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Abstract—With the introduction of massive renewable energy
sources and storage devices, the traditional process of grid
operation must be improved in order to be safe, reliable, fast
responsive and cost efficient, and in this regard power flow
solvers are indispensable. In this paper, we introduce an Interior
Point-based (IP) Multi-Period AC Optimal Power Flow (MPOPF)
solver for the integration of Stationary Energy Storage Systems
(SESS) and Electric Vehicles (EV). The primary methodology is
based on: 1) analytic and exact calculation of partial differential
equations of the Lagrangian sub-problem, and 2) exploiting the
sparse structure and pattern of the coefficient matrix of Newton-
Raphson approach in the IP algorithm. Extensive results of
the application of proposed methods on several benchmark test
systems are presented and elaborated, where the advantages and
disadvantages of different existing algorithms for the solution
of MPOPF, from the standpoint of computational efficiency, are
brought forward. We compare the computational performance
of the proposed Schur-Complement algorithm with a direct
sparse LU solver. The comparison is performed for two different
applicational purposes: SESS and EV. The results suggest the
substantial computational performance of Schur-Complement
algorithm in comparison with that of a direct LU solver when
the number of storage devices and optimisation horizon increase
for both cases of SESS and EV. Also, some situations where
computational performance is inferior are discussed.

Index Terms—Multi-Period ACOPF, Interior Point Method,
Energy Storage Systems

I. INTRODUCTION

LARGE-scale introduction of Renewable Energy Sources
(RES), Stationary Energy Storage Systems (SESS) and

Electric Vehicles (EV) will influence the way the electricity
grid is operated. In the planning and operation of the electricity
network, power flow analysis toolboxes that are reliable,
computationally fast, and tractable are indispensable.
The optimal power flow is a non-linear and non-convex
problem which was introduced in the sixties [1] for the first
time. Although it is considered to be a classic power sys-
tems problem among researchers, depending on the technical
applications and operational dimensions, it may be adapted
to various versions such as the Multi-Period AC Optimal
Power Flow (MPOPF), introduced by [2], and may become
intractable and computationally very demanding even after
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about 60 years [3, 4].
Many researchers have been trying to either simplify MPOPF
by linearising the main problem [5–7], or by making it more
reliable by finding the global optimum point with different
convex relation approaches such as [8], semidefinite pro-
gramming (SDP) relaxations [9, 10] and second-order cone
programming [11]. Moreover, MPOPF is being suggested as a
potential online operational tool [12] for use in the near future.
Since the non-linear nature of full ACOPF problems requires
non-linear solvers to be called, several Non-Linear Program-
ming (NLP) solvers are used to solve MPOPF problems; these
are primarily developed based on IP methods, such as MIPS*

[13], IPOPT* [14] KNITRO* [15], and recently BELTISTOS*

[16], of which the only tailored algorithm to solve MPOPF
problems is BELTISTOS. An extensive review of both MPOPF
problem formulations and solution methods can be found
in [3, 17]. With more and more penetration of renewables
into the system, it becomes imperative to rely on SESS to
overcome the variability of these renewable energy resources;
MPOPF becomes a pivotal tool in this context for system
operators, and as such better solvers need to be designed
from the point of view of computational ease and efficiency.
Though reliability is the most critical factor when it comes
to the global optimum solution, computational performance is
pivotal for the implementation and application of an algorithm
for online operational purposes. It is well-known from the
literature [18, 19] that solution of linear Karush–Kuhn–Tucker
(KKT) systems and calculation of gradients are the two
most computationally expensive aspects in solving a MPOPF
problem. Thus, we propose a solver to exploit the sparsity of
a MPOPF structure (both KKT systems and gradients) and
speed the solution up.
Although considerable efforts have been undertaken in order
to solve the MPOPF problem, no currently available work
extensively elaborates the complex mathematical details of the
problem, because of which it is difficult to compare the various
solution algorithms in a systematic (same platform, same
programming language, single-thread environment) manner.
MATPOWER [13] does have a complete implementation of a
single-period ACOPF with function evaluations and solution
of KKT systems with MIPS. However, there is no package for
the MPOPF function evaluations and for handling the sparsity
structure of the first and second gradients, as introduced in
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this proposed package. Reference [16] introduced a fast multi-
period KKT solver, Beltistos, as an extension of the IPOPT
solver, and specifically for the MPOPF KKT structure, using
the PARDISO solver. However, reference [16] does not: 1)
consider the sparsity structure of first and second gradients,
and 2) discuss the dynamic behaviour of energy storage
systems in two different forms of SESS and EV in MPOPF.
Moreover, there are several ways to model storage devices
within a time-period. Meyer-Huebner et al. [20] formulated
three different storage device models as: (A) an inequality
for the entire optimisation horizon, (B) an inequality and
a variable for the entire optimisation horizon, and (C) T
number of equalities for each timestamp within the entire
optimisation horizon. They concluded that option (C) has
more efficient computational performance than options (A)
and (B); therefore, we use option (C) formulation to apply the
most efficient mathematical formulation with respect to the
implementation of storage devices. Note that option (A) has
recently been implemented in the Beltistos solver [16]. Finally,
the size (number of rows and columns) of KKT systems
considered to be solved in [16] is almost double the size of
KKT systems we solve here. Reference [21] has developed
a computationally fast solution to the MPOPF problem and
applied it on a small-scale SESS and test system. Here, in this
paper, we expand our work in [21], and propose a new solver
for large-scale integration of SESS and EV with consideration
of full AC power flow equations.
The main contributions of our paper could be summarised
as follows: a) New input matrices are introduced in order to
capture the full dynamic of a multi-period system including
SESS and EV. b) The first and second analytical (hand-
coded) derivatives of linear and non-linear equality constraints,
inequality constraints and objective function, w.r.t. variables
are extracted in the multi-period form. c) Sparsity structure
of analytical derivatives is extracted in order to increase the
performance in terms of memory requirements and sparsity
calculations in different loops. d) A new re-ordering format is
introduced to exploit and reveal the multi-period structure of
KKT systems for both SESS and EV. e) A high-performance
and memory-efficient sparse Schur-Complement algorithm is
introduced in order to solve the multi-period structure of
the KKT systems for both SESS and EV. In this paper,
we compare the Schur-Complement algorithm, tailored for a
specific structure, with a direct sparse LU solver to shed light
into a systematic comparison (same implementation platform
(MATLAB), single-thread controlled environment, similar PC)
to only compare the algorithmic complexity differences.
The structure of this paper is as follows: in the next section, the
formulation of MPOPF problem in the presence of SESS and
EV is elaborated. The solution proposal, and the mathematical
algorithms for speeding up the solution proposal, are presented
in the subsequent sections. Next, the performance of the Schur-
Complement algorithm is compared with that of a direct sparse
LU solver for multiple numbers of storage devices and time
horizons for two different cases: performance of SESS on stan-
dard mesh transmission benchmarks, and the performance of
EV on radial distribution benchmarks. Finally, we summarise
the paper in the last section with some concluding remarks.

II. FORMULATION OF PROPOSED SOLVER*

In general, a given power system can be represented with the
following input matrices in ACOPF: BUS matrix with nb ∈ N
number of buses. These buses are connected to each other
through the total number of nl ∈ N lines represented by the
BRANCH matrix. The matrix consists of connecting buses,
i.e., BUSfrom ∈ Rnl×1 and BUSto ∈ Rnl×1 and physical line
parameters ∈ Rnl×1, such as resistance, reactance, susceptance
and their apparent power capacities (MVA). The GEN matrix
specifies the connection bus of ng ∈ N generators with
their dispatch limits and voltage references. The GENCOST
matrix is the associated cost functions of generators in GEN.
These matrices have been already defined by MATPOWER
[22] and are now extensively used by many researchers in the
subjects of power economics and power system analysis.
Here, in addition to the above input matrices, we propose
new input matrices†, which can be seen in Appendix A of
this paper. These new input matrices are designed for the
integration of large-scale SESS and EV to capture the dynamic
behaviour of storage devices over the optimisation horizon.
The input BATT represents the properties of energy storage
systems and more importantly ties single-period optimal power
flow equations through a positive integer parameter, called
time period, T ∈ N; t is a time in the interval of t ∈ {1, ..., T}.
The differences between the representation of a SESS and an
EV are concentrated in the binary input matrices of AVBP,
CONCH, CONDI and AVBQ. Storage i is considered
stationary if the availability condition (1a) holds, otherwise
it has a dynamic behaviour over time and can be considered
as an EV, while charge, discharge and reactive power provi-
sion conditions could be considered as secondary or optional
conditions (1b)-(1d).

AVBP
∣∣
i,t=1

= AVBP
∣∣
i,t=2

= ... = AVBP
∣∣
i,t=T

= 1 (1a)

CONCH
∣∣
i,t=1

= CONCH
∣∣
i,t=2

= ... = CONCH
∣∣
i,t=T

= 1 (1b)

CONDI
∣∣
i,t=1

= CONDI
∣∣
i,t=2

= ... = CONDI
∣∣
i,t=T

= 1 (1c)

AVBQ
∣∣
i,t=1

= AVBQ
∣∣
i,t=2

= ... = AVBQ
∣∣
i,t=T

= 1 (1d)

In order to elaborate the mathematical formulation of the
MPOPF incorporating the BATT matrix, we first present
single-period power flow equations for a time t, and subse-
quently expand the equations to represent MPOPF.
Considering the above types of inputs, we have an object-
oriented programming (OOP) package that constructs different
types of constraints according to the input matrices and feeds
the mathematical formulation of the MPOPF to the solver
designed under this package.

A. Single-Period Optimal Power Flow

With the input matrices introduced above, BUS,
BRANCH, GEN and GENCOST, we show the
mathematical formulation of a single-period ACOPF in this
subsection.
Consider the vector of complex bus voltages in rectangular

*Note that all vectors and matrices are shown with bold and non-italic
notation: BOLD

†Five non-binary and five binary matrices
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coordinates as illustrated by V ∈ C
nb×1, where C is a

complex set. The voltage vector comprises complex elements
as: vi = |vi|ejθi , where vi ∈ C, {vi, θi} ∈ R are the
voltage magnitude and angle of the corresponding bus
in polar coordinates, where R is a real set. Moreover,
{V ,Θ} ∈ Rnb×1 can be defined as vectors of real magnitude
and angle of bus voltages. In vector form, the relationship
between rectangular and polar coordinates is shown as:

V = diag(V) exp(jΘ) (2)

Line Connectivity matrices of {Cfr,Cto} ∈ Bnl×nb can be
extracted from BUSfrom and BUSto vectors, such that cfr

ik =
1 if bus k is connected to line i, and otherwise cfr

ik = 0, and the
same holds for Cto. {Vfr, Vto} ∈ Cnl×1 are the vectors of
complex bus voltages at line terminals, including “from” and
“to” nodes, correspondingly. These vectors can be extracted
using the connectivity matrices explained above shown in Eqs.
(3) and (4).

Vfr = CfrV (3)

Vto = CtoV (4)

and therefore:

VLine =

[
Vfr

Vto

]
2nl×1

=

CLine︷ ︸︸ ︷[
Cfr

Cto

]
2nl×nb

V (5)

In order to obtain the entire network flow, the vector of
complex voltages V has to be determined. This can be done
using the well-known Kirchhoff’s current law: the sum of
external current injections at a bus Ibus ∈ Cnb×1 is equal
to the sum of internal - through lines - current injections to
the same bus Ibus = YbusV, where Ybus ∈ Cnb×nb is the bus
admittance matrix. The same principle is applied to compute
the complex line current using complex bus voltages of line
terminals, and line admittance matrix YLine ∈ C2nl×nb . This
is shown in (6)

ILine =

[
Ifr

Ito

]
2nl×1

=

YLine︷ ︸︸ ︷[
Yfr

Yto

]
2nl×nb

V (6)

The relation between bus admittance and line admittance
matrices is defined by (7).

