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Abstract: Anomaly detection refers to detecting data points, events, or behaviour that do not comply
with expected or normal behaviour. For example, a typical problem related to anomaly detection on an
industrial level is having little labelled data and a few run-to-failure examples, making it challenging
to develop reliable and accurate prognostics and health management systems for fault detection
and identification. Certain machine learning approaches for anomaly detection require normal
data to train, which reduces the need for historical data with fault labels, where the main task is to
differentiate between normal and anomalous behaviour. Several reconstruction-based deep learning
approaches are explored in this work and compared towards detecting anomalies in air compressors.
Anomalies in such systems are not point-anomalies, but instead, an increasing deviation from the
normal condition as the system components start to degrade. In this paper, a descriptive range of
the deviation based on the reconstruction-based techniques is proposed. Most anomaly detection
approaches are considered black box models, predicting whether an event should be considered an
anomaly or not. This paper proposes a method for increasing the transparency and explainability
of reconstruction-based anomaly detection to indicate which parts of a system contribute to the
deviation from expected behaviour. The results show that the proposed methods detect abnormal
behaviour in air compressors accurately and reliably and indicate why it deviates. The proposed
approach is capable of detecting faults without the need for historical examples of similar faults.
The proposed method for explainable anomaly detection is crucial to any prognostics and health
management (PHM) system due to its purpose of detecting deviations and identifying causes.

Keywords: anomaly detection; prognostics and health management (PHM); predictive maintenance;
explainable deep learning

1. Introduction

Prognostics and health management (PHM) has become a popular topic. It concerns
finding the actual condition of a system and preferably predicting when it will fail. Ac-
cording to Goebel [1], a successful PHM system should be able to answer the following
questions: (1) Is there something wrong with the system? (2) If so, what is wrong? and
(3) When will it fail? Having such a system is becoming increasingly important in many
sectors. The major tasks of a PHM are listed in Figure 1. For instance, in order to suc-
cessfully achieve fully autonomous ships, a system that can answer these questions about
vital equipment is crucial. Typically, in order to answer question two and three, a lot
of labelled data and run-to-failure examples is necessary. Collecting these kinds of data
is often challenging, and building such a system can therefore be demanding. The first
question can, on the other hand, be explored with less labels and fewer examples of failure.
Due to its less data-hungry nature, this work mainly focuses on answering the first question
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for maritime starting air compressors. Starting air compressors are used to start a ship’s
main engines and thus are vital to a ship’s operation and the safety of personnel, material,
and in the worst case, the environment. With an air compressor’s criticality, they are con-
servatively and rigorously maintained, leading to extremely few examples of real-world
failures. However, if one could, based on the data from normal operation, detect abnormal
behaviour, two concrete condition-based actions can be taken: (1) The compressor can be
maintained before it fails and (2) the conservative maintenance intervals can be increased,
in order to save costs.

The second focus area of this work is how to get more explainable results. Explainable
results from anomaly detection algorithms have two important advantages: (1) It helps the
service personnel locate the misbehaving parts of the system and (2) it helps in increasing
the system operator’s trust in the predictions.

Figure 1. An illustration of prognostics and health management system using deep learning models.

Anomaly detection has been used in various applications, such as fraud detection,
cybersecurity, condition systems, and much more. Abnormalities, novelties, and outliers
are other terms used interchangeably with anomalies. Anomalies are typically divided into
the point, contextual/conditional, and collective or group anomalies [2]. In prognostics and
health management (PHM), anomalies often refer to the deviation of expected behaviour,
which is used to indicate the monitored system’s condition [3]. In this project, anomaly
detection is used to detect abnormal behaviour, indicating an air compressor’s condition.
Classification and anomaly detection are closely related, but the classification is typically
used for supervised training [2].

The rest of this work presents a review of several state-of-the-art papers in Section 2.
However, Section 3 provides a thorough understanding of deep learning-based mod-
els used in PHM. Section 4 delivers information about data collection for this work.
The methodology of this work is available in Section 5. Sections 6–8 are about model
configuration, results, and model transparency, sequentially. Finally, Sections 9 and 10
discusses and concludes this work, respectively.

2. Related Work

In general, anomaly detection is closely related to diagnostics, but in PHM it is
treated as two different approaches. Often anomaly detection differs from traditional
fault identification based on whether labels are available or not. Multiple deep learning
(DL) techniques have been explored for anomaly detection. Park et al. [4] used a long
short-term memory (LSTM)-based variational autoencoder (VAE) for detecting anomalies
in a robot-assisted feeding system. The approach received a higher accuracy than other
methods such as one-class support vector machine (OSVM) and autoencoder (AE). In 2015,
Malhotra et al. [5] proposed a method for detecting anomalies in a time-series based on
stacked LSTM networks. The network is trained on normal data exclusively, and prediction
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errors are evaluated based on Gaussian distribution to find the probability of abnormal
behaviour. Malhotra et al. [6] used a reconstruction-based anomaly detection approach
with LSTM to detect anomalies in multi-sensor data. The model was trained only with
normal data, and the results indicated that it was successfully able to detect anomalies in
several datasets.

Several AE-based algorithms have been applied successfully for anomaly detection.
Yan and Yu [7] proposed a method based on stacked denoising autoencoder (DAE) com-
bined with a supervised classifier to detect anomalies in a gas turbine combustor. Another
approach used VAE to do anomaly detection based on reconstructed probabilities [8]. They
used these probabilities to classify if samples were anomalies or not. Their results showed
that the VAE approach performed better than AE-based and principle component analysis
(PCA)-based methods. Anomaly detection with AEs or other encoder-decoder (ED) archi-
tectures is typically done by training on normal data, leading to good reconstructions of
normal large reconstruction errors on abnormal data. In 2019, Ellefsen et al. [3] proposed
an unsupervised reconstruction-based algorithm for detecting faults in maritime compo-
nents. Their approach is based on machine learning (ML) algorithms with ED-architecture.
The results proved that the maximum acceleration in the reconstruction error could detect
faults without having labels.

Deep belief network (DBN) has also been used for anomaly detection. Wulsin et al. [9]
proposed the use of DBN to measure an anomaly score on clinical electroencephalography
(EEG) images from humans. Their approach showed that a DBN can be used effectively to
measure anomalies. Zenati et al. [10] proved that generative adversarial network (GAN)
can also be used effectively to detect anomalies in high-dimensional data. They tested the
model on a dataset with handwritten digits and one with network intrusions. Li et al. [11]
also used GAN for anomaly detection, but on multivariate time series data. In order to
capture potential anomalies across time-steps, the proposed method used LSTM as a GAN.
Lim et al. [12] highlighted the problem of having few examples of anomalies in a dataset
and proposed a method based on GAN called an adversarial autoencoder (AAE) for data
augmentation. The idea is that the model will create low-dimensional latent distribution
from where samples can be drawn. Instead of drawing samples based on the probability,
which will create a lot of normal data, the samples are systematically drawn from the
probability distribution hence, generating anomalies.

