
Vol.:(0123456789)1 3

Pattern Analysis and Applications 
https://doi.org/10.1007/s10044-020-00925-1

THEORETICAL ADVANCES

AWkS: adaptive, weighted k‑means‑based superpixels for improved 
saliency detection

Ashish Kumar Gupta1 · Ayan Seal1,2  · Pritee Khanna1 · Ondrej Krejcar2,3 · Anis Yazidi4

Received: 29 June 2020 / Accepted: 26 October 2020 
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Clustering inspired superpixel algorithms perform a restricted partitioning of an image, where each visually coherent region 
containing perceptually similar pixels serves as a primitive in subsequent processing stages. Simple linear iterative clustering 
(SLIC) has emerged as a standard superpixel generation tool due to its exceptional performance in terms of segmentation 
accuracy and speed. However, SLIC applies a manually adjusted distance measure for dis-similarity computation which 
directly affects the quality of superpixels. In this work, self-adjustable distance measures are adapted from the weighted 
k-means clustering (W-k-means) for generating superpixel segmentation. In the proposed distance measures, an adaptive 
weight associated with each variable reflects its relevance in the clustering process. Intuitively, the variable weights cor-
respond to the normalization terms in SLIC that affect the trade-off between superpixels boundary adherence and compact-
ness. Weights that influence consistency in superpixel generation are automatically updated. The variable weights update is 
accomplished during optimization with a closed-form solution based on the current image partition. The proposed adaptive, 
W-k-means-based superpixels (AWkS) experimented on three benchmarks under different distance measure outperform the 
conventional SLIC algorithm with respect to various boundary adherence metrics. Finally, the effectiveness of the AWkS 
over SLIC is demonstrated for saliency detection.

Keywords Superpixels · Segmentation · W-k-means · Distance measure

1 Introduction

In recent years, superpixel segmentation has became an 
integral preprocessing tool in various image processing 
and computer vision applications such as object detection 
[1, 2], recognition [3], semantic segmentation [4], image 
classification [5], object proposal detection [6, 7], visual 
tracking [8, 9], indoor seen understanding [10], and sali-
ent object detection [11–16]. Superpixel segmentation of an 
image partitions it into non-overlapping regions where each 
constituent region is a grouping of pixels that are similar in 
color or other low-level cues. Superpixels are found to be 
more natural image entities than individual pixels [5]. A 
superpixel segmentation algorithm is expected to address 
the diverse requirements comprising of boundary adherence, 
compactness, connectivity, and computational efficiency to 
be useful as a preprocessing step [1, 17–19]. These algo-
rithms can be broadly categorized as density-based [20], 
graph-based [21], contour evolution [22], and cluster-based 
superpixels [1, 23, 24]. While most approaches have been 
utilized in only some specific applications, simple linear 
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iterative clustering (SLIC) [1] has been widely applied as a 
preprocessor to many important computer vision problems.

The popularity of SLIC can be attributed to its character-
istics of high adherence to object boundaries, explicit control 
over the compactness and size of superpixels, and efficiency 
in terms of time and space. Despite of these merits, SLIC 
uses a manually adjusted distance measure to encourage 
consistent clustering of different size superpixels [1]. This 
distance measure, being manually tuned, appears to affect 
the segmentation accuracy of generated superpixels. The 
selection of space-specific yet fixed normalization terms in 
such a distance measure is difficult given the complexity of 
natural images and trade-off between the conflicting require-
ments of boundary adherent but compact superpixels. A very 
few methods [1, 25, 26] have been proposed for automatic 
normalization of involved spaces in SLIC distance meas-
ure. Moreover, most methods attempt SLIC improvement 
by focusing only on the compactness parameter, a term that 
normalizes the color similarity between two CIE-Lab vec-
tors under constrained search space.

In contrast to these methods, the proposed work applies 
a systematic approach for assigning and updating weights 
to variables in a distance measure. Motivated by the opti-
mization function of W-k-means clustering [27] algorithm, 
distance functions proposed in this work have an adaptive 
term for each variable in their formulation. Due to this, the 
proposed distance measures can mitigate the effect of equal 
variable weighting problem in k-means algorithm. These 
adaptable weights provide necessary guidance about the 
variables for exploring desired cluster structures in data. 
Automatic weights update based on the current image parti-
tion replaces the previous weight values in each optimization 
step. Consequently, the current weights used in an adaptive, 
weighted distance measure reflect the relative relevances of 
variables and thus assist in generating boundary adherent yet 
compact superpixels. The main contributions of this paper 
are summarized below.

– Use of the proposed W-k-means inspired distance meas-
ures allows AWkS algorithm to extend SLIC to accom-
modate more feature spaces. Even for the original joint 
Labxy color and coordinate features, problem using two 
feature spaces can be extended and evaluated at indi-
vidual feature components level.

– The AWkS update procedure for the variable weights 
automatically computes the terms necessary to normal-
ize various space distances before combining. The update 
procedure avoids variable (feature) elimination and pro-
motes compactness in superpixels.

– The AWkS algorithms under four distance measures are 
extensively evaluated on three challenging datasets for 
various qualitative and quantitative performance metrics. 

Further, the utility of superpixels generated by AWkS algo-
rithm is demonstrated in saliency detection [11, 14, 28].

The rest of this paper is organized as follows. Section 2 
reviews the background for superpixel algorithms. The pro-
posed AWkS algorithm is discussed in Sect. 3. Qualitative 
and quantitative performance evaluation of different distance 
measures under AWkS is presented in Sect. 4. Application 
of the AWkS algorithm for saliency detection constitutes 
Sect. 5. Finally, Sect. 6 concludes the paper.

