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Abstract We consider two-flavor chiral perturbation the-
ory (χPT) at finite isospin chemical potential μI and finite
temperature T . We calculate the effective potential and the
quark and pion condensates as functions of T and μI to next-
to-leading order in the low-energy expansion in the presence
of a pionic source. We map out the phase diagram in the
μI–T plane. Numerically, we find that the transition to the
pion-condensed phase is second order in the region of valid-
ity of χPT, which is in agreement with model calculations
and lattice simulations. Finally, we calculate the pressure to
two-loop order in the symmetric phase for nonzero μI and
find that χPT seems to be converging very well.

1 Introduction

Quantum Chromodynamics (QCD) has a very rich phase
structure and symmetry-breaking-patterns as a function of
temperature and chemical potentials [1–3]. Normally, the
phase diagram is drawn in the μB–T plane and in this case, it
includes the hadronic phase, the quark-gluon plasma (QGP)
phase, the quarkyonic phase [4], and various color supercon-
ducting phases.

Instead of using a common chemical potential for all
quarks, one can introduce a quark chemical potential q f for
each flavor. For two flavors, the baryon chemical potential is
then μB = 3

2 (μu + μd) and the isospin chemical potential
is defined as μI = 1

2 (μu − μd). The phases of QCD now
become a function of three control parameters T , μB , and
μI . Restricting ourselves to the μI–T plane, i.e. to μB = 0
is of particular interest. In this case, lattice QCD does not
suffer from the infamous sign problem and one can therefore
use standard Monte Carlo techniques to calculate thermody-
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namic properties and map out the phase diagram as a function
of T and μI . This makes it possible to confront low-energy
effective theories such as chiral perturbation theory [5–8] and
models such as the Nambu–Jona–Lasinio and quark-meson
models.

The first simulations of two-flavor QCD at finite isospin
were performed two decades ago using quenched lattice QCD
[9,10], which was later improved by including dynamical
fermions [11] on relatively coarse lattices. Later, three-flavor
QCD was simulated as well [12,13] in the phase-quenched
approximation. The nature of the transition from the vacuum
phase to a Bose–Einstein condensed phase of charged pions
is second order at T = 0 and low temperatures. At larger tem-
peratures, the transition appeared to be first order indicating
the existence of a tricritical point [9,10]. However, this may
be an artifact of the coarse lattices being used and moreover,
the three-flavor simulations indicated no such point [12,13].
The recent high-precision lattice simulations [14–17] show
that the transition is second order everywhere with critical
exponents that are in the O(2) universality class. The phase
diagram in the μI–T plane is sketched in Fig. 1.

For small values of the temperature, and the isospin chemi-
cal potential, we are in the confined phase with pionic degrees
of freedom. The blue line indicates the transition to a Bose-
condensed phase of charged pions, crossing the μI axis
exactly at μI = mπ . The red line indicates the transition
to a deconfined phase of quarks and gluons. For small val-
ues of μI , this is a transition from the confined phase. For
larger values of μI it is a transition from the pion-condensed
phase to a BCS phase of weakly interacting quarks that form
Cooper pairs [18]. The latter is a crossover since it is the same
U (1)-symmetry which is broken in the two cases. Various
aspects of the phase diagram at finite μI can be found in e.g.
Refs. [19–42] and a recent review in Ref. [43]. A first princi-
ple dynamical lattice computation of the QCD phase diagram
at finite isospin density and temperature for N f = 4 + 4 fla-
vors was reported in Ref. [44]. In a series of papers, we have
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Fig. 1 Schematic phase diagram in the μI –T plane. See main text for
details

studied the properties of QCD at finite isospin and strange
chemical potential at zero temperature using χPT [45–48]. In
the case of finite isospin chemical potential and zero strange
chemical potential, the predictions from chiral perturbation
theory for a number of physical quantities have been in good
agreement with recent lattice simulations [14]. In the present
paper, we generalize our results to finite temperature. The
article is organized as follows. In Sect. 2, we discuss the χPT
Lagrangian, the QCD ground state as a function of isospin
chemical potential, and the fluctuations around it. In Sect. 3,
the effective potential at next-to-leading order (NLO) includ-
ing a pionic source as a function of T and μI is calculated. In
Sect. 4, the quark and pion condensates are derived, while in
Sect. 5, we calculate the pressure to next-to-next-to-leading
order (NNLO) in χPT in the symmetric phase. In Sect. 6,
we present and discuss our numerical results, including the
phase-transition curve separating the normal phase from the
pion-condensed phase. We collect a few useful formulas in
an Appendix.

2 Chiral Lagrangian, ground state, and fluctuations

The leading order Lagrangian is

L2 = f 2

4
Tr

[
∇μΣ†∇μΣ

]
+ f 2

4
Tr

[
χ†Σ + χΣ†

]
, (1)

where χ = 2B0M + 2i B0( j1τ1 + j2τ2) with M =
diag(m,m), f is the bare pion-decay constant and 2B0m is
the bare pion mass. Moreover, τa are the Pauli matrices and
j1 and j2 are pionic sources which are necessary in order to
generate the pion condensate. The field Σ is written as

Σ = LαΣαR
†
α, (2)

where

Lα = AαU A†
α, (3)

Rα = A†
αU Aα, (4)

Aα = ei
α
2 (φ̂1τ1+φ̂2τ2), (5)

U = ei
φa τa

2 f , (6)

where the subscript α (at tree level) can be interpreted as a
rotation angle of the quark condensate into a pion condensate,
and φ̂i are real parameters. The ground state Σα in the pion-
condensed phase can be parametrized as [18]

Σα = 1 cos α + i(φ̂1τ1 + φ̂2τ2) sin α, (7)

The parameters satisfy φ̂2
1 +φ̂2

2 = 1 so that the ground state is
properly normalized, Σ†

αΣα = 1. Without loss of generality,
we can choose φ̂1 = 1, φ̂2 = 0 and j1 = j , j2 = 0.