Much work related to detecting anomalies in systems and data is presented. The liter-
ature indicates that reconstruction-based approaches are promising in detecting abnormal
behaviour. This project compares and explores the use of LSTM, convolutional neural net-
work (CNN), DBN, and variants of AEs to detect anomalous behaviour in air compressors.
The next chapter contains a brief theory of the relevant approaches.

3. Theory-Deep Learning Models

Several different types of deep learning approaches have been applied to problems
related to anomaly detection. In this section, the approaches applied in this project are
introduced. Figure 2 provides an illustration on six deep learning models that were used to
investigate the anomaly detection in the context of the prognostics and health management
of air compressors.
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Figure 2. Six different types of deep learning models applied for anomaly detection.

3.1. Autoencoders

An AE is an unsupervised approach based on artificial neural networks (ANN) [13].
In general, an AE is a feed-forward neural network (FNN) with an input layer, output layer,
and one or more hidden layers. It is trained to copy its inputs to its outputs through the
hidden layer(s). Hidden layers are considered a bottleneck that forces the network to make
a dimensionality reduction of the inputs and thus finds which characteristics are important
in the data [14]. Compared to traditional methods such as PCA, AE can learn non-linear
transformations.

AEs have been applied to solve several types of problems, often around feature
extraction, noise reduction, dimensionality reduction, and anomaly detection. Speech
enhancement (removing noise) [15], natural language processing [16], and images [17] are
examples of problems where AE has been applied. It has also been applied in PHM for
feature extraction [18] or in combination with a supervised layer to do fault diagnostics [14].

3.2. Sparse Autoencoder

Sparse autoencoder is a variant of the AE which uses an alternative approach that does
not require a reduced number of neurons in the hidden layer(s) to provide the bottleneck.
Instead, it uses a loss function that penalises activations in the hidden layer(s) [19]. The idea
is that the network learns encoding and decoding, which relies on a small set of total
neurons, limiting the capacity of memorisation.

The basis of the VAE is that the encoder outputs a probability distribution for each
extracted characteristic of the input data, instead of giving each of the characteristics
a value [19]. The distribution is assumed to be normally distributed, which means a
probability distribution can be represented only by the mean and standard deviation.
After the encoding, the input data is represented only as a set of means and standard
deviations. A random sample from each of these probability distributions is passed to the
decoder model. The decoder model will then try to reconstruct the original input based on
these samples.

3.3. Long Short-Term Memory

LSTM is a variant of recurrent neural network (RNN) designed to learn long-term
dependencies [20]. It introduces the idea of a memory cell, which contains gates that tries to
regulate the information through the cell. The result is a network that achieves contextual
weights that can deal with long-term dependencies flexibly. Several variants of the LSTM
have been introduced, such as the Vanilla LSTM [21] and GRU-LSTM [22]. The Vanilla
LSTM has proved itself useful for PHM therefore, it is the preferred variant of LSTM in this
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project. It has several variants [23]. In this work, the variant without peephole connections
was used. The Vanilla LSTM (referred to as just LSTM from now on) has four interacting
neural network layers.

The principal of AEs is used in LSTM architecture to build what is referred to as a
ED-LSTM. The architecture has a bottleneck to reduce the dimensionality, but compared to
simple AEs, the LSTM also considers time.

3.4. Convolutional Neural Network

CNNs are a type of DL technique known for their performance on images. They have
been used to classify images, cluster images, identify faces, and much more [24]. However,
they are often used for images. Nevertheless, they can also be used for 1D data such as
a time-series or 3D data such as videos. A CNN is an ANN model that uses convolution
operations in at least one layer. CNN has become popular due to its ability to extract
important features from input data automatically. One of the motivations for using CNN
is that it reduces computation requirements due to weight sharing [25]. A typical CNN
consists of four types of layers: Convolutional, pooling, flattening, and fully connected [13].

A CNN can be used in time series sensor data by transforming the data into a 2-
dimensional tensor format by concatenating the individual signals from a sliding time
window [26,27]. In this project, the CNN is used with ED architecture to enable it for
reconstruction-based anomaly detection.

3.5. Deep Belief Network

DBN is an unsupervised DL model proposed by Hinton et al. [28] as an alternative
to back-propagation. It is considered a generative graphical model composed of multiple
layers of hidden units. The layers are connected, but not the units within each of the layers.
The architecture of a DBN looks similar to a multi-layer perceptron (MLP), but the building
blocks and training process is different. A DBN is a set of stacked restricted Boltzmann
machine (RBM)s. It can be combined with a final layer to do classification or regression,
or similarly to the AE, it can be used for feature extraction. A DBN can be trained to
reconstruct its inputs in a probabilistic manner. For example, it can be used as a features
detector before a regression or classification layer [29,30].

4. Data

This project is a collaboration with a company providing maritime equipment. Some
information, such as time scale, sensors, and fault types is anonymised due to a non-
disclosure agreement with the collaborating company.

In the project, 25 datasets consisting of various sensor data from air compressors, are
available. Five types of sequences are logged: Fault types A, B, C, D, and sequences where
the compressor runs normally. The datasets with fault A, B, and C starts with different
operational loads and settings and with the air compressor in a normal condition. At a
random point in time in each set, the system starts to degrade. The system degrades
until it is out of operating condition and fails. For these three types of faults, the time
of which the fault is approximately 33%, 67%, and 100% severity is logged by a domain
expert. The system does not fail when a fault has reached 100% severity, but the fault will,
with time, degrade the system until failure. Fault D is not related to any complete system
failure but a fault related to internal control system communication problems. It was only
used to evaluate the proposed anomaly detection approach. The datasets without faults are
sequences where the compressor is running in normal operating conditions. Each dataset
consists of measurements from 14 sensors and the length of the sequences differs. The
sensors are a combination of pressure, temperature, current, and oil sensors to measure
important signals in the compressor process. More details about the sensors and faults
cannot be disclosed due to the non-disclosure agreement. An overview of the types of
sequences is presented in the list below.
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• Fault A: Data where the compressor starts in a normal condition, but a fault is eventu-
ally forced. The approximate time of 33%, 67%, and 100% fault progression is logged.
After the 100% fault is introduced, the compressor is running until reaching the criteria
for end-of-life;

• Fault B: Similar procedure as for fault A, but with another type of fault;
• Fault C: Similar procedure as for fault A and fault B, but with another fault condition;
• Fault D: Does not start in a normal condition, the fault is present in the entire sequence

and is mentioned as related to communication problems. The fault does not force the
compressor towards failure;

• Normal: Data with no faults that are collected during regular operation.