Ybus = (Cfr)>Yfr + (Cto)>Yto + Yshunt (7)

{Yfr,Yto} ∈ Cnl×nb , and Yshunt ∈ Cnb×nb is the matrix
of shunt admittance. Finally, the external complex power
injections into a bus i can be computed as sbus

i = vi(i
bus
i )∗,

whereas the complex power flow over a line at the terminal
k can be calculated by sLine

k = (CLine
k V)(iLine

k )∗, where
{sbus
i , ibus

i , sLine
k , iLine

i } ∈ C and CLine
k ∈ B1×nb is the kth

element of CLine matrix. In summary, power injections into
a bus and into a line can be extended in the form of vectors
using (8).

Sbus = diag(V)(Ibus)∗ ∈ C
nb×1 (8)

SLine = diag(VLine)(ILine)∗ ∈ C
2nl×1 (9)

Here we define generator connectivity matrix Cg ∈ Bnb×ng

which is a binary matrix of 0 and 1. Cg
ik = 1 if generator i

is connected to the bus k and otherwise 0. Sg ∈ Cng×1 and
Sd ∈ Cnb×1 are the complex vectors of generation units and
loads. The first set of non-linear equality constraints for the
ACOPF problem, can be defined as:

g̃(x) = Sbus + Sd −CgSg = 0 (10)

In this article, ∼ is the sign for a non-linear equation. In the
literature on power systems, (10) has been divided into two
parts, power balance of active and reactive power as indicated
in Eqs. (11a) and (11b), respectively. Therefore, non-linear
equality constraints take the form of g̃(x) ∈ Rngn×1 and
ngn = 2nb.

CgPg −Pd = <[CgSg]−<[Sd] = <[Sbus] (11a)

CgQg −Qd = =[CgSg]−=[Sd] = =[Sbus] (11b)

where {Pg,Qg} ∈ Rng×1 are the vectors of active and
reactive power generations, {Pd,Qd} ∈ Rnb×1 are the
vectors of active and reactive power consumption. If we take
(|SLine

max |)2 ∈ R2nl×1 as the squared vector of apparent power
flow limits, then apparent line power flow constraint can be
defined as:

h̃(x) =
[
(SLine)∗SLine − (|SLine

max |)2
]
≤ 0 ∈ Rnhn×1 (12)

where nhn = 2nl. Another type of constraint is the linear
equality constraint g(x) = 0 where − is the sign for a linear
vector. Voltage angle is kept equal to zero θslack = 0 ∈ R

which is a linear equality constraint for the slack bus. The last
set of constraints is that of linear inequality, related to upper
and lower bounds variables called box constraints [16] with
vectors Θmin ≤ Θ ≤ Θmax ∈ R(2nb−1)×1, Vmin ≤ V ≤
Vmax ∈ R2nb×1, {(Pg)min ≤ Pg ≤ (Pg)max, (Qg)min ≤
Qg ≤ (Qg)max} ∈ R2ng×1. All the box constraints could be
put together and represented with one vector h(x) ∈ Rnhl×1

where nhl = (4nb − 1) + 4ng .
Thus, if the objective function f(x) is an arbitrary linear or
non-linear function related to the cost of power generation, the
general optimisation framework could be:

min
x
f(x)

s.t. g(x) =

[
g̃(x)

g(x)

]
= 0 ∈ Rngx×1

h(x) =

[
h̃(x)

h(x)

]
≤ 0 ∈ Rnhx×1

(13)

where ngx = ngn + ngl*, nhx = nhn + nhl
†, and

x =
[
Θ V Pg Qg

]> ∈ Rnx×1 (14)

and nx = 2nb+2ng . With the discussed input matrices and use
of OOP‡, we construct an instance of an object called MP
which incorporates all the introduced network variables and

* ngn is the number of nonlinear equality constraints and ngl is the
number of linear equality constraints

†nhn is the number of nonlinear inequality constraints and nhl is the
number of linear inequality constraints

‡object oriented programming
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constraints in the formulated problem. In the next subsection,
we come up with a new input matrix, and make a generalised
case for storage devices.

B. Multi-Period Optimal Power Flow

“BATT” is the main introduced matrix here in this sec-
tion, to optimally operate an electricity network over a time
horizon of T which defines the number of time-steps in the
optimisation. Therefore, multiple single-period optimal power
flow problems are coupled together over a given time horizon
to determine the optimal combined operation schedule for
energy storage systems. The coupling constraints over time are
introduced by linear equality constraints of storage devices in
ei,t − ei,t−1 − ψch

i p
ch
i,t∆t +

pdch
i,t ∆t

ψdch
i

= 0, where soci,t = ei
emax
i

and {soc, pch, pch, qs, e, ψ} ∈ R representing storage device
variables connected to bus i at time t. The presence of: 1)
cost minimisation objective function, and 2) the efficiency of
charge and discharge helps to avoid the simultaneous charging
and discharging. However, charging and discharging might still
occur at the same time in some cases, although this is outside
the scope of this paper.
To extend the vector notation, for ny storage devices, we have:

gs(τ t) = Et −Et−1 −ΨchPch
t ∆t+

Pdch
t ∆t

Ψdch
= 0 (15)

where SOCt = Et

Emax and {SOCt, Pch
t ,P

dch
t ,Qs

t} ∈
Rny×1. Moreover, τ t = {xt−1,xt} and T =
{τ 1, τ 2, . . . , τT } = {{x1}, {x1,x2}, . . . , {xT−1,xT }} =
{x1,x2, . . . ,xT }, thus G

s
(T )*= G

s
(X). Thus, four vectors

above representing ny are added to the variables shown in
subsection II-A. Note that initial state of charge of each
storage i at time t is defined as ei,t−1 = emaxi SOCii,t where
SOCi is the input matrix introduced in II such that an initial
value of SOCii,t is allocated if one of the arrival conditions
are satisfied: 1) AVBPi,t=1 = 1. 2) AVBPi,t−1 = 0 and
AVBPi,t = 1.
The procedure to initiate a MPOPF problem is as follows:
First, we read information on storage devices such as bus
location, charge and discharge efficiencies, capacities and
initial state of charge from BATT matrix, and save them
in the MP instance, previously initiated by other input
matrices as introduced previously. Then, we construct the
above-mentioned storage variables and their linear equality
constraints in the current MP instance.
Furthermore, four new three-dimensional connectivity
matrices of {Cch,Cdch,Cs} ∈ Bnb×ny×T and
Cg ∈ Bnb×ng×T are constructed. The first two are built
based on: 1) bus connectivity matrix BATT, 2) active power
provision AVBP, and 3) whether charge or discharge options
are available from CONCH and CONDI matrices, such
that Cch

ikt = 1 if both the following conditions are satisfied:
(a) battery i is connected to bus k at time t, and (b) charge
of battery i at time t is activated, otherwise 0. Cdch

jkt = 1 if
both the following conditions are satisfied (a) battery j is

*Note that τ t and T are representations of two sets such that τ t ∈ T

connected to bus k at time t, and (b) discharge of battery j
at time t is activated, otherwise 0.
Connectivity matrix for reactive power provision Cs is
constructed by: 1) bus connectivity matrix BATT, 2)
reactive power provision AVBQ such that Cs

mkt = 1 if
both the following conditions are satisfied: (a) battery m is
connected to bus k at time t, and (b) reactive power injection
or absorption of battery m at time t is activated, otherwise 0.
Similarly, a generator connectivity matrix Cg is built with:
1) bus connectivity matrix of generators GEN, 2) active
and reactive power provision AVG such that Cg

nkt = 1 if
the generator n is connected to bus k is running at time t,
otherwise 0. Thus, Eqs. (11a) and (11b) can be re-formulated
now to Eqs. (16a) and (16b) respectively.

Cg
tP

g
t −Pd

t −Cch
t Pch

t + Cdch
t Pdch

t −<[Sbus
t ] = 0 (16a)

Cg
tQ

g
t −Qd

t + Cs
tQ

s
t −=[Sbus

t ] = 0 (16b)

where, Pd
t = PDt. and Qd

t = QDt In summary, the total
number of variables for each time-step becomes:

xt =
[
Θt Vt Pg

t Qg
t SOCt Pch

t Pdch
t Qs

t

]>
1×Nxt

(17)

Nxt
= nx + 4ny . Subscript t stands for a specific time-

step in this paper. In addition to box constraints defined in
II-A, we define more box constraints corresponding to the new
defined storage variables. {SOCMit ≤ SOCt ≤ SOCmax,
(Pch)min ≤ Pch

t ≤ (Pch)max, (Pdch)min ≤ Pdch
t ≤

(Pdch)max and (Qs)min ≤ Qs
t ≤ (Qs)max} ∈ Rny×1 The

vector of total variables in the MPOPF problem X ∈ RNx×1

where Nx = TNxt , is shown in (18):

X =
[
x1 x2 ... xt ... xT

]> (18)

Finally, a general MPOPF problem can be formulated as:

min
X

F (X) (19a)

s.t. G(X) =
[
G̃(X) G(X) G

s
(X)

]>
= 0 ∈ RNg×1 (19b)

H(X) =
[
H̃(X) H(X)

]>
≤ 0 ∈ RNh×1 (19c)

where F (X) = ft=1(x1) + ft=2(x2) + · · · + ft=T (xT ),
G̃(X) ∈ RNgn×1, G(X) ∈ RNgl×1, G

s
(X) ∈ RNgs×1,

H̃(X) ∈ RNhn×1 and H(X) ∈ RNhl×1 are as shown:

G̃(X) =
[
g̃(x1) g̃(x2) . . . g̃(xT )

]>
(20a)

G(X) =
[
g(x1) g(x2) . . . g(xT )

]>
(20b)

G
s
(X) =

[
gs(τ 1) gs(τ 2) . . . gs(τT )

]>
(20c)

H̃(X) =
[
h̃(x1) h̃(x2) . . . h̃(xT )

]>
(20d)

H(X) =
[
h(x1) h(x2) . . . h(xT )

]>
(20e)

where Ng = Ngn+Ngl+Ngs, Ngn = Tngn, Ngl = nglt=1
+

nglt=2
+ ...+nglt=T

, Ngs = Tny, Nh = Nhn+Nhl, Nhn =
Tnhn, Nhl = nhlt=1

+ nhlt=2
+ ... + nhlt=T

+ T (8ny),
τ 1 = {x1}. Furthermore, g̃(xt) contains the two new defined
constraints of (16a) and (16b). g(xt) includes (21a)-(21e) plus
any other upper and lower bounds of variable xt such that
xmin
t = xmax

t , which can be user defined, and as such can
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be removed from the list of box constraints in (20e) and is
introduced here as a new linear equality (21g).

θslack
t = 0 (21a)

pch
i,t = 0, if {AVBPi,t ∨CONCHi,t} = 0 (21b)

pdch
i,t = 0, if {AVBPi,t ∨CONDIi,t} = 0 (21c)

qs
i,t = 0, if {AVBPi,t ∨AVBQi,t} = 0 (21d)

pg
i,t = 0, if AVGi,t = 0 (21e)

qg
i,t = 0, if AVGi,t = 0 (21f)

xt = xmin
t = xmax

t if xmin
t = xmax

t (21g)

gs(xt) is defined from (15), h̃(xt) is the non-linear inequality
constraints for time t and is similar to (12). Finally h(xt) is
the set of box constraints of all variables except the slack bus.
Our proposed formulation through the instance of MP is fed
to the solver that is introduced in the next section.
Note that the number of linear equality constraints of nglt
and the number of linear inequality constraints of nhlt , in
each time t = {1, ..., T}, are dependent on the availability
matrices AVBP, CONCH, CONDI, AVBQ and AVG
introduced in II. These numbers play an important role in the
Jacobian structure of solution proposal and the follow-up re-
ordering section, which will be explained in IV-B. In brief,
they are constant numbers over time t = {1, ..., T} in the
optimisation, if all the storage devices and generators have
similar input availability matrices over time t, as shown in (1)
(if all storage devices are SESS).