The covariant derivatives at finite isospin are defined as
follows

∇μΣ ≡ ∂μΣ − i
[
vμ,Σ

]
, (8)

∇μΣ† = ∂μΣ† − i[vμ,Σ†], (9)

where vμ = δμ0μI
τ3
2 and μI is the isospin chemical poten-

tial.
The Lagrangian is expanded in powers of the field through

quadratic order is

L static
2 = f 2(2B0m j ) + 1

2
f 2μ2

I sin2 α, (10)

L linear
2 = f

(
−2B0m̄ j + μ2

I sin α cos α
)

φ1

+ f μI sin α∂0φ2, (11)

L
quadratic

2 = 1

2
∂μφa∂

μφa − 1

2
m2

aφ
2
a

+μI cos α(φ1∂0φ2 − φ2∂0φ1). (12)

where the source-dependent masses are

m j = m cos α + j sin α, (13)

m̄ j = m sin α − j cos α, (14)

m2
1 = 2B0m j − μ2

I cos 2α, (15)

m2
2 = 2B0m j − μ2

I cos2 α, (16)

m2
3 = 2B0m j + μ2

I sin2 α. (17)

The inverse propagator in the φa basis is

D−1 =
(
D−1

12 0
0 P2 − m2

3

)
, (18)

D−1
12 =

(
P2 − m2

1 i p0m12

−i p0m12 P2 − m2
2

)
, (19)

where m12 = 2μI cos α and P = (p0, p) is the four-
momentum, P2 = p2

0 − p2. The three dispersion relations
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are determined by the poles of the propagator, and the expres-
sions are

E2
π± = p2 + 1

2

(
m2

1 + m2
2 + m2

12

)

±1

2

√
4p2m2

12+(m2
1+m2

2+m2
12)

2−4m2
1m

2
2, (20)

E2
π0 = p2 + m2

3. (21)

At next-to-leading order, the chiral Lagrangian contains a
number of operators [6], but not all of them contribute in the
present case. The operators that we need are

L4 = 1

4
l1

(
Tr

[
∇μΣ†∇μΣ

])2

+1

4
l2Tr

[
∇μΣ†∇νΣ

]
Tr

[
∇μΣ†∇νΣ

]

+ 1

16
(l3 + l4)(Tr[χ†Σ + Σ†χ ])2

+1

8
l4Tr

[
∇μΣ†∇μΣ

]
Tr[χ†Σ + Σ†χ ]

+1

2
h1Tr[χ†χ ]. (22)

where l1–l4 and h1 are bare coupling constants. The bare and
renormalized couplings lri (Λ), hri (Λ) are related as follows

li = lri (Λ) − γiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (23)

hi = hri (Λ) − δiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (24)

where γi and δi are coefficients, and Λ is the renormaliza-
tion scale in the modified minimal subtraction (MS) scheme
(see Appendix A). The renormalized couplings lri (Λ) and
hri (Λ) are running satisfying a renormalization group equa-
tion. Since the bare couplings are independent of the renor-
malization scale Λ, differentiation of Eqs. (23) and (24)
immediately yields

Λ
d

dΛ
lri = −γiΛ

−2ε

(4π)2 (1+ε), Λ
d

dΛ
hri =−δiΛ

−2ε

(4π)2 (1 + ε).

(25)

The low-energy constants l̄i and h̄1 are defined via the solu-
tions to the renormalization group equations (25) for ε = 0,

lri (Λ) = γi

2(4π)2

[
l̄i + log

M2

Λ2

]
, (26)

hri (Λ) = δi

2(4π)2

[
h̄i + log

M2

Λ2

]
, (27)

and are up to a constant equal to the renormalized couplings
lri (Λ) and hri (Λ) evaluated at the scale Λ = M [6]. The
coefficients γi and hi are

γ1 = 1

3
, γ2 = 2

3
, γ3 = −1

2
, (28)

γ4 = 2, δ1 = 0. (29)

Since δ1 = 0, Eq. (27) does not apply and the coupling hr1
does not run. In the paper [6], the authors used another mini-
mal set of invariant operators than we have listed in Eq. (22).
The two sets of operators can be transformed into each other
using the equations of motion. The couplings are related as
h1 = h̃1 − l̃4, where the tilde refers to the original cou-
plings [49]. The corresponding values of the relevant γ̃i and
δ̃i are the same except δ̃1 = 2. This implies that h̃r1 runs
according to Eq. (27). At O(p6), there are 53 terms and
four contact terms in the SU (2) chiral Lagrangian [8,50].
However, only two terms contribute to the static Lagrangian
L static

