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ABSTRACT

Recent applications of machine learning, in particular deep learning, motivate the need to address the generalizability of the statistical infer-
ence approaches in physical sciences. In this Letter, we introduce a modular physics guided machine learning framework to improve the
accuracy of such data-driven predictive engines. The chief idea in our approach is to augment the knowledge of the simplified theories with
the underlying learning process. To emphasize their physical importance, our architecture consists of adding certain features at intermediate
layers rather than in the input layer. To demonstrate our approach, we select a canonical airfoil aerodynamic problem with the enhancement
of the potential flow theory. We include the features obtained by a panel method that can be computed efficiently for an unseen configuration
in our training procedure. By addressing the generalizability concerns, our results suggest that the proposed feature enhancement approach
can be effectively used in many scientific machine learning applications, especially for the systems where we can use a theoretical, empirical,

or simplified model to guide the learning module.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038929

Advanced machine learning (ML) models such as deep neu-
ral networks are powerful tools for finding patterns in complicated
datasets. However, as these universal approximators'~* become com-
plex, the number of trainable parameters (weights) quickly explodes,
adversely affecting their interpretability and hence their trustwor-
thiness. Using these models in combination with other traditional
models compromises the trustworthiness of the overall system.
While such techniques have been emerging in both scientific com-
puting and ML fields,”" they offer many opportunities to fuse
topics in domain-specific knowledge, numerical linear algebra, and
theoretical computer science’” toward improving the generalizabil-
ity of these models. In this Letter, we focus on a modular approach
for improving generalizability by augmenting input features with
simplified physics-based models or theories. By the term of gener-
alizability, we refer to the performance of the learning engine for
unseen configurations. Such new situations are pervasive in scien-
tific applications. In many cases, there is a grand challenge in making

accurate predictions using data-driven methods based strictly on sta-
tistical inference. For example, in fluid mechanics, potential flow and
boundary layer theories often provide simplistic models pertaining
to a certain level of approximations. A remaining task is how to com-
bine these models for making more generalizable learning architec-
tures. Therefore, our approach provides intermediate features based
on approximate physics to statistical models that can relate or fulfill
the gap between these simplified theories and more accurate mod-
els (i.e., experimental or high fidelity computational fluid dynamics
simulation datasets).

A wide variety of engineering tasks, such as optimal control,
design optimization, and uncertainty quantification, requires the
prediction of the quantity of interest in real-time. In such scenarios,
the partial differential equation (PDE) based discretization methods
are not feasible as they can take days or weeks to simulate different
configurations. Reduced order models (ROMs) are the state-of-the-
art models that construct the basis from the past data and then
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solve the governing equations after projecting them on the low-
dimensional manifold.””*' The main limitation of such projection
based intrusive ROM:s is that it requires a complete description of
the dynamics of the system, and often, this information is unavail-
able or inadequate for the desired application. Recently, model-free
prediction using machine learning has proven successful for many
physical systems.””~** One of the main challenges with these non-
intrusive models is the prediction for unseen data and their inter-
pretation. Even though probabilistic machine learning methods such
as Bayesian neural networks can give the uncertainty bound on
the predicted state,'* the generalizability of non-intrusive mod-
els is not on par with physics-based models. On the other hand,
the simplified models such as the lumped-capacitance model for
heat transfer analysis and Blasius boundary layer model in fluid
mechanics are highly generalizable to different conditions. There-
fore, it is important to leverage the knowledge of physical systems
into learning, and to this end, we make progress toward physics
guided machine learning (PGML) by embedding features from sim-
plified physical models into the neural network architecture. The
proposed framework is flexible enough to be applied to many
physical systems, and it has great potential in scientific machine
learning.