III. SOLUTION PROPOSAL

A. Primal-Dual Interior Point

The problem formulated in Section II-B can be solved using
primal-dual interior method [13]. This can be implemented by
converting the inequality equations to equality in (13) using
slack variable of zi ∈ R, where i denotes the number of
inequality equation {i|i ∈ N, 1 ≤ i ≤ Nh} and applying
barrier function for slack variables:

min
X

[
F (X)− γ

Nh∑
i=1

ln(zi)

]
(22a)

s.t. G(X) = 0, (22b)
H(X) + Z = 0 (22c)
Z ≥ 0 (22d)

where Z ∈ RNg×1 is the vector of slack variables and γ is
the perturbation parameter which reduces to zero when the
problem approaches to optimal point. Lagrangian function of
the sub-problems (22a)-(22d) becomes:

Lγ(X,Z,λ,µ) = f(X) + λ>G(X)

+ µ>(H(X) + Z)− γ
Ng∑
i=1

ln(zi)
(23)

where λ ∈ RNg×1,µ ∈ RNh×1 are the vectors of Lagrange
multipliers for equality and inequality constraints. To write

Karush-Kuhn-Tucker (KKT) conditions, partial differentials of
(23) can be extracted with respect to the all variables:

Lγ
X(X,Z,λ,µ) = fX + λ>GX + µ>HX = 0 (24a)

Lγ
Z(X,Z,λ,µ) = µ> − γe>diag(Z)−1 = 0 (24b)

Lγ
λ(X,Z,λ,µ) = G>(X) = 0 (24c)

Lγ
µ(X,Z,λ,µ) = H>(X) + Z> = 0 (24d)

where fX ∈ RNx×1, GX ∈ RNg×Nx and HX ∈ RNh×Nx

are partial differentials of objective function, equality con-
straints and inequality constraints with respect to X, and
e ∈ {1}Nh×1. Eqs. (24a)-(24d) can be written as (25a) in
a matrix form.

Ω(X,Z,λ,µ) =


fX + λ>GX + µ>HX

diag(Z)µ> − γe>

G>(X)

H>(X) + Z>

 = 0 (25a)

Z > 0 (25b)
µ > 0 (25c)

We applied Newton-Raphson method [23] to solve sets of
equations in (25a), and hence we have:

[ΩX ΩZ Ωλ Ωµ]k[∆X ∆Z ∆λ ∆µ]>
k

= −Ω(X,Z,λ,µ)k (26)

where k is the iteration number in each step. In order to use
Newton-Raphson’s method to solve equation, partial differen-
tial equations of ΩX , ΩZ , Ωλ and Ωµ must be calculated as
shown in (27).


Lγ

XX 0 G>X H>X
0 diag(µ) 0 diag(Z)

GX 0 0 0

HX I 0 0


k

∆X

∆Z

∆λ

∆µ


k

= −


Lγ

X
>

Lγ
Z
>

Lγ
λ
>

Lγ
µ
>


k

(27)
where Lγ

XX(X,Z,λ,µ) = fXX + GXX(λ) + HXX(µ).
Looking at the structure of the coefficient matrix in (27), we
are able to eliminate two of the rows. In the second row of
(27), we have the equation as diag(µ)∆X + diag(Z)∆µ =
−diag(µ)Z + γe, where ∆µ can re-written as a function of
∆Z as in (28).

∆µ = −µ + diag(Z)−1(γe− diag(µ)∆Z) (28)

The same holds for the fourth row of (27) which can be
replaced by ∆Z as a function of ∆X as in (29).

∆Z = −H(X)− Z−HX∆X (29)

Thus, two rows of matrix (27) are taken out of the sets of
equation and can be calculated by substituting ∆X in (29) and
then ∆Z in (28). After the eliminations of above mentioned
rows and several stages of simplifications, (27) can finally be
written as : [

M G>X
GX 0

]k[
∆X

∆λ

]k
=

[
−N

−G(X)

]k
(30)
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M ∈ RNx×Nx and N ∈ RNx×1 are defined as:

M = Lγ
XX + H>Xdiag(Z)−1diag(µ)HX (31a)

N = f>X + G>Xλ + H>Xµ

+ H>Xdiag(Z)−1(γe + diag(µ)H(X))
(31b)

Lγ
XX = fXX + GXX(λ) + HXX(µ) (31c)

Solving (30) numerically results to the locally optimum point
X∗. By replacing ∆Xk into Eq. (29), ∆Zk is obtained and
subsequently ∆Zk into Eq. (28) finally ∆µk is computed.
Therefore, Xk+1 = Xk + α∆Xk, λk+1 = λk + α∆λk,
Zk+1 = Zk + α∆Zk and µk+1 = µk + α∆µk, where α
is the step-control parameter which can be chosen arbitrary
or based on a optimal multiplier method, which is beyond the
scope of this paper[24]. The detail of numerical solution in
Newton’s method can be found in [25].

It is common to construct Jacobian matrix of (30) using
numerical derivatives and solve the KKT equations using LU
factorization[26]. However, note that M is an asymmetric
matrix even though it is structurally symmetric, The reason
is the term H>Xdiag(Z)−1diag(µ)HX in Eq. (31a) which
makes it asymmetrical. Therefore it is not possible to apply
the LDL> factorization technique [26].

IV. SPEED UP OF THE SOLUTION PROPOSAL

In terms of both memory allocation and computational
operations, a MPOPF problem can be attributed to two parts:
1) Input data* preparation, and 2) Core optimisation solver
which itself consists of: (a) function evaluation, which is the
calculus of partial differentials of constraints and objective
function w.r.t. all variables in the solution proposal section,
(b) computing the inverse of Newton-Raphson Jacobian (30),
and (c) computational efforts regarding the update of step-
control parameter in each iteration. It is well known that step
(b) is the most computationally expensive step of an interior
point (IP) algorithm with a large-scale number of variables and
constraints [18, 27]. In this section, first, we mathematically
derive the analytical derivative of partial differentiation of
constraints w.r.t. all existing variables which, in turn, is the
fastest way to solve step (a) [28], and then, we tailor an
algorithm to exploit the structure of KKT systems, specifically
using a Schur-Complement approach to accelerate step (b) of
the IP method. In the following subsections we will elaborate
these two steps.

A. Analytical Derivatives

In this subsection, the first and second analytical deriva-
tives of H(X), G(X) and F (X) will be extracted. These
derivations will be used to construct and consequently solve
Eqs. (31a), (31b), (31c) and finally (30). Details of equations
regarding the extraction of analytical derivatives can be found
in Appendix B .
Furthermore, to exploit the sparsity structure of each block
of GX = ∂G

∂X , HX = ∂H
∂X , FX = ∂F

∂X , GXX = ∂
∂X (G>Xλ),

HXX = ∂
∂X (H>Xλ), FXX = ∂

∂X (F>X ) and their subsequent

*14 input matrices for BATTPOWER solver, see Appendix A

sub-blocks according to (20a)-(20e), a robust and simplified
form of structure is developed in order to use highly efficient
mathematical operations and matrix substitutions to form
(30). The general format of these structures can be found in
Appendix C of this paper.

B. Structure Exploitation and Following Re-Ordering

Theoretically, the concept of MPOPF is several snapshots of
OPF coupled in time. Each snapshot is a dispatch operational
problem with its own variables introduced with (17). If we
exploit the structure of the Hessian matrix in (30) with
ordering of constraints and variables as shown in (20), then,
the detailed structure of M and GX can be seen as:

[
M1

. . . MT

]
G>X

G̃x1

. . . G̃xT

Gx1

. . . GxT

G
s

τ1

. . . G
s

τT


O





∆x1
...

∆xT
∆λ̃1

...

∆λ̃T
∆λ1

...

∆λT
∆λ

s

1
...

∆λ
s

T



=



−N1
...

−NT

−g̃(x1)
...

−g̃(xT )

−g(x1)
...

−g(xT )

−gs(τ 1)
...

−gs(τT )



(32)

where Mt ∈ RNxt×Nxt , G>X ∈ RNx×Ng is the transpose
of the left bottom block in the coefficient matrix of (32) ,
O ∈ ONg×Ng , (set of zeros: O), G̃xt

= ∂g̃
∂xt
∈ RNx×ngn ,

Gxt
= ∂g

∂xt
∈ RNx×nglt . As defined in section II-B, for

the sake of simplicity of notation we take G
s

τ t
= ∂gs

∂τ t
=

∂gs

∂(xt−1,xt)
∈ RNx×ngs . If we reorder the current variables

and consequently re-construct the coefficient and righthand
side matrix such that all variables corresponding to time t
are assembled together except the variables of inter-temporal
constraints, then the vector of variables with its corresponding
righthand side and coefficient matrix could be written as (33a),
(33b) and (33c), respectively.[

∆x1 ∆λ̃1 ∆λ1. . .∆xT ∆λ̃T ∆λT , ∆λ
s

1. . .∆λ
s

T

]>
(33a)

−−−
[
N1 g̃(x1) g(x1). . .NT g̃(xT ) g(xT ),gs(τ 1). . .gs(τT )

]>
(33b)

[
Υ1

. . . ΥT

]
G
sr

X

>

[
G
sr

τ1
. . . G

sr

τT

]
Or

 (33c)

where Υt =

 Mt

[
G̃>xt

G
>
xt

]
[
G̃xt

Gxt

]
Or ′

 ∈ RNΥt×NΥt , NΥt =

Nxt
+ ngn + nglt , Or ′ ∈ O[ngn+nglt

]×[ngn+nglt
] and

G
sr

X =

[
G
sr

τ1
. . . G

sr

τT

]
∈ RNgs×Ngsr , Ngsr = NΥt=1

+

NΥt=2 + · · · + NΥt=T
, Or ∈ ONgs×Ngs . In order to il-

lustrate the re-ordering more clearly, we define: δωωωt =[
∆xt∆λ̃t∆λt

]>
∈ RNΥt×1, δλ =

[
∆λ

s

1. . .∆λ
s

T

]> ∈

RNgs×1, ζζζt = −
[
NtG̃xt

Gxt

]>
∈ RNΥt×1 and Γ =
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−
[
gs(τ 1). . .gs(τT )

]> ∈ RNgs×1. Therefore we can convert
(33) to (34) which is a well-known “arrowhead” structure that
can be found in the literature [29, 30].

Υ1 ρρρ>1
Υ2 ρρρ>2

. . .
...

ΥT ρρρ>T
ρρρ1 ρρρ2 . . . ρρρT 0




δωωω1

δωωω2

...
δωωωT
δλ

 =


ζζζ1

ζζζ2

...
ζζζT
ΓΓΓ

 (34)

where the coupling matrices of ρρρt ∈ RNgs×NΥt are:

ρρρ1 =


G
s

τ1

0

0

0

0

 , ρρρ2 =


0

G
s

τ2

0

0

0

 , ρρρT =


0

0

0

0

G
s

τT

 (35)

Fig. 1 illustrates the reordering of Hessian matrix of Eqs.
(32) to (34). In the next subsection, we propose a Schur-
Complement technique tailored for the reordered structure
of Eq. (34) to save computational time. Considering Eqs.

Fig. 1. Structure of Jacobian of the Newton-Raphson’s algorithm before and
after reordering.

(33) and (34), it should be kept in mind that in the intro-
duced re-ordering structure, there are some vectors which
could have a different length in each time t as discussed in
Section II-B when the availability of either storage devices,
charge, discharge, reactive power provision, and generators
would alternate over the optimisation horizon (AVBP

∣∣
t=1
6=

AVBP
∣∣
t=2
6= ... 6= AVBP

∣∣
t=T

), and consequently, nglt and
nhlt are not constant through time t = {1, ..., T}. Therefore,
specific indices are introduced to keep track of them at each
time and over each iteration k, in Eq. (32).

C. Schur-Complement Technique

The sparse arrowhead structure of the coefficient matrix
of (34), is suited for block elimination using the Schur-
Complement technique [26]. The algorithm is tailored for
solving any problem featured with repeatable matrices and
coupling constraints between them, such as: (a) multi-period
systems as this paper presents, and in the literature [16], (b)
stochastic problems with a large number of scenarios [29, 30],
and (c) security constrained problems with a large number
of contingencies [31]. Algs. 1 and 2 are proposed to solve

for a generic multi-period KKT system with a structurally
symmetric structure. Alg. 1 is for Schur-Complement factori-
sation and Alg. 2 is for forward and backward substitution.
The substructures of (34) are inputs to both Algs. 1 and 2.

