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Abstract—We develop a new distributed algorithm to solve a
learning problem with non-smooth objective functions when data
are distributed over a multi-agent network. We employ a zeroth-
order method to minimize the associated augmented Lagrangian
in the primal domain using the alternating direction method of
multipliers (ADMM) to develop the proposed algorithm, named
distributed zeroth-order based ADMM (D-ZOA). Unlike most
existing algorithms for non-smooth optimization, which rely on
calculating subgradients or proximal operators, D-ZOA only
requires function values to approximate gradients of the objective
function. Convergence of D-ZOA to the centralized solution is
confirmed via theoretical analysis and simulation results.

I. INTRODUCTION

Performing learning tasks at a central processing unit in a

large distributed network can be prohibitive due to commu-

nication/computation costs or privacy issues. Therefore, it is

important to develop algorithms that are able to distributedly

process the data collected by agents scattered over a large

geographical area [1]–[8]. In this context, each agent in the

network only possesses information of a local cost function

and the agents aim to collaboratively minimize the sum of

the local objective functions. Such optimization problems are

relevant to several applications in statistics [3]–[5], signal

processing [6]–[8] and control [1], [2].

There have been several works developing algorithms for

solving distributed convex optimization problems over ad-

hoc networks. However, many existing algorithms only offer

solutions for problems with smooth objective functions, see,

e.g., [5], [9], [10]. Distributed optimization problems with

non-smooth objectives have been considered in [1], [2], [4],

[11]–[16]. The approaches taken in [2], [11], [12] are based

on subgradient methods. The works of [13], [14] are based

on dual decomposition techniques while the algorithms in

[4], [15] are developed using soft-thresholding operations.

However, all the aforementioned algorithms require either the

computation of subgradients, which might be hard to achieve

for some objectives, or derivation of proximal operators, which

might not be feasible in some scenarios.

Moreover, there are some real-world problems where ob-

taining first-order information is impossible due to the lack of

the complete loss function. For example, in bandit optimization

[17], an adversary generates a sequence of loss functions and

the goal is to minimize such sequence that is only available

at some points. In addition, in simulation-based optimization,
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the objective is available only using repeated simulation [18],

and in adversarial black-box machine learning models, only

the function values are given [19]. This motivates the use

of zeroth-order methods requiring only function values to

approximate gradients.

The works in [1], [16] are based on zeroth-order methods

within the distributed optimization setting. While the approach

of [16] relies on approximate projections for dealing with

constraints, the algorithm ZONE-S proposed in [1] is based on

a primal-dual approach and deals with non-convex objectives.

However, ZONE-S addresses only consensus problems with a

non-smooth regularization that is handled by a central collector

making the algorithm not fully distributed.

In this paper, we develop a fully-distributed algorithm to

solve an optimization problem with a non-smooth convex

objective function over an ad-hoc network. We utilize the

alternating direction method of multipliers (ADMM) for dis-

tributed optimization. Furthermore, we employ the zeroth-

order method called the two-point stochastic gradient algo-

rithm [20] that is suitable for non-smooth objectives to obtain

an approximate minimizer of the augmented Lagrangian in

the ADMM’s primal update step. The proposed algorithm,

called distributed zeroth-order based ADMM (D-ZOA), is

fully distributed in the sense that each agent in the network

communicates only with its neighbors and no central coordina-

tor is necessary. Furthermore, D-ZOA does not compute any

subgradient and only requires the objective function values

to approximate the gradient of the augmented Lagrangian.

The simulations show that D-ZOA is competitive even on a

problem that can be easily solved with a subgradient-based

algorithm. Furthermore, the experiments show the usefulness

of D-ZOA on a problem where calculating any subgradient

is impractical. Convergence of D-ZOA to the centralized

solution at all agents is verified through theoretical analysis

and simulation results.