6 [51]. Denoting the bare couplings by ci , only the sum
16(c10 + 2c11)(2B0m)3 contributes, where

c10 + 2c11 = Λ−4ε(cr10 + 2cr11)

f 2 − 3Λ−4ε

128(4π)4 f 2

[
1

ε
+ 1

]2

− 3Λ−2ε

16(4π)2 f 2 l
r
3

[
1

ε
+ 1

]
, (30)

and where cri (Λ) are the renormalized couplings. Since the
bare couplings ci are independent of the scale Λ, the sum
cr10(Λ) + 2cr11(Λ) satisfies the renormalization group equa-
tion (ε = 0)

Λ
d(cr10 + 2cr11)

dΛ
= −3

8

lr3
(4π)2 . (31)

Using Eq. (26) with i = 3, we can write

Λ
d(cr10 + 2cr11)

dΛ
= 3

32(4π)4

[
l̄3 + log

M2

Λ2

]
. (32)

Integrating this equation and defining the constants c̄10 and
c̄11 as the renormalized couplings cr10 and cr11 at the scale

Λ = M up to the prefactor − 3l̄3
64(4π)4 [51], we can write

cr10(Λ) + 2cr11(Λ)

= − 3l̄3
64(4π)4 (c̄10 + 2c̄11) − 3l̄3

64(4π)4 log
M2

Λ2

− 3

128(4π)4 log2 M2

Λ2 . (33)

The one-loop effective potential in the pion-condensed phase
receives a static contribution, which is given by minus the
static term in Eq. (22),

L static
4 = (l1 + l2)μ4

I sin4 α + l4(2B0m j )μ
2
I sin2 α

+ (l3 + l4)(2B0m j )
2 + h1

[
(2B0m j )

2 + (2B0m̄ j )
2
]
.

(34)

In Sect. 5, we will calculate the pressure to order O(p6)

in the symmetric phase, i. e. for α = 0. In this case the
charged eigenstates and the mass eigenstates coincide and it
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is convenient to use the basis

Φ = 1√
2
(φ1 + iφ2), Φ† = 1√

2
(φ1 − iφ2). (35)

We then express the Lagrangian in terms of Φ, Φ†, and φ3

instead of φa . The covariant derivatives in the charged basis
are defined in the usual way,

DμΦ ≡ (∂μ + iδμ0μI )Φ, (36)

DμΦ† ≡ (∂μ − iδμ0μI )Φ
†. (37)

The quadratic Lagrangian Eq. (12) then becomes

L
quadratic

2 = DμΦ†DμΦ + 1

2
∂μφ3∂

μφ3

−2B0mΦ†Φ − 1

2
(2B0m)φ2

3 . (38)

The quartic terms from Eq. (1) can be written as,

L
quartic

2 = − 1

3 f 2 Φ†Φ
[
DμΦ†DμΦ − B0mΦ†Φ

]

− 1

3 f 2 φ2
3

[
DμΦ†DμΦ − 2B0mΦ†Φ

]

− 1

6 f 2 Φ†Φ
[
2∂μφ3∂

μφ3 + 2B0mφ2
3

]

+ 1

6 f 2

[
ΦΦDμΦ†DμΦ† + Φ†Φ†DμΦDμΦ

]

+ 1

6 f 2

(
∂μφ2

3

)
∂μ

(
Φ†Φ

)
+ 2B0m

24 f 2 φ4
3 . (39)

The quadratic terms from Eq. (22) are

L
quadratic

4 = 2l4
f 2

[
DμΦ†DμΦ + 1

2
∂μφ3∂

μφ3

]
2B0m

− (l3 + l4)

f 2

[
2Φ†Φ + φ2

3

]
(2B0m)2. (40)

3 Effective potential with pionic source

In this section, we calculate the effective potential to NLO
including a pionic source. At T = 0, this calculation was car-
ried out in Ref. [48]. It is straightforward to generalize the
result to finite temperature and we include the calculation
for completeness. We perform the finite-temperature calcu-
lations using the imaginary-time formalism. The energy ω

is then replaced by i P0, where the (bosonic) Matsubara fre-
quencies are given by P0 = 2πnT , n ∈ Z. The Minkowski-
space propagator i

P2−m2 is replaced by a Euclidean propaga-

tor 1
P2+m2 , where P2 = P2

0 +p2. The propagator for the com-

plex field in the symmetric phase is Δ = 1
(P0+iμI )

2+p2+M2 .
The source-dependent one-loop contribution to the effective

potential can be written as

V1 = 1

2

∑∫

P
log

[
P2

0 + E2
π+

]
+ 1

2

∑∫

P
log

[
P2

0 + E2
π−

]

+1

2

∑∫

P
log

[
P2

0 + E2
π0

]

= 1

2

∫

p

[
Eπ+ + Eπ− + Eπ0

] + T
∫

p
log

[
1 − e−βEπ+

]

+T
∫

p
log

[
1 − e−βEπ−

]
+ T

∫

p
log

[
1 − e−βE

π0
]
,

(41)

where the dispersion relations Eπ0 and Eπ± are given by
Eqs. (20) and (21).