Table 1 describes the available data regarding how many sets of each type and the
length of the sequences. Due to the non-disclosure agreement, the length of the sequences
are only given in the number of samples.

Table 1. Description of available data and its usage.

Type # Datasets Sequence Length

Normal 8 77–1250
Fault A 7 909–3643
Fault B 7 666–2554
Fault C 1 1064–1064
Fault D 2 1228–1660

For fault A, B, and C, the end of sequence determines the compressor’s end-of-life,
which means that abnormal behaviour should be detected before end-of-life, preferably
in good time. Even though faults A, B, and C are started in so-called normal conditions,
the initial part of the sequence often shows signs of the previous fault. This is due to
collecting several sequences with a short time interval. Hence, the compressor has not been
able to regain its normal condition before running for a little while.

Evaluation Data

A randomly-selected and labelled dataset is used for testing the classification perfor-
mance of the models. The evaluation dataset contains 150 normal samples and 200 anoma-
lous samples from unseen sequences. The presented model gets an accepted prediction if it
can correctly identify the input. Hence, the final performance measures the accuracy of the
evaluation set. The 150 normal samples are selected from three sets with fault A (50 sam-
ples), four sets of fault B (50 samples), and one set with fault C (50 samples). The anomalies
are selected from three sets with fault A (50 samples), four sets of fault B (50 samples),
one set of fault C (50 samples), and two sets of fault D (50 samples). The normal samples
are randomly selected from parts of the fault sequences before any fault is introduced,
while the anomaly samples are taken from parts where the fault has reached 100% severity.
A random seed is introduced in order to make the evaluation dataset equal for all the
models.

5. Methodology

The project investigates and compares different types of DL models based on ED
architecture to see their ability to detect anomalous behaviour in air compressors. Models
that use ED architecture for anomaly detection follow a similar principle. Data in original
dimension are passed through a bottleneck, forcing the data into a lower-dimensional
representation. The original input is reconstructed based on the compressed representation.
The bottleneck forces the model to choose important features that best represents the data.
In other words, the models try to reconstruct the input data (both shapes and values).
When such models are used for anomaly detection, they are only trained with normal
data, resulting in the model providing good reconstructions on normal data but worse
reconstructions on anomalous data. The results refer to a reconstruction error, which can
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essentially be any measure of the error. In this project, the absolute value of the difference
between the input, x, and the reconstructed input, x̂, was used (Equation (1)):

Reconstruction error =
1
N

N

∑
i=1
|xi − x̂i| (1)

The idea is that the obtained reconstruction error will be low when the models are
presented with normal data, similar to what it has seen before, but higher when the
compressor’s health is degrading. The reconstruction error is in an undescriptive range,
giving little information on its own.

Four datasets with fault A and three datasets with fault B are used to investigate and
define a method for converting the non-descriptive reconstruction error into an informative
scale between 0 and 100. The closer to 0, the more normal the data is. It was investigated
if a threshold should be obtained to decide if data are normal, anomalous, or in-between.
The expected output is an anomaly score that can be used to determine the condition of the
system. The proposed method for converting the reconstruction error into a descriptive
range is simple and consist of three steps:

σ(z) =
1

1 + e−z (2)

1. Scale the reconstruction error into a range suitable for a sigmoid transformation.
In the sigmoid function, a −8 gives approximately 0, and 8 gives approximately 1.
The step requires one to decide the minimum and maximum values of both the old
and new range;

2. This step is a sigmoid transformation with Equation (2). In this step, the exponent of
the e is multiplied with a number between 0 and 1. This value needs to be adjusted to
achieve the desired behaviour. It decides the steepness of the transformation;

3. The final step is to transform the values into a scale between 0 and 100. This step can
be skipped if desired since the sigmoid function returns values between 0 and 1.

This transformation was combined with thresholds dividing the range into three
classification zones: Normal from 0 to 40, warning from 40 to 60, and danger from 60 to
100. These are configurable but added in order to verify quality and provide describable
outputs into potential control systems. These thresholds or classification zones could be
avoided by adding a threshold directly on the reconstruction error.

5.1. Evaluation

The proposed approach is not a classifier or a basic regression model, meaning that
typical scoring methods such as accuracy or mean square error are not sufficient to describe
the performance of the approach. The proposed thresholds allow an accuracy measure
to test if the models are able to distinguish between normal and failing equipment. It is,
on the other hand, not an adequate measure of the proposed approach. Therefore, visual
inspection is necessary and the most important evaluation is to compare the models and
evaluate if the proposed method has the desired behaviour.

6. Model Configuration

The six DL models explored in this case study need to be designed to fit this particular
problem. The models have several adjustable parameters such as the architecture (number
of layers and nodes per layer) and other hyper-parameters like an optimiser, activation
functions, and learning rate. LSTM and CNN also require one to select a time window
to generate the input data format. These parameters were adjusted manually for each
algorithm. The process of manual tuning was devoted to finding promising settings for
the adjustable parameters. The selection of architecture and parameters was based on
finding a model that accurately reconstructs normal data but obtains a gradually increasing
reconstruction error as faults are progressing. This process is more challenging to automate
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than for other typical machine learning approaches since a too-complex (large) model will
be able to copy the input to the output. If the model has the right complexity, the model
will be able to reconstruct the normal data (training data), but as other data is presented,
the model will struggle to reconstruct it.

A tanh activation function was selected for the output, which means the model’s
output is between −1 and 1. Therefore the data was normalised using min-max-scaling
between −1 and 1. This forces the model to provide inputs on the right scale. The data
normalisation was based on the training and configuration sets, and the same transforma-
tion was used for the test set. Next, the final architectures and parameters found for each
algorithm are presented.

6.1. Architecture and Parameters
6.1.1. Autoencoder

The architecture and parameters for the AE model were found through trial and error.
Experiments with four types of optimisers, stochastic gradient descent (SGD), RMSProp,
Adam, and AdaGrad, indicated that the performance was quite similar, but RMSProp was
slightly better. A learning rate that gave the desired learning curve was chosen to be 0.0001.
The default weight initialisation method called Xavier weight initialisation was used. Since
the problem is hard to optimise with hyperparameter tuning, several architectures were
explored, and the final architectures found are described in Table 2. Figure 3 shows the
architecture summarised in the table. The architecture in the other models look similar
but adjusted based on the architecture information in each table. The main finding in the
architectural choice was that the results were improved when the first hidden layer had
increased nodes compared to the input.

Figure 3. Architecture of the autoencoder (AE) model.



Entropy 2021, 23, 83 9 of 27

Table 2. Selected parameters for AE.

