of software product development in startup companies. In IEEE
International Engineering Management Conference, Vol. 1. IEEE, 338-343.

[8] Carmine Giardino, Xiaofeng Wang, and Pekka Abrahamsson. 2014. Why early-
stage software startups fail: a behavioral framework. In International Conference
of Software Business. Springer, 27-41.

[9] Eriks Klotins, Michael Unterkalmsteiner, Panagiota Chatzipetrou, Tony Gorschek,
Rafael Prikladnicki, Nirnaya Tripathi, and Leandro Pompermaier. 2019. A progres-
sion model of software engineering goals, challenges, and practices in start-ups.
IEEE Transactions on Software Engineering (2019).

[10] Eriks Klotins, Michael Unterkalmsteiner, and Tony Gorschek. 2019. Software en-

gineering in start-up companies: An analysis of 88 experience reports. Empirical

Software Engineering 24, 1 (2019), 68-102.

Joseph A Maxwell. 2012. Qualitative research design: An interactive approach.

Vol. 41. Sage publications.

Laurent Muzellec, Sébastien Ronteau, and Mary Lambkin. 2015. Two-sided

Internet platforms: A business model lifecycle perspective. Industrial Marketing

Management 45 (2015), 139-150.

[13] Anh Nguyen-Duc, Xiaofeng Wang, and Pekka Abrahamsson. 2017. What influ-

ences the speed of prototyping? an empirical investigation of twenty software

startups. In International Conference on Agile Software Development. Springer,

Cham, 20-36.

Jevgenija Pantiuchina, Marco Mondini, Dron Khanna, Xiaofeng Wang, and Pekka

Abrahamsson. 2017. Are software startups applying agile practices? The state of

the practice from a large survey. In International Conference on Agile Software

Development. Springer, Cham, 167-183.

[15] Nicolo Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony Gorschek,
and Pekka Abrahamsson. 2014. Software development in startup companies: A
systematic mapping study. Information and Software Technology 56, 10 (2014),
1200-1218.

[16] AL Penenberg. 2011. Eric Lies is a lean startup machine.

[17] Eric Ries. 2011. The lean startup: how today’s entrepreneurs use continuous inno-
vation to create radically successful businesses.

[18] N Robehmed. 2013. What is a startup? Forbes.

[19] Per Runeson and Martin Hést. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[20] Harsh Suri et al. 2011. Purposeful sampling in qualitative research synthesis.
Qualitative research journal 11, 2 (2011), 63.

[11

[12

[14

https://www.qsrinternational.com/nvivo/home
https://www.qsrinternational.com/nvivo/home

	Abstract
	1 Introduction
	2 Background
	3 Research Method
	3.1 Case selection
	3.2 Case Demographics
	3.3 Interview design
	3.4 Data Collection
	3.5 Data Analysis

	4 Results
	4.1 No-Documentation versus Readable Code
	4.2 No-agile versus Ad-hoc software development paradigms
	4.3 No-code intellectual property protection versus Private code
	4.4 Cowboy Programming versus Pair Programming
	4.5 No-automated Testing versus Ad-hoc Testing

	5 Discussions
	5.1 Threats to Validity
	5.2 Hypotheses

	6 Conclusions and Future Work
	7 Acknowledgement
	References

