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Abstract

depend on vehicle and energy prices

environmental impact.

Aim: The primary goals of this research is (i) to derive direct and cross demand market response functions
for automobile powertrains and their energy carriers and (i) to assess how CO, emissions from automobiles

Methods: The market demand for automobiles with differing powertrains is studied by means of a discrete choice
model. Statistically precise coefficient estimates are calculated by means of a highly disaggregate data set
consisting of virtually all 1.8 million new passenger car transactions in Norway during 2002-2016. Having estimated
the model, we derive market response parameters in the form of direct and cross price elasticities of demand for
gasoline, diesel, ordinary hybrid, plug-in hybrid and battery electric cars.

Results: The own-price elasticity of gasoline driven cars is estimated at —1.08, and those of diesel driven, battery
electric and plug-in hybrid electric cars at —0.99, —1.27 and —1.72, respectively, as of 2016 in Norway. The cross price
elasticities of demand for gasoline cars with respect to the price of diesel cars, and vice versa, are estimated at 0.64
and 0.51, while the cross price elasticities of demand for battery electric cars with respect to the prices of gasoline
and diesel driven cars come out at 0.36 and 048, respectively. A 1 % increase in the price of liquid fuel in general is
found to reduce the average type approval rate of CO, emission from new passenger cars by an estimated 0.19%.

Conclusion: Fiscal policy measures affecting the prices of vehicles and fuel have a considerable potential for
changing the long term composition of the vehicle fleet and its energy consumption, climate footprint and general

Keywords: Automobiles, Powertrain, Energy, Technology, Nested logit model, Disaggregate

1 Introduction

When car manufacturers, car dealers or fuel com-
panies set prices, or when policymakers are to deter-
mine the tax level, they have an interest in knowing
how the demand for the product(s) in question
responds to price changes. The direct (own) price
elasticity measures how much demand would change
following a small — say, 1 % — change in the prod-
uct’s price.
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There is a large scientific literature on the direct price
elasticity of demand for gasoline and/or diesel — see, e.g.,
the excellent review article by Dahl [9] or the meta-
analyses by Brons et al. [5] and Labandeira et al. [44].
Dahl [9] remarks:

“... hundreds of studies have focused on measuring
such elasticities for gasoline and diesel fuel
consumption.”

To the extent, however, that there is a policy interest in
switching between gasoline and diesel consumption, or
in substituting decarbonized energy carriers for fossil
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fuel, the cross price elasticities of demand between en-
ergy carriers commands at least as much interest as the
direct price elasticities. The cross price elasticity mea-
sures how much the demand for a certain product
changes when the price of another product increases. A
high cross price elasticity between any two products
would suggest that they are close substitutes.

The number of published scientific papers estimating
cross price elasticities between liquid fuel and electricity,
or between internal combustion engine (ICE) vehicles
and battery electric vehicles (BEVs), seems to be nil.
Even estimates of the cross price elasticities between
traditional fuels like gasoline and diesel seem hard to
come by. Although Labandeira et al. [44], in their
comprehensive meta-analysis, do consider several en-
ergy carriers, including electricity, they find no studies
providing empirical cross price elasticity estimates.
Says Dahl [9]:

“Technical changes along with numerous country
policies have encouraged fuel switching, most often
away from gasoline toward diesel fuel, but some-
times towards natural gas or biodiesel. [...] I was
not able to find consistent evidence of cross-price
elasticities to measure the effect of these policies.”

The primary goal of our paper is to help bridge this in-
triguing knowledge gap, by proposing a methodology to
estimate of the cross price elasticities between power-
trains and energy carriers for private cars.

A secondary goal is to assess the elasticities of demand
for automobiles with varying powertrains, not only with
respect to the retail prices of the vehicles themselves,
but also with respect to their energy costs. As a corol-
lary, we expect to reveal the car buyers’ willingness to
pay for future energy savings.

A third objective is to estimate the elasticities of
greenhouse gas (GHG) emissions with respect to the
prices of new passenger cars and energy.

There are, we think, at least two reasons why the
literature on cross price elasticities between power-
trains and energy carriers is so scant. First, vehicles
are durable assets equipped with a particular energy
technology (powertrain). With few exceptions, such as
the use or blending-in of biofuel, single-vehicle
households are not free to switch to a different en-
ergy carrier. This implies that short term cross elasti-
cities are bound to be close to zero — almost not
worthwhile to investigate.

Two-car or multi-car households may, however, face a
choice as to which vehicle to use for a particular trip.
There is thus a limited room for short term fuel or en-
ergy carrier substitution at the household level. Utility
maximizing households might be expected to prefer the
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cheaper option in terms of energy costs. Despite its
higher energy content, diesel is, in most European coun-
tries, sold at a lower price per liter than gasoline. Adding
to this competitive advantage is the fact that the diesel
engine is slightly superior to the gasoline engine in terms
of energy efficiency. But all ICEs are, in this respect,
much inferior to the electric motor.

Second, it is difficult to reliably estimate cross price
elasticities with respect to a product that hardly exists in
the market, or that is present with only a negligible mar-
ket share, such as battery or plug-in hybrid electric
vehicles.

The present authors are in a position to overcome
both of these difficulties. Unlike the situation in virtually
all other countries, the market for electric cars in
Norway has reached sufficient maturity for the five
major vehicle energy technologies — gasoline, diesel, or-
dinary hybrid, plug-in hybrid and battery electric — to
exhibit comparable market shares, with 29, 31, 11, 13
and 16%, respectively, as of 2016 (Fig. 1). Although de-
mand elasticities do depend on market shares, and must
be expected to change with the continued development
of electric vehicle technology and economies of scale,
the Norwegian auto market is already sufficiently bal-
anced for meaningful cross demand elasticities to be
derived.

Relying on a comprehensive disaggregate discrete
choice model of automobile purchase in Norway, we set
out to estimate direct and cross price elasticities of
demand between cars with five different energy
technologies.

A brief literature survey is presented in the next sec-
tion. In Section 3, we describe, as a background to our
modeling and analysis, the main characteristics of the
Norwegian automobile market, and in particular its re-
sponse to the fiscal and regulatory incentives applied
over the last couple of decades. In Section 4 we describe
our disaggregate discrete choice model of automobile
purchase. Results from estimation and counterfactual
simulations on the model are set out in Section 5. Some
qualifications are discussed in Section 6, and conclusions
are drawn in Section 7. A couple of scatterplots describ-
ing our data set are shown in the Appendix.

2 Literature review
At the household level, the basic choice between energy
carriers is made, for a long time ahead, when the vehicle
is acquired. Thus one way to understand the degree of
substitution between energy carriers would be to study
the market for automobiles with differing powertrains.
Among the early attempts to analyse the demand for
various types of automobiles we find Lave and Train
[45], Manski and Sherman [46], Berkovec [2], and
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Fig. 1 New passenger cars registered in Norway 1992-2019, by powertrain technology. Source: www.OFV.no
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Berkovec and Rust [3], all of these relying on disaggre-
gate discrete choice modeling.

An alternative approach consists in direct demand
econometric modeling of aggregate vehicle miles trav-
eled and fuel sales. Johansson and Schipper [43] decom-
posed the overall effect of fuel prices on fuel
consumption into three factors: vehicle stock, mean an-
nual mileage and mean energy intensity, all of which
may be expected to vary in response to changes in the
price of energy, and more so in the long term than in
the short term. Based on aggregate (per capita) data for
12 OECD countries during 1973-92, they derive “best
guesses” for the long run elasticities of the vehicle stock,
the mean fuel intensity and the mean annual mileage
with respect to the fuel price, given by -0.1, -0.4 and
-0.2, respectively. By implication, the long run elastici-
ties of aggregate fuel demand and vehicle kilometers
traveled (VKM) with respect to the fuel price are given
by -0.7 and -0.3, respectively.

More recently, and based on essentially the same con-
ceptual decomposition, Odeck and Johansen [49] derive
fuel and travel demand elasticities for Norway. The short
and long run fuel demand elasticities are estimated at
-0.26 and -0.36, respectively, and the travel demand
(VKM) elasticities at —0.11 and -0.24. The rebound ef-
fect [52, 53] is estimated at 26%, meaning that a 1%

reduction in the fuel price gives rise to a 0.26% deterior-
ation in the fuel efficiency and/or an equivalent increase
in travel demand. 26% of the initial effect is, in other
words, offset by behavioral adaptation.