Auto-Encoder-PARAMETERS

Optimiser RMSProp
Learning rate 0.0001
Input Layer 14
H1-H5 Layer 17-8-4-8-17
Output Layer 14

6.1.2. Sparse Autoencoder

The sparse autoencoder model’s architecture and parameters have equally many
layers as the AE, but every layer has 14 nodes. This is due to the sparsity regularisation,
which penalises model complexity. It will lead to a similar effect as a normal AE, but the
sparse autoencoder (SAE) learns which and how many nodes to remove based on forcing
weights to zero. The same optimiser, learning rate, and weight initialisation approach,
as for the AE, was used. The parameters are presented in Table 3.

Table 3. Selected parameters for sparse AE (SAE).

Sparse Autoencoder-Parameters

Optimiser RMSProp
Learning rate 0.0001
Input Layer 14
H1-H5 Layer 14
Output Layer 14

6.1.3. Variational Autoencoder

The architecture and parameters found for the VAE model is presented in Table 4.
The table shows that the latent space (middle layer) contains information from six dimen-
sions. It also has more nodes in the first hidden layer than in the input layer.

Table 4. Selected parameters for variational autoencoder (VAE).

Variational Autoencoder-Parameters

Optimiser Mini-batch SGD
Learning rate 0.001
Input Layer 14
H1-H5 Layer 16,8,6,8,16
Output Layer 14

6.1.4. Deep Belief Network

The best performing architecture for DBN consists of three stacked RBMs. The input
layer has 14 inputs, while the next layers have 16, 13, and 11 nodes, as presented in Table 5.
The k value used was 10, and a learning rate of 0.003. The predictions from the DBN were
smoothed using a moving average filter with a window size of 50.

Table 5. Selected parameters for DBN.

Deep Belief Network-Parameters

Learning rate 0.003
k 10
Batch size 25
Input Layer 14
Hidden Layers 16,13,11
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6.1.5. ED-LSTM

Similar to the other models, the best performing parameters were selected based on
trial and error. The LSTM does not only reconstruct the sensors for one time-step, but for
all time-steps in the selected time window. This means that the input is a 2D input format
containing all the sensor values for each timestep in the selected time window. The goal
of the modal is to reconstruct that same input data, in the same format. Table 6 shows
selected parameters for the LSTM. The table shows that the SGD with a learning rate of
0.001 performed the best with three hidden layers of 10, 7, and 10. The time window was
selected to be 20.

Table 6. Selected parameters for long short-term memory (LSTM).

Long Short-Term Memory-Parameters

Optimiser SGD
Learning rate 0.001
Batch size 100
Time window 20
Input Layer 14
Hidden Layers 10, 7, 10
Output Layer 14

6.1.6. ED-CNN

A CNN has many parameters to tune. A time-window of size 20 gave the most
promising results. The time window was used to transform the sensor data into a 2D data
object where the y-axis is the sensor and the x-axis is the time. This means that the first row
of the data structures contains data from one sensor at each sample within a time window.
This is illustrated in Figure 4. Therefore, the input data is formatted as an image, and the
model aims to reconstruct the image. The architecture found consists of combinations of
convolutional layers (Conv2D) and max-pooling layers for encoding and convolutional
layers and upsampling for decoding. Table 7 lists each layer used for the CNN model and
its settings. The padding approach called same was used for all convolutional layers. This
means that the output is padded to reach the same dimension as the input. The middle
layers use the ReLU activation function, but the final layer uses tanh to get the data into the
correct scale. The Adam optimiser, with a default learning rate of 0.001 performed the best.

Figure 4. 2D input data format to convolutional neural network (CNN) model with time series data.
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Table 7. Selected CNN-architecture and parameters.

Convolutional Neural Network-Parameters

L1: Conv2D 16 filters and 8x8 kernel. ReLU activation function.
L2: Maxpooling Pool size (2,2)
L3: Conv2D 8 filters and 3x3 kernel. ReLU activation function.
L4: Maxpooling Pool size (2,2)
L5: Conv2D 8 filters and 3x3 kernel. ReLU activation function.
L6: Upsampling2D Size (2,1)
L7: Conv2D 16 filters and 3x3 kernel. ReLU activation function.
L8: Upsampling2D Size (2,2)
L9: Conv2D 1 filter and 8x8 kernel. Tanh activation function.

6.2. Reconstruction Error

Each model was trained on the available normal sequences. Figure 5a–c show the
reconstruction error obtained on one of the normal sequences with AE, DBN, and LSTM,
respectively. Each of the reconstructions has a peak at the beginning and end of the
sequence. This can be explained by beginning the logging before the compressor starts and
terminating after the compressor stops. The models achieve quite different results, both
for when it comes to how well the signals are reconstructed and the level of noise. DBN
produces a lot of noise and a high reconstruction error compared to the other two models.
The AE has a quite low reconstruction error, below 0.02, and some noise. The LSTM model
produces even less noise, but with a slightly higher reconstruction error than the AE.

(a) AE (b) DBN (c) LSTM
Figure 5. Reconstruction error on sequence with normal data with AE, deep belief network (DBN),
and LSTM.

The reconstruction error on normal data from the three other models is shown in
Figure 6a–c. The results show similar trends as the previous models. The CNN has less
noise than the two others. The SAE and CNN have similar level of reconstruction error to
the AE, while the VAE has higher.

(a) SAE (b) VAE (c) CNN
Figure 6. Reconstruction error on sequence with normal data with SAE, VAE, and CNN.

Next, the reconstruction errors from the models are evaluated on data with faults.
These data sequences start from the normal condition but are gradually introduced for
faults until end-of-life. Figure 7a–c shows the reconstructions from AE, DBN, and LSTM on
a sequence with fault A. The individual models were affected by similar patterns of noise.
The AE and LSTM both start with a low reconstruction error, which increases towards the
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end of the sequence. It is hard to see any clear trend from the DBN due to the high noise
level.

(a) AE (b) DBN (c) LSTM
Figure 7. Reconstruction error from AE, DBN, and LSTM on sequence with failure due to fault
type A.

Figure 8a–c show the reconstructions from the SAE, VAE, and CNN models on the
same data sequence. These models were able to start with a low reconstruction error, then
gradually increase until failure.

(a) SAE (b) VAE (c) CNN
Figure 8. Reconstruction error from SAE, VAE, and CNN on sequence with failure due to fault
type A.

Figure 9 indicated that the AE, DBN, and LSTM achieved similar results as seen so far.
The AE and LSTM went from a low reconstruction error to an increasing one. It was hard
to see a clear trend in the results from the DBN due to the noise.

(a) AE (b) DBN (c) LSTM
Figure 9. Reconstruction error from AE, DBN, and LSTM on sequence with failure due to fault
type B.

