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Abstract. Entering the era of the Internet of Things, the traditional
Computer Forensics is no longer as trivial as decades ago with a rather
limited pool of possible computer components. It has been demonstrated
recently how the complexity and advancement of IoT are being used
by malicious actors attack digital and physical infrastructures and sys-
tems. The investigative methodology, therefore, faces multiple challenges
related to the fact that billions of interconnected devices generate tiny
pieces of data that easily comprehend the Big Data paradigm. As a result,
Computer Forensics is no longer a simple methodology of the straight-
forward process. In this paper, we study the complexity and readiness of
community-accepted devices in a smart application towards assistance
in criminal investigations. In particular, we present a clear methodol-
ogy and involved tools related to Smart Applications. Relevant artefacts
are discussed and analysed using the prism of the Digital Forensics Pro-
cess. This research contributes towards increased awareness of the IoT
Forensics in the Edge, corresponding challenges and opportunities.

1 Introduction

Internet of Things (IoT) has brought virtually unlimited possibilities for the
development of smart applications that target everyday’s life improvement. With
broadening horizons of such architecture’s flexibility and automation, one can
create a nearly autonomous system on private, corporate and national scales.
While, undoubtedly, it is a positive development, there are few growing concerns
from the perspective of security and safety. Diversity of used technologies a novel
cyber threat landscape with a high chance of zero-day vulnerabilities and novel
attack scenarios (e.g., Mirai botnet [15,4]). Moreover, it creates new challenges
as well as opportunities for Crime Investigations involving the IoT ecosystem.

Despite the fact that each individual IoT Edge device is generally simpler
than laptops or large-scale servers, there exist multiple limitations and chal-
lenges. Speaking of Digital Forensics Process [9,18,13], Identification phase might
hit the wall when trying to identify the relevant information, where it stored
originally in the IoT ecosystem and to whom it belongs, Preservation of the
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data might not be easy due to the fact that pieces of data are spread across
multiple instances that do not relate to timestamps or data custodians in ex-
plicit ways, Aggregation of multiple pieces of data can easily end up being Big
Data paradigm with the relevance and "needle in a haystack" issue, Analysis
can yield irrelevant results, result from the lack of understanding of used IoT
ecosystem, legally-binding agreement and personal data protection regulations.
Finally, Smart Applications might introduce a layer of Machine Learning (ML) /
Artificial Intelligence (AI) models, which require knowledge expert to interpret,
possibly reverse-engineer and provide explainable answers on why the data have
been processed and the automated decision been made [26,27].

Unlike other research papers in the area, this contribution seeks an under-
standing of the forensics readiness of interconnected devices in the Edge, rather
than of a stand-alone device. The focus is on the open-source platforms to create
a corresponding road map for the investigative process along with recommenda-
tions. In particular, it was (i) created a Smart Application (environment sensors
control) scenario with Edge devices involving IoT hub (Raspberry Pi) and IoT
end-point devices (Arduino Uno and ESP8266), (ii) performed step-by-step col-
lection of the artefacts in accordance to Digital Forensics Process and (iii) anal-
ysis of the acquired digital evidences from interconnected Edge devices using
open-source existing tools. Finally, a special focus will be given to understand-
ing and reverse-engineering ML/AI software found along with raw data on IoT
devices’ storage, considering omnipresence of such software in IoT appliances.
The paper is organized as follows. The Section 2 presents an overview of the
IoT forensics approaches and known artefacts that can be found across various
types of devices. Further, Section 3 gives an overview of the suggested use case
and particular methodological steps on Edge devices, while Section 4 included
results of the Digital Forensics Process steps with corresponding artefacts from
Smart Applications. Finally, Section 5 and 6 discusses IoT forensics readiness
and overall preparedness of the Edge ecosystem for investigations.

2 Related Works

Due to widespread demand, cheap hardware, large community support and avail-
able plug-in components, the amount of IoT devices is growing exponentially,
reaching 18 bln devices by 2022 according to Ericsson market study [8]. Out of
those, 16 bln devices will be attributed to short-range devices. It means that
rapid development of 4G+ (and 5G) connectivity and low-power wide range
communication protocols (BLE - Bluetooth Low Energy, LoRa, IQRF and Zig-
Bee) make geographically distributed communication very easy both in economic
sense and deployment costs [22]. Therefore, it is important to keep in mind that
IoT forensics is not only device-focused investigation, yet rather network- and
cloud-oriented, as in the case with Edge devices.