1) Alg. 1: Schur-Complement Factorisation: Alg. 1 starts
with finding a permutation matrix of Qam

t ∈ BNΥt×NΥt ,
generated in order to capture the sparse structure of Υt to
reduce the number of non-zeroes in LU factorisation in L.10.
Permutation matrix Qam

t is produced based on an approximate
minimum degree permutation method [32]. It should be kept in
mind that the structure of Qam

t is dependent on Υt which, in
turn, is dependent on the structure of input matrices and the
conditions of (1a)-(1c). If these conditions hold (all storage
devices are SESS), then NΥt is constant through time t.
Therefore, Υt and Qam

t have constant structures over time and
L.6 will not be executed; in other words Qam

1 = Qam
2 = Qam

t .
If these conditions do not hold, which in turn mean dynamic
storage devices (EV), then L.2 is not executed and instead,
L.6 will be executed. The factorisation here is based on an
incomplete augmented factorisation technique [16] in order to
compute the Schur-Complement of each augmented matrix of

Aa
t =

[
Υt ρρρ>t
ρρρt 0

]
. Permuted Υt factorises with LU factorisa-

tion technique in L.10 and afterwards, the Schur-Complement
of each block of Aa

t is computed as St = −ρρρtΥ−1
t ρρρ>t ∈

RNgs×Ngs in L.12 in each iteration and summed together in
σσσc ∈ RNgs×Ngs L.13 to shape the main Schur-Complement of
arrowhead structure of Eq. (34).
With almost the same procedure explained above, in order to

Algorithm 1: Schur-Complement Factorization

1 Function SchurComI({Υt, ρρρt, ζζζt,
∀ t = 1, . . . , T}):

2 [Qam
t ]=ApproxMinDegrPermut(Υ1)// If (1a)− (1c) hold

3 σσσc = 0
4 σσσl = 0
5 for t= 1 :T do
6 [Qam

t ]=ApproxMinDegrPermut(Υt)
7 // If (1a)− (1c) does NOT hold

8 Π = SparsePermute(
[
[Qam

t ]>ΥtQ
am
t

]
)

9 [Llut , Ulu
t , Plu

t , Qlu
t , Rlu

t ]
10 = SparseLUFactorize(Π)
11 infΥ

t =struct(Llut , Ulu
t , Plu

t , Qlu
t , Rlu

t , Qam
t )

12 St = −ρρρtΥ−1
t ρρρ>t // SchurCompAuxiliary Aa

t

13 σσσc = σσσc + St // MainSchurCompArrowhead− 34

14 Ξt = −ρρρtΥ−1
t ζζζt // SchurCompAuxiliary Ab

t

15 σσσl = σσσl + Ξt// righthand side Alg 2,L.2

16 End for
17 [Lldl, Dldl, Pldl, Sldl] =SparseLDLFactorize(σσσc)
18 inf c = struct (Lldl, Dldl, Pldl, Sldl)
19 return {σσσl, inf c} and {infΥ

t , ∀ t = 1, . . . , T}
20 End Function

compute ξξξ which is the righthand side of the main Schur-
Complement equation in [σσσc][δλ] = [ξξξ], (refer to Alg 2, L.2),
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we define another auxiliary block matrix of Ab
t =

[
Υt ζζζt
ρρρt 0

]
and consequently compute its Schur-Complement as Ξt =
−ρρρtΥ−1

t ζζζt where Υ−1
t is factorised in previous step L.10.

Thus, we only recall the stored “struct” of infΥ
t L.11 from

memory. Value of Ξt is aggregated in each iteration with σσσl

in L.15. σσσc is the Schur-Complement of arrowhead structure
of Eq. (34) and has an interesting pattern that can be exploited
further, and it is dependent on the input matrices of AVBP,
CONCH and CONDI.

a) Static Schur-Complement Structure: SESS: If
{AVBP,CONCH,CONDI} ∈ {1}ny×T holds, then all
the storage devices are considered as SESS. As elaborated
above, σσσc is the aggregation of Schur-Complement of
each auxiliary block of Aa

t , therefore, in each iteration
St = −ρρρtΥ−1

t ρρρ>t . σσσc is a sparse bandwidth matrix such that
{∀i, j σσσci,j = 0 if |i− j| > ny} where the number of non-zero
matrix elements is only dependent on the number of storage
devices ny and simulation horizon T , and not on network
properties. More precisely, each element of sij,t is computed
through sij,t = −ρρρi,tΥ−1

t ρρρ>j,t considering the only non-zero
part of ρρρt is G

s

τ t
which moves from top to bottom while t

moves from t = 1 to t = T as illustrated in Eq. (35) and
in the for loop of Alg. 1, with the essential assumption that
the condition AVBP = CONDI = CONCH =

[
1
]
ny×T

holds, which intuitively means that G
s

τ t
has a constant

structure over optimisation horizon. ρρρ>t also has the same
pattern through a loop from t = 1 to t = T . Therefore, St
moves in a bandwidth structure as shown in Fig. 2 from the
top left corner to the bottom right. Each block of St6=T is
constructed by two sub-blocks of G

s

τ t
, the blue rectangular

sub-block with Pch and Pdch variables and the light green
sub-block with SOC variables at each time. The structure of
St=T is different since G

s

τT
is the last linking equation over

time, and therefore, SOC is no longer linked to a next time,
but Pch and Pdch still exist.

Fig. 2. Overall structure of the main Schur-Complement: σσσc. The structure
of St is shown with red dots, and St=T with black dots, for a network with
ny = 5 and T = 10. *

b) Dynamic Schur-Complement Structure—EV: If con-
ditions of (1a)-(1c) do not hold, the structure shown in Fig.

*nnz = 340 stands for number of non-zero elements

2 would change depending on the dynamic behaviour of the
input matrices of AVBP, CONCH and CONDI. Fig. 3 il-
lustrates the sparse Schur-Complement pattern of σσσc, made by
input matrices shown in Eqs.(36a)-(36b). Each colour/legend
shows the non-zero elements of St for each time t = 1, ..., T ,
which show up in the main Schur-Complement structure σσσc.
As presented in Alg. 1, L.13, the structure of σσσc, and also as
shown in Fig. 3, is constructed inside a for loop from t = 1 to
t = T . The non-zero elements of St have overlaps with non-
zero elements of St−1 and St+1, see Fig. 3. Therefore, they are
added together in the for loop while t progresses from t = 1
to t = T . In this algorithm, it is important to allocate a size
of memory proportional to the number of non-zero elements
of St and σσσc to achieve high performance. It should be noted
that the number of non-zero elements in St and σσσc (and the
size of allocated memory) for each time t = 1, ..., T are in
turn function of input matrices and they can be predetermined
before the starting of operation of Alg. 1.

AVBP = CONCH =


0 0 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0

0 0 0 0 1 1 1 0 0 0

 (36a)

CONDI =
[
0
]
(ny=5)×(T=10)

(36b)

There is no EV in the system at time t = 1, 2; two EV appear
at time t = 3, full EV connected system at t = 5, 6; similarly,
corresponding structures alter, as can be seen in Fig. 2. The

Fig. 3. Overal structure of the main Schur-Complement: σσσc, for a network
with ny = 5 and T = 10, corresponding to input matrices of (36a)-(36b) ‡.
Number of non-zero elements of St changes through time t = {1, ..., T}.

reason for the different structure shown Fig. 2 is the same
reason elaborated in Section IV-C1a. The only non-zero part
of ρρρt is G

s

τ t
which moves from top to bottom while t moves

from t = 1 to t = T illustrated in Eq. (35) and in the for loop
of Alg. 1. G

s

τ t
is the first derivative of energy storage systems

in the time t and its structure alternates over time, due to the
dynamic behaviour of input matrices of AVBP, CONCH

‡nnz = 202 stands for number of non-zero elements, different value for
each time
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and CONDI. Therefore, the Schur-Complement structure of
σσσc gets more sparse than that of SESS and could be factorised
even faster than that of SESS.
In the rest of Alg. 1, σσσc is factorised by sparse LDL factorisa-
tion technique, since it is a sparse symmetric matrix. Finally
Alg. 1 returns σσσl matrix, and inf c and infΥ

t structs containing
factorisation information to be called in Alg. 2.

2) Alg. 2 Forward and Backward Substitution: Inputs are
matrices of Γ,σσσl, ρρρt, ζζζt, and structs of inf c, infΥ

t . Alg. 2
is to solve δλ through sparse LDL forward and backward
substitution, and further, to compute δωωωt through a for loop
with the help of sparse LU forward and backward substitution.
First the righthand side of the main Schur-Complement equa-
tion of σσσcδλ = ξξξ, which is ξξξ, is computed in Alg 2, L.2. Using
the “struct” of inf c, the sparse LDL forward and backward
substitution is performed in L.3 and δλ is cleared. Second,
in a for loop, a slack variable called κκκt is constructed with
κκκt = ζζζt − ρρρ>t δλ in L.5 and recalled to solve for the sparse
LU forward and backward substitution using the “struct” of
infΥ

t in each t and thus, δωωωt is cleared. Finally, Alg. 2 returns
vectors δλ and δωωωt.

Algorithm 2: Forward and Backward Substitution

1 Function SchurComII({Γ,σσσl, inf c}, {ρρρt, ζζζt, infΥ
t ,

∀ t = 1, . . . , T}):
2 ξξξ = Γ− σσσl
3 δλ=SparseLDLForBackSolve(inf c, ξξξ)
4 for t= 1 :T do
5 κκκt = ζζζt − ρρρ>t δλ
6 δωωωt= SparseLUForBackSolve(infΥ

t ,κκκt)
7 End for
8 return {δλ} and δωωωt, ∀ t = 1, . . . , T}
9 End Function

D. Computational Performance and Memory Efficiency

1) Sparse Matrix Operations: Since most of the operations
here are done in sparse format efficiently, sparse indexing and
libraries are developed to construct and handle re-ordering
explained above. Sparsity is a method to save significant
memory in large-scale simulations.

2) Function Evaluation: First and foremost, analytical
derivative functions, known as hand-coded functions, are im-
plemented here, and are the fastest possible way to compute
all partial derivatives of the first and second order of objective
function and constraints w.r.t. all variables, especially when
it comes to large-scale optimisation systems [28]. Efficiently
exploiting and handling the operations of sparse matrices and
subsequently updating their indices over the optimisation time
horizon accelerates the computational performance.

3) KKT Systems: The computational complexity of sparse
matrix operations is proportional to the number of non-zero
elements in each sparse matrix and independent of the size
of matrices [33]. Note that the number of non-zero elements
of Jacobian matrix for each case and per row is almost
constant and is similar to the number of non-zero elements

of a coefficient matrix obtained from discretisation of finite
element methods in three-dimensional meshes.
Therefore, the only possible way to assess the performance of
a solution proposal for KKT systems is through the estimation
of sparse matrix operations. Factorisation L.10 in Alg. 1 is
the most computationally expensive step in the loop when
ny ≤ K, where K ∝ NΥt = Nxt + ngn + nglt = 2nb +
2ng + 4ny + ngn + nglt

*. Note that the rest of Alg. 1 and
Alg. 2 are dominated by this step and can be ignored in this
case. If the number of non-zero elements per row of coefficient
matrix of (35) is approximately similar to Laplacian matrices
discretised by finite elements, then LU factorisation of L.10
has the complexity of O(N2

Υt
). Consequently, the complexity

of factorisation for all blocks of Υt will be O(TN2
Υt

).
However, for ny > K the complexity of Alg. 1 is dominated by
(a) L.12, (b) L.14, since the size of matrix ρρρt ∈ RNgs×NΥt gets
larger where Ngs = Tny , and (c) LDL> factorisation of σσσc,
in L.17; this is because the main Schur-Complement structure
of σσσc becomes dense and therefore, the complexity of LDL>

will be O( 1
3 (Tny)3). Note that overhead of factorisation of σσσc

is more dependent on ny than on T since non-zero elements
of each sub-structure of St are {nnz(St) = ny(ny + 3) | t 6=
T, nnz(ST ) = n2

y}. Note that these arguments are only
valid when AVBP = CONDI = CONCH =

[
1
]
ny×T

holds, which in turn would lead to a static Schur-Complement
structure discussed in Section IV-C1a. On the contrary, the
complexity of dynamic Schur-Complement structure shown in
Section IV-C1b has even less overhead than the static one.