Hossinger et al. [39] combine revealed (RP) and stated
preference (SP) data to estimate fuel price elasticities for
Austria. While most econometric studies are based on
the often unsubstantiated assumption that price elastici-
ties are constant over the potential range of variation,
these authors allow for price elasticities to vary with the
initial price level. Starting from a fuel price of € 1.50 per
liter, they derive an immediate elasticity of -0.116, a
one-year response of —0.185, and a five-year elasticity of
-0.245. If the initial price is set at € 2.00, the
corresponding elasticities become -0.158, -0.276 and
-0.321, respectively. A € 4.00 initial price results in elas-
ticities as high as -0.347, —0.656 and -0.688.

The idea that (the absolute value of) the fuel price
elasticity increases with the initial price level makes the-
oretical and empirical sense. Results compatible with
this have been derived by Dahl [9] and Fridstrom [22],
among others.

Obviously, the price elasticity of demand for fuel is
also context dependent. It would be higher (in absolute
value) whenever traveling by car has close substitutes,
such as in a city with an efficient mass transit service.
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More generally, fuel demand would typically be more
elastic in densely populated cities and countries than in
rural communities or in suburbs characterized by exten-
sive urban sprawl.

Meta-analyses and survey articles therefore exhibit a
wide variety of elasticity estimates [5, 9, 16, 44]. The
mean elasticity derived from a meta-analysis cannot
readily be assumed to hold for any particular city or
country.

Moreover, meta-analyses are vulnerable to publication
bias: Studies resulting in high and statistically significant
elasticity estimates have a higher probability of being
published and subsequently picked up by meta-analysts.
Havranek [37] examines 110 studies of the short term
gasoline price elasticity and 92 studies of the long term
elasticity. The mean of the short term elasticities esti-
mated is —0.227, while the long term elasticities average
-0.691. When correcting for publication bias, Havranek
[37] finds that both averages are roughly halved.

A particularly influential paper is the one by Berry,
Levinsohn and Pakes [4] — henceforth BLP. They study
the US automobile market relying on an aggregate panel
data set that follows car models over all years they have
been marketed during 1971-1992. Unlike most previous
studies, they treat automobile prices as endogenous on ac-
count of unobserved product attributes. In their words,

“If producers know the values of the unobserved
characteristics, [...] even though we [the analysts]
do not, then prices are likely to be correlated with
them. [...] products that face good substitutes will
tend to have low markups, whereas other products
will have high markups and thus high prices relative
to cost.”

If two cars of competing makes are similar, chances are
that there is downward pressure on the price. Otherwise
manufacturers and dealers may exploit the situation to
ask for higher prices. Thus, BLP devise a set of instru-
mental variables based on each car model’s similarity
with other models. To estimate their model, BLP use a
generalized method of moments (GMM) approach.

Verboven [56] studies product differentiation and
price discrimination in the automobile market, relying
on an aggregate data set covering 41 pairs of gasoline or
diesel driven car models of a given make sold in
Belgium, France or Italy during 1991-1994. Automobile
buyers are assumed to trade off retail prices against fu-
ture fuel expenditure, in such a way that buyers with a
high expected mileage would tend to put less emphasis
on the upfront cost of purchase and more emphasis on
the fuel economy. These buyers might, e.g., prefer an ex-
pensive diesel car with a favorable fuel mileage over a
cheaper gasoline-thirsty vehicle.
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Like BLP, Verboven treats automobile retail prices as
endogenous. Markups are inversely related to fuel and
vehicle tax rates. Simple, ordinary regression estimates
of the price coefficients would thus be biased towards
zero. Verboven defines a set of instrumental variables
based on the tax and fuel price differentials between
gasoline and diesel vehicles, along with a ‘performance’
indicator summarizing the vehicles’ horsepower, dis-
placement and weight.

Verboven concludes that the choice between gasoline
and diesel driven cars is to a large extent conditioned by
the car owner’s expected mileage, and that manufac-
turers exploit the car buyers’ heterogeneous preferences
to discriminate against those with a high willingness to
pay for fuel savings. Fuel economic cars have higher
markups.

Several alternative ways to handle the endogeneity
problem, including certain ‘instrument free’ approaches,
are reviewed by Zaefarian et al. [60].

Rather than considering vehicle acquisition and
mileage as sequential behavioral variables, where one
precedes and conditions the other, a conceptually more
elegant formulation is offered by de Jong [10-12], who
analyzes car ownership and use as jointly dependent
household decisions within a rigorous microeconomic
framework. The household decides to own a car if the
utility derived from driving exceeds the utility achievable
in the absence of car expenditure. The stronger the pref-
erence for high annual mileage, the larger is the prob-
ability that the household will choose to own a car.

Extending this framework so as to also model the choice
of vehicle type or model simultaneously with the travel de-
mand decisions, while taking account of price endogeneity
and tax incidence, represents a major methodological
challenge, but also a promising new vein of research. Rely-
ing on rich administrative data bases, some recent studies
have come a long way towards modelling the complex,
joint decision processes of vehicle choice and usage [7,
28-31, 42, 48].

3 The Norwegian automobile market and electric
vehicle incentives

The rapid uptake of electric cars in the Norwegian mar-
ket is explicable in terms of powerful fiscal and regula-
tory incentives [19, 20, 23]. The high share of battery
and hybrid electric automobiles comes as a result of an
enduring, no-nonsense government policy, consisting of
ten different taxes and regulations of which zero exhaust
emission vehicles (ZEVs), i.e. battery and fuel cell elec-
tric cars, are wholly or partially exempt:

1. Graduated, one-off registration tax, with ZEVs fully
exempt
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2. Reregistration tax on second hand sales, with ZEVs
fully exempt

3. Annual circulation (ownership) tax, with ZEVs fully
exempt

4. Fuel tax, not applicable to ZEVs

5. Road toll, with ZEVs fully or partially exempt

6. Ferry fares, with strongly reduced rates for ZEVs

7. Public parking fees, often with full exemption for
ZEVs and with free recharging

8. Income tax on private use of company cars, with
lower rates for ZEVs

9. Bus lanes, open to ZEVs, although with some
exceptions

10. Value added tax (VAT), with ZEVs fully exempt

3.1 The one-off registration tax

The probably most important incentive is the CO,-dif-
ferentiated, one-off vehicle registration tax (‘purchase
tax’), payable upon first registration of any passenger car
or light commercial vehicle with an internal combustion
engine (ICE).

As of 2016, the purchase tax was the sum of four sep-
arate components. In Fig. 2, all of these four compo-
nents are shown graphically, as functions of 10 kg curb
weight, kW ICE power, gCO»/km and mgNOx/km type
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approval emission rates, respectively, each of them plot-
ted along the same horizontal axis. Note that, as of 2016,
the CO, component is negative and hence deductible
below 95 gCO,/km.

To fix ideas, consider a couple of examples. For a
hypothetical car weighing 1500 kg, with a 100 kW in-
ternal combustion engine (ICE) and type approval emis-
sion rates of 50 gCO,/km and 50 mgNOyx/km, the
purchase tax components in 2016 would sum to NOK
75,817 + 3768 — 41,347 + 2898 = NOK 41,136, corre-
sponding to € 4400 at the July 1, 2016 exchange rate.

As a second example, a car weighing 2000 kg, with a
150 kW internal combustion engine (ICE) and type ap-
proval emission rates of 150 gCO,/km and 50 mgNOx/
km would incur purchase tax components of NOK 172,
382, NOK 27,315, NOK 61,628 and NOK 2898, sum-
ming to NOK 264,213, or € 28,260, i.e. a more than six
times higher tax than in the previous example.

The convex weight, ICE power and CO, components
mean that heavy, powerful, gas guzzling cars are subject
to a disproportionately higher purchase tax compared to
smaller and leaner vehicles.

The minimum purchase tax in Norway is zero. Even if
the negative CO, component should be larger in absolute
value than the sum of the three positive components, the
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total purchase tax rate would not turn into a subsidy, as in
the French bonus-malus system (see [8, 57]).

Certain special tax breaks apply to plug-in hybrid ve-
hicle (PHEVs). First of all, the effect of the electric
motor does not count towards the power component of
the purchase tax; only the combustion engine does. Sec-
ondly, as of 2016 the taxable curb weight of PHEVs was
to be reduced by 26% prior to calculating the weight
component. This essentially means that for PHEVs,
every point on the red curve in Fig. 2 is shifted 35.1% to
the right (since 1/(1-0.26) = 1.351).

For ordinary (non-plug-in) hybrid electric vehicles
(HEVs), a weight ‘rebate’ of 10% applied in 2016."