The SAE, VAE, and CNN models achieved the desired trend in the reconstruction
error. This is illustrated in Figure 10. The beginning of the sequence seems to lead to an
increased reconstruction error before going down to the normal level. This can be due to
the described data collection process where new data sequences were collected before the
compressor had regained the normal condition.
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(a) SAE (b) VAE (c) CNN
Figure 10. Reconstruction error from SAE, VAE, and CNN on sequence with failure due to fault
type B.

All the tested models, except DBN, produced results according to the desired be-
haviour. A moving average filter is applied to see if the reconstruction error from the DBN
model also has an increasing trend. Figure 11a–c show the reconstruction error on the three
sequences seen so far, but with a moving average filter with a time window of 50 units.
This reveals that the sequences with faults obtain the desired trend from DBN as well.

(a) Normal sequence (b) Fault A sequence (c) Fault B sequence
Figure 11. Reconstruction error with a moving average filter obtained from DBN.

The results show that all models were able to reconstruct the normal data better than
fault sequences, resulting in an increasing reconstruction error close to failure. Each model
reproduces the input with a different error rate, ranging from the AE with the lowest and
DBN with the highest. In theory, it does not matter if the reconstruction error is high for
normal data, as long as it is even higher for failure data. It could be possible to use the
reconstruction error directly to indicate if the system is behaving unexpectedly. The scale
is not informative, and the only indication of abnormal behaviour is an increasing score.
The next section explores if a more descriptive range of the reconstruction error can be
obtained.

6.3. Transformation

The reconstruction error can be transformed into a more descriptive range between
0 and 100, referred to as an anomaly score. An anomaly score of 100 indicates faulty
behaviour, while 0 indicates a normal condition. The range is divided into three zones,
which represent the state of the system. These are normal, warning, and the danger zone.
The next section describes how transformation and thresholds are decided.

The transformation is tuned individually for each model based on the configuration
settings. The tune-able parameters are related to the min-max-scaling and sigmoid trans-
formation, as explained previously. There are three phases of the transformation: (1) To
scale the reconstruction error between two values, (2) transform with the Sigmoid function,
and finally (3) which is to scale it to between 0 and 100. In step 1, both the old and new
minimum and maximum values must be selected. In step 2, the sigmoid exponent must
be selected. These values are manually tuned until the desired trend ranging from 0 to
100 is obtained. The outcome of this transformation is referred to as the anomaly score.
The parameters that gave the best fit on the configuration set is shown in Table 8.
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Table 8. Anomaly score transformation parameters for each model.

Old Min Old Max New Min New Max Sigmoid Exponent

AE 0.01 0.18 −8 9 0.8
SAE 0.01 0.16 −8 9 0.6
VAE 0.205 0.32 −8 9 0.8
DBN 0.452 0.458 −8 9.5 0.7
LSTM 0.15 0.27 −9 9 0.4
CNN 0.05 0.20 −8 8 0.4

The goal of the configuration was to get a common scale where the anomaly score
indicates the condition of the system. The scale can also be divided into zones. Ideally, one
normal zone and one danger zone, with a neutral or warning zone in between. Based on the
results from the configuration set, the thresholds are decided to be 0.4 and 0.6. This means
that when the anomaly score is below 40, it is considered a normal operating condition
while increasing over 60 indicates that something is wrong. These limits are manually
selected and need to be adjusted according to the use-case.

Figure 12a–c shows the achieved anomaly score from the AE, DBN, and LSTM model,
on one of the sequences with fault type A in the configuration set. The normal zone is
represented by green, the warning zone by yellow, and the red is the danger zone. The fault
is introduced over three levels of severity. The black vertical line in the figures indicates
when the fault has 100% severity. The idea with anomaly detection is not about predicting
that something is about to fail but to give insight into the current condition. In particular,
fault A is according to the available sensor measurements resulting in long-term changes,
not sudden impact. The AE starts with an anomaly score close to zero, before gradually
increasing towards a peak, then it decreases slightly. The DBN starts with a high anomaly
score. It decreases down to the normal zone before increasing towards the danger zone,
reaching it just before it fails. The LSTM model starts similar to the DBN but quickly finds
the normal level before gradually increasing after the 100% error is introduced.

(a) AE (b) DBN (c) LSTM
Figure 12. The anomaly score from AE, DBN, and LSTM on sequence from a configuration set with
failure due to fault type A.

Figure 13a–c show the anomaly score obtained from the SAE, VAE, and CNN models
on a sequence from the configuration set with fault type B. The results show that the three
models start in the normal zone and increases. The main difference between them was that
the VAE and CNN increase towards the maximum score later than the SAE.

(a) SAE (b) VAE (c) CNN
Figure 13. Anomaly score from SAE, VAE, and CNN on sequence from configuration set with failure
due to fault type B.
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All models except DBN show promising results on the sequences from the configu-
ration set. The next step is to evaluate the performance of anomaly detection on unseen
data.

7. Results

The models were evaluated and tested based on unseen data, which contains four
different types of faults. The models were first evaluated based on the accuracy of classify-
ing the 350 test samples into normal or anomalous data. Next, the anomaly score of the
complete sequences was visually analysed and interpreted. Table 9 presents the accuracy
of each model for all test samples and for each fault type.

Table 9. Total accuracy and accuracy per fault type for each deep learning (DL) model.

Accuracy

Model Total Fault A Fault B Fault C Fault D

AE 0.797 0.8 0.99 0.5 1.0
SAE 0.783 0.81 0.93 0.5 1.0
VAE 1.0 1.0 1.0 1.0 1.0
DBN 0.794 0.83 0.65 0.8 1.0
LSTM 1.0 1.0 1.0 1.0 1.0
CNN 0.963 1.0 0.87 1.0 1.0

The results showed large differences in the classification performance of the models.
Both the VAE and LSTM impressively achieved 100% accuracy. CNN performed quite
closely, by achieving 96.3% and correctly classifying all samples in the test set with fault
type A, C, and D. The three best models were able to perfectly detect all samples within the
two new fault types (C and D). The three remaining models (AE, SAE, and DBN) achieved
between 78% and 80% accuracy. Table 10 presents an overview of the number of incorrect
classifications and how many of them were present in the warning zone.

Table 10. Miss-classifications in the anomaly detection models.

Model # Misses # In Warning Zone Share in Void

AE 71 60 0.85
SAE 76 58 0.76
DBN 72 2 0.03
CNN 13 11 0.85

The AE, SAE, and CNN have most of their miss-classifications in the warning zone,
while the DBN has almost every miss-classification in the wrong zone. DBN performed
worse than the other models. There were large differences in the classification performance
of the models. While VAE, LSTM, and CNN performed with a high accuracy, the other
models have several miss-classifications. The anomaly score is not designed or intended
to be a pure classifier of normal or failure samples. Therefore the visual analysis is just as
important. Next, results from each fault type are analysed.