2  Background

2.1  Simple linear iterative clustering

Let Yi = [yi,1, yi,2,… , yi,v]
T represents a feature vector con-

sisting of v variables (attributes) for a pixel i in an input 
image I of size N. Then, the k-means-type clustering algo-
rithms attempt partitioning the set � = {Y1, Y2,… , YN} of 
N such entities into k clusters that minimize the following 
objective function:

where sl is an indicator function with sl = 1 if Ym ∈ Sl 
and 0 otherwise. The sets � = {S1, S2,… , Sk} and 
� = {C1,C2,… ,Ck} represent k current data partitions and 
their respective cluster centers. The element-wise distance 
between an image pixel m and its cluster center Cl is defined 
as d = (ym,n − cl,n)

2.
The conventional SLIC algorithm [1] solves superpixel 

generation as a clustering problem. The space being con-
sidered is the joint CIE-Lab color-image coordinate space 
with Yi = [Li, ai, bi, xi, yi]

T for an image pixel i. The post-
processed final clusters are then accepted as the set of 
desired superpixels. To guarantee identical superpixels in 
every run for an image I, the set � is initialized by sam-
pling pixels uniformly in I with fixed grid interval 

√
N∕k . 

The choice of k-means clustering in SLIC [1] promotes a 
distance measure based on (1). A combined 5-D Euclid-
ean distance is found to compromise with boundary accu-
racy and compactness of superpixels. This is caused by the 
very nature of conventional k-means algorithm to treat all 
variables equally in clustering process [27]. It, therefore, 
ignores normalization while combining different scale dis-
tances using (1). To mitigate this effect, the dis-similarity 
between a point p = [Lp, ap, bp, xp, yp]

T and the qth cluster 
center Cq = [Lq, aq, bq, xq, yq]

T is computed in [1] using a 
manually adjustable distance measure as follows :

(1)X(�,�) =

k∑
l=1

N∑
m=1

v∑
n=1

sld(ym,n, cl,n)
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where � (compactness parameters) and � (set to the grid 
interval 

√
N∕k ) normalize the color similarity ( dc ) and the 

spatial proximity ( ds ) which are computed using (3) and (4), 
respectively.

2.2  SLIC variants

The distance measure D in (2) has a space-specific normali-
zation term for each involved space that is defined once by 
a user and remains fixed during the k-means optimization. 
For natural images, wise selection of such normalization 
terms is difficult due to the vague relation between � (treated 
as compactness parameter) and its impact on conflicting 
requirements of boundary adherence and compactness. To 
this end, Achanta et al. [1] also proposed an adaptive version 
of SLIC (ASLIC) that can adjust color and space proximities 
for each cluster based on the current image partition. ASLIC 
superpixels were observed to be visually more compact but 
slightly degraded in boundary adherence. The recently pro-
posed variance adaptive SLIC (VASLIC) [25] utilizes a 
local 3 × 3 variance at each image pixel to generate visually 
boundary adherent superpixels. VASLIC severely underper-
forms SLIC on other evaluation metrics such as underseg-
mentation error and explained variance because it applies a 
local heuristic at each image pixel without addressing the 
smoothing issues. Similar to [25], the method proposed in 
[26] uses the non-stationarity measure (NSM) map of the 
input image to decide upon the superpixels compactness 
at pixel level. Thus, these SLIC variants estimate only the 
color normalization term based upon some locally varying 
image property and hence eliminate the need for a user to 
specify the compactness parameter. However, the normali-
zation term associated with the image plane space always 
remains fixed in SLIC and its variants [25, 26]. Moreover, 
the factors effecting superpixel accuracy and compactness 
such as variance are themselves fixed at pixel level and do 
not experience any change during k-means optimization. 
This effectively implies that algorithms such as [25, 26] fix 
the color normalization term at pixel level for distance com-
putation. In contrast to these methods, the proposed AWkS 
algorithm uses adaptive terms to appropriately normalize 
different feature spaces before combining them into a useful 
distance measure.

(2)D(p, q) =

√(
dc

�

)2

+

(
ds

�

)2

,

(3)dc =
‖‖‖
[
Lp, ap, bp

]T
−
[
Lq, aq, bq

]T‖‖‖2

(4)ds =
‖‖‖
[
xp, yp

]T
−
[
xq, yq

]T‖‖‖2

3  Adaptive, W‑k‑means‑based superpixel 
segmentation

In this section, the various distance measures inspired from 
W-k-means objective functions are presented before discuss-
ing the AWkS segmentation algorithm.

3.1  Distance measures for AWkS

A multi-dimensional clustering problem, such as SLIC, 
requires a distance measure in order to detect the amount 
of dis-similarity between the two data points. Unlike SLIC, 
this work adopts a systematic approach for the incorporation 
of weights for variables in a distance measure along with a 
suitable procedure for their iterative updates during optimi-
zation. In this regard, the distance functions motivated by 
W-k-means clustering [27] and its variants [29] appear to 
be beneficial. Such algorithms have played a pivotal role in 
recovering the cluster structure of multi-dimensional data. 
The possibility of improving the accuracy of SLIC [1] super-
pixels by exploring upon the degree of feature relevances 
during objective function minimization has been attempted 
in this work.

Given W = {w1,w2,… ,wv} as the weights for v varia-
bles, the W-k-means algorithm [27] minimizes the following 
objective function:

subject to: 
∑v

n=1
wn = 1, 0 ≤ wn ≤ 1 , where the exponential 

� is a user-defined parameter.
In the AWkS algorithm, a distance measure is adopted 

from (5) and takes the following general form:

where V contains disjoint subsets from the feature set of 
dimension v.