3.2 The scope and value of Norwegian fiscal and
regulatory incentives

Particularly strong incentives apply to zero exhaust
emission vehicles (ZEVs), be they battery or fuel cell
electric. Not only are these vehicles entirely exempt of
purchase tax, they are also, as of 2016, generally exempt
of road toll and public parking charges. They benefit
from strongly reduced ferry fares, lower annual owner-
ship tax and lower income tax on the private use of
company cars. Moreover, they are, with a few excep-
tions, allowed to travel in the bus lane and may be
recharged for free in many public parking lots. Last, but
not least, while ICE and hybrid cars are subject to a
standard 25% value added tax (VAT) on the price exclu-
sive of purchase tax, ZEVs, their batteries and their leas-
ing contracts are exempt of VAT.

To get an idea of the scope of these incentives, it is
helpful to have a look at the amount of tax revenues
from ICE vehicles (Fig. 3). The annual revenue from
registration, ownership, reregistration and fuel tax in
2016 was 52.8 billion Norwegian kroner (NOK), or €
5.647 billion, corresponding to around € 1130 per capita.
Automobile taxes are an important source of govern-
ment revenue in Norway.

None of these taxes applied to ZEVs. Thus, the falling
revenue from purchase tax since 2012 is due primarily
to the increasing flow of new ZEVs (see Fig. 1). The rev-
enue from ownership tax and fuel tax will fall more
slowly, at a pace determined by the penetration of ZEVs
in the automobile stock.

The one-off registration tax (purchase tax) alone pro-
vided a fiscal revenue of NOK 16.748 billion in 2016.
Some 70% of this revenue, corresponding roughly to €
1.25 billion, was levied on passenger cars (the rest being
attributable to light commercial vehicles, motorcycles,

'This rebate has since been abolished, as has also the entire ICE power
component. As of 2019, the weight rebate for PHEVs has been
lowered to 23% and made contingent upon an at least 50 km all-
electric range. For PHEVs with an all-electric range of r < 50 km, the
rebate is set at 23-7/50%.
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etc.). As averaged over all passenger cars equipped with
an ICE first registered in Norway in 2016, the purchase
tax amounted to around NOK 83,000=€ 8880 per
vehicle.

The aggregate revenue from road use and CO, tax on
fuel was NOK 22.7 billion in 2016. The fuel tax rate was
NOK 5.96 per liter of gasoline and NOK 4.56 per liter of
diesel, corresponding to € 0.637 and € 0.488 per liter, re-
spectively, or US$ 2.71 and US$ 2.08 per gallon. Norwe-
gian fuel taxes are radically higher than in the US, but
only slightly higher than the European average.

Road toll represents another NOK 10 billion or so in
annual public revenue, with zero or little contributions
from ZEVs. There are about 60 toll plazas or cordons in
operation in Norway, all of them with the purpose of
funding road investments or urban transit.

In its notification to the EFTA Surveillance Authority
of November 6, 2017, the Norwegian Royal Ministry of
Finance [51] estimated the revenue loss from the ZEVs’
exemption from the various vehicle taxes, toll and ferry
charges at appr. NOK 2 billion in 2017. The VAT ex-
emption is found to represent a revenue loss of about
NOK 3.2 billion in 2017. Avoided fuel tax would repre-
sent another NOK 1 billion or so.

The value of the non-pecuniary incentives, such as the
ZEVs’ access to the bus lanes, depends on local condi-
tions, e.g. if there is congestion that ZEV drivers can
avoid. In a survey of battery electric vehicle (BEV)
owners, Figenbaum and Kolbenstvedt [21] estimate the
mean value of the time savings due to bus lane access at
NOK 4498 per BEV owner per year. Multiplying this fig-
ure by the approximately 97,400 ZEVs present in the
Norwegian car fleet at year-end 2016, we arrive at an ag-
gregate annual figure of NOK 438 million =€ 46.8
million.

Thus, taken together, the value of the tax breaks and
regulatory privileges benefiting ZEV owners is of the
order of NOK 6.6 billion per annum, or around € 700
million. Dividing this figure by the stock of ZEVs at
year-end 2016, we arrive at a value of € 7250 per ZEV
per annum [23, 24].

3.3 Subsidies

Contrary to common belief, almost no cash subsidies are
being paid out in support of electric cars in Norway.
With two minor exceptions, all of the Norwegian incen-
tives take the form of taxes and regulations affecting ve-
hicles equipped with an ICE, with full or partial
exemptions for battery and fuel cell electric vehicles, as
set out in the previous section.

The two exceptions are (i) the public support for elec-
tric vehicle charging stations and hydrogen refueling
infrastructure, administered through the Enova govern-
ment agency, and (i) local governments footing the
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Fiscal revenue from Norwegian motor vehicle taxes
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Fig. 3 Annual government revenue from principal motor vehicle taxes in Norway 2002-2018, adjusted to the 2018 price level. As of July 1, 2018,

NOK 1 =US$ 0.1225 =€ 0.1053. Source: Statistics Norway
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electricity bill at public parking lots (cf. item 7 in the
above list). These are costs covered by the taxpayers,
that would otherwise be incurred by the users of electric
cars themselves.

Compared to the automobile tax revenues, the
scope of the Enova subsidies is quite modest. A mere
NOK 11 million, or approximately € 1.18 million, was
granted in support of roadside charging stations in
2017, according to Enova’s annual report ([15]: 27).
Another NOK 30 million was granted for hydrogen
refueling infrastructure.

The electricity bill at public parking lots is not large ei-
ther, on account of Norway’s generally low prices of
electricity and the fact that most BEV owners routinely
recharge their vehicle at home.

3.4 The shifting market for diesel cars

With the introduction, in 2007, of the technology
neutral CO, component of the purchase tax, instead
of the previous, fuel-specific displacement component,

the demand for diesel driven passenger cars in
Norway increased steeply (Fig. 1). Since the CO,
emissions rate is directly proportional to the per km
fuel consumption, and since the diesel engine is more
energy efficient than the gasoline engine, the relative
after-tax prices of gasoline versus diesel driven cars
changed in favor of diesel vehicles, making these vehi-
cles considerably more popular with the buyers. Add-
ing to this trend was the car users’ steadily improving
impression of the diesel engine as more or less
equivalent to the gasoline engine in terms of thrust,
user friendliness and technological maturity. The de-
mand for new diesel cars continued to grow until
2011, when their market share reached 75.7%.

A watershed may seem to have occurred with the
unusual and lingering atmospheric contamination in
the city of Bergen in January 2010 — Bergen’s ‘winter
of discontent’ [54]. Diesel automobiles were singled
out as a major source of pollution. Following this in-
cident, the nitrogen oxide (NOx) emissions from
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diesel vehicles received steadily more attention in
Norwegian public discourse. In 2011, the EFTA Sur-
veillance Authority, the agency in charge of enforcing
EU regulations in Norway, Iceland and Liechtenstein,
alerted the Norwegian government of multiple cases
in which Norwegian cities had exceeded the regulated
limit values for certain pollutants in ambient air. In
2013, formal proceedings against Norway were
opened at the EFTA Court, which concluded, on Oc-
tober 2, 2015, that the limit values for sulphur diox-
ide (SO,), particulate matter (PM;o) and/or nitrogen
dioxide (NO,) in ambient air in certain cities had
been surpassed on several occasions during the years
2009 to 2012, and hence that

‘the Kingdom of Norway has failed to fulfil its obli-
gations arising under the [...] Agreement on the
European Economic Area (Directive 2008/50/EC of
the European Parliament and of the Council of 21
May 2008 on ambient air quality and cleaner air for
Europe)’ [14].

Adding to this ruling were the multiple reports from
Norwegian scientists about the large gap between
real-world and laboratory measured NOx emissions
from diesel driven passenger cars [32, 33, 58]. Thus,
well before the Volkswagen scandal broke in 2015,
Norwegian legislators and policy makers had been
alerted to the problem. Already in 2011, the first
hints were aired about the need to limit the use of
diesel cars in urban areas. New legislation has since
opened the door on temporary or permanent local re-
strictions on diesel vehicle use. Local governments
may now ban diesel vehicles from entering the inner
city under highly polluted atmospheric conditions.
Since October 2017, diesel cars are subject to an aug-
mented cordon toll rate in the city of Oslo. These re-
strictions, and the uncertainty surrounding their
possible future enforcement and extension, have de-
terred many urban car buyers from choosing a diesel
vehicle, bringing their market share down to 16.0% in
2019. Most probably, the diesel engine’s predicament
has meant a blessing to the electric motor, helping
BEVs to an accelerated market uptake.