4) Memory Efficiency:

a) Input Matrices: BATTPOWER has 14 input matrices
in total, as described in the Appendix A: Four are similar
to MATPOWER (BUS, BRANCH, GEN, GENCOST)
and ten new matrices to capture the mulitperiod formulation
and energy storage. Except the mentioned MATPOWER ma-
trices and the new matrises PD and QD, which are all dense
matrices, the rest is stored in a memory-efficient manner,
either binary or spare format matrices. AVBP, CONCH,
CONDI, AVBQ, and AVG matrices are the binary ones.
Finally, SOCi and SOCMi are neither dense nor binary, so
these are stored with sparse format.

b) Core Optimisation Solver: As noted in Section IV,
the solution of the linear KKT system (30) is the most
computationally expensive step in an IP algorithm. This step
attributes also to the highest peak memory footprint, since the
Newton-Raphson Jacobian (30) is the largest structure built†.
The solution of the multi-period KKT structure of (30) through
Schur-Complement breaks it into smaller Υt blocks in (34),
and thus, significantly less memory allocations. In fact, the
line with peak memory allocation is located in Alg. 1,L.11
where struct infΥ

t stores info to be called in Alg. 2 L.6.

*In other words, Factorisation L.10 is the most computationally expensive
step, when the number of storage devices are smaller than a certain number,
where this number is proportional to size of blocks of Υt in Eq. (34)

†In general, both sparse matrix size (m × n) and density have a direct
relationship with the size of allocated memory in a computational program.
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V. CASE STUDY AND RESULTS*

In this section, we present the results of benchmarking,
obtained from implementations of different algorithms on
similar platforms and workstations. The aim is to show
the computational differences among mathematical algorithms
when implemented on similar platforms.
In this respect, standard case-files are adopted, Case9 [34],
IEEE30 [35], IEEE118 [36] and PEGASE1354 [37, 38] are
chosen for the study of SESS. Moreover, three distribution
networks are considered for the simulation of EV: Case85 [39],
Case141 [40], and a case study based on a real distribution
grid in Mid-Norway [41]; except for the last case study, the
other cases can be found in the MATPOWER data folder
[22]. Details of these benchmarks are shown in Table I. The
transmission networks are considered in order to simulate
the SESS and consequently the performance of static Schur-
Complement structure that was discussed in Section IV. The
distribution networks are considered to simulate and compare
the performance of dynamic Schur-Complement algorithm on
arrival and departure of EV in one 24-hour period.
For all simulation results, both transmission and distribution

TABLE I
POWER GRID BENCHMARK MODELS

Type case study nb nl ng

Transmission
Grid

Case9 9 9 4
IEEE30 30 41 6

IEEE118 118 186 54
PEGASE1354 1354 1991 260

Distribution
Grid

Case85 85 84 1
Case141 141 140 1

Mid-Norway 974 1023 2

networks in the next two subsections, BUS, BRANCH,
GEN, and GENCOST matrices are taken from the original
test-cases and are not modified. Moreover, the flat initialisation
strategy (Xmax−Xmin

2 ) is taken for all results presented in
this paper. Vector of bus active load is obtained through
Pd = cp(t).P , and cp(t) is illustrated in Fig. 4, which
fluctuates similar to a base load of households. Vector of bus
reactive load is simulated as Qd = cq(t).Q with a constant
scaling factor shown in Fig. 4 by a red line. Note that the
objective function of the optimisation problem in this paper
includes only active power minimisation. P and Q are taken
from the original values in BUS matrix. All simulations codes
are developed in MATLAB environment. They are performed
on a computer with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60
GHz and 384 GB RAM, and controlled with the single-thread
environment to compare the computational differences in only
the single-thread mode.

A. Transmission Network with Stationary Storage
For transmission networks, the time-step is taken to be ∆t =

1 hour. The capacity of storage devices is emax
i = 100 MWh,

*Please note that, the efficiency of calculating analytical derivatives and
their structures is illustrated in Appendix D of this paper

and consequently emin
i = 0 MWh. Charge and discharge

limits are considered as (Pch
t )min = (Pdch

t )min = 0 MW
and (Pch

t )max = (Pdch
t )max = 10 MW. All charging and

discharging efficiencies are taken as ψch
i = 0.95 and ψdch

i =
0.97, respectively. Moreover, the initial status of storage de-
vices is taken to be zero for all cases: SOCi =

[
0
]
ny×T

. Fig.
5 shows a typical optimisation outcome where the case study
is Case9. Summation of loads and generations in each hour is
depicted here with the operational strategy of energy storage
systems with ny = 3. Storage devices are located at buses 1,
2 and 3, where generators are located originally in the case-
file. Since the objective function is a quadratic cost function,
the storage devices are charging when the sum of loads is at
the minimum and discharging when at the maximum. Fig. 5
is only for illustration of the optimisation outcome and does
not provide more insight.

Fig. 4. Scaling factor multiplied by vector of consumption of active load Pd

in order to simulate one period of 24 hours

Fig. 5. IEEE Case9, ny = 3, T = 24 and ng = 3. Total loads and generation
vs operational variables of batteries—SOC,Pch and Pdch

1) Independency of Distribution of Storage Devices and
Computational Performance: Optimisation problems are
solved for different distribution of storage devices at buses.
Various types of scenarios are tested in order to verify that
the distribution of storage devices does not have an impact
on the overall computational time of each benchmark for
convergence. In this respect, Table II illustrates the iterations
and overall time spent in solving each case study with specific
strategies for the distribution of storage devices. In Table II,
First-Last strategy is for the one with distribution from first bus
number to the nth

y bus number when ny ≤ nb. If ny > nb,
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then First-Last strategy repeats until all storage devices are
located at the buses. For the Last-First strategy, the starting
point is from the last bus gradually to the first bus. The Load-
Bus strategy is for locating the storage devices at the buses
that only have non-zero load in their original case-files: bus
i adopts one storage if pd

i 6= 0; this process repeats until all
storage devices have been located. The last strategy is Fair-
Dist, which uniformly distributes the storage devices among
the buses. For instance if we have nb = 100 and ny = 10
then every tenth bus adopts a storage device. Table II shows
that the time spent for each iteration, and for each scenario
explained above, is very similar.

TABLE II
STRATEGIES ON DISTRIBUTION OF STORAGE DEVICES

Case Distribution T

(period)
ny

No. of
Iter.

Time (s) Time
iter

Aa
First-Last 240 10 69 145 2.10

Aa
Last-First 240 10 90 190 2.11

Aa
Load-Bus 240 10 67 141.9 2.11

Aa
Fair-Dist 240 10 81 170 2.10

Bb
First-Last 24 50 43 338 7.86

Bb
Last-First 24 50 43 338 7.86

Bb
Load-Bus 24 50 44 348 7.91

Bb
Fair-Dist 24 50 43 342 7.95

a A:IEEE118
b B:PEGASE1354

2) Reported Time in the Benchmark: All the reported time
values in this paper are shown in Appendix D (Table VII) and
Figs. 6, 7, 8, 9, 13, 14 and 15 show the total time taken for dif-
ferent benchmarks, which is the elapsed time to execute an al-
gorithm until the optimum point is found. In other words, total
time is TotalTime = No·of Iter· × TimePerIter. It should
be kept in mind that the same number of iterations is con-
sidered for benchmarks reported and compared in Appendix
D (Table VII) and Figs. 6, 7, 8, 9, 13, 14 and 15. Moreover,
the selected strategy is First-Last distribution for all the above
benchmarks.
Lastly, it should be noted that different distribution strategies
have a different impact on the outcome of optimum operational
values, such as objective function, generator scheduling, total
losses, and voltage fluctuations in the grid.

3) Linear Algebra Overhead of SESS AX = B: As we
stated in Section IV, the most computationally expensive part
of the IP algorithm is the solution of linear algebraic equations
of the KKT system, which is similar to AX = B, where A is
the coefficient matrix, and B is the right-hand side vector. In
order to assess the computational performance of the Schur-
Complement technique, here we compare the performance of
the tailored algorithm with direct sparse LU factorisation of
complete structure of Eq. (34) (well-known arrowhead struc-
ture) and consequently the forward and backward solution,
to present the computational time for the two algorithms
implemented in the same platform. Note that most of the
current IP-based solvers such as IPOPT, MIPS and KNITRO
embed a direct solution method (LU/LDL). The main focus

of the numerical results in this section is short-term horizon
T < 240 for IEEE30, IEEE118 and PEGASE1354 since full
ACOPF would be more application oriented within short time-
periods.
Fig. 6 depicts the computational time needed to solve Eq.
(34) of Case9 with Schur-Complement and a direct sparse-
LU solver for number of storage devices ny = 1, 5, 10, 20, 50
and 100; each case takes into account time horizons of T =
24, 240, 1440 and 8760. Direct sparse-LU solver outperforms
in all cases as ny and T increase. This informs us that
the Schur-Complement method is not efficient in comparison
with a direct sparse-LU solver when the case study is a
comparatively small network.
However, results for IEEE30, IEEE118 and PEGASE1354

Fig. 6. Total time (TotalTime = No·of Iter· × TimePerIter) for solution
of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on Case9

suggest that the Schur-Complement method outperforms the
direct sparse-LU solver when T significantly increases. Since
very large time-periods T > 240 would not be considered as
applied cases, we do not include them here. Moreover, for rel-
atively small number of time periods T ≤ 24 direct sparse-LU
solver outperforms the Schur-Complement method in almost
all cases [16]; therefore, we focus our results for IEEE30,
IEEE118 and PEGASE1354 when the 24 < T < 240. It
can be seen that when number of storage devices increases
ny > 10, then the Schur-Complement method provides a more
computationally efficient outcome.
Fig. 7 illustrates the comparative computational performance

of the Schur-Complement solver and direct sparse-LU solver
in order to solve the IEEE30 case study. As ny > 10 the Schur-
Complement solver has higher performance which increases
considerably when T > 24. Note that the direct sparse-LU
solver is dominant again when ny > 300, due to the reason
that ny > K where K ∝ NΥt

= 2nb+2ng+4ny+ngn+nglt ,
where nb, ng , ny , ngn and nglt are respectively the number
of buses, generators, storage devices, grid non-linear equalities
and grid linear equalities at time t. Put simply, when ny > 300,
the number of storage devices is larger than a certain number
which is proportional to the size of blocks of Υt in (34).
Therefore, the computationally demanding terms would be
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Fig. 7. Total time (TotalTime = No·of Iter· × TimePerIter) for solution
of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on IEEE30

the calculation of Schur-Complement auxiliary blocks of Aa
t

and Ab
t as, respectively, in terms of St = −ρρρtΥ−1

t ρρρ>t and
Ξt = −ρρρtΥ−1

t ζζζt in Alg. 1.
Numerical results of IEEE118 follow approximately a similar
pattern as for IEEE30 when ny and T increase, cf. Fig. 8. It
can be observed that the difference between the direct sparse
LU method and Schur-Complement method gets larger in
IEEE118, which in turn, proves that the latter outperforms
when size of Υt blocks in (34) becomes larger.

Fig. 9 shows the performance of the Schur-Complement

Fig. 8. Total time (TotalTime = No·of Iter· × TimePerIter) for solution
of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on IEEE118

method in comparison with the direct sparse LU solver where
the case study is a large-scale optimisation of PEGASE1354.
As expected, the Schur-Complement method outperforms the
sparse-LU solver considerably when ny > 10 and T > 24.

The simulation shows that computational time is highly
dependent on the number of battery energy storage devices in
the grid and the time-period. The Schur-Complement method

Fig. 9. Total time (TotalTime = No·of Iter· × TimePerIter) for solution
of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on PEGASE1354

is an efficient method to accelerate the MPOPF solution time
when ny and T are large numbers in optimisation.