The zero-temperature integrals involving the charged
excitations cannot be done analytically in dimensional reg-
ularization. However, we can isolate the ultraviolet diver-
gences by adding and subtracting appropriate terms that can
be calculated in dimensional regularization. The ultraviolet

behavior of Eπ± is given by E1,2 =
√
p2 + m2

1,2 + 1
4m

2
12,

i.e. excitations with masses m̃2
1 = 2B0m j + μ2

I sin2 α = m2
3

and m̃2
2 = 2B0m j . We can therefore write

V1 = V div
1 + V fin

1 , (42)

where

V div
1 =

∫

p

√
p2 + m2

3 + 1

2

∫

p

√
p2 + m̃2

2,

= − 1

2(4π)2

[
1

ε
+ 3

2
+ log

2B0m

m2
3

]
(2B0m j + μ2

I sin2 α)2

− 1

4(4π)2

[
1

ε
+ 3

2
+ log

2B0m

m̃2
2

]
(2B0m j )

2, (43)

V fin
1 = 1

2

∫

p

[
Eπ+ + Eπ− −

√
p2 + m̃2

1 −
√
p2 + m̃2

2

]
. (44)

The complete NLO effective potential is the sum of Eqs. (43)
and (44) minus Eqs. (10) and (34). Renormalization is carried
out by replacing li by lr (Λ) according to Eqs. (23) and (26).
This yields

Veff = − f 2(2B0m j ) − 1

2
f 2μ2

I sin2 α − 1

4(4π)2

×
[

3

2
− l̄3 + 4l̄4 + log

(
M2

m̃2
2

)
+ 2 log

(
M2

m2
3

)]
(2B0m j )

2

− 1

2(4π)2

[
1 + 2l̄4 + 2 log

(
M2

m2
3

)]
(2B0m j )μ

2
I sin2 α

− 1

2(4π)2

[
1

2
+ 1

3
l̄1 + 2

3
l̄2 + log

(
M2

m2
3

)]
μ4
I sin4 α

− 1

(4π)2 h̄1

[
(2B0m j )

2 + (2B0m̄ j )
2
]

+ V fin
1,π+ + V fin

1,π−

+T
∫

p
log

[
1 − e−βEπ+

]
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+T
∫

p
log

[
1 − e−βEπ−

]
+ T

∫

p
log

[
1 − e−βE

π0
]
, (45)

where we have defined h̄1 = (4π)2h1. We note that the result
is independent of Λ, which implies that thermodynamic func-
tions and condensates that we generate are independent of the
renormalization scale.

4 Quark and pion condensates

In Ref. [48], we derived the quark and pion condensates in
the pion-condensed phase at T = 0. In this section, we gen-
eralize the results to finite temperature. We begin with the
definition of the chiral condensate and the pion condensate,
which are

〈ψ̄ψ〉μI = 1

2

∂Veff

∂m
, 〈π+〉μI = 1

2

∂Veff

∂ j
, (46)

respectively, where the subscript is a reminder that the con-
densates depend on the isospin chemical potential. At leading
order the condensates read

〈ψ̄ψ〉μI ,tree = − f 2B0 cos α, (47)

〈π+〉μI ,tree = − f 2B0 sin α, (48)

with the pion condensate vanishing in the normal vacuum
with α = 0. The temperature dependence of the effective
potential enters through loop corrections, so all tree-level
results are temperature independent. Furthermore, we also
note that the sum of the square of the condensates is constant,

〈ψ̄ψ〉2
μI ,tree + 〈π+〉2

μI ,tree = (− f 2B0)
2, (49)

with a radius equal to the chiral condensate of the normal
vacuum. At NLO, this rotation relation is violated and the
condensates can be expressed as

〈ψ̄ψ〉μI = 〈ψ̄ψ〉μI ,0 + 〈ψ̄ψ〉μI ,T , (50)

〈π+〉μI = 〈π+〉μI ,0 + 〈π+〉μI ,T , (51)

where the first terms are the temperature-independent contri-
butions while the second terms are temperature dependent.
These contributions are calculated using the effective poten-
tial in Eq. (45). The results below are obtained by first taking
the appropriate partial derivatives and then setting the refer-
ence scale M2 equal to 2B0m.

〈ψ̄ψ〉μI ,0 = − f 2B0 cos α

[
1 + 1

2(4π)2

×
(

−l̄3 + 4l̄4 + log
2B0m

m̃2
2

+ 2 log
2B0m

m2
3

)
2B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

2B0m

m2
3

)
μ2
I sin2 α

f 2

]

− 2

(4π)2 h̄1B0(2B0m) + 1

2

∂V fin
1,π+

∂m
+ 1

2

∂V fin
1,π−

∂m
. (52)

〈π+〉μI ,0 = − f 2B0 sin α

[
1 + 1

2(4π)2

×
(

−l̄3 + 4l̄4 + log
2B0m

m̃2
2

+ 2 log
2B0m

m2
3

)
2B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

2B0m

m2
3

)
μ2
I sin2 α

f 2

]

− 4

(4π)2 h̄1B
2
0 j + 1

2

∂V fin
1,π+

∂ j
+ 1

2

∂V fin
1,π−

∂ j
, (53)

〈ψ̄ψ〉μI ,T = B0 cos α

2

{∫

k

nB (Eπ+)

Eπ+

×
⎡
⎣1 + m2

12√
4k2m2

12 + (m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2

⎤
⎦

+
∫

k

nB (Eπ−)

Eπ−

×
⎡
⎣1 − m2

12√
4k2m2

12 + (m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2

⎤
⎦

+
∫

k

nB
(
Eπ0

)

Eπ0

}
, (54)

〈π+〉μI ,T = B0 sin α

2

{∫

k

nB (Eπ+)

Eπ+

×
⎡
⎣1 + m2

12√
4k2m2

12 + (m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2

⎤
⎦

+
∫

k

nB (Eπ−)

Eπ−

×
⎡
⎣1 − m2

12√
4k2m2

12 + (m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2

⎤
⎦

+
∫

k

nB
(
Eπ0

)

Eπ0

}
. (55)

The temperature-independent contributions were first calcu-
lated in Ref. [48], while the temperature-dependent contribu-
tions are new and follow directly from the last line of Eq. (45).