3.5 A European perspective

European countries apply a variety of automobile tax-
ation systems [13, 35, 57]. Although most countries in
EU and EFTA do levy some kind of purchase or registra-
tion tax, their structures and levels differ considerably.
Some countries grant subsidies and bonuses to buyers of
BEVs and low emission cars. Other countries apply
whole or partial tax exemptions for battery, fuel cell
and/or plug-in hybrid electric vehicles. The CO,
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abatement effects of these tax breaks depend strongly on
how heavily taxed conventional vehicles are in the first
place.

Most countries in EU and EFTA levy an excise tax on
fossil fuel, with per liter rates that typically add around
100% on top of the pre-tax value.

As its main pillar of climate policy within transpor-
tation, the European Union [17] has mandated max-
imum CO, emission targets for new passenger cars
sold each year from 2020 through 2030. The over-
all target in 2020 through 2024 is 95 gCO,/km, as
measured by the type approval NEDC laboratory trial
and averaged over all vehicles brought to the EU
market. More lenient standards apply to manufac-
turers producing heavier than average vehicles. The
regulation applies EEA-wide.?

To meet the targets, automobile manufacturers are
introducing a widening range of battery and plug-in
hybrid electric vehicles (BEVs and PHEVs). Special
accounting rules make sure that vehicles with a type ap-
proval CO, emission below 50 gCO,/km give rise to
‘super-credits’ towards the EU target for 2020, 2021 and
2022. Manufacturers failing to meet their targets will
incur heavy penalties.

But between 2016 and 2019, the emission rates of new
passenger cars have moved in the wrong direction. Ac-
cording to the European Environmental Agency, the
average CO, emissions from new passenger cars in the
EU was 118.1 gCO,/km in 2016, 118.5 in 2017, 120.8 in
2018 and 122.4 in 2019, before taking account of super-
credits.

This contrasts sharply with the development in Norway,
where type approval emission rates have come down
sharply, to a mean of 60 gCO,/km in 2019 (Fig. 4).

These two disparate developments give rise to an
intriguing question: Could the Norwegian recipe be gen-
eralized — or replicated by other European nations? The
answer is a conditional yes.

As noted above, only a negligible share of the Nor-
wegian incentives is made up by subsidies. In essence,
the policy consists in taxing ICE vehicles. In every
EEA country except Denmark, introducing a Norwe-
gian style set of fiscal incentives in place of the
present automobile taxation and subsidization regime
would probably bring massive amounts of new rev-
enue into the public treasury [23]. Public finance con-
straints are, in other words, no argument against the
Norwegian incentives.

But the introduction of electric vehicles in Norway is
facilitated by a number of circumstances not necessarily
present in EU member states:

2EEA = European Economic Area = EU + Norway, Iceland and
Liechtenstein.
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Average NEDC rates of CO, emission from new passenger cars

gC0,/km

200
190 -
180 -
170 -
160 -
150 -
140 ~
130 -
120 ~
110 A
100 -
90 -+
80 +
70 +
60 -
50 .

-<--Norway
-A-EU27
—0o—EU28

I
2000 2002 2004 2006 2008

Environmental Agency

T T T T T T T

2010

Fig. 4 Type approval rates of CO, emissions for new passenger cars 2001-2019. Sources: ICCT [41], www.ofv.no and European

I ! ! T T T T T T T

2012 2014 2016 2018 2020

1. The electricity supply is based on hydropower and
quite abundant. The per capita output is more than
three times larger than in Germany. The consumer
price level is roughly three times lower, typically
around € 0.10 per kWh.

2. The local grids are strong, as most office
buildings and homes are heated by electricity,
and winters are cold. With the introduction of
smart demand response systems, the grids will
be capable of accommodating large-scale ve-
hicle recharging through outlets in private
homes.

3. A relatively large share of the population live in
detached houses with a driveway, garage or other
designated parking, where a private charging point
can easily be mounted.

4. There is ample space. Fast charging stations can be
set up along most major highways.

5. Toll roads and ferry crossings are almost
ubiquitous. By exempting BEVs from toll and ferry
fares, forceful incentives are created.

6. Roads are slow. This improves the driving range
and makes it less important. Going by car from
the Norwegian capital to any one of the other
three major cities takes about 7 h, for an about
500 km distance. On a 7-h trip, most people do
not mind a 30-min break for recharging etc. On

European motorways, the same distance might be
covered in about 4 h, turning a 30-min inevitable
stop into a nuisance.

7. Norway has no domestic auto industry that might
lobby against ICE vehicle taxation.

4 Modeling approach
To derive elasticities of demand and other market re-
sponse functions, a behavioral model of automobile
choice is helpful. We have thus estimated a nested
logit model ([1]: 285) based on a disaggregate data set
covering virtually all new passenger car purchases in
Norway between January 2002 and October 2016. Al-
most 1.8 million individual car transactions are in-
cluded in the data set, which has been organized into
30,175 rows, each describing a given model variant of
which at least one specimen was sold in a given year.
The vehicle attributes specified for each model variant
include the list price, registration tax, value added tax
(VAT), length, width, powertrain, ICE type approval
fuel consumption and CO, emissions per km, BEV or
PHEV electric range, traction (rear-, front- or 4-
wheel), number of doors and seats, transmission, body
style, and make.

On average, there were 2012 different models vari-
ants offered annually in the Norwegian market during
2002-2016. By way of illustration, we provide in the
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Fig. 5 Nest structure in discrete choice automobile purchase model. Source: @stli et al. [50]

Appendix a couple of scatterplots where the retail
price of each vehicle model variant is plotted against
the price exclusive of tax or against the calculated en-
ergy costs.

The upper nests of the model are defined as makes
(brands), while the lower level alternatives consist of the
model variants offered by each manufacturer (Fig. 5). Sev-
eral rounds of trial-and-error were performed, on a previ-
ous data set, to arrive at a nest structure compatible with a
priori theoretical constraints concerning the utility scale pa-
rameters [50]. In our model, these are all larger than unity.

According to this structure, the probability of choosing
a given vehicle model variant i of make j is the product of
the probability of choosing make j and the conditional
probability of choosing model variant i given the set avail-
able within make j. The mathematical formula for calcu-
lating the choice probability in year ¢ can be stated as:

P.(variant = i) = P,(variant = i|make = j)
- Py(make = ) (1)

If we denote by M, the set of model variants of make j
available in year ¢, the two factors in (1) can be specified as

P, (variant = i|make = )
exp (/4/ V,',')
- , (£ = 2002, 2003, ..., 2016)
ZheM,/ €xp (/4 j Vh/’)

(2)
o (S, o))

exp (
P, (make = j) = ! 1
Sy exp <ﬂ—k n (> eXP(MkVik)D

(t = 2002,2003, ...,2016)

(3)

In these two expressions y; denotes the estimated scale
parameter for each make in the lower nest. When nor-
malizing the upper scale parameter to unity, these lower
scale parameters are restricted to be larger than unity.
The indirect utility function specified for each individual
vehicle model variant i of make j, denoted Vj;, is speci-
fied as a linear combination of coefficients and explana-
tory variables:

V=Y Bk +7; (4)

Here, the explanatory variables x;; are vehicle attri-
butes. The y; are make-specific constants, estimated
as the coefficients of a set of dummy variables — z;,
say — equal to one if and only if model variant i be-
longs to make j (see Table 1 for details). Note that
the ;. coefficients are not indexed by i or j — they
are all generic, i. e. identical across vehicle model var-
iants and makes.

As analysts, we do not have full information about the
indirect utility generated by each vehicle model variant.
Following common practice, we assume that the observ-
able utility U/; (say) consists of the systematic term Vj;
and some random disturbance term ey, i. e.

Ulj = Vl‘j + el']‘, (5)

where the e; are independent and identically Gumbel
distributed random variables with scale parameters u;
([1]: 287).

Although the differences between certain car model
variants are miniscule, they are all defined as separate
units in the data set. The model contains 81 parameters,
of which 19 are scale (log-sum) parameters characteriz-
ing the lower nests.