Mathematical Notations: The set of natural and real numbers

are denoted by N and R, respectively. Scalars, column vectors

and matrices are respectively denoted by lowercase, bold

lowercase, and bold uppercase letters. The operators (·)T and

tr(·) denote transpose and trace of a matrix, respectively. Ip
denotes an identity matrix of size p, 0q×l defines a matrix with

all zero entries, and ⊗ stands for the Kronecker product. The

statistical expectation and covariance operators are represented

by E[·] and cov[·], respectively. For a vector y and a matrix

Y ∈ R
r×s, ‖y‖

Y
denotes the quadratic form yTYy. The



nuclear norm of Y is denoted by ‖Y‖∗ and is defined as

‖Y‖∗ =

min{r,s}
∑

i=1

σi(Y)

where σi(Y) denotes the ith singular value of Y. ‖·‖ and

‖·‖F represent the Euclidean norm and the Frobenius norm,

respectively. The operators vec(Y) forms a column vector

from the matrix Y = [y1, . . . ,ys] by stacking the column

vectors yi. For a positive semidefinite matrix X, λmin(X) and

λmax(X) denote the nonzero smallest and largest eigenvalues

of X, respectively.

II. SYSTEM MODEL

We consider a network with K ∈ N agents and E ∈ N

edges that is modeled as an undirected graph G(K, E), where

the set of vertices K = {1, . . . ,K} corresponds to the agents

and the set E represents the bidirectional communication links

between the pairs of agents. Agent k ∈ K can communicate

only with the agents in its neighborhood Nk whose cardinality

is denoted by |Nk|. By convention, the set Nk includes the

agent k as well.

We consider the problem when the K agents of the network

solve the following minimization problem collaboratively

min
x

K
∑

k=1

fk(x;Xk) (1)

where x ∈ R
P is the unknown model parameter, Xk represents

the local information at agent k, and fk : RP → R is the local

cost function that is convex but non-smooth. Let us denote the

solution to (1) by xc.

III. NON-SMOOTH DISTRIBUTED LEARNING

We first discuss the consensus-based reformulation of the

problem that allows its distributed solution through an iterative

process consisting of two nested loops. Then, we describe the

ADMM procedure that forms the outer loop and the zeroth-

order two-point stochastic gradient algorithm that constitutes

the inner loop solving the ADMM primal update step. Finally,

we establish the convergence of D-ZOA theoretically.

A. Consensus-Based Reformulation

To solve (1) in a distributed fashion, we introduce the primal

variables V := {xk}Kk=1
that represent local copies of x at the

agents. Then, we reformulate (1) as the following constrained

minimization problem:

min
{xk}

K
∑

k=1

fk(xk;Xk)

s.t. xk = xl, l ∈ Nk, ∀k ∈ K.

(2)

Since the network is connected, the equality constraints in

(2) enforce consensus over {xk}Kk=1
by imposing consensus

across each agent’s neighborhood Nk. To solve (2) in a

distributed fashion, we employ the ADMM [8]. Therefore, we

introduce the auxiliary variables Z := {zlk}l∈Nk
and rewrite

(2) as

min
{xk}

K
∑

k=1

fk(xk;Xk)

s.t. xk = zlk, xl = zlk, l ∈ Nk, ∀k ∈ K.

(3)

The use of auxiliary variables Z renders an equivalent rep-

resentation of the constraints in (2). These variables are

only used to derive the local recursions and are eventually

eliminated. The augmented Lagrangian function is given by

Lρ(V,Z,M) =
K
∑

k=1

fk(xk;Xk)

+
K
∑

k=1

∑

l∈Nk

[

µlT
k

(

xk − zlk
)

+ λlT
k

(

xl − zlk
)

]

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥xk − zlk
∥

∥

2
+

∥

∥xl − zlk
∥

∥

2
)

(4)

where M := {{µl
k}l∈Nk

, {λl
k}l∈Nk

}Kk=1
are the Lagrange

multipliers associated with (3), and ρ > 0 is a penalty

parameter.

Solving (3) via the ADMM requires an iterative process that

is described in the next subsection.

B. Distributed ADMM Algorithm

To solve the minimization problem (3) in a distributed

fashion, the ADMM entails an iterative procedure consisting of

three steps at each iteration. In the first step, Lρ is minimized

with respect to the primal variables V . Then, Lρ is minimized

with respect to the auxiliary variables Z . In the end, the La-

grange multipliers in M are updated via dual gradient-ascent

iterations [8]. By using the Karush-Kuhn-Tucker conditions

of optimality for (3) and setting λk(m) = 2
∑

l∈Nk
λl
k(m),

it can be shown that the Lagrange multipliers {µl
k}l∈Nk

and

the auxiliary variables Z are eliminated [8]. Therefore, the

distributed ADMM algorithm reduces to the following iterative

updates at the kth agent

xk(m+ 1) = argmin
xk

Lρ(xk,λk(m)) (5)

λk(m+ 1) = λk(m)+ρ
∑

l∈Nk

[xk(m+ 1)−xl(m+ 1)] (6)

where m is the iteration index and all initial values

{xk(0)}k∈K, {λk(0)}k∈K are set to zero. The iterations (5)

and (6) can be implemented in a fully distributed manner as

they only involve the parameters available within each node’s

neighborhood.