"Edge devices" or "Edge computing" transformed the way how the data are
handled in the distributed sensors networks. This technology brought disruption
into data processing in a way that the data can be processed in the network while
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being transmitted from end-node IoT devices to data processing hubs and "data
lakes" [24]. With all possible open-source platforms, sensors and actuators, the
Edge devices are placed on the crossroads of all data streams flowing up and down
the IoT ecosystem. The data that is transmitted and processed are ranging from
the trivial regular (M2M) communication containing sensor measurements to
user-related sensitive data containing credentials and personal information [23].

2.1 IoT Forensics: State of the Art

It is important to understand that the requirements for Digital Forensics method-
ologies that were used in the 1990s or even 1980s were completely different from
what they are now, i.e. completely different from what is required in 2020s [20].
It is mainly due to the fact that cheap and easy-to-use technologies made it pos-
sible to generate an extreme amount of data, creating a paradigm of so-called
Big Data. The amount of data will be grown bringing more challenges to po-
lice investigating cases, leaving the only way out is to adopt new technologies
capable of processing and extracting real-world data.

Digital Forensics over the course of last decade became multi-faceted science
targeting all possible aspects of discovering digital traces in a large set of data
found at or attributed to a crime scene [17]. Speaking of Smart Applications
from the infrastructure level, we can say that there are multiple components, re-
sembling general IoT ecosystem: Cloud data storage, IoT gateways, IoT nodes,
sensors and actuators dealing with tasks such as data acquisition, aggregation,
processing, analysis and data-driven decision making [6]. Moreover, it is impor-
tant to understand the challenges in Digital Forensics related to such versatile,
multi-platform and cross-domain infrastructure. There are considerable differ-
ences in the computational and data processing capabilities of both IoT nodes,
also called micro-controllers (Micro Controller Units, or MCU) and IoT gate-
ways, also called micro-computers (System on a Chip, or SoC). Even though the
size of the stored data is relatively small on each device, it can easily enter the
Big Data paradigm once the Smart infrastructure has multiple nodes in the net-
work. In addition, IoT brings challenges to digital pieces of evidence preservation
attributed to boundary-less networks distributed over large regions. Therefore,
1-2-3 zone model [18] of digital forensics investigation was suggested and covers
all digital data found in fog, cloud, routers and gateway servers. This model
differentiates between internal, middle and outer networks, however, still being
complex. To facilitate flexibility, there was suggested a paradigm of "Fragile
Evidence Zone" and [19] as a prerequisite for the data accumulation platform.

2.2 IoT Forensics: Order of Volatility and Data Preservation

Edge Computing is the intrinsically agile environment and most of the data can
be considered as dynamic, bringing more constraints on the data identification
and collection during digital forensics process. From the perspective of Digital
Forensics, this can be a challenge due to the fact that the Order of Volatility
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needs to be maintained in a general way: Random Access Memory (RAM), net-
work traffic, disk storage, etc [5]. However, one of the difficulties is related to the
fact that the size of the storage in the Edge devices makes it impossible to store
all the data. Therefore, only a few data pieces can be stored for a longer period,
while others are gone. Another difficulty is that the crucial for forensics "times-
tamps" are not available on the devices like micro-controllers due to limited
computational and storage capacity [14]. Even though, there exist timekeeping
functionalities like Time Library for Arduino3, those do not commonly use to
avoid unnecessary delays and computing overhead. As a result, the timestamps
might be inevitably lost even if the files exist. At the same time, micro-computer
platforms like Orange Pi or Raspberry Pi provide full support to maintain cur-
rent and updated in a real-time manned time and data, leaving IoT gateway/hub
tiers as the last with reasonably trustworthy timestamps. The amount of data
available in each component differs a lot: from 32 KBytes of flash and 2KBytes
of RAM (Arduino) to 256 Gbytes of SD card and 4Gbytes of RAM (Raspberry
Pi). To the authors knowledge, there have not been explored enough analysis of
digital pieces of evidence in a set of Smart Applications in Edge with respect to
different types of memory defined in order of volatility. One of the community-
accepted tools that can be used on microcomputers to facilitate the preservation
of Order of volatility is "Forensics Mode" in Kali Linux4.