Although, at the upper level, model variants are
grouped together into makes, the discrete choice model
contains no bulkheads separating different market seg-
ments from each other. Each model variant competes, in
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Table 1 Nested logit model of automobile purchase. Coefficient estimates and standard errors. Source: Fridstrem and @stli [25]

Variable description Variable name Coefficient Standard error
Continuous variables
Log of size in square meters (length x width) Size 2.520 0.0150
List price (100 kNOK 2016) Price -0.203 0.0012
Net present value of energy outlay (100 kNOK 2016) Energycost —-0.331 0.0031
Non-tax share of list price Resourcecostshare 3320 0.0212
Square root of BEV electric range (km) BEVrange 0.148 0.0027
Square root of PHEV electric range (km) PHEVrange 0.090 0.0026
Diesel trend (log of years since 1995) Dieseltrend 0.769 0.0056
Dummy variables for vehicle attributes
Diesel ICE 2012 CDiesel12 —0.382 0.0037
Diesel ICE 2013 CDiesel13 -0.520 0.0041
Diesel ICE 2014 CDiesel14 -0.528 0.0043
Diesel ICE 2015 CDiesel15 -0.721 0.0052
Diesel ICE 2016 CDiesel16 —0.824 0.0059
Rear-wheel traction (reference: 4-wheel) CRearwheel —0499 0.0038
Front-wheel traction (reference: 4-wheel) CFrontwheel —-0.524 0.0031
HEV (reference: gasoline ICE) CHybrid -0.036 0.0027
PHEV (reference: gasoline ICE) CPlugin -0.920 0.0186
Diesel ICE (reference: gasoline ICE) CDiesel -1.870 0.0140
BEV (reference: gasoline ICE) CElectric —-2.500 0.0373
At least 5 doors CFiveormoredoors 0615 0.0041
Stick shift (reference: automatic shift) CManual -0.123 0.0010
Dummy variables for body style (reference: compact)
Convertible CCartype2 0.164 0.0051
Coupé CCartype4 —0.081 0.0047
Panel van CCartype5 —0.600 0.0079
Minivan CCartype6 —0.065 0.0014
Pick-up truck CCartype7 -0.468 0.0413
Sedan CCartype8 0.123 0.0028
Station wagon CCartype9 0.021 0.0010
Sport-Utility Vehicle (SUV) CCartypel0 0387 0.0025
Dummy variables for make (reference: all other makes)
Volkswagen Cvolkswagen 2920 0.0231
Toyota Ctoyota 2910 0.0236
Ford Cford 1.680 0.0227
Volvo Cvolvo 2660 0.0250
Peugeot Cpeugeot 1.740 0.0238
Audi Caudi 1.930 0.0241
BMW Cbmw 1.300 0.0231
Nissan Cnissan 1.300 0.0229
Skoda Cskoda 1.730 0.0243
Opel Copel 0.939 0.0259
Mercedes Cmercedes 0.559 0.0253
Mitsubishi Cmitsubishi 1.600 0.0243
Mazda Cmazda 1.780 0.0252
Hyundai Chyundai —0204 00352
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Table 1 Nested logit model of automobile purchase. Coefficient estimates and standard errors. Source: Fridstram and @stli [25] (Continued)

Variable description Variable name Coefficient Standard error
Suzuki Csuzuki 0.903 0.0262
Subaru Csubaru 0.954 0.0272
Honda Chonda 1430 0.0257
Citroén Ccitroen 0.745 0.0268
Kia Ckia 0490 0.0104
Renault Crenault 0.041 0.0098
Mini Cmini -0.121 0.0120
Fiat (Cfiat 0.021 0.0121
Landrover Clandrover 0.209 0.0122
Lexus Clexus 1.000 0.0148
Chevrolet Cchevrolet —-0.067 0.0144
Daihatsu Cdaihatsu —-0.042 0.0155
Alfa Romeo Calfaromeo -0.211 0.0159
Porsche Cporsche 1.020 00176
Jeep Cjeep 0.099 00176
Jaguar Cjaguar -0.124 0.0204
Seat Cseat -0.515 0.0215
Smart Csmart —0.158 0.0233
Tesla Ctesla —-0.595 0.0254
Saab Csaab 1.030 00119

Scale parameters for make
Volkswagen muvolkswagen 3.070 00184
Toyota mutoyota 2.820 0.0171
Ford muford 2210 0.0143
Volvo muvolvo 3240 0.0204
Peugeot mupeugeot 2.500 0.0175
Audi muaudi 2710 0.0175
BMW mubmw 2.120 0.0134
Nissan munissan 1.970 0.0131
Skoda muskoda 2.960 0.0228
Opel muopel 1910 0.0155
Mercedes mumercedes 1.580 00114
Mitsubishi mumitsubishi 2460 0.0172
Mazda mumazda 2920 0.0217
Hyundai muhyundai 1.260 0.0135
Suzuki musuzuki 1.850 0.0175
Subaru musubaru 1.900 0.0193
Honda muhonda 2470 0.0206
Citroén mucitroen 2.090 0.0196
Other makes muother 1480 0.0102

General
# of parameters k 81
# of observation units n 30,175
Initial log-likelihood Lo —13,587,325
Final log-likelihood [ —12,368,837

Goodness-of-fit measure Rho bar 0.09
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principle, with all other variants, although the degree of
substitution will typically be larger within the respective
nests than between them.

The model essentially distinguishes between five en-
ergy technologies (powertrains):

e Gasoline internal combustion engine (ICE) vehicles

e Diesel ICE vehicles

e Ordinary (non-plug-in) hybrid electric vehicles
(HEVs)

e Plug-in hybrid electric vehicles (PHEVs)

e Battery electric vehicles (BEVs)

Although hydrogen fuel cell electric vehicles (FCEVs)
were also present in the Norwegian market in 2016, with
23 vehicles sold, corresponding to a 0.015% market
share, information on this energy technology is presently
too scant to allow for demand modeling. Hence, FCEVs
have been excluded from our data set. The same applies
to cars running on liquefied petroleum gas (LPG) or
compressed natural gas (CNG), of which there are al-
most none in the Norwegian automobile fleet. Also ex-
cluded are a small number of atypical, minibus-like
passenger cars with 8 or 9 seats, as well as a few uncom-
mon cars for which list price information was
inaccessible.

Taken together, 99.1% of the new passenger cars regis-
tered between January 2002 and October 2016 are in-
cluded in data set.

As far as we know, our model differs from all other
automobile choice models in the scientific literature in
relying exclusively on vehicle data. Our unit of observa-
tion is a car model variant, not a household or individ-
ual. No information is available on vehicle owners or
buyers. Thus the utility functions of the nested logit
model contain vehicle attributes only. Dispensing with
information on the vehicle owners or buyers amounts to
a massive simplification, which allows us to represent
the vehicles themselves in a maximally detailed and dis-
aggregate way.

Among the limitations following from our setup is the
lack of vehicle mileage data. No information is available
to us on the life expectancy, durability or maintenance
costs of each individual model variant. Yet such informa-
tion is probably available, albeit at an informal level, to
the car buyers, conditioning their choices. As noted in
Section 2, households with a large anticipated annual
driving distance may tend to choose differently from
those with a more limited car use demand. More im-
portantly, families affected by a toll cordon or a ferry
fare on their daily commute may be tempted to choose a
vehicle that is exempt of such fees. In congested urban
areas, BEV access to the bus lane is another important
enticement.
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The pros and cons of our modeling approach are dis-
cussed in more detail in Section 6.

5 Results

The model has been estimated by the maximum likeli-
hood method as coded in the Biogeme Python software
[25]. Detailed estimation results are reported in Table 1.
All estimates have the expected sign. All but two param-
eter estimates of little consequence (the dummy coeffi-
cients of makes Fiat and Daihatsu) are significantly
different from zero with a p-value smaller than 0.001. In
most cases, the standard error is less than 1% of the
point estimate, implying exceptionally narrow confi-
dence intervals for the coefficients.

5.1 Direct and cross price elasticities of demand for
automobiles

The model provides imputed (fitted) values for the
probabilities of choosing any one car model variant in
any year from 2002 to 2016. Through counterfactual
simulation and sample enumeration ([1]: 146-148),
the model can be used to simulate a wide variety of
hypothetical changes in the independent variables. In
this paper, we focus on the effects of changes in ve-
hicle or energy prices, as evaluated in our last year of
observation 2016.

To derive, e.g., the direct and cross elasticities of de-
mand with respect to the prices of gasoline cars, we
simulate a 10% uniform change in the list prices of all
gasoline cars and recalculate the predicted market shares
of all automobile model variants, regardless of power-
train. By summing through the 2016 sample, we obtain
new aggregate market shares for each energy technology.
By dividing the percentage changes in these aggregate
market shares by 10, we obtain a measure of the market
response to a 1 % price change for gasoline cars, i.e. the
own and cross price (arc) elasticities.