5 Two-loop pressure in the symmetric phase

In this section, we calculate the pressure to two-loop order
which corresponds to a next-to-next-to-leading order calcu-
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Fig. 2 NNLO diagrams for the pressure in the symmetric phase. A
solid line corresponds to the charged pion and a dashed line corresponds
to the neutral pion. A black dot is a mass insertion or a temperature-
independent counterterm

lation in the low-energy expansion. Through one-loop, the
pressure is given by

P0+1 = f 2(2B0m) + (l3 + l4)(2B0m)2 + h1(2B0m)2

−1

2

∑∫

Q
log[Q2 + 2B0m]

−
∑∫

Q
log[(Q0 + iμI )

2 + q2 + 2B0m], (56)

where the mean-field term Eq. (10) and the contribution from
the counterterm Eq. (34) are evaluated at α = 0. Here and in
the following, the subscript n of Pn denotes the nth order in
the low-energy expansion and the subscript 0+1..+n denotes
the complete result to the same order. Using the expressions
for the sum-integral (A.3) as well renormalizing the cou-
plings using Eqs. (23) and (24), and the relation Eq. (26), we
obtain the pressure to NLO

P0+1 = f 2(2B0m) + (2B0m)2

4(4π)2

[
3

2
− l̄3 + 4l̄4 + 4h̄1

]

−T
∫

q

{
log

[
1 − e−βEq

]
+ log

[
1 − e−β(Eq−μI )

]

+ log
[
1 − e−β(Eq+μI )

]}
. (57)

The first line in Eq. (57) is the vacuum energy, while the sec-
ond and third line are the pressure of an ideal gas of massive
particles of mass 2B0m at finite isospin chemical potential.

At NNLO, there are a number of diagrams that contribute
to the pressure. The two-loop diagrams arising fromL

quartic
2 ,

Eq. (39) are shown in the first line of Fig. 2, while the coun-
terterm diagrams arising from Eq. (40) as well as the contact
term are shown in the second line of Fig. 2. Using Eqs. (A.3)–
(A.5), the two-loop contribution to the pressure can be written
as

P
quartic
2 = −2B0m

2 f 2

∑∫

K

1

K 2 + 2B0m

×
∑∫

Q

1

(Q0 + iμI )
2 + q2 + 2B0m

+2B0m

8 f 2

[∑∫

Q

1

Q2 + 2B0m

]2

+ 1

f 2

[∑∫

Q

(Q0 + iμI )

(Q0 + iμI )
2 + q2 + 2B0m

]2

= −3(2B0m)3

8(4π)4 f 2

[
1

ε2 + 2

ε

(
1 + log

Λ2

2B0m

)

+3 + π2

6
+ 4 log

Λ2

2B0m
+ 2 log2 Λ2

2B0m

]

+ (2B0m)2

4(4π)2 f 2

(
1

ε
+ 1 + log

Λ2

2B0m

)

×
∫

q

[
nB(Eq )

Eq
+ nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]

−2B0m

4 f 2

∫

q

[
nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]

×
∫

q

nB(Ek)

Ek
+ 2B0m

8 f 2

[∫

q

nB(Eq )

Eq

]2

− 1

4 f 2

{∫

q

[
nB(Eq − μI ) − nB(Eq + μI )

]}2
(58)

The one-loop counterterm contribution to the pressure Pct
2

from L
quadratic

4 is

Pct
2 = − l3(2B0m)2

f 2

×
∑∫

Q

[
2

(Q0 + iμI )
2 + q2 + 2B0m

+ 1

Q2 + 2B0m

]

= 3l3(2B0m)3

(4π)2 f 2

[
1

ε
+ 1 + log

Λ2

2B0m
+ π2 + 12

12
ε

+ log
Λ2

2B0m
ε + 1

2
log2

(
Λ2

2B0m

)
ε

]
− l3(2B0m)2

f 2

×
∫

q

[
nB(Eq )

Eq
+ nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]
,

(59)

where we have expanded the zero-temperature part of the
loop integral to order ε in order to pick up a finite term when
it is multiplied by the bare coupling l3. Finally, the contact
term is

Pcontact
2 = 16(c10 + 2c11)(2B0m)3. (60)

The NNLO contribution to the pressure is then given by the
sum of Eqs. (58)–(60). The ultraviolet divergences are elim-
inated upon substituting l3 by lr3 using (26) and c10 + 2c11

by cr10 + 2cr11 using Eq. (30). The running couplings lr3 and
cr10+2cr11 are then replaced by the right-hand side of Eqs. (26)
and (33). After adding Eqs. (57)–(60) and renormalizing, we
obtain