We now introduce different components of the physics guided
machine learning (PGML) framework as depicted in Fig. 1(a). In
supervised machine learning, the input vector x € R™ is fed to the
machine learning model (for example, the neural network in our
case), and the mapping from the input vector to output vector
y € R" is learned through training. The neural network is trained to
learn the function Fy, parameterized by 6, that includes the weights
and biases of each neuron. The function Fy should be such that
it approximates the known labels and the cost function is mini-
mized. Usually, for the regression problems, the cost function is
the mean squared error between true and predicted output, i.e.,
C(x,0) = |y — Fo(x) 2. The weights and biases of the neural net-
work are optimized using any gradient-descent algorithm such as
stochastic gradient descent. In the PGML framework, the neural net-
work is augmented with the output of the simplified physics-based
model. The features extracted from simplified physics-based models
can be either combined with input features or they can be merged

Predictor

Output

Machine Learning
Model

Corrector

Physics
Enhancement

Simplified
Theory

(a)

scitation.org/journal/phf

into hidden layers along with latent variables. During the training,
the PGML framework is provided with (x, G(x)), where G is the
model based on simplified theories for the problem at hand, and
the parameters 0 are optimized based on the true output y. The fea-
tures from the simplified model G can also be fed at an intermediate
hidden layer along with learned latent representation.

The PGML framework allows us to extract the knowledge from
the simplified physics-based model and combine it with the latent
variables of the system discovered by the neural network at interme-
diate hidden layers. This information from the physics-based model
assists the neural network in constraining its output to a manifold
of physically realizable models. It encourages the neural network
to learn the physically consistent representation of the quantity of
interest drawn from complex distributions, such as pressure and
velocity field of fluid simulations. Another advantage of the PGML
framework is that it brings interpretability to otherwise black-box
models. We highlight here that the PGML framework allows us to
incorporate the physics of the problem even during the prediction
stage, and not just the training as in the case of approaches such as
regularization based on governing equations.

In a nutshell, we highlight that there might be a handful of sim-
plified models (e.g., similarity solutions, lumped parameter models,
zone models, and zero or one-dimensional models) to approximate
or describe the underlying physical processes in many disciples. For
example, in aerodynamics, the use of simplistic panel methods is
a proven approach for analysis of inviscid flow over bodies, espe-
cially for a smaller angle of attacks where the potential flow theory
becomes valid. The execution time for these simplified models is sig-
nificantly smaller compared to the run time needed for full-fledged
computational fluid dynamics (CFD) simulations. Therefore, in the
PGML method, we propose to fuse the knowledge coming from
such simplified theories in a statistical inference architecture. This
is accomplished by a feature enhancement procedure as described
in Fig. 1(b). Specifically, it constitutes a predictor—corrector philos-
ophy where we first run a simplified theory (computationally less
demanding) to estimate an intermediate prediction as an input for
the overall ML architecture. We then estimate the quantity of inter-
est based on the enhancement procedure abstracted by G(x). We
hypothesize that the predictive performance and generalizability of

Latent Space,
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FIG. 1. Physics guided machine learning (PGML) framework to train a learning engine between processes A and B: (a) a conceptual PGML framework, which shows
different ways of incorporating physics into machine learning models. The physics can be incorporated using feature enhancement of the ML model based on the domain
knowledge, embedding simplified theories directly into ML models, and corrector approach in which the output of the ML model is constrained using the governing equations
of the system, and (b) an overview of the typical neural network architecture for the PGML framework.

Phys. Fluids 33, 011701 (2021); doi: 10.1063/5.0038929

Published under license by AIP Publishing

33,011701-2


https://scitation.org/journal/phf

Physics of Fluids LETTER

statistical inference will be significantly improved by the involve-
ment of G(x) as illustrated with the aerodynamic performance
prediction task.

Results and Discussion—We demonstrate the PGML frame-
work using the aerodynamic performance prediction task. This is a
problem relevant to many applications, such as predictive control™
and design optimization.”” The prediction of flow around an air-
foil is a high-dimensional, multiscale, and nonlinear problem that
can be solved using high-fidelity methods such as computational
fluid dynamics (CFD). However, these methods are computation-
ally intractable as the design space exploration increases. In cer-
tain flow regimes, the simplified methods such as panel codes come
with a non-negligible difference between the actual dynamics and
approximate models for real-world problems. The full-order CFD
simulations typically take extensive computational run time, thus
limiting their use in many inverse modeling methodologies that
require a model run to be performed in each iteration. To overcome
these challenges, combining CFD models with machine learning to
build a data-driven surrogate model is gaining widespread popular-
ity.”***" In this example, we exploit the relevant physics-based fea-
tures from panel methods through the PGML framework to enhance
the generalizability of data-driven surrogate models.