The advantages of using (6) are twofold. First, the term 
w
�

A
 serves as an adaptive normalization term for each vari-

able subset A ∈ V  . Further, all weights associated with the 
variable subsets in V are open for automatic updates. Sec-
ond, the variable weights are computed using a closed-form 
solution based on every current segmentation of the input 
image, thus allowing the incorporation of critical cluster 
information in the subsequent pixel assignment step. Unlike 
other SLIC variants, variables relevance are computed with 
respect to all contributing variables and hence have an intrin-
sic dependency on one another.

For AWkS, it is possible to define the distance measure 
in two ways—at “image-level” or at “cluster-level.” For 
the image-level variant, the weight update procedure (as 

(5)X(�,�,W) =

k∑
l=1

N∑
m=1

v∑
n=1

slw
�
n
d(ym,n, cl,n)

(6)D(m, l) =
∑
A∈V

w
�

A
d(ym,A, cl,A)
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discussed in Sect. 3.2) for (6) requires the computation of 
the intra-cluster variable-specific distances from all image 
pixels to their assigned cluster centers. On the other hand, 
the “cluster-level” formulation is the extension of “image-
level” to associate a weight for each feature in each cluster. 
In “cluster-level” formulation, the important variables in 
each cluster identify the subspace in which the cluster is 
discovered. Further, the subsets of important variables vary 
from one cluster to another resulting in subspace cluster-
ing. This requires modifying the objective function in (5) 
to assign a weight to each feature subset A ∈ V  at the clus-
ter level. With W representing a matrix of weights having 
|V| × k dimensionality, the objective function in (5) then 
becomes [29]:

subject to : 
∑

A∈V wl,A = 1, 0 ≤ wl,A ≤ 1 . The weight update 
formula for the formulation in (7) requires the computation 
of the intra-cluster distance from all pixels in an individual 
cluster to its cluster center in order to update the variable 
weights associated with that cluster. The main advantage of 
cluster-level variant is better boundary adherence in high-
variance image areas, see Fig. 3.

The minimization of objective functions in (5) and (7) 
with respect to optimization variables S, C, and W (or W) 
is conducted using an iterative optimization strategy [27, 
29]. Subproblems are defined on each optimization variable 
while keeping the other two variables constant. The respec-
tive solutions of subproblems on S and C are well known 
and each has a closed-form solution [27, 30].

3.2  AWkS algorithm

The AWkS segmentation is an iterative algorithm consist-
ing of the following major steps : initialization, cluster 
assignment, and updates of cluster centers and the variable 
weights. Following [1, 25, 26, 31, 32], the input color image 
is first transformed into CIE-Lab color space to generate 
perceptual uniform superpixels [33].

Assignment step Similar to SLIC [1], AWkS algorithm 
selects a representative cluster for each image pixel i from 
among a few nearby candidate clusters Bi ⊂ � during assign-
ment step. The set Bi for a pixel i contains all nearby clus-
ters from � that accommodate pixel i in a square region of 
perimeter 

√
16N∕k around their cluster centers [1]. As the 

distance computations for each pixel i has been restricted 
to the nearby cluster set |Bi| << k , a significant computa-
tion speedup is achieved over conventional k-means algo-
rithm. In AWkS algorithm, an image pixel i is assigned to a 
nearby candidate cluster center Cl using the following sim-
ple rule: Yi ∈ Sl if 

∑
A∈V w

�

A
d(yi,A, cl,A) ≤

∑
A∈V w

�

A
d(yi,A, cp,A) 

(7)X(�,�,�) =

k∑
l=1

N∑
m=1

∑
A∈V

slw
�

l,A
d(ym,A, cl,A)

for Cp ∈ CB and Yi ∉ Sp if p ≠ l . If the distance measure is 
motivated by (7), we replace w�

A
 by w�

l,A
 in the above rule.

Update step The assignment step generates a partitioning 
S of the input image where each pixel has a label from the 
set {1, 2,… , k} . The iterative AWkS optimization inspired 
from [27] performs separate update of both cluster centers, 
C, and the weights in the distance measure, W. During clus-
ter center update, each lth cluster center in � is replaced by 
a v-D vector representing the mean of all pixels in S having 
the label l. An additional update step in W-k-means performs 
variable weights adjustment. The variable weights update 
procedure in AWkS is based on the current image partition 
S, the set of k-cluster centroids C, the chosen set V, and 
number of weights W to be updated. With S and C fixed, the 
update of W is carried out element-wise using the following 
equation [Theorem 1, [27]]:

iff 𝛽 > 1 or � ≤ 0 . Further, DA , as defined in (9), represents 
the variable-specific sum of intra-cluster distances between 
pixels in Sl and their respective cluster centers Cl.

The choice of values for � in (5) is particularly important and 
is justified in [27] on the basis of variable weighting princi-
ple. With 𝛽 < 0 or 𝛽 > 1 , the weighting principle advocates 
a larger weight for a variable set A that has a smaller DA (the 
sum of intra-cluster distances) and vice versa. In this way, 
insignificant variable sets A ∈ V  having large intra-cluster 
distances from the viewpoint of current clusters are assigned 
small weights, thereby reducing their effect in the subse-
quent clustering process. When � = 0 , (5) loses the signifi-
cance of weights and behaves identical to the conventional 
k-means. When � is set to 1, variable weighting becomes 
feature selection, thereby setting exactly one variable weight 
(corresponding to minimum DA ) to 1 from among all A ∈ V . 
A value of � chosen from the open set (0, 1) violets the 
weighting principle [27].