Similar counterfactual simulations are repeated with
respect to the prices of BEVs, PHEVs, HEVs and diesel
driven cars. Results are shown in Fig. 6.

The direct (own-price) elasticity of demand for
gasoline cars is calculated at —1.08. That is, in the event
of a uniform 10% increase in the prices of gasoline cars,
the number of new gasoline cars sold would shrink by
10.8%, assuming all other prices to be constant.

The cross price elasticity of demand for diesel cars is
estimated at 0.51. That is, in the event of a uniform 10%
increase in the prices of gasoline cars, the number of
new diesel cars sold would go up by 5.1%.

The cross price elasticities of demand for battery elec-
tric cars (BEVs), plug-in hybrid electric cars (PHEVs)
and ordinary hybrid electric cars (HEVs) with respect to
the price of gasoline cars are estimated at 0.36, 0.43 and
0.38, respectively (light blue bars in Fig. 6).
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Fig. 6 Price elasticities of demand for automobiles, by vehicle energy technology. Norway 2016

For diesel driven cars, the direct price elasticity comes
out at -1.27. Cross price elasticities of demand for
gasoline cars, BEVs, PHEVs and HEVs with respect to
the price of diesel cars are estimated at 0.64, 0.48, 0.71
and 0.32, respectively (red bars in Fig. 6).

HEVs and BEVs are slightly less price elastic than
gasoline cars, exhibiting own-price demand elasticities
of —0.97 and -0.99. PHEVs, on the other hand, ap-
pear to be the most price elastic energy technology in
the 2016 Norwegian car market, with an own price
elasticity of -1.72.

5.2 Automobile demand elasticities with respect to
energy prices
The cars buyers’ choices of vehicle model variants de-
pend not only on the retail prices, but also on energy
costs. As of 2016 in Norway, the mean retail price of
gasoline was NOK 13.55 = € 1.45 per liter = US$ 6.13 per
gallon. The diesel price was NOK 11.66 =€ 1.25 per
liter = US$ 5.28 per gallon, and the mean electricity price
paid by private households was NOK 0.9675 = € 0.103
per kWh — all amounts including excise tax and VAT.
In the model, ICE energy costs are entered in the form
of discounted future gasoline or diesel expenditures, cal-
culated by multiplying (i) the current real price of fuel
by (ii) the vehicle’s type approval rate of per km fuel
consumption, by (iii) an assumed 13,000 km annual

mileage, and by (iv) a 17-year automobile life expect-
ancy, consistent with empirical estimates derived by
Fridstrom et al. [26]. A 4% annual discount rate is
applied.

For BEVs, a standard energy consumption rate of 0.2
kWh/km is used. For PHEVs, we assume 0.1 kWh/km of
electric energy consumption in addition to the type
approval gasoline or diesel consumption. The current
real price of grid electricity sold to private households
(annual average) is used for cost calculation.

The calculated energy cost expenditure is thus propor-
tional to the current unit price of energy. We can
compute elasticities with respect to the fuel and electri-
city prices simply by varying the capitalized energy cost
variable. The elasticities derived are exhibited in Fig. 7.

The elasticity of demand for gasoline cars with respect
to the gasoline price is calculated at —0.71. The ‘cross’
elasticity of demand for diesel cars with respect to the
gasoline price comes out at 0.52. HEVs, PHEVs and
BEVs exhibit corresponding elasticities of -0.20, 0.08
and 0.38, respectively (light blue bars in Fig. 7). Since
almost all HEVs run on gasoline, their market shrinks
with a higher gasoline price. The PHEVs, on the other
hand, are somewhat in the middle: Their competitiveness
is more or less unaffected by a gasoline price increase. Al-
though their cost of operation grows, it grows less than
for HEVs or for gasoline ICE vehicles.
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Fig. 7 Elasticities of demand for automobiles with respect to energy prices, by vehicle energy technology. Norway 2016

A 1 % diesel price increase will reduce demand for
diesel cars by an estimated 0.6%, assuming gasoline and
electricity prices to be unaltered (an elasticity of —0.60).
The demand for gasoline cars, HEVs, PHEVs and BEVs
increases, however, by 0.31, 0.15, 0.31 and 0.23%, re-
spectively (red bars in Fig. 7).

Assuming that the prices of all liquid fuel meant
for ICEs increase by 1 %, the market response is
somewhat more ‘evened out’ between gasoline and
diesel vehicles. Gasoline car demand drops by 0.41%
and diesel car demand by 0.10%. Since diesel cars
are more energy efficient, they are less hardly hit
than gasoline cars by a uniform fuel price surge.
HEV demand is almost unaffected, while PHEV de-
mand goes up by 0.41% and BEV demand by no less
than 0.62%, as estimated for 2016 in Norway (purple
bars in Fig. 7).

Electricity prices have a lesser impact on vehicle de-
mand. The ‘direct’ BEV elasticity of demand is esti-
mated at -0.18. The ‘cross’ demand elasticities are
even smaller (in absolute value) (green bars in Fig. 7).
This result must be interpreted in light of the fact
that BEVs are three to four times more energy effi-
cient than ICE vehicles, and that electricity in Norway
is much cheaper than liquid fuel, as reckoned per
unit of energy (kWh).

5.3 CO, emissions effects

Changes in the mix of new vehicles registered will, in
the long run, affect the composition of the automobile
fleet. This in turn will have implications in terms of
greenhouse gas (GHG) emissions and climate forcing.
Indeed, this is the very rationale for the strong fiscal in-
centives applied to automobile purchases in Norway, as
well as for the more modest incentives applied in a large
number of European countries.

In Fig. 8, we show, again in the form of elasticities, cal-
culated changes in the average type approval rate of CO,
emission from new passenger cars as a result of changes
in the retail price of new vehicles.

As of 2016 in Norway, a 1 % increase in the list price
of gasoline cars would reduce the average type approval
rate of CO, emissions from new passenger cars by an es-
timated 0.18%. For diesel cars, the corresponding effect
is 0.20%. These effects are due to shifts in market de-
mand, as shown in Fig. 6.

A higher price of BEVs will have an almost exactly
opposite effect: +0.19%. Raising the price of PHEVs
by 1 % also increases CO, emissions, by an esti-
mated 0.15%.

The effects of rising energy prices are shown in Fig. 9.

A 1 % gasoline price increase affects the average type
approval rate of CO, emission from new passenger cars
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Fig. 8 The effects of vehicle retail prices on average type approval rate of CO, emissions from new automobiles, by vehicle energy technology.

by an estimated —0.07%, as of 2016 in Norway. For diesel
cars, the corresponding effect is —0.12%. If both types of
fuel become 1 % more expensive, the CO, emissions im-
pact is —0.19%. This is so because more people choose
zero or low emission vehicles.

Higher prices of electricity will have relatively little ef-
fect on vehicle choice, as witnessed by a CO, emissions
elasticity of +0.04.

5.4 Willingness to pay for energy savings

As shown in Table 1, the list price coefficient is esti-
mated at —0.203, with a standard error of 0.0012. The
95% confidence interval stretches from -0.2054 to
-0.2007.

The energy expenditure coefficient estimate comes out
at —0.331, with a standard error of 0.0031. The 95% con-
fidence interval goes from -0.3371 to —0.3249.

By using the calculated net present value of lifetime
energy costs rather than simply the per km fuel cost,
we estimate a coefficient that is directly comparable
to the list price of the vehicle. The ratio between the
two reveals the car buyers’ willingness to pay for en-
ergy efficiency. We derive an implicit willingness to
pay for a future euro saved on energy of 0.331/
0.203 = 1.63 euros.

Hence, at first sight, Norwegian car buyers seem bent
on saving energy, even if they lose from it. Could car
buyers be so concerned about global warming in general,
and about their own environmental footprint in

Elasticities of average CO, emissions with respect to energy prices
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Fig. 9 The effects of energy prices on average type approval rate of CO, emissions from new automobiles, by energy carrier. Norway 2016
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particular, that they have a strong preference for lean
and low emission vehicles per se?

While this altruistic explanation cannot readily be dis-
missed, there are at least two more possible interpreta-
tions, both of them consistent with economic rationality
and individual utility maximization.

One possible explanation is that Norwegian car buyers
are aware of the large discrepancy between real-world
and laboratory (type approval) rates of fuel consumption.
According to Tietge et al. [55], the gap between on-the-
road and laboratory gasoline or diesel consumption rates
has increased from around 10% in 2002 to 38-40% for
the 2015 to 2017 cohorts of passenger car models sold
in the EU.