3 Use Case and Methodology

The main goal of this paper is to demonstrate possible ways of extracting relevant
digital pieces of evidence from MCU and SoC devices found in the Edge. There
will be given a general road map for such data acquisition on Smart Applications
in the Edge, also taking in mind that ML / AI is one of the intelligent components
of such an interconnected network. The peculiarity of DF in Smart Applications
that we want to specifically highlight in this paper is the presence of intelligent
models that were trained from the data. Currently, there exist a large number of
intelligent ML models that can be used for clustering, classification and [16] such
as Artificial Neural Network (ANN), Support Vector Machines (SVM), Bayesian
Network (BN), Hidden Markov Models (HMM). Technically speaking, ML can be
trained from any kind of real-world data to be able to give a prediction regarding
new previously unseen data sample. Moreover, according to Deloitte [25], 80%
of enterprise IoT solutions will include ML / AI components. Therefore, this
section presents the way how ML models can be used in the Smart Application
and how those can be integrated into the DF process as a digital evidence.

3.1 Smart Applications: Edge Devices

A scenario that we tailored is smart application closed-loop controller (IoT hub)
that handles communication with IoT end-node devices harvesting environmen-
3 https://playground.arduino.cc/Code/Time/
4 https://docs.kali.org/general-use/kali-linux-forensics-mode

https://playground.arduino.cc/Code/Time/
https://docs.kali.org/general-use/kali-linux-forensics-mode
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tal parameters such as temperature and humidity. Such scenario generally con-
sist of the following components on a high level: sensor - a simple passive circuit
that "senses" physical world measurements and converts to electrical signal,
controller - devices that make decision based on the input sensor measurements
and actuator - a simple active device that can do physical actions upon control-
ling electrical signal. This interconnected network also provides a feedback loop,
while actuator performing actions based on the measurements from sensors [7].
Basic communication in such scenarios is usually organized via Message Queu-
ing Telemetry Transport (MQTT) protocol as a lightweight and reliable solution
for transmission of sensor data and actuators commands. An example of Smart
Application-based systems is shown in the Figure 1.

Fig. 1. Regular rule-based (left) and intelligent Machine Learning-based (right) imple-
mentation of the feedback loop in Smart Applications

3.2 Experimental Environment

For the demonstration purpose, we model a core architecture of the Smart Home,
also found in other domains - intelligent monitoring with a feedback loop. An
imaginary scenario was developed (inspired by [28]), where the IoT node uses
the ML model trained on the IoT gateway to protect against cyber attacks. The
diagram of the experimental installation shown in the Figure 2. As mentioned
earlier, this includes the following components with computational capabilities:

IoT hub/gateway is implemented using Raspberry Pi 3 Model B (1.2 GHz
Quad-Core CPU, 1GB RAM, 16GB MicroSD card, Ethernet). It is one of the
most lightweight and low-end SoC with minimal system components required to
run OS. It has Raspbian 4.19 (Debian Buster 4.19) installed. To demonstrate
also intelligent application, we have ported ArduinoANN project5 from AVR
to ARM to specifically simulate ANN training step using Mosquittopp v.1.5.7-1
(MQTT version 3.1/3.1.1 client C++ library and corresponding Broker), Boost
v.1.67.0-13 for uBLAS vector storage and JSON serialization, g++ v. 4:8.3.0-1
as a compiler. This node was assigned IP address 192.168.0.200. SoC needs a
reliable power supply and, in some cases, can run from the battery.

5 http://robotics.hobbizine.com/arduinoann.html

http://robotics.hobbizine.com/arduinoann.html
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Fig. 2. Experimental setup used in this paper, including IoT node and IoT gateway.
Types of the media with corresponding size are denoted in red font

IoT node is implemented using Arduino Uno rev. 3 (16MHz CPU, 2KBytes
RAM, 32KBytes, ENC28j60 Ethernet board). ArduinoIDE 1.8.9 was ]used to
program Arduino UNO. The communication protocol implementation was done
using the following libraries: UIPEthernet 2.0.7 to work with ENC28J60 Eth-
ernet controller, PubSubClient 2.7.0 and ArduinoJson 6.11.5, while the testing
phase was inspired by ArduinoANN project. To reduce the size of the code and
accommodate larger packers, the configuration of the first and second libraries
were changed to UID_CONF_UDP_CONNS =1 and MQTT_MAX_PACKET_SIZE
= 256 respectively. This node was assigned to address 192.168.0.100. It was used
Ethernet protocol instead of WiFi on Arduino to set up the baseline. It has
faster initialization, lower price and simpler connection routine for the experi-
ment phase. MCU can easily run from battery or solar power.