The objective function of the minimization problem in (5)

is non-smooth, which makes it hard to obtain a solution using

first-order information. To solve this problem, we employ a

zeroth-order method described in the next subsection.



Algorithm 1 D-ZOA

At all agents k ∈ K, initialize xk(0) = 0, λk(0) = 0, and

locally run

for m = 1, 2, . . . do

Receive xk(m) from neighbors in Nk

Update λk(m+ 1) as in (6)

Initialize x0
k = 0

for t = 1, 2, . . . , T do

Draw independent ν1, ν2 ∼ N (0, IP )
Set ut

1 = u1/t, u
t
2 = u1/t

2 and compute gt as in (8)

Update xt+1

k as in (9)

end for

Update xk(m+ 1) = xT+1

k

end for

C. Zeroth-Order Method

In order to solve (5) utilizing a zeroth-order method, we

assume that Lρ(·) is closed and Lipschitz-continuous with

the Lipschitz constant G. These assumptions are common for

zeroth-order optimization, see, e.g., [1], [20].

Subsequently, we employ the two-point stochastic gradient

algorithm for general non-smooth functions proposed in [20].

More specifically, we use the stochastic mirror descent method

with the proximal function ‖·‖ /2 and the gradient estimator

at point xk given by

Gns(xk;u1, u2,ν1,ν2,λk(m)) = u−1

2 [Lρ(xk + u1ν1

+ u2ν2,λk(m))− Lρ(xk + u1ν1,λk(m))]ν2 (7)

where u1 > 0 and u2 > 0 are smoothing constants and ν1,ν2

are zero-mean Gaussian random vectors independent of each

other with covariance matrix IP , i.e., ν1,ν2 ∼ N (0, IP ).
The two-point stochastic gradient algorithm entails an iter-

ative procedure that consists of three steps at each iteration

t. First, independent random vectors νt
1 and νt

2 are sampled

from N (0, IP ). Second, a stochastic gradient gt is formed as

gt = Gns(x
t
k;λk(m), ut

1, u
t
2,ν

t
1,ν

t
2) (8)

where xt
k is the tth iterate of the two-point stochastic gradient

algorithm with the initial point xk = 0, {ut
1}∞t=1 and {ut

2}∞t=1

are two non-increasing sequences of positive parameters such

that ut
2 ≤ ut

1/2. Finally, xt+1

k is updated as

xt+1

k = xt
k − α(t)gt (9)

where the time-dependent step-size α(t) is set as α(t) =
(G

√

tP log(2P ))−1α0R, α0 is an appropriate initial step-size

and R is an upper bound for the distance between a minimizer

x∗
k to (5) and the first iterate x1

k as per [20].

Note that no communication among agents is involved

throughout the inner loop.

The proposed algorithm, D-ZOA, is summarized in Algo-

rithm 1.

In the next subsection, we show that the D-ZOA produces

sequences of local iterates xk(m), k ∈ K, that converge to the

global centralized solution xc as m → ∞.

D. Convergence Analysis

The convergence of D-ZOA to the centralized solution is

established by corroborating that both inner and outer loops

of the algorithm converge.

The convergence of the inner loop can be proven following

[20, Theorem 2], i.e., it can be shown that there exists a

numerical constant c such that, for each T representing a fixed

number of iterations of the inner loop, the following inequality

holds:

E[Lρ(x̂k(T ))− Lρ(x
∗
k)]

≤c
RG

√
P√

T

[

max{α0, α
−1

0 }
√

log(2P ) +
u1 log(2T )√

T

] (10)

where x̂k(T ) = T−1
∑T

t=1
xt
k. In [20], it is shown that

c = 0.5 whenever ν1 and ν2 are sampled from a normal

distribution.