Fault A

Both the VAE and LSTM achieved 100% accuracy on the test set. Figure 14a shows
the anomaly score for VAE on one of the unseen sequences with fault type A. Figure 14b
shows for another sequence, but with LSTM. The anomaly score started around zero for
both models and increased gradually after the 100% fault severity was reached. They were,
as desired, able to detect and indicate an anomaly score of 100 in advance of end-of-life.
The results were quite similar for all sequences with fault A for these two models.
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(a) VAE (b) LSTM
Figure 14. Anomaly score from VAE and LSTM on an unseen sequence with fault type A.

Figure 15a shows that the CNN performed similarly to VAE and LSTM for fault type
A. Figure 15b indicates that DBN was less confident in the normal zone, and increased
only slightly into the danger zone. It was enough for the model to get several correct
classifications, but it provides worse certainty than the other models. It also has more noise.

(a) CNN (b) DBN
Figure 15. Anomaly score from CNN and DBN on unseen sequence with fault type A.

Figure 16a,b shows the anomaly score obtained from the AE for two different sets with
fault A. While (a) shows a satisfactory performance, (b) shows that the anomaly score was
barely able to leave the normal zone. The AE received inconsistent results for sequences
with the same fault type.

(a) Split 5 (b) Split 7
Figure 16. Anomaly score from AE model on unseen sequences with fault type A.

Similarly to the AE, the SAE achieved inconsistent results. This is indicated in
Figure 17. The results on split 7 were better than the AE results, but still not able to
properly increase into the danger zone.
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(a) Split 5 (b) Split 7
Figure 17. Anomaly score from SAE model on unseen sequence with fault type A.

Analysis of the anomaly score on sequences with fault type A has indicated that only
VAE, LSTM, and CNN achieved the desired results. They were able to indicate anomalous
behaviour before reaching end-of-life. The three other models had more fluctuating and
inconsistent results.

7.1. Fault B

Sequences with fault B was, according to sensor values and domain-experts, affecting
the air compressor in a higher degree than fault type A. This means that there was a shorter
period from the fault reaching 100% severity, until the system failed.

Figure 18a shows that the anomaly score from VAE reaches 100 before the system fails.
Compared to results on fault A the anomaly score increased before the 100% fault severity
was reached. This supports the information that fault B has larger effects on the system.
Figure 18b show similar tendencies from the LSTM model. The main difference was that
the anomaly score from the LSTM model started to increase earlier.

The accuracy on the test samples indicated that the CNN model struggled to correctly
identify the samples from sequences with fault type B. Figure 19a supports these results
by showing that the anomaly score was rarely in the normal zone. The anomaly score
increases slowly, but starts too early. According to Figure 19b, the anomaly score from
DBN was not able to increase into the danger zone until right before failure. Compared to
the other models, the anomaly score from DBN lies much higher in the normal zone and
much lower in the danger zone.

(a) VAE (b) LSTM
Figure 18. Anomaly score from VAE and LSTM on an unseen sequence with fault type B.



Entropy 2021, 23, 83 18 of 27

(a) CNN (b) DBN
Figure 19. Anomaly score from CNN and DBN on an unseen sequence with fault type B.

Figure 20a,b show that both the AE and SAE achieved the desired trend of the anomaly
score. For both models, it stayed in the normal zone before gradually increasing up to an
anomaly score of 100. Compared to the other models, the results from the AE and SAE
started with a longer period in the error zone, before reaching the normal zone. This can
either be because of how the sequences are logged or a problem with these models.

(a) AE (b) SAE
Figure 20. Anomaly score from AE and SAE on an unseen sequence with fault type B.

Results have indicated that the VAE and LSTM were the best performing models
on sequences with both fault type A and B. The CNN showed a promising performance,
but was too early on increasing the anomaly score, especially on fault type B. The DBN
was not able to properly increase the anomaly score into the danger zone and had many
fluctuations. Both the AE and SAE provided better results for fault B, than A.

7.2. Fault C

The performance of the models were also analysed on a new type of fault, not present
in either training or configuration. This can show if the algorithm can generalise and detect
anomalous behaviour caused by new, unseen types of faults. The two best performing
models so far are the VAE and LSTM. Figure 21a,b show that both of these models achieved
the desired behaviour and could give a clear indication of anomalous behaviour before the
system fails.
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(a) VAE (b) LSTM
Figure 21. Anomaly score from VAE and LSTM on an unseen sequence with fault type C.

Figure 22a shows that the CNN model was able to detect anomalous behaviour on a
sequence with fault type C before the system fails. It performs similarly to the VAE and
LSTM. Compared to previous results, the DBN were able to detect anomalous behaviour
on the sequence with fault type C. It has an anomaly score which fluctuates more than
for other models, but it stays within the appropriate zones and gives an indication of
anomalous behaviour before the system fails.

(a) CNN (b) DBN
Figure 22. Anomaly score from CNN and DBN on an unseen sequence with fault type C.

Figure 23 indicates that the AE and SAE were not able to generalise. The anomaly
score stayed in the warning zone, instead of the normal zone. They were both successful
in detecting an anomaly score at 100 before system failure. They were, on the other hand,
unsuccessful in capturing that the system was in the normal zone for most of the sequence.

(a) AE (b) SAE
Figure 23. Anomaly score from AE and SAE on an unseen sequence with fault type C.

7.3. Fault D

The models were analysed based on the performance on sequences with fault type D.
Compared to the other fault types, this fault type has the same severity through the entire
sequence. The results from the classification of the test samples showed that every model
was able to accurately classify between normal and anomalous samples on sequences with
fault type D. Visual analysis showed that all models keep an anomaly score of about 100
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through the entire sequences. Figure 24 proves this by showing the anomaly score on a
sequence with fault D with both VAE and DBN. The other models follow the same pattern.

(a) VAE (b) DBN
Figure 24. Anomaly score on an unseen sequence with fault type D.

7.4. Model Evaluation

The results have proven that VAE and LSTM can accurately detect anomalous be-
haviour in air compressors. Both models showed promising results in classification and
visual analysis. CNN did not perform as well as VAE and LSTM. It received a high accuracy
on the test samples, and visual inspection proved that the CNN is promising. The three
remaining models achieved lower accuracy on the test samples and were only able to
deliver suitable anomaly scores on some of the fault types and sequences. The results and
model evaluation are discussed more later.

Anomaly detection is typically a black box, only indicating if data are anomalous
or normal. The proposed method based on anomaly score can indicate how much the
behaviour is deviating from normal condition. This increases the transparency compared to
typical anomaly detection approaches. In the next section, a method to make the anomaly
score more transparent is proposed.