Stand-alone IoT device without ML. To contrast the rest of the paper, we
will study a stand-alone IoT device that does not use ML. The diagram of the
experimental installation shown in the Figure 3. The device is connected to a
WiFi network and sends data directly (i.e. without an intermediate edge-device)
to a remote server. The device has a ESP32-WROOM-32D [10] (2.4GHz and
520KiB RAM) processor and a 16 MiB flash memory. It does not run a full op-
erating system. This makes the device more powerful than the Arduino and but
less powerful than the raspberry pi. It behaves like a MCU but has capabilities
closer to a SoC. The device is used to measure temperature and humidity. The
device has an Universal Asynchronous Receiver/Transmitter (UART) interface.

3.3 Digital Forensics Process in the Internet of Things

IoT Digital Forensics is a relatively new field were two important issues have
to be counted in: firstly, limited computational capabilities does not allow to
implement security mechanisms exposing more data to forensics investigators,
secondly, previously unseen and undocumented proprietary technologies will de-
lay data analysis requiring an additional level of reverse-engineering. Due to
connectivity and versatility of the devices, it becomes a real challenge to fix the
baseline in the so-called Digital Forensics process [12]. Despite the lack of stan-
dardization, improper pieces of evidence handing and challenging chain of cus-
tody in IoT ecosystem, the authors emphasized that pre-investigation readiness
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Fig. 3. Experimental setup for the stand-alone IoT device without ML

and real-time integration will be a key to successful digital forensics investigation
in IoT in future [31]. From the perspective of the Digital Forensics, there can be
highlighted multiple phases suggested over the last decades [30]. However, from
the approach strategy, one needs to define the following stages:

Field work and Acquisition. This stage includes Identification, Preserva-
tion and Collection of the Smart Devices from the crime scene, identifying their
relevance and storing according to predefined Chain of Custody.

Lab work and Analysis. During this stage Examination, Analysis and
Presentation are performed, when a Forensics Investigator extracted data from
Smart Devices and tries to link them together attributing found pieces of evi-
dence to a crime scene.

4 Computer Forensics Investigation in the Edge

This section will explain step-by-step digital pieces of evidence analysis and road-
map for extracting data in the Edge. As was mentioned before, we emphasize the
importance of understanding how the ML models work and their particular place
in the IoT. While speaking about IoT, there can be seen three following areas
where data normally exist: cloud, network and devices, while IoT digital forensics
readiness is still a challenge as explained by Alenezi et al. [3]. Particularly, there
is a need to maintain log files, transmit relevant data and store timestamps, that
might require modification of the IoT infrastructure. Therefore, we will be going
step by step in this section over the approaches to acquire and then analyze any
relevant data from Smart Applications.

4.1 Field work and Acquisition

As also mentioned by Goudbeek et al. for the Smart Home case [11], there has to
be followed a routine for proper analysis of the digital pieces of evidence. Every
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investigation starts with the preparation and analysis of the smart infrastructure,
identifying components, preparing necessary hardware and software tools.

Components identification and attribution. A person, who deals with the
Smart Application setup, needs to clearly identify used components, sensors,
actuators, connectivity and possible information flow and anticipated logic of
the system. The picture of the aforementioned setup is shown in the Figure 4.
In this case, all the devices have labels and distinct logos, making them easy to
identify and reveal capabilities and technical characteristics.

Fig. 4. Photo of our experimental setup

Live device on-chip access via JTAG6/ISP7/TTL8. The next step is to as-
sess whether data can be retrieved when the devices are connected and in live
mode. It is of crucial importance to follow the Order of Volatility as defined by
Hegarty et al. [13] to ensure the preservation of all digital data that might be
stored either in the permanent memory like flash/SD card or in memory, while
will be available only when the device is powered one. Since Arduino has serial
communication available, it is possible to connect to the terminal and observe
actual communication that is shown in the Figure 5. From this, it is understand-
able that MCU is trying to establish MQTT communication and receives data
from another component, also successfully identifying some given input pattern.
Further, Raspberry Pi board has UART communication, which can be accessed
through USB to TTL adapter by connecting TX/RX/GND pins to board pins
6,8 and 10 respectively. Access SoC via UART is given via Linux terminal: sudo
chmod 666 /dev/ttyUSB1; screen /dev/ttyUSB1 115200

This process requires an understanding of what kind of boards and technolo-
gies are used. Therefore, there can be accessed documentation and discussion
6 Joint Test Action Group standard
7 In System Programmer
8 Universal Asynchronous Receiver/Transmitter serial convertor
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Fig. 5. Serial monitor from Arduino IDE showing output of live MCU

forums for each particular component. In our case, by using standard pass-
word/login it was possible to log in to the system and check OS information
as shown in the Figure 6.