P0+1+2 = f 2(2B0m) + (2B0m)2

4(4π)2

[
3

2
− l̄3 + 4l̄4 + 4h̄1

]

+3l̄3(2B0m)3

4(4π)4 f 2 [c̄10 + 2c̄11]
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−T
∫

q

{
log

[
1 − e−βEq

]
+ log

[
1 − e−β(Eq−μI )

]

+ log
[
1 − e−β(Eq+μI )

]}
+ (2B0m)2

4(4π)2 f 2 l̄3

×
∫

q

[
nB(Eq )

Eq
+ nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]

−2B0m

4 f 2

[∫

q

nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]

×
∫

k

nB(Ek)

Ek
+ 2B0m

8 f 2

[∫

q

nB(Eq )

Eq

]2

− 1

4 f 2

{∫

q

[
nB(Eq − μI ) − nB(Eq + μI )

]}2
.(61)

The term on the third and fourth line can be absorbed in the
one-loop result (57) by making the substitution 2B0m →
m2

π = 2B0m
(

1 − 2B0m
2(4π)2 f 2 l̄3

)
, where mπ is the physical

pion mass in the vacuum, at one loop. This can be seen by
writing m2

π = m2 + δm2 and expanding the one-loop result
to first order in δm2. The final result then reads

P0+1+2 = f 2(2B0m) + (2B0m)2

4(4π)2

[
3

2
− l̄3 + 4l̄4 + 4h̄1

]

+3l̄3(2B0m)3

4(4π)4 f 2 [c̄10 + 2c̄11]

−T
∫

q

{
log

[
1 − e−βEq

]
+ log

[
1 − e−β(Eq−μI )

]

+ log
[
1 − e−β(Eq+μI )

]}

−2B0m

4 f 2

∫

q

[
nB(Eq − μI )

Eq
+ nB(Eq + μI )

Eq

]

×
∫

p

nB(Ep)

Ep
+ 2B0m

8 f 2

[∫

q

nB(Eq )

Eq

]2

− 1

4 f 2

{∫

q

[
nB(Eq − μI ) − nB(Eq + μI )

]}2
.(62)

The final result is scale independent. In the limit μI → 0, the
temperature-dependent terms of the result Eq. (62) reduce to
the result of Gerber and Leutwyler when restricting their
three-loop result to two loops [52]. In the chiral limit, it
reduces to a gas of noninteracting bosons.1 The temperature-
independent terms agree with the result first obtained in
Ref. [51] for the full vacuum energy to order O(p6) in χPT.

6 Numerical results and discussion

Our results for the quark and pion condensates, and the pres-
sure contain a number parameters from the chiral Lagrangian,
namely 2B0m and f , the four low-energy constants l1 − l4,
and the contact parameter h1. The low-energy constants l̄1

1 In the chiral limit, μI = 0 in order to remain in the symmetric phase.
The first correction to the ideal-gas result is of order T 8/ f 4 [52].

and l̄2 were measured experimentally via d-wave scatter-
ing lengths, while l̄3 has been estimated using three-flavor
QCD [6]. The low-energy constant l̄4 is related to the scalar
radius of the pion. We have determined h̄1 using the values
and uncertainties of the three-flavor low-energy constants in
Ref. [53] and the mapping of three-flavor LECs to two-flavor
LECs as discussed in Ref. [7]. 2 The numerical values are [54]

l̄1 = −0.4 ± 0.6, l̄2 = 4.3 ± 0.1, (63)

l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.2, (64)

h̄1 = −1.5 ± 0.2. (65)

We are aware of more recent values of the low-energy con-
stants [55], but for consistency, we use the same values as
Refs. [45–48] to compare χPT with LQCD at zero tempera-
ture. The relations between the bare parameters f and 2B0m
in the chiral Lagrangian and the physical pion mass mπ and
the pion-decay constant fπ at one loop are given by [6]

m2
π = 2B0m

[
1 − 2B0m

2(4π)2 f 2 l̄3

]
, (66)

f 2
π = f 2

[
1 + 4B0m

(4π)2 f 2 l̄4

]
. (67)

Thus once we know the couplings l̄3 and l̄4 as well as the
pion mass and the pion-decay constant, we can determine
the parameters f and 2B0m in the chiral Lagrangian. As in
the previous papers [45–48], we adopt the values of mπ and
fπ used in the lattice simulations of Refs. [14–16],

mπ = 131 ± 3 MeV, fπ = 128 ± 3√
2

MeV. (68)

In the remainder of the paper, we shall be using only the
central values of the parameters. Using the central values of
the values quoted above, we obtain the bare values

(2B0m)cen = 132.4884 MeV, fcen = 84.9342 MeV. (69)

Using the value (69), we can calculate B0 using the contin-
uum value of the quark mass, the bare pion-decay constant
and the bare pion mass. Unfortunately, the quark mass is
not known for the isospin simulations of Refs. [14–16]. We
therefore use the continuum value of the quark mass from
a different lattice computation [56], similar to what we did
in the zero temperature analysis of Ref. [48]. Previously, the
zero temperature condensates [48] were found to be insen-
sitive to the values of the continuum quark mass (and their
corresponding uncertainties) [56]. The parameters most sen-
sitive to uncertainties were found to be the pion mass and
pion-decay constant.