The training data for the neural network are generated using
a series of numerical simulations. The main goal of this work is
to demonstrate how a simplified model can be used in the PGML
framework, and therefore, to reduce the computational complexity,
we utilize XFOIL"! for the aerodynamic analysis of different airfoils
instead of full CFD simulation to get the most accurate results for
the forces on the airfoil. The lift coefficient data were obtained for
different Reynolds numbers between 1 x 10° and 4 x 10° and sev-
eral angles of attacks in the range of —20 to +20. A total of 168 sets
of two-dimensional airfoil geometry were generated for training the
neural network. This includes NACA 4-digit, NACA210, NACA220,
and NACA250 series, and each airfoil is represented by 201 points.
The maximum thickness of all airfoils in the training dataset was
between 6% and 18% of the chord length. We use the NACA23012
and NACA23024 airfoil geometry as the test dataset to evaluate the
predictive capability of the trained neural network. The simplified
model used to generate the physics-based feature corresponds to
the Hess-Smith panel method*” based on potential flow theory. We
highlight that our testing airfoils are selected not only from a differ-
ent NACA230 series (i.e., not used in the training dataset) but also
the maximum thickness of 24% is well beyond the thickness ratio
limit included in our training dataset.

The neural network architecture used in this study has four
hidden layers with 20 neurons in each hidden layer. The physical
parameters, i.e., the Reynolds number and the angle of attack, are
concatenated at the third hidden layer along with the latent variables
at that layer. In the PGML model, we augment the latent variables at
the third layer with the lift coefficient and the pressure drag coef-
ficient predicted by the panel method along with physical param-
eters of the flow (i.e., the Reynolds number and angle of attack).
Therefore, the third layer of the PGML neural network has 24 latent
variables. The representative neural network for the PGML frame-
work to predict the aerodynamic forces on an airfoil is displayed in
Fig. 2. We utilize an ensemble of neural networks to quantify the pre-
dictive uncertainty.**° In this method, a small number of neural
networks are trained from different initialization and the variance

scitation.org/journal/phf
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FIG. 2. The representative neural network architecture of the PGML framework
used in this study for the aerodynamic force prediction task. The latent variables at
the third hidden layers are augmented with the physical parameters of the flow (i.e.,
the Reynolds number and angle of attack) and the prediction from the Hess-Smith
panel method (i.e., lift coefficient and pressure drag coefficient denoted as C; and
Cop, respectively).

of the ensemble’s prediction is interpreted as the epistemic uncer-
tainty. This method is appealing due to its simplicity, scalability, and
strong empirical results of the uncertainty estimate that are as good
as the Bayesian neural networks.*> We train multiple neural network
models using different values of the initial weights and biases. The
weights and biases of each model are initialized using the Glorot
uniform initializer, and different random seed numbers are used to
ensure that the different values of weights and biases are assigned for
each model. The ensemble of all these models indicates the model
uncertainty estimate of the predicted lift coefficient. Figure 3 shows
the actual and predicted lift coefficients for the NACA23012 and
NACA23024 airfoil geometry. The reference True performance is
obtained by XFOIL. The ML corresponds to a simple feed-forward
neural network that uses the airfoil x and y coordinates as the input
features, and the physical parameters of the flow are concatenated at
the third hidden layer along with the latent variables at that layer.
As shown in Fig. 3, we can see that the uncertainty in the pre-
diction of the lift coefficient by the PGML model is less than the
ML model for both NACA23012 and NACA23024 airfoils. The pro-
posed PGML framework provides significantly more accurate pre-
dictions with reduced uncertainty for the angle of attacks between
—10° and +10°. This further illustrates the viability of the proposed
PGML framework since the physics embedding considered here
employs constant source panels and a single vortex to approximate
the potential flow around the airfoil. We can also notice that the
uncertainty is higher for the angle of attacks outside the range of
—10° to +10°. This finding is not surprising as the Hess-Smith panel
method is a proven method for analysis of inviscid flow over airfoil
for the smaller angle of attacks regime. We highlight that the maxi-
mum thickness of an airfoil included in the training dataset is 18% of
the chord length. Therefore, the uncertainty in the prediction of the
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FIG. 3. Actual vs predicted lift coefficient (C ) for NACA23012 and NACA23024 airfoils at Re = 3 x 10° using ML and PGML framework. The dashed red curve represents
the average of the predicted lift coefficient by all ML models (i.e., testing runs with different initialization seeds). Both airfoil geometries were not included in the training.
Here, we note that there is a significant reduction of uncertainty in performance when we use the proposed PGML framework, especially for the smaller angle of attacks
where the embedded simplistic physics-based model is valid. The physics embedding in these tests is based on the utilization of the Hess—Smith panel method, which is