8. Model Transparency

A low anomaly score shows that the system is acting close to normal behaviour. An in-
creasing anomaly score indicates that something unexpected is happening. When the
anomaly score goes towards 100, it can be interpreted as a danger for failure. It indicates
that the system is behaving anomalously and might fail. The anomaly score gives no infor-
mation about what is wrong with the system, only that something is wrong. Historically,
anomaly detection is not used for this since its purpose is mainly to discover anomalies,
while diagnostics will uncover the actual fault. Diagnostics is dependent on having ex-
amples of previous faults. The proposed method for increasing the transparency in the
anomaly score can give an alternative, which can help to identify faults without historical
examples.

The proposed method for increasing the transparency is to calculate each input’s (in
this case, each sensor’s) contribution to the anomaly score. Since all inputs are normalised
between the same range, they can influence the score equally. The mean absolute error
(MAE) is the mean of the absolute error between each pair of input and reconstructed input.
Therefore, by not taking the mean of the errors, the error of each input in the sample is
known. The contribution can then be found by dividing the error of one sensor, by the
total error. Equation (3) shows how the contribution of one input, from one sample, can be
calculated. In the equation, i indicates the sample and j indicates the input (sensor):

Contribution Inputi,j = 100 ∗
∣∣Inputi,j − ˆInputi,j

∣∣
Reconstruction Errori

(3)

The proposed method adds information to the anomaly score that indicates which
sensors in the signal contribute the most to the reconstruction error. The idea is that if a
domain expert or service personnel see the top deviating sensors, the potential faults can
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be recognised. The method works for all the proposed models. Next, some examples of
the anomaly score and the belonging contribution are shown. Due to the confidentiality
requirements, the sensors are named with numbers (S1, S2, etc.). In reality, the sensor
names have a description telling what is being measured (temperature, pressure, etc.) and
where it is measured.

First, five samples from a sequence with fault type A were explored. The chosen
samples range from normal to failure condition. They are marked in Figure 25. Table 11
shows the top three sensor contributions for each of the samples. The first sample, which is
considered to be in normal operation condition indicates that sensor S3 is the main contri-
bution to the anomaly score. The four remaining samples show an increasing contribution
from sensor S6. This makes the anomaly score more transparent and lets a domain expert
have an idea of potential faults that are occurring. The exact position of the sensor related
to S6 can tell if it is related to an engine, cooling, or other faults. The contribution of each
sensor does not make sense for a low anomaly score. It should only be used together
with an anomaly score outside of the normal zone, to investigate the source of the issue in
the system.

Figure 25. Selected test samples from sequence with fault A.

Table 11. Top sensors contributing to the anomaly score on samples from Figure 25.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

Top 1 Contributor S3: 38.85% S6: 25.09% S6: 29.29% S6: 30.63% S6: 32.13%
Top 2 Contributor S1: 20.38% S5: 19.30% S5: 17.78% S1: 17.83% S1: 19.41%
Top 3 Contributor S8: 10.93% S1: 14.66% S1: 16.11% S5: 17.52% S5: 17.30%

Another example of a sequence with fault A was explored to see if the sensor contribu-
tions are helpful. This should provide results that indicate a similar trend as the previous
example. Figure 26 shows the selected samples. According to Table 12, the contributing
sensors are following a similar trend for this sequence, where S6 has an increasing contri-
bution. The contributions from the normal sample can be ignored since the anomaly score
is quite low and therefore has no fault to investigate.
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Figure 26. Selected test samples from another sequence with fault A.

Table 12. Top sensors contributing to the anomaly score on samples from Figure 26.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

Top 1 Contributor S3: 27.85% S6: 32.14% S6: 32.92% S6: 33.33% S6: 33.71%
Top 2 Contributor S1: 18.44% S5: 18.75% S5: 19.64% S5: 19.14% S5: 19.38%
Top 3 Contributor S6: 16.87% S1: 10.45% S1: 12.70% S1: 14.50% S1: 17.73%

Thus far, the proposed method to increase transparency seems promising. The next
step is to see if a sequence with another fault type has a unique pattern of top contributing
sensors. Figure 27 shows two sequences with fault type B, and the red arrows indicate
the three samples that were investigated. Since the normal samples can be considered as
insignificant, only error samples are included.

Table 13 shows that the samples from the sequence in Figure 27a indicate sensor S3
as the main contributor to the error. Similarly, Table 14 shows that S3 was also the main
contributor to the other sequence. In addition, the tables show that for both sequences, S5
was also contributing to the anomaly score. This can give service personnel an indication
that the fault is somehow related to these two sensors.

(a) Sequence 1 (b) Sequence 2
Figure 27. Selected samples for sensor contribution from sequences with fault B.
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Table 13. Top sensors contributing to the anomaly score on samples from Figure 27a.

Sample #1 Sample #2 Sample #3

Top 1 Contributor S3: 30.4% S3: 28.50% S3: 29.38%
Top 2 Contributor S5: 14.58% S5: 15.28% S5: 16.11%
Top 3 Contributor S1: 11.22% S4: 11.83% S4: 12.19%

Table 14. Top sensors contributing to the anomaly score on samples from Figure 27b.

Sample #1 Sample #2 Sample #3

Top 1 Contributor S3: 17.23% S3: 20.41% S3: 24.99%
Top 2 Contributor S5: 17.10% S5: 16.52% S5: 14.56%
Top 3 Contributor S1: 16.97% S1: 14.51% S1: 13.29%

The proposed method has proved useful in increasing the transparency in the anomaly
detection approach. It uncovered that each fault type has a unique pattern of top contribut-
ing sensors. These can be used to indicate why the system is behaving abnormally.

9. Discussion

The results show that it is possible to detect anomalous behaviour in air compressors
and use it to indicate system health. All six DL techniques (AE, SAE, VAE, DBN, ED-
LSTM, and ED-CNN) were able to reconstruct normal data with a relatively low error.
The reconstruction error increased when faults were introduced and as they progressed.
When the models were tested on sequences with faults, the reconstruction error started at a
similar level as normal sequences but increased as desired. The main difference between
the models was the level of noise in the reconstruction error. Results from DBN had a lot of
noise, while LSTM and CNN achieved results with little noise.

One of the main difficulties with the reconstruction-based approach was that it is
challenging to tune. If a model achieves perfect reconstruction of normal data, it does not
give insight into data performance with faults. If a hyper-parameter optimisation loop
is used, which is uncritical for such a problem, a risk is that the obtained architecture
allows the input to be copied to the output. This will achieve almost perfect reconstruction
on both normal and fault data, not the desired behaviour. The architectures and hyper-
parameters were therefore explored through trial and error. The manual process tested
several architectures until the desired behaviour was achieved. If the process is to be
automated, a good evaluation method must be found.