2 There is another choice of h̄1 in the literature [6], which happens to
be model-dependent (with calculations based on ρ-dominance).
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In order to study the phase transition (critical isospin
chemical potential as a function of temperature) analytically,
we perform a Ginzburg–Landau expansion of the effective
potential in powers of α (around α = 0),

VGL = Veff(0) + a2α
2 + a4α

4 + · · · (70)

At T = 0, the coefficients ai are functions of μI and the
parameters of the Lagrangian. At finite temperature, there
is additional temperature dependence. The critical isospin
chemical potential μc

I as a function of the critical temperature
T c is defined as the curve in the phase diagram where a2

vanishes. If a4 evaluated at a point on the phase-transition
curve is larger than zero, then the transition is second order at
that point. If a4 is smaller than zero, then the transition is first
order at that point. Finally, if a4 = 0, it is a tricritical point
where the order of the phase transition changes its character
from first to second order. In Ref. [45], it was shown that a2 =
1
2 f 2

π [m2
π − μ2

I ] at T = 0, which yields a critical chemical
potential of μc

I = mπ . At this value of μI , a4 is positive and
consequently the transition is second order.

A low-temperature expansion of the effective potential
was carried out in Ref. [57] in the context of two-color QCD
to find the coefficients a2 and a4. In the same paper, the
authors also applied these techniques to three-color QCD
at finite isospin chemical potential within the approxima-
tion (μI − mπ ) 	 T 	 mπ . Using mπ = 131 MeV, the
approximation holds within the 20% level for T ≤ 26.2 MeV
and μI−mπ

mπ
≤ 0.04, with the bounds halved assuming a 10%

threshold. They obtained the following critical isospin chem-
ical potential, where a2 = 0, for two-flavor QCD

μc
I (T ) = mπ + 1

4 f 2
π

√
m3

πT
3

2π3 ζ

(
3

2

)
. (71)

The authors also obtained a tricritical point, where a2 = a4 =
0, at the following temperature

Ttri = 2mπ

4π − ζ
( 1

2

)
ζ

( 3
2

)

3ζ 2
( 3

2

) ≈ 1.6mπ . (72)

However, Ttri is outside the region of validity of the approx-
imations used to obtain the result.

A first-order transition is signalled by a jump in the order-
parameter 〈π+〉. From Eq. (55), it is easily seen that a jump in
〈π+〉 can only be generated by a jump in α, as long as μI and
T are continuous variables. Numerically, we do not find any
signs of such a jump for temperatures up to 100 MeV, which
is well above the temperature range where the χPT critical
isospin chemical potential agrees with that from lattice QCD.
Finally, lattice results [16,17] as well as model calculations
see e.g. [35,36,58] find a second-order transition everywhere.

The phase boundary itself is shown in Fig. 3. The red
dashed line is the numerical result for the onset of pion con-
densation as a function of temperature, the solid black line

Fig. 3 Phase diagram of chiral perturbation theory at finite isospin
chemical potential and temperature using the central values of param-
eters. See main text for details

is the analytical result of Eq. (71), and the green shaded area
is the lattice QCD result of Refs. [16,17]. We observe that
the red and black curves are in very good agreement for tem-
peratures below 20 MeV. However, beyond this point there
is a significant deviation between the curves, suggesting that
the analytical result breaks down rather quickly. While the
approximation (μI − mπ ) 	 T holds quite well along the
black curve displayed in Fig. 3 the second approximation
T 	 mπ breaks down somewhere in the lower part of the
figure. This elucidates how the discrepancy between the red
and black curves can be so significant in the upper region
of the figure. Finally, we observe that our numerical result
is within the uncertainty range of the lattice data for tem-
peratures up to approximately 35 MeV. This is contrast to
the NJL and quark-meson models that include quark degrees
of freedom. The phase boundary predicted by these models
[36,58] is in good agreement with lattice results in the entire
temperature range.

Let us next turn to the quark and pion condensates. In
Ref. [48] we compared the χPT predictions with those of
lattice simulations [14–16] at vanishing temperature. The
comparison was made between condensate deviations, which
characterizes the change of condensate relative to the normal
vacuum value. These are defined as

Σψ̄ψ = − 2m

m2
π f 2

π

[
〈ψ̄ψ〉μI − 〈ψ̄ψ〉 j=0

0

]
+ 1, (73)

Σπ+ = − 2m

m2
π f 2

π

〈π+〉μI . (74)

At tree level, the definitions ensure that Σ2
ψ̄ψ

+ Σ2
π+ = 1,

which simply expresses the rotation (on the chiral circle) of
the quark condensate into a pion condensate as μI increases.
We note that while the subtraction of 〈ψ̄ψ〉 j=0

0 in Eq. (73)
eliminates the term involving h̄1, the definition in Eq. (74)
is h̄1 dependent. However, the h̄1 dependence in Eq. (74)
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Fig. 4 Normalized quark condensate deviation, Σψ̄ψ , as a function
of the normalized isospin chemical potential at vanishing and finite
temperature to one loop. See main text for details

vanishes automatically when we consider the special case,
j = 0, which is what we do in the following.