The direct use of (8) prefers variable selection over vari-
able weighting when DA is zero for some A ∈ V  . Variable 
selection assigns a weight of zero to one or more variables, 
thereby eliminating their contribution in distance computa-
tions. In conventional SLIC with the CIE-Lab color-image 
plane feature space, we have V={{l, a, b}, {x, y}} . Referring 
to Fig. 1, a constant intensity image should set WA = 0 for 
A = {L, a, b} . But, due to the color space conversion from 

(8)ŵA =

⎧
⎪⎪⎨⎪⎪⎩

0 if DA = 0
1

∑
F ∈ V ,

s.t.DF ≠ 0

�
DA

DF

� 1
𝛽−1

if DA ≠ 0

(9)DA =

k∑
l=1

N∑
m=1

sld(ym,A, cl,A)
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RGB to CIE-Lab, DA is set to an extremely small value in 
place of zero. Following (8) for weight computation, the 
weightage of WAc becomes extremely low which, therefore, 
produces false image superpixel segmentation as shown in 
Fig. 1a. To guard against this situation, the following modi-
fied equation has been used in AWkS for computing intra-
cluster distances:

where � should make the computation of DA possible for 
all A ∈ V  . To avoid variable rejection, a nonzero, posi-
tive constant value for � is sufficient [29]. However, for 
AWkS segmentation, � is set equal to the reciprocal of mth 
pixel variance in Lab color space. Let �2

lab
(m) denote the 

3 × 3 local neighborhood variance around a pixel m, then 
� = 1∕(�2

lab
(m) + z) , where z (set to .01) is a small constant. 

It is observed that (10) contributes to enforcing compact-
ness in superpixels. More specifically, the very small local 
variance around a pixel in a flat image region improves 
(increases) the intra-cluster distance for D{L,a,b} as compared 
to D{x,y} , when such distances are computed using (10). This 
results in assignment of relatively fair weight proportion to 
the spatial variable, and therefore, compactness is enforced. 
When a pixel is on some edge, the inter-cluster distance 
D{L,a,b} for the color space remains low compared to Dx,y , 
both due to the scale difference between spaces and a very 
small extra term being added to both intra-cluster distances. 
This scenario contributes in assigning fairly high weights to 
W{L,a,b} , which produce superpixels that adhere well to image 
boundaries. The automatic update of the variable weights 
using (10) in each optimization step thus has advantages 
over user-specified constant terms. The solution ŵl,A of (7) 
is similar to ŵA in (8) with three important modifications 
[29]. First, the condition for DA = 0 is removed. Second, 
DA and DF are replaced by Dl,A and DF,A , respectively, and 

(10)DA =

k∑
l=1

N∑
m=1

sld(ym,A, cl,A) + �

finally, the intra-cluster distances are computed at cluster 
level using (11).

Weight Initialization The AWkS algorithm requires initiali-
zation of all weights W(W) in (5) (7) in addition to the k 
cluster centers in C. The fact [27] that the final clustering 
result of AWkS algorithm depends on the initialization of 
both C and W rejects the possibility of initializing W ran-
domly. Another possibility is to use the first run of con-
ventional SLIC to obtain the initial image partition from 
which W can be initialized. Nevertheless, the resultant 
superpixels would be dependent on the specific choice of 
compactness parameter � and the algorithm would require 
two user-defined parameters. Boundary adaptive superpixel 
algorithms such as (VASLIC) [25] and nSLIC [26], on 
the other hand, require only one user-specified parameter 
with compactness controlled internally. This motivated us 
to utilize the clusters generated by exactly one iteration of 
VASLIC for fixed initialization of weights, W(�) in (5), 
(7). VASLIC [25] incorporates the local variance of each 
image pixel (computed only on L-channel) into the distance 
measure as follows:

where �2

lab
(i) is 3 × 3 local variance of pixel i, ds is computed 

as in (2), and z is a small constant to avoid divide by zero. 
For further details on VASLIC, please refer to [25].

Termination The iterative optimization of S, C and W 
(or W) continues until the residual error E = ‖Cold − Cnew‖2 
converges, where the superscript on C refers to the previ-
ous and current cluster centroids in subsequent optimiza-
tion steps. Most implementations and variants of SLIC have 
reported satisfactory results with iterations as few as 3 [26], 
5 [25], and 10 [1]. In this work, all results are reported using 
10 iteration of AWkS following conventional SLIC algo-
rithm [1].

The clusters generated by AWkS algorithm may not have 
exactly one strongly connected component for each super-
pixel label. A post-processing step proposed in [1] reme-
dies this shortcoming by assigning a quickly but randomly 
selected nearby label to each stray pixel set. Algorithm 1 
summarizes the AWkS segmentation procedure. 

(11)Dl,A =

N∑
m=1

sld(ym,A, cl,A) + �

(12)

dc =

����
�
Li − LCl

�2
�
�2

lab
(i) + z)

+ (ai − aCl

�2
+ (bi − bCl

)2

D(i,Cl) =

�����d2
c
+

�
ds√
N∕k

�2

Fig. 1  Superpixel segmentation by AWkS on a constant intensity 
(white) image when the intra-cluster distances are computed a using 
Eq. 9 and b using Eq. 10. The thin black borders were added for clar-
ity. They are not part of the data
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4  Experimental results

In this section, both qualitative and quantitative evaluation 
is performed to demonstrate the effectiveness of the AWkS 
segmentation algorithm under different distance measure 
configurations.