B. Memory Efficiency

In order to back the statement in subsection IV-D4b, the
maximum memory consumption is tested. Therefore, the peak
memory usage of Schur-Complement method is compared
with that of sparse LU solver. Fig. 10 presents the peak
memory consumption to solve IEEE118, where ny = 1,
ny = 10, and ny = 50. In each ny , four different time horizons
T = 24, T = 48, T = 96, and T = 240 are tested. Moreover,
each simulation test ∈ {1, .., 24} is repeated 10 times, and
the results are shown as box plots in Fig. 10. The results
show that the average peak memory consumption of Schur-
Complement method is more than 7 times less than sparse
LU solver. It should be noted that increase in both T and
ny would result in higher maximum memory usage. Lastly, a
larger variation of the peak memory usage is observed in the
case of direct sparse-LU solver. It should be noted that LU
solver is an internal MATLAB library.

C. Distribution Network with EV Storage

In this section, three distribution networks are considered
for the benchmarking study: Case85 [39], Case141 [40], and
a real Mid-Norway distribution grid.
References [42, 43] report that the average driving distance is
52 km and as per reference [44], the standard deviation is 22
km. EV fleet’s arrival and departure are derived from the work
hour lifestyle survey results presented in [45]. A summary
of the data for EV charge profile generation is provided in
Table III. Note that the departure times of the EV owners are
calculated as 9.5 hours after their arrival time by considering
8 hours of working and 1.5 hours for total commuting time.

The number of EV, departure time, and arrival time are
selected as an input and solved for one period of 24 hours.
One full EV optimisation period is applied for the entire
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Fig. 10. Peak Memory (KB) for solution of the linear KKT systems of (34)
solved by Schur-Complement algorithm vs direct sparse LU solver, IEEE 118,
where ny = 1, ny = 10, and ny = 50.

TABLE III
DATA FOR EV CHARGE PROFILE GENERATION

Mean daily drive distance 52 km
Standard deviation of daily drive distance 22 km
Standard deviation of daily drive distance distribution 10% 1

Percentage of EV population that consume ≤ 18 kWh/100km 80%
Percentage of EV population that consume ≥ 18 kWh/100km 20%

Mean arrival time for the EV population 17:00
hours

Standard deviation of arrival time for the EV population 90 min
Standard deviation of daily arrival time for individual EV 15 min
Percentage of 230V, 10A chargers 70%
Percentage of 230V, 16A chargers 20%
Percentage of 230V, 48A chargers 10%
1 of daily drive distance

simulation from 12:00 PM until 12:00 PM the next day.
Time resolution in each profile can be seen in Table IV.
Three types of charger power capacity are chosen and shown
in Table III. Discharge is considered to be inactive for all
optimisation senarios: CONDI =

[
0
]
ny×T

, input matrices
of AVBP and CONCH are considered to be similar, i.e.
AVBP = CONCH, which are derived from arrival and
departure distribution functions. The initial state of charge
input SOCi is calculated according the distance each EV has
traveled such that [SOCii]

dayn = [emax
i − Energy(x)]

dayn−1 ,
where Energy(x) is a function that calculates the energy
roughly consumed. Lastly, the departure state of charge is
controlled through the last input matrix SOCMi, which
is the minimum state of charge, cf. the box constraint in-
troduced as SOCMit ≤ SOCt ≤ SOCmax, such that
SOCii,t = SOCmax

i if {AVBPi,t = 1 ∧ AVBPi,t+1 =
0} ∨ {AVBPi,t=T = 1}.

1) Standard Distribution Cases: Case85 and Case141 are
open-source radial distribution cases in the MATPOWER
data folder; they are 11 kV and 12.5 kV medium voltage
distribution grids, respectively. They are each fed by only one

TABLE IV
TIME RESOLUTION IN DIFFERENT OPTIMISATION SESSIONS

T ∆t

96 15 min
192 7.5 min
288 5 min
1440 1 min
2880 30 sec

feeder, cf. Table I. Linear cost functions are chosen for both
of them such that f(Pg) = µ>Pg where µ ∈ RT×1 is a
vector of marginal price from 12:00 PM until 12:00 PM the
next day, randomly selected from the Nordpool [46] spot price,
Pg ∈ RT×1 is the power bought from the upstream network,
and T is the optimisation horizon. Pd and Qd of Case85 and
Case141 are calculated similar to the procedure in Section
V-A. Arrival and departure timetables of EV are calculated
according to the description in Section V-C.

2) Local Mid-Norway Distribution Grid: The real-case
Mid-Norway distribution grid is a large distribution case study,
shown in Fig. 11, which is a 22 kV medium voltage to 230
low voltage grid, fed by: 1) a high-voltage 66 kV feeder, Point
of Common Coupling (PCC), shown as red circle dot, and 2) a
local generator, shown as light blue circle dot. Cost functions
of PCC and generator are similar and are a linear function of
f(PgPCC

,Pggen

) = µ>(PgPCC

+Pggen

) where µ ∈ RT×1 is
the marginal hourly spot price (NOK/MW). We assumed that
the feeder and generator have similar hourly cost functions.
The network has 32 MV/LV transformers (shown as dark blue
squares in Fig. 11) and feeds 856 registered consumers in
the low-voltage area. Pd and Qd for Mid-Norway grid are
acquired from the local DSO and are hourly real consumption
data of 856 consumers.
Fig. 12 depicts the optimisation outcome for an EV period

Fig. 11. Local distribution grid located in Norway with 856 costumers. using
the visulaisation technique from [47]

of 12:00 PM Feb 1, 2012, until 12:00 PM Feb 2, 2012, where
optimisation resolution is 15 minutes, and thus T = 96. Fig.
12 a) shows the overall picture of a day with the base load
of consumers, and optimal production from the generator and
PCC as well as optimal charging. Fig. 12 b) provides more
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insight into the optimisation results, where the optimum is
a middle ground between: 1) placing all EV chargings with
highest capacity of charge for the lowest price (shown in
Fig. 12 c)), and 2) minimising losses at the same time. The
compromise outcome is a pick of charging EV distributed
between the time index of 45 until 68 and in a relatively sharp
manner. It should be kept in mind that if the same optimisation
formulation is run with DCOPF, then the charging pick would
be sharp (all in the lowest price timestep), such that the loss
would not be seen. Fig. 12 d) and e) illustrate the charge and
state of charge profile of each EV owner, which total 856.
Lastly, Fig. 12 f) shows the voltage variation of 974 buses
over 24 hours and 96 timesteps.

3) Linear Algebra Overhead of EV AX = B: Similar
to Section V-A3, the computational performance of Schur-
Complement algorithms of Algorithm 1 and Algorithm 2 are
compared with that of a direct sparse LU solver. Despite
the fact that the Schur-Complement structures of SESS and
EV are different, the main difference could be that EV have
lower number of coupling constraints and some simulation
hours could be completely decoupled; it is more efficient to
solve them separately from coupled times. Here in this paper,
we solve one EV period completely, both with the Schur-
Complement solver and the direct sparse LU solver.
Figs. 13 and 14 show the computational time to solve a similar
structure of (34) with the Schur-Complement algorithm vs the
direct sparse LU solver, where number of EVs ny are increased
from 1 to 1000 in the benchmark case study of Case85, with
the strategy of First-Last as shown in Table II. The results
follow the same pattern as that of optimisation of SESS in
IEEE118 shown in fig. 8.
In small time horizons when ny increases the efficiency of
computing of Schur-Complement algorithm surpass that of the
direct sparse LU solver until a certain point, and then decreases
with a slope again. This is more evident when T = 96 and
ny > 100. Furthermore, it can be seen T = 192 and ny > 200.

The Mid-Norway case study is an interesting case where
the direct LU solver mostly performs better. This is due to
the fact the T times LU factorisation of the block Υt in
Alg. 1 of the Schur-Complement algorithm is more compu-
tationally expensive than the solution of the entire coefficient
matrix of (34). This is due to the fact that the number of
coupled blocks of Υt is reduced, which in turn is because
of input matrices, defined by the arrival and departure of
EV. In fact the ratio of coupled blocks can be calculated
as [average of dep time steps−average of arrival time steps]

total time steps = 0.52 which
shows that only 52% of blocks are coupled. One more in-
teresting aspect is the clear observation of the turning point,
when ny = 100 for two time horizons of T = 1440 and
T = 2880, such that when ny < 100 the direct sparse LU
solver performs better, and when ny > 100 then the Schur-
Complement is supreme.

VI. CONCLUSION AND FUTURE WORK

A high performance and memory-efficient multi-period
ACOPF solver based on a primal-dual IP method is proposed

Fig. 12. Outcome of optimisation of large local distribution grid in mid-
Norway, Data for 12:00 PM Feb 1, 2012, until 12:00 PM Feb 2, 2012, with
highest pick of electricity price in the year of 2012: a) General perspective
of optimisation, total hourly consumption profile, shown as Base Load and
optimal production profile of PCC and generator, plus accumulated charging
power of 856 EV, 1 EV per costumer. b) accumulation of total generation vs
base load and in between two curves, losses in red and charging power in
green c) hourly spot price, 8:00 am of Feb 2, 2012, is highest price of the
year 2012 d) charging profile of 856 EVs. Outcome of optimisation suggests
charging times and power values such that to compromise between total cost
and total loss. e) state of charge of 856 EV, f) voltage fluctuations of 974
buses.

in this paper. In order to boost the computational performance,
two mathematical approaches have been investigated. Partial
derivatives of linear and non-linear constraints, objective func-
tion, and KKT conditions have been extracted analytically and
consequently their sparse structures have been explored and
exploited. A tailored algorithm has been suggested, using a
new re-ordering format, in order to solve the sparse multi-
period structure of Newton step in the IP method, with high
computational performance. From the numerical results, the
performance of the proposed Schur-Complement method is
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Fig. 13. Total time (TotalTime = No·of Iter· × TimePerIter) for solu-
tion of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on CASE85

Fig. 14. Total time (TotalTime = No·of Iter· × TimePerIter) for solu-
tion of the linear KKT systems of (34) solved by Schur-Complement algorithm
vs direct sparse LU solver, applied on CASE141

Fig. 15. Total time (TotalTime = No·of Iter· × TimePerIter) for so-
lution of the linear KKT systems of (34) solved by Schur-Complement
algorithm vs direct sparse LU solver, applied on Mid-Norway local Norwegian
distribution grid

compared with a general sparse LU solver. Numerical results
suggest that a tailored Schur-Complement algorithm could be
computationally supreme in a problem with certain specifica-
tions, such as (1) large networks (large number of bus and
branches) (2) different optimisation horizon (T ), and (3) large
number of storage devices. In future works, we propose a
parallelised Schur-Complement algorithm and benchmark it
thoroughly.
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APPENDIX A
BATTPOWER INPUT

BATTPOWER input matrices are introduced and elaborated
in this section. The main introduced input is matrix of BATT,
which represents a connection matrix of ny ∈ N energy
storage devices. It contains charge and discharge rates and
efficiencies of storage devices along with their maximum and
minimum energy capacities. Moreover, it includes initial points
of the charge, discharge, and state of charge variables. Table
V summarises the input matrices fed into the BATTPOWER
solver. Note that T ∈ N is the time period is optimisation and
t is a time in the interval of t ∈ {1, ..., T}.
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TABLE V
DEFINITION OF INPUT MATRICES

Size of Matrix

Input n m Description

BUS nb
1 Examples can be found in [22]

BRANCH nl
1 Examples can be found in [22]

GEN ng 1 Examples can be found in [22]

GENCOST ng 1 Examples can be found in [22]

BATT ny 1 BATT_BUS, SOC_OPT, PCH_OPT, PDICH_OPT, Q_INJ_OPT, SOCmax, SOCmin, (Qs)max, (Qs)min,
MBASE, (Pch)max, (Pdch)max EFF_CH (Ψch) EFF_DICH (Ψdch)

AVBP ny T AVBP ∈ Bny×T (B is a binary set.)2 which is the availability matrix of active power provision of storage devices,
such that AVBPi,t = 1 if the ith storage at tth time is available and connected to the grid, otherwise AVBPi,t = 0,
where T is the optimisation horizon.