When energy consumption is measured in terms of
laboratory (type approval) rather than real-world rates
of fuel use, energy costs are grossly underestimated,
and the coefficient estimate is correspondingly overes-
timated (in absolute value). A correct measure of real
world fuel use would lead to a lower fuel cost coeffi-
cient. Assume, for the sake of the argument, that a
20% discrepancy between real-world and laboratory
fuel consumption rates applies throughout our sam-
ple. A reparametrization to take account of this
would lead to an energy cost coefficient of -0.331/
1.2 =-0.276, yielding a willingness to pay for a euro’s
worth of future real-world energy savings of € 0.276/
0.203 = 1.36 euros.

Secondly, it is entirely possible that Norwegian car
buyers discount future cash flows at a subjective rate
lower than 4% per annum. Since 2008, Norwegian
households, whether they are mortgage borrowers or
bank deposit holders, have generally been facing near or
below zero after-tax rates of interest. A quite low or zero
subjective rate of discount would not be at odds with
the market rates of interest.

If consumers are risk averse, and concerned about
the prospect of increasing fuel prices, they may hedge
against this risk by applying a subjective discount rate
lower than the risk neutral rate [34]. In so doing, the
car buyer implicitly puts more emphasis on uncertain
future energy costs than what follows from standard
discounting. Gas guzzlers would be particularly un-
attractive to these customers, and they might value
the high expected future fuel bill almost as if these
costs were incurred today.

Had we instead used a zero discount rate, the en-
ergy coefficient would have come out at -0.238, be-
fore correcting for laboratory measurement error,
implying a € 0.238/0.203 =€ 1.17 willingness to pay
for energy savings in terms of type approval costs. A
— say — 20% uniform laboratory measurement error
would be compatible with a € 1.17/1.2 =€ 0.98 value
in real-world terms.
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In summary, there is little evidence that Norwegian
consumers be ‘myopic’, in the sense of undervaluing
future cash flows. While at odds with Hausman [36],
Gately [27] and Houston [40], our estimates concur
with the more recent and relevant results of Busse
et al. [6].

6 Discussion

6.1 Market shares matter

We have derived and presented own and cross price
elasticities of demand for cars with differing powertrains
in Norway as of 2016. Can these be generalized — to
other countries or years?

Verbatim: no. Elasticities depend crucially on mar-
ket shares. In the multinomial logit model, own price
elasticities are proportional to the initial price level
and to one minus the choice probability (market
share) of the alternative in question. Cross price elas-
ticities are proportional to the initial price and to the
market share of the alternative whose price is chan-
ged ([1]: 111).

In our nested logit model, these formulae will apply
literally only within each nest (i.e., make). When we ag-
gregate across all nests and filter results by powertrain,
the formulae will apply only approximately.

To fix ideas, consider the cross price elasticity of diesel
car demand with respect to the price of BEVs, estimated
at 0.20 (Fig. 6), given a BEV market share of 16%, as in
Norway in 2016.

To generalize this elasticity estimate to a year and
country with a BEV market share of, say, 4%, a
rough conjecture would be 0.20 x 4/16 = 0.05, assum-
ing the price of BEVs to be the same as in 2016 in
Norway.

6.2 Rebound effects

A second qualification pertains to the possible re-
bound effect [52, 53] of generally cheaper cars. Ours
being a market share model, it does not predict or
encompass changes in overall car ownership or ag-
gregate sales. D’Haultfoeuille et al. [8] find, however,
that the French feebate (bonus-malus) system for au-
tomobiles is counterproductive in terms of CO,
abatement, because the bonus has made car owner-
ship affordable to a larger number of families and
thus led to higher aggregate car ownership and use.
In Norway, although not a single euro worth of cash
subsidies is being paid to people buying electric cars,
the tax exemptions for zero exhaust emission vehi-
cles (ZEVs) have enlarged the assortment of rela-
tively inexpensive cars with low operating costs (see
Figs. 10 and 11 in Appendix). It is conceivable that
this might lead to increased household car
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ownership and use. In our model, it might mean
that the own price elasticities of demand for cars are
somewhat underestimated (in absolute value).

6.3 Heterogeneous buyers

A most important qualification is due to the absence
of information about vehicle buyers or owners. Not
including buyer information in the model is tanta-
mount to assuming that all buyers are equal. They
obviously are not. Since the model contains no infor-
mation on the human decision makers, it cannot pre-
dict trends rooted in changes occurring to these
individuals — such as their income, education, family
structure, residence pattern, employment, or travel
demand.

On the positive side, it must be noted that the model
needs no information on vehicles owners or users, or,
for that matter, on any social, macroeconomic or other
contextual factors, in order to produce a prediction —
factual or counterfactual. The model is generic, meaning
that, in principle, it can predict the market share of a ve-
hicle model that is not yet on the market, as long as the
car’s relevant attributes are known and fed into the
model.

In 2016, 48% of new automobiles in Norway were
registered to companies or institutions rather than
to persons. The car-owning firms include car rental
and leasing companies as well as businesses and
government agencies of various kinds. Unfortu-
nately, we do possess any information on the type
of company involved. Many of the cars registered to
leasing companies are in fact being used by private
households.

Among Norwegian car-owning households, some
75% are able to park their car on their own premises
[38]. The remaining 25% may find it difficult to
mount an outlet for vehicle recharging and are hence
less likely to buy an electric car. Essentially, this
means that our model cannot be expected to generate
accurate predictions beyond the point where the share
of plug-in electric vehicles (BEVs + PHEVs) ap-
proaches 75%.

6.4 Omitted variables

With all but two coefficient estimates being different
from zero at the 0.1% level of significance, our nested
logit model produces fairly precise estimates of key be-
havioral parameters as judged by the standard yardsticks
of statistical inference.

This does not, of course, mean that our model is
immune to specification error. In hedonic regression
models, when the demand functions of several het-
erogeneous products are estimated simultaneously,
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the risk of confounding price and quality measures
is well known. If the product quality is positively re-
lated to its manufacturing cost and hence to its
price, which then embodies certain quality factors
not otherwise accounted for, the numerical value of
the price coefficient might be underestimated.

To reduce this risk, we have included in our model a
fairly wide set of quality attributes or proxies: make, size,
powertrain, fuel efficiency, traction, transmission, body
style, and number of doors.

Moreover, we include a measure (named resource-
costshare) capturing the share of the retail price that
is not made up by tax. We interpret this term
primarily as a summary quality measure reflected in
the cost of manufacturing. Elasticities are derived
under the implicit assumption that the resourcecost-
share variable is kept constant, in other words that
prices before and after tax change proportionately.

Yet, compared to the vast array of attributes distin-
guishing one automobile model variant from another,
our discrete choice model captures but a few. Hence
we cannot in general rule out omitted variable bias as
an important source of error, affecting any one of the
model parameters.

In general, the coefficients derived for the various
quality attributes included must be interpreted with cau-
tion. Some of them may pick up effects due to certain
variables not included in the model. A preference for
high annual mileage may, e.g., have been captured by the
size variable and/or the diesel dummy and trend
variables.

Since there are not only two, but five competing
powertrains to consider, and since our data set is an
exhaustive, —maximally disaggregate, 1.8-million
strong collection of automobile transactions, our
context is considerably more complex than the one
described by Verboven [56] (confer Section 2 above).
When choosing between powertrains, makes and
models, Norwegian buyers are concerned, not only
about their future fuel cost, but also about toll, ferry
fares, annual ownership tax, parking, access to the
bus lane, and possible restrictions on urban driving.
None of these contextual factors are explicitly en-
tered into our model. Instead, their combined effects
are picked up, in a crude way, by the dummy vari-
ables for BEVs, HEVs, PHEVs and diesel ICE
vehicles.

The BEV dummy, in particular, is conditioned by the
more favorable rate of ownership tax, of NOK 445 =€
47.60 per annum as of 2016, versus NOK 3135 =€ 335
for a gasoline car. Since the annual tax rates did not
change (in real value) between 2002 and 2016, it was im-
possible to identify this variable as a factor separate from
the BEV dummy.
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6.5 Endogeneity and tax incidence

Another caveat is endogeneity bias. Automobile retail
prices may not be entirely exogenous, as assumed in our
model.

Automobile customers routinely pay for add-ons
and accessories over and above the standard equip-
ment, although automakers differ in terms of how
much equipment they label as ‘standard’ as opposed
to ‘extras’. Many auto customers may be able to ne-
gotiate rebates or, alternatively, a favorable price for
their old car.