4.1  Evaluated configurations

Various distance measures discussed in Sect. 3 offer the flex-
ibility to generate superpixels with different combinations 
of the feature sets V and the spatial extent of weighting in 
the feature space. Table 1 summarizes the various configura-
tions of the AWkS segmentation algorithm. The “2-Feature” 
AWkS configurations perform automatic variable distance 
normalization for both variables which makes it different 
from SLIC. On the other hand, the “5-Feature” configura-
tions reflect the relative importance of individual variables 
during cluster assignment. Both “2-Feature” and “5-Feature” 
cases are considered at image-level (I) and cluster-level (C) 
spatial weighting. For further discussion, the configurations 
are referred to by the names in the first column of Table 1. 
In this work, the performance of AWkS algorithm under 
four different configurations (distance measures) is evaluated 
against SLIC [1] and VASLIC [25].

4.2  Datasets

The AWkS segmentation configurations are evaluated on 
three challenging datasets. The Berkeley Segmentation 
Dataset 300 (BSDS300) [5] and its extension, BSDS500 
[34], have been used in all recent works, viz. [1, 17, 25, 26, 
31] for performance evaluation of superpixels algorithms. 
BSDS500 is an outdoor dataset with at least 5 hand-
labeled, high-quality ground truth segmentations for each 
of the 500 images. Many images in BSDS500 are pictured 
in natural scenarios with unclear and hence hard to locate 
segment boundaries. The second dataset called the stan-
ford background dataset (SBD) [35] is an outdoor dataset 
containing 715 images of varying size and visual quality. 
The presence of multiple foreground objects, objects with 
vague foreground boundaries, and the accommodation of 
detailed background regions in ground truth segmentations 
makes it challenging for the evaluation of superpixels. To 
evaluate AWkS segmentations, the third dataset used in 
this work is the Fashionista dataset (Fash) [36]. It contains 
685 images showcasing fashion models in different outfits 
and poses before various backgrounds. The ground truth 
provided by [36] required preprocessing to meet the con-
nected components requirements of superpixel segmenta-
tion [17]. Some test images from these datasets along with 

their pixel-accurate ground truth segmentations are shown 
in Fig. 2.

4.3  Performance measures

Boundary recall (BR) [37] is a standard metric that measures 
the fraction of relevant edges that fall within at least two pix-
els of a retrieved boundary, where the pixels corresponding 
to relevant edges and retrieved boundary lie in the ground 
truth (G) and superpixels segmentation (S), respectively. A 
high boundary recall indicates better boundary adherence 
with very few relevant edges being missed [1].

Undersegmentation error (UE) [1, 38] is another stand-
ard metric that measures the “overspill” of superpixels with 
respect to ground truth G. It evaluates the boundary adher-
ence based on the requirement that the spatial extent of a 
superpixel should not span more than one object in G [19]. 
Since there exists various formulations of UE as proposed by 
[1, 19, 38], our choice of UE in this work has the following 
formulation [38]:

where Sin
j
= |Sj ∩ Gi| and Sout

j
= |Sj − Gi| represent the num-

ber of pixels of Sj that resides within and outside of Gi , 
respectively.

(13)
UE(G, S) =

1

N

∑
Gi∈G

∑

Sj ∩ Gi ≠ �,

Sj ∈ S

min
{
Sin
j
, Sout

j

}
,

Fig. 2  Some test images with their ground truth segmentation. 
BSDS500 dataset (Row 1), SBD dataset (Row 2), Fashionista data-
set (Row 3). Computation of performance metrics such as boundary 
recall and undersegmentation error depends on pixel-accurate ground 
truth images for dataset images
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Compactness proposed by [18] is a measure that works 
independently of the ground truth segments, G. This meas-
ure basically computes the sum over the iso-parametric quo-
tients defined as 4�ASj

∕L2
Sj
 for each superpixel Sj . Here, ASj

 
and LSj are the area and length of Sj , respectively, each nor-
malized by |Sj|

N
 . A higher iso-parametric quotient indicates 

better compactness.
Explained variance (EV) [39] utilizes the strong color 

and structure variations at image boundaries to measure the 
boundary adherence of superpixels. We use the formulation 
identical to [17, 39] in this work:

where �(.) corresponds to the mean of an input argument 
and yn is the nth pixel of image I having N total pixels. The 
judgment criteria for explained variance is higher is better.

Apart from boundary adherence and compactness, regu-
larity and smoothness of superpixels are also important in 
visual quality inspection of superpixels [17]. In this context, 
superpixels that are nearly equal in size and systematic in the 
arrangement are termed regular. Smooth superpixels have 
boundaries that are expected to be free from artifacts.

4.4  Qualitative results

The visual quality of the superpixels generated by SLIC, 
VASLIC, and the AWkS configurations for some test images, 
drawn from all three datasets, is shown in Fig. 3. For all 
the implemented algorithms, the improvement in boundary 
adherence with an increase in desired superpixels is evi-
dent from Fig. 3. Although SLIC [1] superpixels do respect 
the image boundaries, they may still leave some salient 
edges in the image unattended, mainly due to the use of 
an adjusted distance function during k-means optimization. 
Some boundaries that are missed by the conventional SLIC 
are highlighted using blue rectangles under SLIC in Fig. 3. 
The VASLIC [25] algorithm performs by being greedy on 
image boundaries. It places many boundary points in the 
close vicinity of the actual edges rather than picking up the 
real boundary points at several places. Further, the presence 
of multiple boundaries near important edges contributes 

(14)EA(S) =

∑
Sj∈S

�Sj�‖�(Sj) − �(I)‖2
2∑

yn∈N
‖I(yn) − �(I)‖2

2

,

to high boundary adherence. As discussed in Sect. 3, all 
AWkS configurations have been initialized by a single run 
of VASLIC procedure [25]. Even with this initial setting, 
the difference in boundary adherence capabilities among the 
AWkS configurations and VASLIC is clearly observable. 
The AWkS segmentation under different distance measures 
has shown high boundary adherence capabilities akin to 
SLIC without being explicitly told about the compactness 
parameter. We highlight, using the blue rectangles, those 
important image boundaries that are captured by most of our 
implementations but are skipped by the conventional SLIC 
algorithm in Fig. 3.