CONCH ny T CONCH ∈ Bny×T is the charge connectivity matrix in which CONCHi,t = 1 if the ith storage at tth time
has a charging option, otherwise CONCHi,t = 0.

CONDI ny T CONDI ∈ Bny×T is the discharge connectivity matrix such that CONDIi,t = 1 if the ith storage at tth time
has the available discharging option, otherwise CONDIi,t = 03.

AVBQ ny T AVBQ ∈ Bny×T is the availability matrix of reactive power provision of storage devices such that AVBQi,t = 1

if the ith storage at tth time has the available option for reactive power provision, otherwise AVBQi,t = 0.

AVG ng T AVG ∈ Bng×T which is the availability matrix of generators within the optimisation time horizon and consequently
AVGi,t = 1 if the ith generator at tth time is available to inject power in the grid.

SOCi ny T SOCi ∈ Rny×T is the matrix consisting of initial state of charge of ny storage devices over time t ∈ {1, ..., T}. A
value for initial state of charge {0 ≤ SOCii,t ≤ 1} is allocated for the ith storage device at time t if and only if one
of these conditions is satisfied: 1) AVBPi,t=1 = 1. 2) AVBPi,t−1 = 0 and AVBPi,t = 1 (arrival definition),
otherwise SOCii,t = 0.

SOCMi ny T SOCMi ∈ R
ny×T matrix which includes the minimum state of charge of ny storage devices through time t ∈

{1, ..., T}. The state of charge of the ith storage device at the departure time of t can be settled if one of these two
conditions is satisfied: 1) AVBPi,t = 1, AVBPi,t+1 = 0. 2) AVBPi,t=T = 1.

PD nb T Time series of active loads.

QD nb T Time series of reactive loads.
1 User Defined.
2
B is a binary set.

3 Note that AVBPi,t = 0 means that the ith storage\EV at time t is not available; therefore, the same element in charge and discharge connectivity
matrices must be zero: CONCHi,t = 0 and CONDIi,t = 0. The converse logic is not valid.
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APPENDIX B
EXTRACTION OF FIRST AND SECOND PARTIAL DERIVATIVES

In general, if we assume a complex scalar function f :
IRn → C of a real vector such as (18), the first derivative can
be calculated as:

fX =
∂f

∂X
=

[
∂f

∂x1

∂f

∂x2
...

∂f

∂xt︸︷︷︸
⇓

...
∂f

∂xT

]
(37a)

[∂f
Θt

∂f

∂Vt

∂f

∂Pt

∂f

∂Qt

∂f

∂(SOCt)
∂f

∂Pch
t

∂f

∂Pdch
t

∂f

∂Qs
t

]
(37b)

fXX =
∂2f

∂X2
=

∂

∂X
(
∂f

∂X
)> =


∂2f
∂x2

1
. . . ∂2f

∂x1xn

...
. . .

...
∂2f
∂xnx1

. . . ∂2f
∂x2

n

 (38)

Eqs. (37a), (37b) and (38) are the basic forms of first and
second derivatives of objective function which is f : IRn → C.
However, constraints G(X) and H(X) are vector functions
f : IRn → Rm and therefore:

G(X) =
[
g1(X) g2(X) . . . gNg (X)

]>
1×Ng

(39)

First derivative of this complex vector function can be written
as:

GX =
∂G

∂X
=


∂g1

∂x1
. . . ∂g1

∂xt
. . . ∂g1

∂xT

...
. . .

...
. . .

...
∂gk

∂x1
. . . ∂gk

∂xt
. . . ∂gk

∂xT


Ng×Nx

(40)

HX =
∂H

∂X
=


∂h1

∂x1
. . . ∂h1

∂xt
. . . ∂h1

∂xT

...
. . .

...
. . .

...
∂hl

∂x1
. . . ∂hl

∂xt
. . . ∂hl

∂xT


Nh×Nx

(41)

Calculation of second derivatives might be somewhat con-
fusing since the three-dimensional set of partial derivatives
will not be calculated here [23]. The reason is fairly simple
and straightforward. In this context, we are using a Newton-
Raphson method to find where the partials of a Lagrangian
are equal to zero. It is the Hessian of the Lagrangian function
in (23) that we need to compute and we always compute it
with a known lambda vector. Therefore, it is only the partial
derivatives w.r.t. X of the vector resulting from multiplying
the transpose of the Jacobian by lambda that are needed in
this context, which means:

GXX =
∂

∂X
(G>Xλ) (42)

GXY =
∂

∂Y
(G>Xλ) (43)

The same types of derivatives can also be written for H(X).
More details regarding the first and second partial differentials
of F (X), G(X) and H(X), and the arrangement of their
matrices can be followed in the Appendix B of this paper.
Partial differentials of equality and inequality constraints are
elaborated here in this appendix. According to Eqs. (37a),
(37b), and (38), first and second derivatives of F (X), and

based on Eqs. (40), (41), (42) and (43) first and second
derivatives of G(X) and H(X) can be extracted. As we
introduced the structure of G(X) and H(X) before reordering
as (19b) and (19c), in the subsections below the first and
second partial derivative of F (X), G(X) and H(X) are
analytically extracted.

A. First Partial Derivatives of Equality Constraints GX

GX =
[
G̃X = ∂G̃

∂X GX = ∂G
∂X G

s

X = ∂G
s

∂X

]>
(44a)

G̃X =
[
g̃x1

= ∂g̃
∂x1

g̃x2
= ∂g̃
∂x2

. . . g̃xT
= ∂g̃
∂xT

]>
(44b)

GX =
[
gx1

= ∂g
∂x1

gx2
= ∂g
∂x2

. . . gxT
= ∂g
∂xT

]>
(44c)

G
s

X =
[
gsτ1

= ∂gs

∂τ1
gsτ2

= ∂gs

∂τ2
. . . gsτT

= ∂gs

∂τT

]>
(44d)

Recall from Section II-B and Eqs. (16a)-(16b); thus, the
expression of g̃xt in (44b) can be expanded as:

g̃xt
=

∂g̃

∂xt
=

[
<{g̃xt

}
={g̃xt}

]
=

[
<{g̃Θt g̃Vt g̃Pt g̃Qt

g̃SOCt g̃Pch
t

g̃Pdch
t

g̃Qs
t
}

={g̃Θt
g̃Vt

g̃Pt
g̃Qt

g̃SOCt
g̃Pch

t
g̃Pdch

t
g̃Qs

t
}

] (45)

In Section II-A, V, V and Θ are defined as vectors of complex
bus voltages, bus voltage magnitudes and angles respectively.
In addition, let F = diag(V)−1V, therefore (45) can be
extended as:

g̃Θt = jdiag(Vt)
(
diag(Ibus∗

t )−Ybus∗diag(V∗t )
)

(46a)

g̃Vt
= diag(Vt)

(
diag(Ibus∗

t )

−Ybus∗diag(V∗t )
)
diag(Vt)

−1 (46b)
g̃Pg

t
= −Cg

t (46c)

g̃Qg
t

= −jCg
t (46d)

g̃SOCt = 0 (46e)

g̃Pch
t

= −Cch
t (46f)

g̃Pdch
t

= Cdch
t (46g)

g̃Qs
t

= −jCs
t (46h)

It was noted in Section II-B that linear equality constraints
consist of: (a) θslack = 0, (b) any user-defined custom linear
constraint, and (c) binding upper and lower bound variables
such that xmin

t = xmax
t . Thus, it can be written in general

format as g(xt) = Agrid
t xt − Bgrid

t , and subsequently,
gxt

= ∂g
∂xt

= Agrid
t . The same could be extended to equality

constraints regarding the energy storage constraints.

gs(τ 1) =
[
As

τ1

] [
x1

]
−
[
Bs

τ1

]
= 0 (47a)

As
τ1

=
[
0 . . . 0 Emax −Ψch∆t ∆t

Ψdch

]
(47b)

Bs
τ1

=


SOCi1,t=1

.

SOCii,t=1

.

SOCiny,t=1

 ∈ Rny×1 (47c)
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gs(τ t) =
[
As

τ t

] [xt−1

xt

]
−
[
Bs

τ t

]
= 0 (47d)

As
τ t

=[
0 . . . 0 −Emax 0 . . . 0 Emax −Ψch∆t ∆t

Ψdch

]
(47e)

Bs
τ t

=


SOCi1,t

.

SOCii,t
.

SOCiny,t

 ∈ Rny×1 (47f)

Therefore, G
s

τ t
= As

τ t
.

B. Second Partial Derivatives of Equality Constraints-G̃XX

Second partial derivative of equality constraints w.r.t vari-
ables are called in (31c), and can be computed analytically
with the format shown in Eqs. (42) and (43). In detail, they
are expanded as shown below.

Gxx =
∂

∂x
(
G>x λ

∂X
) (48)

Therefore

g̃ΘΘ(λ)

∣∣∣∣
t

= diag(V∗t )
(
Ybus∗>diag(Vt)diag(λ)

− diag
(
Ybus∗>diag(Vt)λ

))
+diag(λ)diag(Vt)(Y

bus∗diag(V∗t )− diag(Ibus
t

∗
)) (49a)

g̃VΘ(λ)

∣∣∣∣
t

=
∂

∂V (g̃>Θλ) = jdiag(Vt)
−1((

diag(V∗t )(Y
bus∗>diag(Vt)diag(λ)

− diag
(
Ybus∗>diag(Vt)λ

))
−diag(λ)diag(Vt)(Y

bus∗diag(V∗t )− diag(Ibus∗))

)
(49b)

g̃ΘV(λ)

∣∣∣∣
t

=

(
g̃VΘ(λ)

∣∣∣∣
t

)>
(49c)

g̃VV(λ)

∣∣∣∣
t

= diag(Vt)
−1(

diag(λ)diag(Vt)Y
bus∗diag(V∗t )

+diag(V∗t )Y
bus∗>diag(Vt)diag(λ)

)
diag(Vt)

−1 (49d)

All other partial second derivatives are zero, since the first
partial derivatives calculated before were also zero as shown
in Eqs. (46a)-(46h). In addition, second derivatives of linear
equality constraints are zero, as shown here.

gxx

∣∣∣∣
t

=
∂

∂x
(
g>x λ

∂x
)

∣∣∣∣
t

= 0 (50a)

gsxx

∣∣∣∣
t

=
∂

∂x
(
gsx
>λ

∂x
)

∣∣∣∣
t

= 0 (50b)

C. First Partial Derivatives of Inequality Constraints HX

HX =
[
H̃X = ∂H̃

∂X HX = ∂H
∂X

]>
(51a)

H̃X =
[
h̃x1

= ∂h̃
∂x1

h̃x2
= ∂h̃
∂x2

. . . h̃xT
= ∂h̃
∂xT

]>
(51b)

HX =
[
hx1

= ∂h
∂x1

hx2
= ∂h
∂x2

. . . hxT
= ∂h
∂xT

]>
(51c)

H̃(X) is derived in (12). As elaborated in Section II-A, SLine

can be extended as SLine =

[
Sfr

Sto

]
. With the same procedure,

h̃(xt) can be extended as:

h̃(xt) =

[
h̃fr(xt)

h̃to(xt)

]
=

[
(Sfr)∗Sfr − (|SLine

max |)2

(Sto)∗Sto − (|SLine
max |)2

]
(52)

Therefore, first derivative of the h̃(xt) can be written as:

h̃xt =
∂h̃

∂xt
=

[
h̃fr

xt

h̃to
xt

]
(53a)

h̃frxt
=
∂h̃fr

∂xt
= 2(<{diag(Sfr)}<{Sfr

xt
}

+ ={diag(Sfr)}={Sfr
xt
} (53b)

h̃to
xt

=
∂h̃to

∂xt
= 2(<{diag(Sto)}<{Sto

xt
}

+ ={diag(Sto)}={Sto
xt
} (53c)

where Sfr and Sfr
xt

can be written as follows (note that these
equations can be extended for Sto and Sto

xt
with the same

format):

Sfr = diag(Vfr
t )Ifr

t

∗
(54)

Ifr
t = YfrVt (55)

Sfr
Θt

= j
(
diag(Ifr

t

∗
)Cfrdiag(Vt)