limited mostly for the angle of attacks between —10° and +10°, which further verifies the success of the proposed PGML framework.

lift coefficient by the ML model is higher for the NACA23024 air-
foil compared to the NACA23012 airfoil. The inclusion of physics-
based features from the panel method in the PGML model leads to
a reduction in this uncertainty estimate. These results clearly show
the advantage of augmenting the neural network model with simpli-
fied theories and the potential of the PGML framework for physical
systems. One of the important caveats with any neural network is its
design and the hyperparameters. The neural architecture search and
hyperparameter optimization are important processes for the suc-
cess of the PGML framework. If the network is shallow, then it has
less expressive capabilities and that deteriorates the prediction. On
the other hand, if the neural network architecture is very deep and
there are no sufficient training data, then the network fits the train-
ing data very well. However, its generalizability is reduced and this is
usually indicated by an increase in the loss of the validation dataset
after a few iterations of the training. Some of the strategies to mit-
igate overfitting issues in the deep neural network are using L;/L,
regularization, applying dropout, early stopping, data augmentation,
and k—fold cross-validation. Overall, our findings suggest that the
absorption of physical information into ML methods improves the
modeling uncertainty of the ML architectures.

Concluding Remarks—The data-driven models derived from
the data collected from satellite measurements, internet of things
(IoT) devices, and numerical simulation are increasingly being
applied for scientific applications in fluid dynamics. While these
data-driven models are successful, it might be vital to complement
them with physical laws that have been studied for many decades.
To this end, physics-informed machine learning approaches, such
as embedding soft and hard constraints designed based on govern-
ing laws of the physical system, have been proposed.”'*!”'¥ In this
work, we illustrated how physics-based models derived from simpli-
fied approximations of the physical system can be coupled within
data-driven models such as neural networks. The PGML frame-
work introduced in this study allows us to take advantage of the
generalizability of physics-based simplistic models and the robust-
ness of data-driven models. We demonstrated the proof-of-concept
for the aerodynamic performance analysis of airfoil geometry. The
physics-based features computed from the simplistic panel method
are coupled with the latent representation learned at the interme-
diate layers of the neural network. The inclusion of these physics-
based features assists the neural network model in reducing the
uncertainty of the lift coefficient prediction. Therefore, the PGML
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framework is successful in improving the generalizability of data-
driven models.

Additionally, the PGML framework will also be useful for phys-
ical systems where the data are scarce. For example, the generation of
training data is computationally expensive when dealing with larger
problems, such as the optimization of a wind farm layout*® or the
shape optimization of a three-dimensional wing.”” The simplified
models such as the actuator disk theory can be used along with a
velocity field generated from few high-fidelity numerical simulations
to build a physics-guided neural network-based surrogate model of
the wind farm that can be coupled with any optimization algorithm.
Another area where the PGML framework may bear huge potential
is the digital twin technologies for physical systems,** where the dig-
ital replica of the physical system is built for tasks, such as real-time
control, efficient operation, and accurate forecast of maintenance
schedules. In the present study, we started with XFOIL to assess the
feasibility of the proposed framework. Despite its simplicity, this is
the first step toward demonstrating the PGML framework for prob-
lems in fluid dynamics. In our future work, we plan to extend the
PGML approach to complex and high-dimensional problems such
as prediction of terrain induced atmospheric boundary layer flows
or flows around bluff bodies immersed in fluid to illustrate the true
capability of the PGML framework.

This material is based on the work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Award No. DE-SC0019290.
O.S. gratefully acknowledges their support.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article. Implementation details and Python scripts can be
accessed from the Github repository.*’
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