In SLIC, a relatively high value of � with respect to √
N∕k promotes compactness on the expense of boundary 

adherence and vice versa. With � = 10 , all SLIC superpix-
els appear visually compact and regular in smooth image 
regions (see Fig 3). In contrast to this, VASLIC superpixels 
are highly non-compact, irregular, and non-smooth. VASLIC 
algorithm emphasizes boundary adherence over compact-
ness as can be visually inspected in Fig. 3 and verified from 
the iso-parametric quotients plots for the three datasets in 
Fig. 4. The AWkS2FI and AWkS5FI superpixels outperform 
SLIC superpixels in terms of compactness on BSDS500 and 
FASH, and up to a large range of superpixel density on SBD 
dataset, please refer to Fig. 4. The high compactness of these 
configurations can be attributed to the modified equation 
for intra-cluster distances (10) as described in Sect.3. The 
rationale behind modifications in (10) and its counterpart for 
(7) is to improve the sum of intra-cluster distance for color 
features using pixels lying in the constant image areas. This 
contributes in setting comparatively low weight for color 
features making superpixels more compact. In detail image 
regions, the cluster-level computations in AWkS2FC and 
AWkS5FC set the intra-cluster distances for color features 
to relatively lower values compared to spatial features. Due 
to this, comparatively high weights are contributed to color 
features, thereby encouraging boundary adherence over 
compactness. The AWkS2FC and AWkS5FC superpixels 
therefore exhibit high boundary adherence at high-variance 
image areas, see Figs. 3 and 4. However, the compactness 
of AWkS2FC and AWkS5FC superpixels in smooth image 
regions is comparable to other AWkS configurations and 
SLIC (Fig. 3).

Table 1  Various AWkS 
configurations

Configuration Variable set (V) # of features(F) Spatial extent Equation to compute 
intra-cluster distance

AWkS2FI {{L, a, b}, {x, y}} 2 Image (10)
AWkS5FI {L, a, b, x, y} 5 Image (10)
AWkS2FC {{L, a, b}, {x, y}} 2 Cluster (11)
AWkS5FC {L, a, b, x, y} 5 Cluster (11)
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Fig. 3  Visual comparison 
among SLIC [1], VASLIC 
[25] and four configurations of 
AWkS algorithms. Test images 
belong to [row 1 and row 2] 
BSDS500 Dataset [34], [row 3 
and row 4] FASH Dataset [36], 
and [row 5 and row 6] SBD 
Dataset [35]. Fragments form-
ing the images above have k ≈
250 in the upperleft corner and 
k ≈500 in the lower right corner
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Fig. 4  Compactness plotted as a function of superpixel density on a BSDS500 dataset, b FASH dataset and c SBD dataset for SLIC, VASLIC 
and AWkS algorithm under different distance measures. d Legend
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The induction of regularity and smoothness in SLIC 
superpixels while attempting compactness is not generally 
true for all superpixel algorithms [17]. However, the high 
regularity and smoothness of superpixels in our image-level 
configurations are eye-catching. It is observed that the use of 
fixed weights for all pixels during an assignment step could 
lead to compact, regular, and smooth superpixels. From 
these visual results, all AWkS configurations of superpixel 
algorithms appear to adhere well with the important object 
boundaries in most images, while maintaining compactness, 
regularity, and smoothness in flat image regions.

4.5  Quantitative results

In our experiments, all the AWkS configurations are exe-
cuted with the desired number of primitives selected from 
the set {50, 100, 250, 500, 1000, 2000} . Various performance 
metrics such as boundary recall, undersegmentation error, 
explained variance, and compactness are computed for a 
given algorithm by their corresponding equations presented 
in Sect. 4.3 for each image in a dataset. The average across 
all images in a dataset for each metric is then plotted as a 
function of the number of (desired superpixel) segments. 
The term “superpixel density” is also used interchangeably 
to refer to the number of desired superpixel segments for 
images in a dataset. The choice of � influences the nor-
malization of variables in (6). The value of � for different 
clustering datasets is recommended by [27] in the range 
[4 − 9] . To set the value of � in our experiments, we plot 
the boundary recall(BR) and undersegmentation error (UE) 
curves for AWkS2FI superpixels on the BSDS500 dataset 
with � selected from {2, 3, 5, 8, 9, 10, 15} . It can be observed 
from Fig. 5 that most values of � coincide and result in infe-
rior superpixels than the ones for � in {2, 8}. The boundary 
adherence of superpixels with � = 8 is consistently better 
than other values of � on UE. Thus, the value of � is set to 8 
for all our experiments.