The convergence of the outer loop can be verified by proving

the convergence of a fully distributed ADMM with inexact

primal updates. For this purpose, the primal variable can be

assumed to be a perturbed version of the exact primal update

as per [21]. Therefore, xk(m+ 1) can be written as

xk(m+ 1) = x̄k(m+ 1) + γk(m+ 1) (11)

where x̄k(m + 1) is the exact ADMM primal update and

γk(m+1) is a random variable representing the perturbation

of x̄k(m+ 1). Similar to [21], we assume the perturbation to

have zero expectation, i.e., E[γk(m+1)] = 0, ∀k ∈ K and for

all the ADMM iterations m, and have finite covariance matrix,

i.e., cov[γk(m + 1)]i,j < ∞, ∀k ∈ K, ∀i, j = 1, . . . , P and

for all the ADMM iterations m.

For a clear presentation of the convergence results, we

rewrite (3) in the matrix form. By defining x̃ ∈ R
KP as a

vector concatenating all xk and z̃ ∈ R
2EP concatenating all

zlk, (3) can be written as

min
x̃,z̃

f(x̃) + g(z̃)

s.t. Ax̃+Bz̃ = 0
(12)

where f(x̃) =
∑K

k=1
fk(xk;Xk), g(z̃) = 0, A = [A1;A2],

and A1,A2 ∈ R
2EP×KP are both composed of 2E × K

blocks of P × P matrices. If (k, l) ∈ E and zlk is the qth

block of z̃, then the (q, k)th block of A1 and the (q, l)th block

of A2 are identity matrices IP . Otherwise, the corresponding

blocks are P×P zero matrices 0P . Furthermore, we have B =
[−I2EP ;−I2EP ]. We define the matrices M+ = AT

1+AT

2 and

M− = AT

1−AT

2 , L+ = 0.5M+M
T

+, L− = 0.5M−M
T

−, Q =
√

0.5L− and γ(m + 1) ∈ R
KP as the vector concatenating

all γk(m+ 1).
We construct the auxiliary sequence r(m) =

∑m

s=0
Qx̃(s)

and define the auxiliary vector q(m) and the auxiliary matrix

G as

q(m) =

[

r(m)
x̃(m)

]

, G =

[

ρIP 0P×P

0P×P ρL+

2

]

. (13)

The convergence results of [21] can now be adapted to D-

ZOA as per the following theorem.
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Fig. 1. Normalized error of D-ZOA and D-SG for generalized lasso with
P = 10, ρ = 3 and two different values of K.

Theorem 1. If f(·) is convex, then, for any fixed number of

iterations N of the outer loop, we have

E[f(x̂N )− f(x̃∗)]

≤‖q(0)− q‖2
G

N
+

ρλ2
max(L+)

∑N−1

m=0
tr (cov[γ(m)])

2Nλmin(L−)

(14)

where the expectation is taken with respect to the perturbation,

x̃∗ is the optimal solution of (12) and x̂N = 1

N

∑N−1

m=0
x̃(m+

1).

Proof. Since E[γk(m)] = 0 and cov[γk(m)]i,j < ∞, ∀k ∈ K,

∀i, j = 1, . . . , P and for all the ADMM iterations m, proof

follows from [21, Lemma 6] and [21, Theorem 5].

IV. SIMULATIONS

The D-ZOA algorithm is tested on a multi-agent network

with a random topology, where each agent is linked to three

other agents on average. To benchmark D-ZOA with existing

solutions, we consider a distributed version of the generalized

lasso [15] that can be solved with subgradient methods [2].

Furthermore, we consider a distributed version of the reduced-

rank regression (RRR) problem where the objective function

is least squares with nuclear norm regularization [8]. Nuclear

norm is a non-smooth function that is used as a convex

surrogate for the rank. Calculating any subgradient of the

nuclear norm function is impractical. RRR has applications in

robust PCA [22], low-rank matrix decomposition [23], matrix

completion [24], etc.

The network-wide observations are represented as an obser-

vation matrix D ∈ R
M×P and a response matrix H ∈ R

M×S ,

where M is the number of data samples and P is the number

of features in each sample. The matrix D consists of K sub-

matrices Dk, i.e., D = [DT

1 ,D
T

2 , . . . ,D
T

K ]T, and the matrix
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Fig. 2. Normalized error of D-ZOA for RRR with P = 5, S = 4, ρ = 3

and K = 10.