Fig. 6. UART communication with SoC displaying access terminal and OS information

Live acquisition of the network traffic. Finally, one of the important sources
for digital evidential data is network communication within the given IoT in-
frastructure. To acquire necessary data and technical details, we used Address
Resolution Protocol (ARP) Spoofing approach with a help of EtterCAP9 tool
that allows sniffing of a stitched network. The result of the program execution
is shown in the Figure 7.

From EtterCAP we note two important issues: there are two devices with IP
addressed 192.168.0.100, 192.168.0.200 that have regular MQTT communica-
tion transferring weights (parameters) of the ANN.

Stand-alone IoT device without ML. We use a TTL-to-USB adapter to con-
nect to the UART interface as shown in the Figure 8. Using the "screen" com-

9 https://www.sans.org/reading-room/whitepapers/tools/
ettercap-primer-1406

https://www.sans.org/reading-room/whitepapers/tools/ettercap-primer-1406
https://www.sans.org/reading-room/whitepapers/tools/ettercap-primer-1406
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Fig. 7. EtterCAP: intercepted communication between IoT node and IoT gateway

mand we were able to observe sensor output, including timestamps. We con-
nected a laptop to the wifi network. We used ettercap ARP poisoning to capture
and record (using tcpdump) the traffic between the router and the device. We
were able to capture encrypted UDP-packets between the device and a remote
server. Using esptool [2] we were able to read the flash memory over the UART
interface. Esptool will inject code into the device to achieve this and reboot the
device before and after each operation. It is therefore important to respect the
order of volatility. Esptool can also read the virtual memory of the device, but
will overwrite some of it in the process.
$ sc r een /dev/ttyUSB0 115200
$ e sp too l −p /dev/ttyUSB0 dump_mem 0x3ff8_0000 0x142000 esp32_mem1 . hex
$ e sp too l −p /dev/ttyUSB0 dump_mem 0x5000_0000 0x2000 esp32_mem2 . hex
$ e sp too l −p /dev/ttyUSB0 read_f lash 0 0x1000000 esp32_f lash . hex
$ e spe fu s e −p /dev/ttyUSB0 summary > esp32_efuses . txt

Listing 1.1. Retrieving dump of the flash memory from ESP32-WROOM-32D using
esptool

Fig. 8. Extracting data from stand-alone IoT device without ML component
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4.2 Lab Work and Analysis

Once field work has been finished, the DF process continues with the retrieving
and analysis of digital data on each device separately.

IoT node artifacts MCU is, often, custom-made hardware components with
proprietary software that will certainly delay the analysis phase. However, there
exist common approaches to dump the chip firmware and analyse available data.
In our setup, we utilize Avrdude10 tool with Arduino as AVR in-system program-
ming technique (ISP) to retrieve the data to dump the content of the memory
on Arduino Uno as suggested by Arduino Forensics [1].

$ avrdude −P /dev/ttyUSB0 −F −v −v −c arduino −pm328 −D −Uflash : r :
↪→ arduino_dump . hex : r

Listing 1.2. Retrieving dump of the flash memory from Arduino Uno using avrdude

$ md5sum : 219 de396b61bd3fee fc064295fa53828 arduino_dump . hex
$ l s −l a : −rw−rw−r−− 1 32652 nov . 21 12 :17 arduino_dump . hex

Listing 1.3. Characteristics of retrieved Arduino flash dump file

The avrdude software gives an overview of available memory sections (includ-
ing flash, EEPROM, fuses, etc) and corresponding hardware device signatures
as shown in the Figure 9.

Fig. 9. Output of the Avrdude software verbose output

10 https://www.nongnu.org/avrdude/

https://www.nongnu.org/avrdude/
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Once the data has been dumped, we use GHex to analyse the content. The
first thing that comes to our attention - hard-coded comments about MQTT
and IP address as shown in the Figure 10. Despite the fact that we are not able
to retrieve any kind of log files or timestamps, available data can give a clear
picture of the device’s functionality. Further reverse-engineering and analysis of
code will help the investigation, however, takes much more time.