The quantitative comparison of four AWkS configura-
tions against SLIC and VASLIC is presented in Figs. 4 and 
6. On the BSDS500 dataset, VASLIC superpixels achieve 
the highest BR performance, while the BR curves for all the 
AWkS configurations but AWkS2FI stay higher than the con-
ventional SLIC algorithm. However, at high superpixel den-
sities, all AWkS configurations outperform SLIC. VASLIC 
outperforms other methods on BR curves by choosing many 
boundary pixels in the vicinity of real image boundaries. In 
this way, it becomes the best by leveraging the flexibility 
offered by BR evaluation criteria. Interestingly, VASLIC 
does so on the cost of sacrificing on other quality measures 
such as compactness and smoothness in the entire superpixel 
density range, see Fig. 4a. As shown in Fig. 6b, the inability 
of VASLIC to avoid the “overspill” is indicated by its incred-
ibly high UE curve. Further, the UE curves for all AWkS 
configurations are significantly better than such curves for 
SLIC and VASLIC. The UE curves for “5-Feature” con-
figurations achieve lower values compared to “2-Feature” 
configurations. Please note that the BR of “5-feature” con-
figuration was only next to the VASLIC in Fig. 6a. Further, 
AWkS2FI superpixels that were comparable to SLIC under 
BR perform a little better on the UE metric. In this regard, 
the observations made by Neburt and Protzel [38] that the 
boundary recall [5] is a measure that if used alone favors 
long boundaries and seeks attention. Further, as superpixels 
exhibit low precision, UE was asserted to be a more appro-
priate measure for boundary adherence than BR [38]. In 
terms of the explained variance, AWkS2FI and AWkS2FC 
perform better than the other configurations. When consid-
ered with UE, this indicates that these algorithms highlight 
points at boundary better than VASLIC. Under these obser-
vations, the boundary adherence performance of AWkS2FI, 
AWkS2FC, and AWkS5FI configurations is either better or 
comparable to SLIC [1].

Similar trends for UE and EV can be observed for Fash-
ionista dataset, as shown in Fig. 6e, f. The ground truth 

Fig. 5  Comparison of a bound-
ary recall and b undersegmenta-
tion error on BSDS500 dataset 
for different values of � using 
AWkS2FI superpixels. Similar 
trends have been noticed for 
AWkS5FI superpixels as well. 
c Legend
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segments in Fashionista datasets highlight only those bound-
aries that separate foreground models from the background. 
The BR, as shown in Fig. 6d, curves for FASH indicate that 
“2-feature” AWkS configurations obtain high adherence to 
object boundaries than “5-Features” for higher values of 
superpixels density. In the SBD dataset, the ground truth 
segmentation for images highlights all those boundary pix-
els that belong to either the most prominent foreground or 
background object in a scene. As the VASLIC is capable 

of capturing the boundaries of thin, non-compact regions, 
one can notice its curve becoming relatively better on both 
BR and UE for the SBD dataset. The high BR curve for 
SLIC in Fig. 6g indicates its ability in capturing the back-
ground objects better than the various AWkS configurations. 
However, SLIC could not avoid the “overspill” as can be 
observed from the UE curves for the SBD dataset in Fig. 6h. 
Except for AWkS5FC, all other configurations of AWkS 
algorithm perform either comparable or better than SLIC 
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Fig. 6  Quantitative results on (1) BSDS500 dataset [first row: (a), 
(b), (c)], (2) Fashionista dataset [second row: (d), (e), (f)], (3) SBD 
dataset [third row: (g), (h), (i)]. Three boundary adherence perfor-
mance measures: boundary recall (high is better), undersegmenta-

tion error (low is better), and explained variance (high is better), are 
plotted as a function of superpixel density for four configurations of 
AWkS, SLIC [1], and VASLIC [25]
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superpixels on UE and at lower superpixel densities on the 
EV metric for the SBD dataset.

The execution time of various configurations of AWkS is 
computed on the BSDS dataset with image size 481 X 321 
on Intel Xeon CPU @ 2.7 GHz. The average time taken per 
image to generate 250 superpixels by AWkS2FI, AWkS5FI, 
AWkS2FC, and AWkS5FC is approx. 1.62, 3.24, 1.63, and 
3.28 s, respectively. The average running time for the SLIC 
algorithm for the same dataset is 0.36 s. AWkS performs 
automatic weighting of the variables and therefore includes 
extra computations of intra-cluster distances which increases 
in the execution time. However, the parameterless and adap-
tive nature of AWkS saves the time spent in the manual tun-
ing of parameters for optimal results.

5  Applications to saliency detection

The ability of the human vision system (HVS) to identify 
the perceptually attentive regions in an image without any 
prior contextual knowledge pertaining to the scene formed 
the basis for the field of saliency detection. The objective in 
the bottom-up saliency approach is to quickly identify the 
salient region(s) in an image using low, middle, or high level 
cues. Graphical methods such as [11–14, 28] under bottom-
up saliency detection prefer to define a graph on superpixels 
(mid-level cues) for reducing computation load and extract-
ing effective features.

Graphical models for saliency are expected to perform 
well when the constructed graph on superpixels is more 

interpretable. The AWkS superpixels follow the size con-
straints by being compact and regular in smooth image 
regions and thus have fewer neighbors in the induced graph. 
At detailed image regions improved boundary adherence for 
prominent objects allow the graph to encode shape infor-
mation accurately. To test the AWkS superpixels for sali-
ency detection, the preprocessing of input images in GBMR 
[14], RBD [28], and SMD [11] has been performed with 
the AWkS configurations. All these saliency detection 
approaches originally use SLIC in their preprocessing step. 
Please refer to the original papers for details on these sali-
ency methods.