Anomaly detection was explored towards giving a descriptive range of how much
an air compressor deviates from the normal operating condition. The proposed method
transformed the raw reconstructions into a more descriptive range, referred to as the
anomaly score. The reconstruction error was in different ranges for each of the DL models.
It was therefore anticipated to be difficult to find a common and descriptive scale of the
reconstruction error. The proposed transformation contained three steps (scale, sigmoid
transformation, and scale), which were tuned based on a configuration set. It proved to
give a suitable scale, giving an anomaly score that ranged from 0 (normal condition) to 100
(close to failure). The drawback with the approach is that it requires manual tuning and is
sensitive to changes. If little data is available to configure the transformation, an alternative
is to use the reconstruction errors directly. The raw reconstruction error and its historical
values can help to indicate anomalous behaviour. If it is increasing, it can indicate that
there is something wrong with the system. The anomaly score’s advantage is that a single
value is much more descriptive than the raw reconstruction error. Both of these methods
would work together with the proposed transparency method.

The range [0, 100] was divided into three zones (normal, warning, and danger) to get
more information from the anomaly score. These zones were tuned manually to classify
normal data in the normal zone and data with faults in the danger zone. While manually
tuning such thresholds is a drawback, the advantage is the flexibility of tuning it to the
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desired behaviour. A potential user can decide if it is desirable to get early warnings or
wait until the anomalous behaviour is more guaranteed. In this research, the zones and
threshold are used to provide a clearer insight into how the proposed approach can be used,
but they can be replaced if the reconstruction error with the change rate is used directly.
The proposed anomaly score approach is not intended to be used purely as a classifier.
The thresholds can, on the other hand, be useful for giving warnings and error.

One of the problems with the proposed anomaly score approach is that it is hard
to evaluate. The models were therefore evaluated in two ways: Visually and based on
classifications from the thresholds. The classification accuracy is not an adequate method
to evaluate the models and the visual inspection is not quantitative and therefore, hard
to automate. The combined evaluation is sufficient and possible for this case, and small
datasets, but better evaluation methods should be explored. All evaluation was done on
unseen data with four different fault types. Two of the fault types were not represented
in either training or configuration. Visual inspection indicated that the anomaly score
obtained from LSTM, CNN, and VAE was the most promising. They were able to give a
clear indication that the air compressor deviated from the normal operational condition in a
reasonable time before failure. The three remaining models performed worse and struggled
to give clear and consistent results. The classification was done on a set of partly randomly
selected samples and supported that LSTM, CNN, and VAE performed the best. Both VAE
and LSTM achieved 100% accuracy. Interestingly, two out of the three best performing
models use time windows, while the three worst works with non-sequential data. The
VAE differs from the other models by modelling probability. The results indicate that VAE
and ED-architecture LSTM are great choices for anomaly detection on air compressors.

The proposed method for making the anomaly score more transparent indicates
why an air compressor deviates from the expected behaviour. A unique pattern of top
contributing sensors for each fault type was detected. Service personnel can, based on
the top contributing sensors, identify the potential fault or at least which parts of the
system are causing the deviation. Increased transparency in anomaly detection makes such
a feature much more useful. The contributing sensors have little significance when the
anomaly score is in the normal zone. The contributing sensors should only be investigated
in combination with an anomaly score outside of the normal zone. It is essential to evaluate
the scalability of the proposed method. The air compressor explored in the thesis has few
sensors, but the method is developed to scale to larger systems with several sub-systems.
In such cases, it is possible to build a tree-structure describing the relation between sensors.
Each sub-system can have its branch. In such cases, the method can be tuned to indicate
the top contributing sub-system and the contributing sensors within them.

It is important to consider if the proposed method for anomaly score with transparency
is useful. It has already proven to detect that the air compressor deviates from the normal
condition and indicates why it deviates. The greatest advantage of the approach is that it is
only trained on data in the normal operating condition. It is beneficial to have a few run-to-
failure examples of tuning the model. If these are not available, the reconstruction error
can be used directly until the required data are collected. This means that a company can
easily start with this feature in a PHM system without having large quantities of labelled
data. As mentioned in the introduction, a key challenge with industrial data, particularly
data from critical equipment, is the lack of examples of anomalous behaviour. Moreover,
if such examples exist, they are often not labelled. This is what anomaly detection is used
for however, it is challenging to achieve provably significant results. More data must
be gathered and analysed further to verify the significance and value of the proposed
solution. This early version can be put in use to enhance data collection to achieve that.
The predictions can be made available only to trained service personnel to put it in use
safely, who can inspect and verify the results before notifying the customer. The results can
be verified before being presented to the end-user and can aid in labelling the data when
fault and abnormal behaviour occur.
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In addition, the approach proved to detect anomalous behaviour for unseen types of
faults. This indicates that compared to fault diagnostics, this approach can detect something
wrong in the system without having historical examples of that specified fault. A common
problem in the industry, especially the maritime industry, is few run-to-failure examples
and little labelled data in general. This approach can still be used in such cases. When
more data are collected, the approach can be re-configured, improved, and evaluated.
The anomaly score approach can answer the question: “Is there something wrong with the
air compressor?”.

10. Conclusions

Detecting abnormal behaviour in the air compressor system was done by exploring
six different DL methods based on an ED principle. The models were used to try to
reconstruct raw input data through a lower-dimensional latent space. The proposed
method transformed the reconstruction error from the models into a descriptive range
referred to as the anomaly score. Visual inspection showed that the anomaly score from
VAE and LSTM was performing best. They were able to give a strong indication of how
much the air compressor deviated from normal operational conditions. Both models were
able to indicate highly anomalous behaviour in advance of failures. The same two models
proved to accurately identify if a compressor was in a normal or faulty operating condition.
A method based on error contribution was proposed to increase the transparency of the
anomaly score. It led to the anomaly score indicating the condition of the system and which
parts of the system were contributing to the deviation. The proposed approach could
help avoid that the equipment fails silently and notify the equipment that the equipment
is behaving unexpectedly. The transparency extension could even help to indicate which
part of the system was being affected. The proposed methods can be highly valuable as a
starting point to PHM, as it requires less labelled data than typical data-driven approaches
to diagnostics and prognostics.

Future Work

The proposed approach showed promising results on a small dataset with normal and
fault data from maritime air compressors. It is suggested that future work should apply the
approach on other, and more complex equipment to contribute to verifying the usefulness
of the approach.

One of the mentioned drawbacks of the proposed method is the manual tuning and
selection done in this research. As described in the methodology, several of these manual
processes, such as zone-selection and range transformation, are avoidable. Instead of using
hard thresholds in a standardised range, the rate of change in the reconstruction error can
be monitored directly.

Furthermore, we propose that future work should look at how to automate and
pipeline the entire process, from training to deployment. One of the key challenges is to
automatically train and tune the model architecture without ending up with a model that
allows the input to be copied to the output, as described in the discussion. Therefore future
work needs to explore and find a suitable scoring function that sufficiently measures the
performance of approaches that tries to indicate unexpected behaviour and potential health
of equipment.
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