H of K submatrices Hk, i.e., H =
[

HT

1 ,H
T

2 , . . . ,H
T

K

]T

, as

the data are distributed among the agents and each agent k
holds its respective Dk ∈ R

Mk×P and Hk ∈ R
Mk×S where

∑K

k=1
Mk = M . The parameter matrix that establishes a linear

regression between D and H is X ∈ R
P×S . In the generalized

lasso, S = 1 and, hence, H is the vector h ∈ R
M and X

becomes x ∈ R
P . In the centralized approach, a generalized

lasso estimate of x is given by

xc = argmin
x

{‖Dx− b‖2 + η ‖Fx‖
1
} (15)

where η > 0 is a regularization parameter and F is an arbitrary

matrix. An RRR estimate of X is also given by

Xc = argmin
X

{‖DX−H‖2 + η∗ ‖X‖∗} (16)

where η∗ > 0 is a rank-controlling parameter. In the distributed

setting, we solve problem (2) with

fk(xk;Xk) = ‖Dkxk − hk‖2 +
η

K
‖Fxk‖1 (17)

for the generalized lasso case and with

fk(Xk;Xk) = ‖DkXk −Hk‖2 +
η

K
‖Xk‖∗ (18)

for the RRR case. For each agent k ∈ K, we create a

10P × P local observation matrix Dk whose entries are

independent identically distributed zero-mean unit-variance

Gaussian random variables. The response vector h is obtained

as

h = Dβ + ǫ

where β ∈ R
P and ǫ ∈ R

M are chosen as random vector with

distribution N (0, IP ) and N (0, 0.1IM ). The response matrix

H is obtained as

H = DΦ+Ψ



where Φ ∈ R
P×S and Ψ ∈ R

M×S are random ma-

trices with matrix normal distributions MN (0P×S , IP , IS)
and MN (0M×S , 0.1IM , 0.1IS), respectively. The regular-

ization parameter η is set to 0.01
∥

∥DTb
∥

∥

∞
and η∗ is set

to 0.01
∥

∥(IS ⊗D)Tvec(H)
∥

∥

∞
as in [15]. The number of

iterations of the ADMM outer loop is set to 200. For the inner

loop, the number of iterations is set to 1000, the smoothing

constant u1 is set to 1 and the convergence in mean is achieved

by averaging the outputs of 10 inner loops. Performance of

D-ZOA is evaluated using the normalized error between the

centralized solutions xc as per (15) or Xc as per (16) and

the local estimates. It is defined as
∑K

k=1
‖xk − xc‖2/‖xc‖2

for generalized lasso and as
∑K

k=1
‖Xk −Xc‖2F /‖Xc‖2F for

RRR, where xk and Xk denote the local estimates at agent k.

The centralized solutions xc and Xc are computed using the

convex optimization toolbox CVX [25]. Results are obtained

by averaging over 100 independent trials.

Figs. 1-2 show the performance of D-ZOA for the general-

ized lasso and the RRR scenarios, respectively. In Fig. 1, we

plot the normalized error versus the outer loop iteration index

for D-ZOA and a subgradient-based distributed algorithm,

called D-SG and proposed in [2]. We observe that, for P = 10
and ρ = 3, D-ZOA has similar performance to D-SG both

when the network consists of 15 and 30 agents. Fig. 2

shows that D-ZOA converges to the centralized solution of

the considered RRR problem for P = 5, S = 4, K = 10 and

ρ = 3.

V. CONCLUSION

We developed a new consensus-based algorithm for solving

a distributed optimization problem with a non-smooth convex

objective. We recast the original problem into an equivalent

constrained optimization problem whose structure is suitable

for distributed implementation via ADMM. We employed

a zeroth-order method, known as the two-point stochastic

gradient algorithm, to minimize the augmented Lagrangian

in the primal update step. Compared to existing algorithms

for non-smooth optimization, D-ZOA is fully-distributed and

does not require the computation of subgradients, nor proximal

operators which may be difficult to derive in some scenarios.

D-ZOA only requires the computation of objective function

values. The convergence of D-ZOA to the centralized solution

was verified through theoretical analysis and simulations.
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