In Fig. 4, we plot Σψ̄ψ as a function of μI /mπ for three
different temperatures. We also include the leading order
result in red valid at T = 0. The blue line indicates the
NLO result at T = 0, the green line shows the T = 30 MeV
result, and the orange line shows the T = 60 MeV result. We
observe that the magnitude of the chiral condensate decreases
as we increase the temperature in the normal phase, as
expected. Furthermore, the magnitude of Σψ̄ψ drops signifi-
cantly once we enter the pion-condensed phase. We also note
that for T = 60 MeV, the chiral condensate starts decreasing
due to thermal effects before the second order phase transition
occurs. Furthermore, for a fixed isospin chemical potential
the chiral condensate increases with temperature. This occurs
due to the delayed onset of pion condensation at higher tem-
peratures. Finally, we note that the chiral condensate devia-
tions at different temperatures approach each other at high
isospin densities, where finite-density effects dominate over
finite-temperature effects. We observe that including finite-
temperature effects for temperatures up to 60 MeV in χPT
to one loop does not lead to very significant corrections to
the zero-temperature result in any part of the phase diagram.

In Fig. 5, we show Σπ+ as a function of μI /mπ for three
different values of the temperature T . The red line shows the
T = 0 MeV LO result, the blue line shows the T = 0 MeV
NLO result, the green line shows the T = 30 MeV NLO
result, and the orange line shows the T = 60 MeV NLO
result. The green and the blue line are barely distinguish-
able. The difference between the red line and the orange
line in the proximity of the phase transition is quite clear
and reflects the pronounced temperature dependence that the
phase-transition curve attains at high temperatures in χPT
to one loop, as was clearly shown in Fig. 3. Once again we
observe that finite-temperature effects become unimportant
at large isospin densities. The violation of the relation (49)

Fig. 5 Normalized pion condensate deviation, Σπ+ , as a function of
the normalized isospin chemical potential at vanishing and finite tem-
perature to one loop. See main text for details

Fig. 6 Pressure normalized to the Stefan–Boltzmann pressure as a
function of T/mπ for three different values of μI . See main text for
details

is clearly seen in Figs. 4 and 5 and it has also been observed
on the lattice [16]. Generally, the agreement between lattice
results χPT at T = 0 improves as one goes from LO to
NLO [48].

Finally, in Fig. 6, we show the pressure divided by the
Stefan–Boltzmann result PSB = T 4π2

30 as a function of T/mπ

for three different values of the isospin chemical potential.
From above, μI = 0, μI = 1

4mπ , and μI = 1
2mπ . The

pressure at T = 0 has been subtracted. The solid lines are
the one-loop results, while the black dashed lines display the
two-loop result. The low-energy expansion seems to be con-
verging very well. The good convergence properties of the
low-energy expansion were also found for the quark conden-
sate up to three loops at μI = 0 [52].

While it is clear that χPT is breaking down at some
temperature below the deconfinement temperature simply
because it only incorporates mesonic degrees of freedom, rig-
orous statements about the validity of our calculations seems
difficult since there are several scales involved, namely mπ ,
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fπ , T , and μI . Considering the green band in Fig. 3, com-
paring χPT and lattice QCD, suggests that χPT ceases to
be valid at approximately 40 MeV near the phase transition
to the pion-condensed phase. A more conservative estimate
would be half of this, 20 MeV, where our result for the phase-
transition curve is in very good agreement with the analytical
approximation of Ref. [57].
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Appendix A: Integrals and sum-integrals

The sum-integral is defined as

∑∫

P
= T

∑
n

∫

p
= T

∑
n

(
eγEΛ2

4π

)ε ∫
dd p

(2π)d
, (A.1)

where the sum is over the Matsubara frequencies P0 =
2πnT . The integral over three-momenta is regularized using
dimensional regularization with d = 3 − 2ε, where Λ is
a renormalization scale associated with the MS scheme. In
dimensional regularization, we find
∫

p

√
p2 + m2 = − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
.

(A.2)

The sum-integrals we need are

∑∫

P
log

[
(P0 + iμI )

2 + p2 + m2
]

=
∫

p

√
p2 + m2

+ T
∫

p

{
log

[
1 − e−β(Ep−μI )

]
+ log

[
1 − e−β(Ep+μI )

]}
,

(A.3)

∑∫

P

1

(P0 + iμI )
2 + p2 + m2

= − m2

(4π)2

(
Λ2

m2

)ε [
1

ε
+ 1 + π2 + 12

12
ε + O(ε2)

]

+ 1

2

∫

p

[
nB(Ep − μI )

Ep
+ nB(Ep + μI )

Ep

]
, (A.4)

∑∫

P

(P0 + iμI )

[(P0 + iμI )
2 + p2 + m2]

= i

2

∫

p

[
nB(Ep − μI ) − nB(Ep + μI )

]
, (A.5)

where nB(x) = 1
eβx−1

is the Bose–Einstein distribution func-

tion and Ep = √
p2 + m2. The sum over Matsubara frequen-

cies in the sum-integrals can be performed using contour
integration with standard techniques, see e.g. Ref. [59] for
details. We note that the sum-integral in Eq. (A.5) is finite,
and vanishes in the limit μI → 0 since it is odd in the variable
P0.
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15. B.B. Brandt, G. Endrődi, S. Schmalzbauer, EPJ Web Conf. 175,

07020 (2018)
16. B.B. Brandt, G. Endrődi, S. Schmalzbauer, Phys. Rev. D97, 054514

(2018)
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