Fig. 10. GHex editor used to analyse flash dump from MCU

IoT hub/gateway artifacts Since Raspberry Pi has Debian installed, that we
can refer to general guidelines for Linux Forensics, which has broader number of
tools and approaches available then Arduino [21,29]. To acquire read-only image
copy of the microSD card, we performed following basic operations:

$ f d i s k − l
Disk /dev/mmcblk0 : 14 ,9 GiB , 15931539456 bytes , 31116288 s e c t o r s
Units : s e c t o r s o f 1 ∗ 512 = 512 bytes
Sector s i z e ( l o g i c a l / phy s i c a l ) : 512 bytes / 512 bytes
I /O s i z e (minimum/optimal ) : 512 bytes / 512 bytes
D i sk l abe l type : dos
Disk i d e n t i f i e r : 0x41503d89

Device Boot Star t End Sec to r s S i z e Id Type
/dev/mmcblk0p1 8192 532480 524289 256M c W95 FAT32 (LBA)
/dev/mmcblk0p2 540672 31116287 30575616 14 ,6G 83 Linux

$ sudo umount /dev/mmcblk0
$ sudo dd i f =/dev/mmcblk0 o f=~/sd−card−copy . img
31116288+0 opp foe r inge r inn
31116288+0 opp foe r inge r ut
15931539456 byte (16 GB) , 15 GiB kopier t , 247 ,108 s , 64 ,5 MB/ s
$ md5sum sd−card−copy . img
93 ae f0 f f 0432a512e498153576221cc f sd−card−copy . img

Listing 1.4. Retrieving dump of the microSD card dump from Raspberri PI

Once a read-only copy of the memory card, the following step includes analy-
sis with a widely used software SleuthKit & Autopsy11. An example of the folder
content, various dates and deleted files are shown in the Figure 11. The content
of the folder may be indicated what kind of software is used, programming lan-
guages (C++ in this case) and many other relevant artefacts. Moreover, used
dataset (NSL-KDD Cup 99) is also present in the folder, indicating a relation to
the network data analysis too. The only executable that is in the folder is a.out
that requires an additional round of analysis, reverse-engineering, per se.

11 https://www.sleuthkit.org/

https://www.sleuthkit.org/
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Fig. 11. SleuthKit report from imported IoT gateway microSD card image

Machine Learning Component Analysis Once the software component al-
legedly attributed to ML is located, the forensics analyst has two challenges:
reverse-engineer any binaries and discover application’s functionality relevant
for the crime investigation. As mentioned before, any ML application program
use data to train a specific model use for further decision making in Smart Ap-
plications. The report is extracted using SleuthKit and shown in the Listing 1.5.
$ f i l e /2/home/ pi /mqtt_ml/ArduinoANN_training_RaspberryPi/a . out
F i l e Type : ELF 32−b i t LSB shared object , ARM, EABI5 ve r s i on 1 (GNU/Linux

↪→ ) , dynamical ly l inked , i n t e r p r e t e r / l i b / ld−, f o r GNU/Linux 3 . 2 . 0 ,
↪→ BuildID [ sha1 ]=d70d380be66d6e2b6544802dd745707db2834430 , not
↪→ s t r i pped

Listing 1.5. Retrieving dump of the microSD card dump from Raspberri PI

The easiest way to understand the functionality of a piece of software is
to analyze the source code, which will most likely contain readable variables
and function names and self-explainable comments. However, in most cases, the
forensics investigators are left only with a compiled binary file. To understand the
functionality we can either use commercial IDA Pro or free cross-platform tool
Radare2, Portable reverse-engineering framework12 as depicted in Listing 1.6.
$ radare2 −aarm ./ a . out
> aaa
> s main
> VVV

Listing 1.6. Reserse engineering of the a.out file

Found artefacts can be linked to the content of the MQTT communication in
JSON format that was intercepted earlier using EtterCAP software. Moreover,
building function calls graphs, we can get an overview of what kind of operations
are performed. Disassembling of ANN training functional routine is shown in the
Figure 12 with the variables names consistent with earlier found digital data.

IoT device without ML - artifacts The memory and flash were analyzed
using GHex. Sensor data was visible in plain text (JSON) and included times-
tamps. The firmware image can be extracted and analyzed using radare2. The

12 https://rada.re/n/

https://rada.re/n/
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Fig. 12. ARM call function graph disassembly of the binary using Radare2

ESP32 uses a specialized firmware image format, which complicates the reverse-
engineering process. Wireshark was used to analyze recorded network packets.