The prices entering our data set are, however, not
the actual transaction prices, but the manufacturer’s
suggested retail prices, or list prices, for short. These
prices apply to the ‘standard’ version of each car
model and are set uniformly for all dealers in the
country. They are not subject to negotiation between
dealer and customer.

However, as explained in the literature review
(Section 2), we cannot rule out that list prices be af-
fected by the degree of competition between models
or by the tax rates applicable to the various car
models in a given country. We know from economic
theory that a tax wedge serves to lower the price ob-
tained by the seller, while raising the price paid by
the buyer. One might suspect that the high and
varying purchase taxes in effect in Norway would
lead to low markups for ICE vehicles but higher
markups for BEVs.

However, Johansen [42] observes a 100% pass-
through rate of automobile taxes in Norway, ie. the
entire tax (increase) is normally passed on to buyers.
Yan and Eskeland [59], also studying the Norwegian
market, estimate an 88% pass-through rate. Muehleg-
ger and Rapson [47] find an almost 100% pass-
through rate for the negative tax (subsidy) on electric
cars in effect in California.

Even so, it is conceivable that our model could be im-
proved upon through the use of instrumental variables
predicting the retail prices, as suggested in the seminal
paper by BLP (see Section 2).

We believe, nevertheless, to have reduced the scope
for endogeneity bias (i) through the use of list prices
rather than actual transaction prices, (ii) through the
inclusion of quality attributes and dummy variables
for the respective energy technologies, body styles and
makes, and (iii) through the inclusion of a diesel
trend variable as well as dummy variables capturing
the falling popularity of diesel vehicles since 2011. To
capture the downward trend in the perceived utility
of diesel cars after 2011, we have included a set of
five dummies, one for each year 2012-2016. Prior to
2012, on the other hand, the perceived continual im-
provement of diesel vehicle technology is captured
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through a logarithmic trend term with a positive
coefficient.

In our case, to implement the BLP approach or similar
instrumental variable approaches, we would have had to
collapse the data set into a less disaggregate form, allow-
ing comparisons to be made between vehicle segments.
This procedure would inevitably give rise to certain er-
rors of aggregation. Finding and measuring a relevant
set of instruments to predict the retail prices might be
difficult.

It appears that even the instrument free, alternative
techniques to correct for endogeneity would necessitate
a certain amount of aggregation. The same would be
true of any data set or model that include individual
buyer or owner information in addition to vehicle
attributes.

In this first attempt to explore a large and uniquely de-
tailed data set of automobile transactions, we have opted
for a simpler, but uncompromisingly disaggregate
approach.

6.6 Suggestions for further research
To improve and extend the research presented in this
paper, a number of options exist.

Most obviously, a reanalysis based on a data set up-
dated until 2019, in which one explores an instrumental
variable approach to correct for price endogeneity and
tax incidence, would be of interest.

An updated data set filtered by geographic region
and type of buyer (corporate or personal) would
allow for a host of contextual variables to come into
play and help explain the choices made. Municipal
data could, e.g., come a long way to quantify the
local circumstances affecting the competitiveness of
electric cars, such as toll and ferry fare exemption,
parking regulations, land use patterns, or bus lanes
open to BEVs.

To assess the rebound effect of changing prices,
taxes or subsidies, an econometric model of aggre-
gate automobile demand would be needed. As a
measure of the ‘generalized price’ of automobiles
over time, the overall log-sum of alternatives eman-
ating from our (updated) nested logit model could
possibly be used.

A most promising line of research is the joint mod-
eling of vehicle choice and use underway in the pro-
ject ‘Driving towards the low emission society’. By
merging a host of administrative registers, the project
team has complied a data base covering the entire
adult Norwegian population in 2017. The data base
includes income, employment, zones of residence and
work, car ownership, license holding, and vehicle
mileage data at the individual and household level
back to 2009. The data set would allow for uniquely
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accurate and comprehensive analyses of the household
decision processes bearing on vehicle energy con-
sumption and technology, road travel demand,
greenhouse gas emissions, and local pollutants. Of
particular interest is the impact of economic and
regulatory policy intervention. A first set of econo-
metric analyses have been delivered by Johansen [42]
and Fevang et al. [18].

7 Conclusions

We have demonstrated one way to derive direct and
cross price elasticities of demand for cars with conven-
tional or alternative energy technology. While the litera-
ture is replete with studies on direct demand effects,
cross price elasticity estimates do not abound. This is
particularly true when it comes to substitution effects in-
volving battery or hybrid electric vehicles. We believe
our study to be among the first empirical appraisals of
cross price effects between liquid fuel and electricity in
road transportation.

Even cross price elasticities between gasoline and
diesel vehicles or fuel are hard to come by. Here,
too, our study might add to the subject matter
insight.

Due to the competition in the automobile market,
each energy technology is relatively price elastic. We
estimate the own-price elasticity of gasoline driven
cars as a whole at -1.08. That is, if all gasoline cars
in the market had their prices increased by 10%,
while the prices of all other cars remained un-
changed, the number of gasoline cars sold would
drop by 10.8%.

Diesel cars and PHEVs are even more price elastic:
-1.27 and -1.72, respectively. In Norway as of 2016,
BEVs have an own-price elasticity of almost exactly 1.
The elasticities of demand for gasoline and diesel
driven cars with respect to the price of their own fuel
are estimated at —0.71 and -0.60, respectively, assum-
ing in each case that the other fuel prices are kept
constant. If, however, both fuel prices increase by 1
%, the demand for gasoline and diesel driven cars
changes by -0.41 and -0.10%.

The cross price elasticities of demand for gasoline
cars with respect to the price of diesel cars, and vice
versa, are estimated at 0.64 and 0.51, as of 2016 in
Norway. The corresponding ‘cross-demand’ elasticities
with respect to the respective fuel prices are esti-
mated at 0.31 and 0.52. That is, a 10% increase in the
pump price of gasoline would lift the sale of diesel
cars by an estimated 5.2%.

The cross price elasticities of demand for battery elec-
tric cars (BEVs) with respect to the prices of gasoline
and diesel driven cars are estimated at 0.36 and 0.48, re-
spectively. The elasticity of BEV demand with respect to
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the price of all liquid fuel (gasoline and diesel) is esti-
mated at 0.62.

The apparent, fairly high degree of substitution be-
tween vehicle energy technologies means that fiscal
policy measures affecting the prices of vehicles and
fuel have a considerable potential for changing the
long-term composition of the vehicle fleet and its en-
ergy consumption, climate footprint and general en-
vironmental impact.

Under the tax regime and energy technology market
shares prevailing in Norway as of 2016, a 1 % uni-
form increase in the price of gasoline and diesel
would reduce the mean type approval rate of CO,
emissions from new passenger cars by an estimated
0.19%. Thus, as implied by Johansson and Schipper
[43], higher fuel prices may well have a stronger long
term CO, mitigation impact through the mean fuel
intensity than through the direct travel demand
response.

For fruitful inference, the cross demand effects be-
tween gasoline, diesel and electricity must be studied
at the appropriate point of decision. A societal choice
of energy technology is made each time a brand new
vehicle is registered. This suggests that fiscal incen-
tives to mitigate CO, be directed at the decisions
made at the car dealer’s rather than at the gas
station.

Our approach relies on disaggregate discrete choice
modeling as applied to a comprehensive and almost
complete data set of new automobile transactions.
The vast degree of variation in such a disaggregate
data set allows for exceptionally precise statistical in-
ference. However, the major drawback of a model
based exclusively on vehicle data, like ours, is that it
cannot estimate or predict how the auto market re-
sponds to changes or constraints affecting the ve-
hicle buyers or owners, be they companies or private
households. Thus, among the most important vari-
ables omitted in our model are household size, in-
come, and zones of residence and employment. Also,
while the buyer’s anticipated annual mileage may be
determined simultaneously with the choice of ve-
hicle, or help explain it, gathering such information
has been outside the scope of our simplified vehicle
choice modeling exercise.

Also, since we have not have been able to take
proper account of the possible endogeneity of vehicle
retail prices, our study should be regarded only as a
first attempt to econometrically model automobile
choice at the most disaggregate level, exploiting a
uniquely detailed and exhaustive vehicle transaction
data set for the purpose of own and cross price elas-
ticity estimation. Results could be biased and should
be interpreted with caution.
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8 Appendix
8.1 Scatterplots
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