Experiments are conducted on SED single object data-
set [40] and ECCSD multi-object dataset [41]. For each 
saliency algorithm, desired superpixels number is fixed. 
The F-measure curves are shown in Fig. 7. The mean aver-
age error (MAE), area under curve (AUC), overlap ratio 
(OR), and weighted F-measure (WF) scores are presented 
in Table 2. On single object SED dataset, GBMR with 
AWkS2FC superpixels achieves the best performance in 
terms of MAE, AUC, OR, and WF (Table 2A) as well as the 
F-measure curves (Fig. 7a) compared to all other superpix-
els. With RBD saliency detection, AWkS2FC performs the 
best in terms of AUC and WF, and the second in MAE and 
OR. In the F-measure curves in Fig. 7c, AWkS2FC performs 
the best at higher threshold ranges, while SLIC achieves the 
best at lower ranges. Finally, SMD with AWkS2FC obtains 
the best performance for all computed metrics and the best 
F-measure curve as reported in Table 2C and Fig. 7e, respec-
tively. These results on SED dataset indicate that AWkS2FC 

Table 2  Saliency detection results on SED and ECSSD datasets in terms of MAE, AUC, OR, and WF

↓ Smaller values are better. ↑ Larger values are better.
The best two results are highlighted with bold and italic, respectively

SED ECSSD

Metric SLIC VASLIC AWkS2FI AWkS5FI AWkS2FC AWkS5FC SLIC VASLIC AWkS2FI AWkS5FI AWkS2FC AWkS5FC

(A) GBMR [14]
 MAE ↓ 0.1500 0.1536 0.1477 0.1488 0.1427 0.1473 0.1901 0.1906 0.1884 0.1871 0.1866 0.1883
 AUC ↑ 0.8013 0.8069 0.8060 0.8069 0.8086 0.8082 0.7919 0.7929 0.7940 0.7945 0.7969 0.7991
 OR ↑ 0.6372 0.6325 0.6384 0.6422 0.6544 0.6456 0.5160 0.5180 0.5228 0.5261 0.5283 0.5323
 WF ↑ 0.6383 0.6251 0.6399 0.6395 0.6534 0.6438 0.4896 0.4890 0.4947 0.4923 0.4957 0.4965

(B) RBD [28]
 MAE ↓ 0.1405 0.1539 0.1452 0.1458 0.1419 0.1451 0.1713 0.1741 0.1726 0.1718 0.1719 0.1711
 AUC ↑ 0.7927 0.7827 0.7921 0.7948 0.7959 0.7930 0.7819 0.7654 0.7787 0.7784 0.7820 0.7793
 OR ↑ 0.6249 0.6065 0.6265 0.6317 0.6284 0.6258 0.5266 0.5079 0.5229 0.5255 0.5248 0.5235
 WF ↑ 0.6639 0.6325 0.6538 0.6532 0.6650 0.6530 0.5113 0.4892 0.5043 0.5044 0.5095 0.5082

(C) SMD [11]
 MAE ↓ 0.1246 0.1277 0.1256 0.1248 0.1221 0.1234 0.1741 0.1746 0.1746 0.1730 0.1763 0.1741
 AUC ↑ 0.8111 0.8100 0.8125 0.8138 0.8208 0.8205 0.8103 0.8027 0.8081 0.8091 0.8110 0.8121
 OR ↑ 0.6600 0.6535 0.6642 0.6670 0.6782 0.6736 0.5572 0.5475 0.5533 0.5580 0.5557 0.5590
 WF ↑ 0.6929 0.6886 0.6918 0.6927 0.7065 0.7012 0.5368 0.5316 0.5338 0.5368 0.5349 0.5398
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superpixel outperforms SLIC [1] with saliency approaches 
such as GBMR [14] and SMD [11].

On ECSSD, GBMR with AWkS5FC scores best in terms 
of AUC, OR, and WF. GBMR with AWkS2FC performs 
the best for MAE and the second for AUC, OR, and WF. 

In the F-measure curve as shown in Fig. 7b, both GBMR 
with AWkS2FC and AWkS5FC are consistently superior to 
SLIC [1]. While RBD with cluster-level superpixels get the 
best score for MAE and AUC, SLIC superpixels-based RBD 
achieves the best in terms of OR and WF, and the second 

Fig. 7  F-measure curves. 
Under each saliency detec-
tion approach (GBMR, RBD, 
and SMD), curves a, c and 
e correspond to F-measures 
computed on SED single object 
dataset, whereas the curves 
shown in b, d and f correspond 
to F-measures computed on 
ECSSD dataset
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best in MAE and AUC. As evident from F-measure curves in 
Fig. 7d, RBD with AWkS2FC performs comparable to RBD 
with SLIC at higher threshold ranges. The high performance 
of SMD with AWkS5FC over SLIC is reflected in terms of 
the best values achieved for AUC, OR, and WF, and the 
F-measure in Fig. 7f. These results validate that the graph 
construction based on AWkS2FC and AWkS5FC superpix-
els is more interpretable and improves saliency detection 
performance in approaches such as GBMR [14] and SMD 
[11]. For detecting saliency in images with complex scenes, 
AWkS5FC superpixels perform better than AWkS2FC super-
pixels. This is also evident from the AWkS5FC BR (Fig. 6a) 
and UE (Fig. 6b) curves for the BSDS500 dataset.

6  Conclusion

In this work, an adaptive, W-k-means-based superpixel 
(AWkS) generation algorithm is proposed. Distance meas-
ures inspired by W-k-means clustering have been used to 
detect the amount of dis-similarity between the data points. 
Such distance formulations contain adaptive weighting terms 
for variables under consideration. Weights are assigned to 
each variable based on its relevance in the current parti-
tioning of the image with respect to all variables. Based 
on feature sets and spatial extent of weight computation, 
four different distance measures under AWkS algorithm are 
evaluated. Superpixels generated by some of these AWkS 
configurations outperform SLIC superpixels on metrics like 
boundary adherence and compactness for datasets such as 
BSDS500 and FASH. All AWkS configurations are tested for 
saliency detection using three saliency detection approaches 
that include SLIC as a preprocessing step. The superiority 
of AWkS2FC and AWkS5FC superpixels over SLIC for sali-
ency detection approaches like GBMR and SMD is observ-
able from the various performance evaluation metrics.
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