Without an edge device there are fewer available artifacts, and every arti-
fact had its own challenges in terms of extraction, preservation and analysis.
The device uses Wifi and the traffic could be captured, but the packets were
encrypted and the data is stored in a proprietary cloud. The device had an eas-
ily accessible UART interface, but a bootloader must be uploaded to extract
artifacts, damaging some artifacts in the process. Esptool is open source, but is
platform-specific. It also lacks the functionality of converting firmware images
to a standardized format, like ELF32. The flash was not encrypted, but requires
reverse-engineering to fully interpret. Furthermore, due to the limited space the
data only remains on the device for a limited time before being overwritten by
newer data.

5 Digital Forensics Readiness and Cyber-Physical
Incident Preparedness

Digital Forensics Readiness is defined as a certain level of readiness of an organi-
zation to preserve, collect and analyze any digital data citekarie2017digital. Such
data are treated as digital pieces of evidence in any legal or court-related matter.
In majority cases, this issue is related to the fact that data have to be stored
in an appropriate way. This paper provides an example of a roadmap that can
be used when analyzing digital pieces of evidence across any Smart Applications
with IoT-based distributed infrastructure. Data retention policies are established
in the organization to follow a common practice of preservation data that fur-
ther can be used to speed up any involved forensics investigations or incident
response. Since IoT-bases systems have naturally distributed versatile resources,
one needs to ensure pre-investigation readiness and real-time integration as a
key to successful digital forensics investigation in IoT in future [31].

The core difference of Smart Applications from other IoT applications is
the existence of the ML processing mechanism, which implies that the decisions
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made by separate components based on the data might not be straight-forward.
From the previous section, we can reconstruct the following scenario. The data
are being processed on IoT gateways using the ML model called ANN. Further,
the trained model (weights of the neuron connections) is being transmitted via
Ethernet connection to IoT nodes with the help of the MQTT protocol. The
protocol was not encrypted, so we used the ARP spoofing attack to intercept
traffic between those two components. IoT node has open serial communication
that gives a hint about ML model usage, which is also confirmed by analysis of
string comments in dumped flash memory with the help of Arduino Forensics.
Moreover, IoT gateway has Debian OS leaving many opportunities for Linux
Forensics, such as file system analysis. After a closer look at the content of
the folders, a network intrusion data set was found along with the binary file
compiled for ARM. Reverse-engineering and disassembly of the binary file will
reveal internal logic and functions used for ANN training. While understanding
of hardware and software technologies is a crucial part of any modern investiga-
tion, there is also a need for cross-disciplinary awareness and expertise exchange
to ensure a correct understanding of Smart Applications. Subsequently, it re-
flects aspects of their possible involvement in any criminal activities. Our belief
is that technology awareness and expert knowledge will help to move from Re-
active Digital Crime Investigation to Proactive Crime Prevention and Incident
Response when it comes to any illegal activities in Smart Applications.

6 Conclusions and Discussions

This paper presents the thorny path of the Digital Forensics expert handling
Smart Devices and Smart Applications. It is clear that the traditional under-
standing of Computer Forensics is under constant evolvement. Static data and
well-known technologies are no longer a State of the Art. With the advance-
ment of Smart Devices, IoT and later Smart Applications, a forensics expert
is facing Big Data paradigm, proprietary software, previously unseen hardware
components and Cloud Computing involvement. However, the growing demand
for intelligent data analytics brings Machine Learning models in every compo-
nent of the IoT ecosystem. Despite the complexity of such data analytics, one
will need to utilize insights into how the data are processed and what kind of
decisions are made. This will ensure timely response to incidents and proactive
crime prevention in modern societies living in Smart Cities. This paper presented
an example of a Digital Forensics Investigation roadmap in a Smart Application,
explaining a whole range of forensics activities needed for a clearer understanding
of the key value of any investigation - data, or digital pieces of evidence.

Even in an ecosystem without edge-devices and machine learning, the process
is similar and has similar challenges. Especially the lack of standardization – ev-
ery IoT platform (and cloud platform) requires specialized tools and knowledge
to reverse-engineer the hardware and software. We expect cooperation between
the forensic investigator and various actors, including the manufacturer, the de-
veloper and the cloud provider, to become a crucial part of forensic investigation.
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