− diag(CfrVt)Y
fr∗diag(V∗t )

)
(56a)

Sfr
Vt

= diag(Ifr
t

∗
)Cfrdiag(Ft)

− diag(CfrVt)Y
fr∗diag(F∗t ) (56b)

Sfr
Pg

t
= 0 (56c)

Sfr
Qg

t
= 0 (56d)

Sfr
SOCt

= 0 (56e)

Sfr
Pch

t
= 0 (56f)

Sfr
Pdch

t
= 0 (56g)

Sfr
Qs

t
= 0 (56h)

h(xt) =
[
ABOX xt −BBOX

]
≤ 0 (57)

Thus, hxt
= ABOX.
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D. Second Partial Derivatives of Inequality Constraints HXX

For h̃fr
xx, in general it can be written (note that these

equations can be extended to h̃to
xx with the same logic):

h̃fr
xx

∣∣∣∣
t

=
∂

∂x
(
h̃fr

x
>µ

∂x
)

∣∣∣∣
t

=
∂

∂x

(
Sfr

xt

>diag(Sfr∗)µ + Sfr
xt

∗>
diag(Sfr)µ

)∣∣∣∣
t

= 2.<
{

Sfr
xx

∣∣∣∣
t

diag(Sfr∗)µ + Sfr
xt

>
diag(µ)Sfr

xt

∗
} (58)

h̃fr
ΘΘ(µ)

∣∣∣∣
t

= 2<
{

Sfr
ΘΘ

∣∣∣∣
t

diag(Sfr∗)µ + Sfr
Θ

>
diag(µ)Sfr

Θ

∗
}

(59a)

h̃fr
VΘ(µ)

∣∣∣∣
t

= 2<
{

Sfr
VΘ

∣∣∣∣
t

diag(Sfr∗)µ + Sfr
V
>

diag(µ)Sfr
Θ

∗
}

(59b)

h̃fr
ΘV(µ)

∣∣∣∣
t

= 2<
{

Sfr
ΘV

∣∣∣∣
t

diag(Sfr∗)µ + Sfr
Θ

>
diag(µ)Sfr

V
∗
}

(59c)

h̃fr
VV(µ)

∣∣∣∣
t

= 2<
{

Sfr
VV

∣∣∣∣
t

diag(Sfr∗)µ + Sfr
V
>

diag(µ)Sfr
V
∗
}

(59d)

All other second partial derivatives are zero, since the first
partial derivatives calculated before were also zero as shown in
Eqs. (46a)-(46h). Sfr

ΘΘ, Sfr
VΘ, Sfr

ΘV , and Sfr
VV can be extracted

as formulated in Eqs. (61a)-(61d). Note that these equations
can be extended to Sto

ΘΘ, Sto
VΘ, Sto

ΘV and Sto
VV with the same

logic.
Second derivatives of linear inequalities are zero

hxx

∣∣∣∣
t

=
∂

∂x
(
h
>
x λ

∂x
)

∣∣∣∣
t

= 0 (60)

Sfr
ΘΘ(µ)

∣∣∣∣
t

= diag(V∗t )Y
fr∗>diag(µ)Cfrdiag(Vt)

+diag(Vt)C
fr>diag(µ)Yfr∗diag(V∗t )

−diag

(
Yfr∗>diag(µ)CfrVt

)
diag(V∗t )

−diag

(
Cfr>diag(µ)Yfr∗V∗t

)
diag(Vt) (61a)

Sfr
VΘ(µ)

∣∣∣∣
t

= jdiag(Vt)
−1(

diag(V∗t )Y
fr∗>diag(µ)Cfrdiag(Vt)

−diag(Vt)C
fr>diag(µ)Yfr∗diag(V∗t )

−diag

(
Yfr∗>diag(µ)CfrVt

)
diag(V∗t )

+diag

(
Cfr>diag(µ)Yfr∗V∗t

)
diag(Vt)

)
(61b)

Sfr
ΘV(µ)

∣∣∣∣
t

= Sfr
VΘ

>
(µ)

∣∣∣∣
t

(61c)

Sfr
VV(µ)

∣∣∣∣
t

= diag(Vt)
−1(

diag(V∗t )Y
fr∗>diag(µ)Cfrdiag(Vt)

+diag(Vt)C
fr>diag(µ)Yfr∗diag(V∗t )

)
diag(Vt)

−1 (61d)

E. Partial Derivatives of Objective Function F (X)

Since MATPOWER case files are used for the sake
of benchmarking the solution proposal, we introduce only
quadratic cost functions and their first and second partial
derivatives here. Moreover, no operational costs for storage
devices are considered. Thus, we can assume the following
function as the total operational cost.

F (X) = F1 + F2 + · · ·+ Ft + · · ·+ FT (62)

where F1 = F2 = Ft and Ft = fgt (Pgt ) + fqt (Qgt ). Therefore
first partial derivatives of F (X) w.r.t. xt can be extended as

Fθt = 0 (63a)
FVt = 0 (63b)

FPg
t

=
∂fg

t

∂Pg
t

= fg
t
′ (63c)

FQg
t

=
∂fq

t

∂Qg
t

= fq
t
′ (63d)

FSOCt = 0 (63e)
FPch

t
= 0 (63f)

FPdch
t

= 0 (63g)

FQs
t

= 0 (63h)

and subsequently, the second partial derivatives of F (X) w.r.t.
xt can be extended using (63a)-(63g).

FPg
tP

g
t

=
∂fg

t
′

∂Pg
t

= fg
t
′′ (64a)

FQg
tQ

g
t

=
∂fq

t
′

∂Qg
t

= fq
t
′′ (64b)

and the rest of the partial derivatives w.r.t. the other variables
are zero.

APPENDIX C
SPARSITY STRUCTURE OF PARTIAL DERIVATIVES

In this section, the sparsity structure of computed partial
derivatives is illustrated. These structures have a great im-
portance since they contribute to the efficient computational
operations when it comes to reordering steps as described in
Section IV-B. The number of non-zero elements in matrices
are accurately estimated and the specific amount of memory
is pre-allocated to these structures and blocks for further
computational purposes.
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A. Sparsity Structure of GX and GXX

Overall structure of G̃xt
is

G̃X =



G̃x1

. . .
G̃xt

. . .
G̃xT


(65a)

G̃xt
=[

<{g̃Θ}
∣∣
t
<{g̃V}

∣∣
t
−Cg

t 0 0 Cch
t −Cdch

t 0

={g̃Θ}
∣∣
t
={g̃V}

∣∣
t

0 −Cg
t 0 0 0 −Cs

t

]
(65b)

In matrix format, GX and G
s

X can be simply written as:

GX =


Agrid

x1
0 . . . 0

0 Agrid
x2

0
...

... 0
. . . 0

0 . . . 0 Agrid
xT

 (66)

G
s

X =


As

τ1
0 . . . 0

0 As
τ2

0
...

... 0
. . . 0

0 . . . 0 As
τT

 (67)

According to (42), the second derivatives of G and H can be
written as:

G̃XX

∣∣∣∣
t

= ∂
∂X (

g̃>Xλ
∂X )

∣∣∣∣
t

=



g̃xx

∣∣∣∣
1

g̃xx

∣∣∣∣
2

. . .

g̃xx

∣∣∣∣
T


(68a)

g̃xx

∣∣∣∣
t

=


g̃ΘΘ(λ)

∣∣∣∣
t

g̃ΘV(λ)

∣∣∣∣
t

0 0

g̃VΘ(λ)

∣∣∣∣
t

g̃VV(λ)

∣∣∣∣
t

0 0

0 0 0 0

0 0 0 0

 (68b)

B. Sparsity Structure of HX and HXX

H̃X =



h̃x1

. . .
h̃xt

. . .
h̃xT


(69a)

h̃Xt
=

∂h̃

∂xt
=


h̃fr

Θ

∣∣
t

h̃fr
V
∣∣
t

0 0

h̃to
Θ

∣∣
t

h̃to
V
∣∣
t

0 0

0 0 0 0

0 0 0 0

 (69b)

Finally, we can extend HXX as in (70a).

HXX =
∂

∂X
(
H>Xλ

∂X
) =

(h̃fr
XX + h̃to

XX)

∣∣∣∣
1

(h̃fr
XX + h̃to

XX)

∣∣∣∣
2

. . .

(h̃fr
XX + h̃to

XX)

∣∣∣∣
T


(70a)

h̃fr
xx

∣∣∣∣
t

= ∂
∂x (

h̃fr
x
>µ
∂x )

∣∣∣∣
t

=


h̃fr

ΘΘ(µ)

∣∣∣∣
t

h̃fr
ΘV(µ)
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t

0 0

h̃fr
VΘ(µ)

∣∣∣∣
t

h̃fr
VV(µ)
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t

0 0

0 0 0 0

0 0 0 0


(70b)

(h̃fr
XX + h̃to

XX)

∣∣∣∣
t

=h̃fr
ΘΘ(µ)

∣∣
t

+ h̃to
ΘΘ(µ)

∣∣
t

h̃fr
ΘV(µ)

∣∣
t

+ h̃to
ΘV(µ)
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t

0

h̃fr
VΘ(µ)

∣∣
t

+ h̃to
VΘ(µ)

∣∣
t

h̃fr
VV(µ)

∣∣
t

+ h̃to
VV(µ)
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t

0

0 0 0

 (70c)

C. Sparsity Structure of FX and FXX

First derivative of the objective function has the following
structure

FX =
[
0 0 fg

t
′
fq
t
′

0 0 0 0
]

(71)

Second derivative of fXX also can be written as (72a)
according to (38)

fXX =



fxx

∣∣∣∣
1

fxx

∣∣∣∣
2

. . .

fxx

∣∣∣∣
T


(72a)

fxx

∣∣∣∣
t

=



0 . . . . . . . . . . . .
...

. . . . . . . . . . . .
...

...
[
fPP

∣∣
t

]
. . . . . .

...
...

...
[
fQQ

∣∣
t

]
. . .

...
...

...
... 0


(72b)

APPENDIX D
FUNCTION EVALUATION

The efficiency of calculating analytical derivatives and their
structures is illustrated here. Table VII shows the total compu-
tational time in order to calculate FX, GX, HX and Lγ

XX until
the algorithm converges with the corresponding iterations,
where description of each term can be seen in Table VI. As can
be seen, hand-coded derivatives outperform significantly faster
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than numerical methods. For large networks, numerical deriva-
tives are intractable. The numerical derivatives are computed
using central finite differences. Since analytical derivatives are
the accurate model of partial derivatives of functions, further
accuracy comparison with the finite numerical method applied
here is neglected.

TABLE VI
FIRST AND SECOND PARTIAL DERIVATIVES

Term Description

FX FX = ∂G
∂X

GX GX = ∂G
∂X

HX HX = ∂H
∂X

LγXX LγXX = FXX + GXX(λ) + HXX(µ)
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TABLE VII
TOTAL TIME (TotalTime = No·of Iter· × TimePerIter) ELAPSED TO CALCULATE: 1) ANALYTICAL (HAND-CODED) DERIVATIVES, AND 2)

NUMERICAL DERIVATIVES

Analytical Numerical

Case T ny iter FX(s) GX+ HX(s) LγXX(s) FX(s) GX+ HX(s) LγXX(s)

Case9 2 5 13 0.03 0.13 0.14 0.43 0.98 140.07
Case9 10 5 23 0.08 0.36 0.37 11.32 30.62 22815.29

IEEE30 2 5 12 0.04 0.25 0.18 1.01 2.16 682.70
IEEE30 10 5 16 0.05 0.24 0.25 16.73 49.12 79712.78

IEEE118 2 5 22 0.04 0.19 0.20 7.41 18.07 24557.09
IEEE118 10 5 37 0.09 0.62 0.82 158.211 572.09 1 45997351

PEGASE1354 2 5 23 0.05 0.61 0.78 85.541 496.18 1 7185888 1

PEGASE1354 10 5 33 0.10 3.77 5.15 588.061 3530 1 515509411

1 Estimated total time: The time elapsed for one iteration multiplied to the iteration that would take to converge
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